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OFFICIAL 2011 UNIT MEMBERSHIP STATISTICS ?‘ ﬂ 4T ;

unit | i ! I I ;
2007 2008 2009 2010 2011
- & i Ak JUs N 3 3

DIVISIONS

Atomic, Molecular & Optical
[Astrophysics L
Biologlcal Physics
[Computational Physics
Corndensed Matter Physics
Chemical Physics

Fluid Dynamics

Polymer Physics

Laser Science

Materials Dhysicsk

uclear Physlcs
Physics of Beams
Particles & Fields
lasma Physics
TOPICAL GROUPS
Energy Research & Applications
[Few Body Systems I .
Fundamental Constants 433 419 416 0.91% 0.889 0.889 o
Gravitation- 921 1,018 1,020 2.20% 2.16% 2,309 2.28°
Hadronic 355 366 397 0.79 0.849 ,819 0.91
lInstrument & Measure Sclence 601 606 566 1.31 1.20 1.18% 1.13% |
[Magnetism 778 836 35 1.81% 1.77% 1.87% 1.95% |
Plasma Astrophysics 365 370 368 0.80 0.78Y 0.77% 0.81% |
Quantum Information 755 929 1.91 1.979 2149 2.25%
Shock Compression of Cond Matte 354 0.88!
Statistical & Non-Linear 945 2.
, 9.74%

Graduate Student Affairs 2,865 3,343 4,366 6.19% © 7.23Y% 7.88%
History of Physics 3,854 3,928 3,744 8.33% 8.49% 8.00%
Industurial & Applied Physics 6,644 6,740 65,931 14.35% 14.57% 14.35%
International 3,759 742% - 7.80% 1.75%

11.98% 12.55% 12.45%

Physics & Soclety

California </Nevada X R 2,490 X 5,
1,113 1,260 1,623 1,684 2.409 3.389 3
New England 2,327 2,413 2,371 2,364 2,368 5.03 4,93 4.91%
ew York State 2,290 2,436 2,503 2,602 2,511 4.95% 5.22% 5.209
Northwest 1,106 1,160 1,181 1,245 1,254 2.39% 2.60% 2.609
Ohio Reglon 516 1,498 1,50 534 1,465 3.271% 3.20% 3.04
Prairie 492 673 770 1.40 1.60% |
Southeastern 2,544 2,728 2,731 2,717 © 2,680 5.50% 5.90% 5.79% 5.67% 555% |
ﬂTexas 1,602 1,534 1,635 1,675 1,755 3.24% 3.32% 3.25% 3.28% 3.64%

Official 2011 APS Membership - 48,263 2010 - 47,947 2008 - 47,189 2008 - 46,269 2007 - 46,293




= “”.77/1)/,¢L'(_JA~, s

5«mla}nmfals ‘f]‘ o
Ph ync&

. ;z_j;;;u A_ | q 5}

B N Ty S
) : ’ | . | /’)u

) r’m@% . . )
Mﬂ% éw&»ri %w%u wwgE . : }
3 ‘ fﬂ}@ﬁ’()/& 16 "‘(,%iﬁmb INBT ﬂ,%ﬁ{] ,o);‘uq’{';\zp 'YQ ‘(/,% wg,rfuﬁ/j@ﬁg)%} %{J /
L “ . ’f@Zﬂ' V%’fpﬁ%qwzﬁ%ﬁoﬁ] X"“*’?ﬂ/?gﬁ/fw | t/,‘
o ERRE ek u)fﬂ;)‘? 92 o %o 3% %‘% 7Y S -‘;{71537@4,,,\%% B4 ?JL —

' i

)’a?e&f«i% e Wﬁ It :L)j;i%: ﬁ%ﬂmzmﬂza o
D A B R ADAEHEE. .
~ L 4 4oI¢ _
BEZCLCE ST L 3TITE L S S0 F X T Y A o
AR ﬁfr}]ﬁ%m»%isﬁf% Qe e
L SE/G S m%ﬁ 3 A S St
'_ _%i B Heg, uiﬁ{ SR R | ‘ : )
L /TiMql AIRE A ﬁzﬁ% RERE.ECRE L
A e g 24, -
) apse B R e A E AL LR 2R ;L/ﬁl J\z}{ R S R
e e, At B R KK ARLE AL L PN .
T BB dder A B T .
R .,,ﬁa 3} b2 R H3 4R ?’/5‘17& 473\7% ' o .
2 wg,?i_%ﬁbzﬁ%zékﬂmﬂ% w ha ,% LA oo

(i

I% 3‘%/\ L _~a AL ’ _\-(

S hiere | AdRear
N ___»,,_er%sna o pafEd




15 ko 4pe Q‘i&&é&ﬁ @ﬁ\ﬁ\ﬁﬁ\ﬁﬁ 2208 - ‘ N
I, o 1. 73] i)iﬁﬁdﬁiﬂ%‘?@%ﬂ f?iw&rﬁéi q‘%m
o WA DEmRARAEY f:zi Rk i B R A aqu H RAFE A st AR
o s %é&ﬁ}?ﬂ

/]
: S~ Yosz. g 57 A0 Ay |
BTY %J{Zﬁ%wmg_n% s ﬁ&ﬁ%/fur 1/777?%/3\’2’& 1 ufﬁ’&f} el / |

e HBK B FEN ~ 3xs07 10 5@6 WA

" 7SR KM%H (ﬁ%ﬁi’iﬂﬁ éiéﬁiéﬁ’dﬂ% iﬁbo%f}){%/ﬁﬁﬂ 10 e, %
b ARk FBORE ~ 0% em  10%m

Ma 7%5%&_;5_0%1 ~ "“m. 0 me ~ 107,
A B, ABRE LGk \

f‘ °..: - A 0" °K
L Fma 0f
g b AT : ak /zrfo?i%ﬁ 41, 8 et 92 TANK 2 S
L (BPUBRAE DB H BB 2 N Rt e Nﬂ@ |
AR A A SRR L,
() BRI HIAR 2T BRAA ﬁtg? d

) e 4D ?Z &) B 2§ HIA_ A N sl A5 )ﬁffbﬁ&@%
L@ RERA \%%ﬂ%f@z\?\fﬁﬁfmf X,

CewAmdess

S (k) ’
F *uﬁ—mﬁ’ ~/r='m~25 =‘m:z—-;'::
- AR HERE K -
D Fb F-a f",L Bhs R J

s
@ By - ’éﬁq bt 2 Bas b F ;c/: +PxB)
SN %E{%érjw e
- E, [3’ 147 thﬂ\% 37_/\'11%%‘)%/( o ; ‘
e 224 EN/\éfuﬁ‘ AR » | | o

AL SR T t?-zﬁ AR A wf'rb f mm/ﬁa,@w,m%ﬁ‘,.“° | :
éf\: 4% it F ;ﬁ, v : : , i

AL }ﬁ;% 5}‘\ iFﬁﬁ%ﬁ%?fL &Tﬁz’)&&ﬁ?@

R >MM*§? | |
AR AR q%#wﬁiw#wz.

=+ é&a’é" jv{zj( o j,/g('ng(
R NE T LR Y T

)

S
Ao

e A-z ST B ,u..,v,neu,traﬂs e

«
o

‘) TZ T hiimber ?f F,atans

3

‘»Q

A

23,




(D A2 N AL e e wBE AT 2P (R BRT ﬂfﬁ w’JﬂZ&fﬂf\) i

@) B E B ntd & ER RS, a%a e

@W_FE 2 B Koy AR A o |
@) RN B 0 ERAD 5%@4?@ )

SR E1ER (/8 ‘%“}?\ ne piet

) S T I o
(w AR IH2 . (0.3))

(@) %"&iﬁ W,

(k) i3 ﬁé @P\ .
© W5 BA| 1032
(0 AA#ioezh S

@) #itere . (957 , | ”

@ )&} #2(?‘% %

R TY, XY q o |
s () 5 30 o .

@ BiNEE ]
o P BEBR .
() R >1ABI b 352 5.4

. Brme s R ’g\ﬁ; .

CIPSELEI Nt W=y -V S

@ i, A REXEIER, |
L (H B RiKbe (21.57) . ] .

_ (mjﬂﬁé 72 L L
W Gferbre  AABAGA MG .

() ihAp g . e
@ FRAARWYE KRB ASME
© A2 -
) BEER o o
(f) fu/% ! 7/(, ) S
® %ﬂ?jﬂ | o

@ BHLE
()% 3 ?’uﬂ N

B m(c) 1ARE
(6) P *@’ C3.)
B »(a) gﬂ %
(&) 2% /)i/j" ]
)& d}k%’w’ _— - -
) "REA2.




(D Btk (BB 5 Ak o (5.0 L N
) ,ﬂfz LiKahIE L) MiBL AR, kbR
(h) T ATk A - T

() ,%&%\ﬂ ,@i _ o
(9 AxAAMAEB (11
() X X #Hp2¥ : “‘,
(DM - | | | o o
() B A o . , o ' \1\;
() weomEise 4 |
(a) W.t i%ﬂ? o o _ o
(c)_,).&i(/%@}Z_d S S - }
(d) ,%{i B yp3® |
1

(”ﬁém@ . o | /

(o) 4P abup ,(__-/.__.,_é.A - | g
(a)_ 'ﬁﬁbﬁi - | | |
R N SR VS B

() ﬁﬂdi%%i L g,,A\rf)?@f\/jxxéﬂdﬁ

G @ (L3 . ’ﬁx),ﬂzméﬁwm sd21fm
() 7 m’%fﬂ :

b e
(e) 141838

() A AR (3070 ,;,DWA],,nga]mApsr7w¢., o

ey
‘

LS [ RV L

e » o 3-,/3,37;& e
2 1) C afhAn %}Erﬁﬁé\&ﬁ pTAl

wWEAA 1t ed3 " w400 = ,.3_.2,90/\ .

. 9 __ . 3800 A,
% w2000 A TTON
%};’\5\\? 1% Mass, flenjf/-., Zfi:ne,_mc,,/l,a‘r_ye.., e

Accessible and _pvarcable.

e Am_ = 1.b506.743. 73 Waveleng%, . Lé/i mauumof /Ly/zf ensitled . _in
s
- & 52 o KRr o Transittom_

Ak, a%fal M o

v

q




. é A ) ' - N . i a o
: ’ ’ jg- v . ﬁg”-‘?{é/ s%ﬂfz/g; g /ﬁ %
1. ‘H"Am%fi%? b ' ' '

E ?ﬁﬂﬁj\i&ﬁﬁﬁ‘ﬁ R 15 K T AR AR B, %ﬁﬁﬁ@/‘?’f—ﬂ?%lﬁ} B AR
Tfﬁmﬁﬁ‘*ﬁ’l’o B ARICE T Y Y MRS,
R%E%JEILETEE‘J% R EAE, ﬂ%%ﬂ*ﬁ"é’ﬂ&?ﬁm%ﬁ\%oﬁwﬁ
kJBﬂtB@%Yﬁﬁﬁ(Eﬁk#ﬁ""ﬂ’]ﬁ%%@» HE—AIE, WEEEEE
i&%uﬁﬁﬁﬁgiﬂﬁ %u#@ﬁiﬁéﬁfﬂﬁwﬂ%ﬂﬁﬁﬁﬁ#%?’fﬁo '
LT AR A N %j‘:@jlf’f:‘éﬁ%mﬂj: BT BRNEMRTF
: }Em,ﬁmﬂﬁ%XTé’J%ﬁ%é’J%mo P18 40 19 4, Eki‘i@“
E!’J%E‘JU: & EE FFRIC, ﬁ%4}"ﬁﬁ#§§¢3’7~5{)ué@&j3%ijﬂx’e,ﬁ%
4!“3? E T E&Eéfixééiiﬁﬁfﬁ%%%ﬁ@ HRFEER, EC R
Bl 2 PR EREIESET T MR Bk, MY EE S
KR RESR G T . KT, EYKIHRZE, — RIS EAYBENTE
ARSI S SO AR I, AT R IR E R EIE T, R
C IpERSDAGEERE E, 20 W0, BEETEM 5 A0 TS, EEEE R

AT PR EREE ERE EEE RS Z AWENT AL TE
FRHBT 2, B TERYHEFNEISER, 20 #HaEERFIRE
JE , WAy B R 3t 434k S Sk B R T Yy BT AT

S BRI Y%Qfﬁ%ii B SR TR EEE B ESHHA S, IR
L R TRRASTRAE K R, IR SRR ()
! H E%%iﬂ%ﬁ%ﬁcﬂ%ﬂo ’

- AR ?uﬁ:ﬁﬁ—*ﬂﬁ?fémﬁ AT A : %hi?if%"r‘ifiﬁ%ﬁéﬁ L M
FoiE 3h A HLAE 6 A R B TIZ B S AR A
LR EEMAE, A —SREEN, MEEE ﬂ%iﬁt&,%ﬂ%ﬁ%
= AR T AR AR ‘

YRR SCEHREANMSE AR, BR BB, SSOWHEEN
EJ‘F% TR B A TR, — M EE SRR T HE, B~ RREYEAE
CESPHRELERYREERERAIEM, F%T{ﬁiﬁﬁﬁﬁ’ékl_—?ﬁﬁ
FE AL R IR AT R L H4E Y HE R R, SR 38 27 W i S e —
B, B — X ER T 4 B R R %ﬁ%%ﬂ%%})\%ﬁhﬁ?}* ATHERY o
MRS ETITER N ER N ER ENE S, MBTHEEEA
B2 T LI, B A Y22 M R R B ARET X T AR R AE
AL S 0 ] B B R bR T R AR R — R “HEPIB




2 % B

(vitalism)” , Iy MPRREEF WS " EEF, TR REEYIERL
ERER DR R 5— R BRI (reductionism) 7, I —4I &AL
RAFAE (FE YL, BIR) A WEFILE R 1824 43K %) (F. Wohler)
BOMAESRENATIIERT REZE, EVRIIET . BE, #F %
S FAYEF A R E AR A A OBy LR AR B R o R
AL ERREE B DM B AP TR, BT KB, BT
R, UHBEME TR HYBERLE, REA BN, TEYE
FHRF R B TR TR AR AU, LR LSRR R R

B WEEMRITE BARE MR, KT aE S aEn., Wi

ENEREYEHELE, WERTTHRENY, KRR %3
BIZESUR L=t i — RSB KRR, i DNA SUBHEZ 058 2 RS
BSR4, FOAEH T 3% — o TAEANTE L, 21 HH0R A4 4Rl gy
R, XIEE—EEE A, AR K ERE, U ERESYER 2
(BRI ) EE YIRS E AT,

2. BB EHA

e IR TIERERMEARRAE &, S B, S - HEE
BYVBRR , NEEE X RS M, AR R SC bR R R e
R, B 2 B ARA PR EF LSRRGS Z FER , B IS
BEIMRRKAN; BRI RO A 5 B 2 327 (A 8
Fo BEEERMRMIUIATRE, KHR, RERE M50, B
FUBH 5 SR RETEARNT B S A TR , 7 AR BBV BRI

Pist b, YBEAEAR MR ARG AR, EB ARSI ML, £
TR R TALE Ay, LA R BRI R T 55— Pt 17 i egsient
KT BEFRRMEITE; 18 HEREAR T ARFLERIIE R THES,
KT EER R BLTERE, TETERN, BZEERIFI A H
JG ZRFHERL A TR e K BB RIS R R 5% ~8% . 1824
FLEMREROMAE S EHE, FREAVIREM T HE K, 2 20
HELRIHALRIKE] 15% , ABHLARIAT 40% , IRV TR
50%. 19 HEFMHBERAN ZEER AT T BT ERE, pu
FRIRCAF R TR EE — XM B W
R TR REYE LR T HI, R E THEAR, IR - 98 —
TR AR HRB R TS RN 1785 SEB ST e O, i 2t
RIT BB RIS NS S7, E3 1831 4E B 48 R UL AR, R,
A LRYE ERRR, BN AR S S, SRS HR R

R

& ® 3

R T RS A T 1862 4 S
AR T B :
A 1998 AR B RERCR T BT DA BAR

SRR MR B AR T %ﬂi"%"é‘]k@ﬁﬁﬁiﬁ%

s R > W |

20 EAIE A AT AR M R A, ERPIRBEIEE, MR,
P E KB R T2 R A8 OLRIERSAR) 18l
SR A T KR, R FINR ERRT KRS

R A , VR 1909 SR o T RIS SR

e ern R R R, AT
40 LR BRI FUA 1917 A SR R A

e SRR M SR SR IR AEEAAT
T EAENRSOR EE TR TS, B2 RN E AR

PR E R T E A EMEREARNEE KR, HEGRSEHEDY

Y SRERA IR BB T AR
RSN RGARRIE, 1947 S JURSR S
3 %;zﬁm%ﬁ:%,ﬁ%%%aaﬂwms 1962 4E & B T AR I, 70 47

BRI T AV R B o BN R 2 B DB 20 SRR AT
i e R TR T KR IR A 1925 -
1906 GEEL T BT H0231926 SFREAL T SUR-KRITAITE MBS
F IR R AR S 51927 4R T AU RO BRI , AR AR TR A

b TR e A B 51928 4R ORI AR 1 AEH RO AR5 1929 ARIRARATR (RIS

e AR T EEE RSO  FAE TSR E T ST RS,
gg&?ﬁﬁf};@ﬁﬁ%bﬂﬂi?ﬁ—/ﬁ%%ﬁ%E@Jﬁ%i\)ﬁéﬁﬁﬁ%ﬁiﬁ
Tk, MBS D B A EE RS — SR — YERE
HTH . :

3. HIEES T AR N L

PR R TR IR R S TR, PR —
B AR (SRS AR A B R E ,;@,am%ﬁ; |
ST A : ’ N
o ';ﬁ%iﬁ’ié})\%ﬂ@wm@iﬁiﬁgiDF%%’%.EH;EE‘J B ATAE RS
B E s B SR R R R M 2 |

T AR R BRSSP E R AT L
e O IR T S A B TR I, LU SRR
R 24 5 AR R B AR Y, S
=S -




o %

B, U BRI 5k, gy BEST BT o
RSB R0 5 7545 et . e i m@mm#\
IS, RBZE IR g g, R fripm e
FEABRI? Bt 2 dg iy ..., PR IE TR, T Bl s, gy
E%ﬂ%%lﬁ%%ﬁﬂ&?"@%ﬁﬂ];%ﬂiﬁ“TEH@ﬁ@j,fiﬁ%ﬁjE’%Tﬁ
AR, S R .
TR Esrm, ety g o MYEELR, £3mm
BT BRIGH, I T2, My JEMET, FEsi— T
BRI EIMEH T 35, RO b —n, s o
RN SR B e o BT IS0 8 A1 1 2 e
BRI RIS fesgpen), 5 m AHRHR, Bt Fe s 375400
B E Ry, Skl =l = eyl IR
RO HEUT R, SIS 10 bt 1t 1 2 g
s URBRERRGASET toprmpy, |
ER: FU s, BT Sy,

L1 A%
.s'e*“"fﬁ%ﬁﬁzm@%ﬁ@ma;ﬁﬁﬁ%ﬁ%fwwzﬁwwﬁm@@aof
AL (kA B3 2 ) RARSTAL B 5, BIAN, KR ASE T A
BT, K AT 7K B 9 30 RUERYIBITE, FRH A2 3 (mechanical
iﬁbﬁdn) LU o : -

" J1%(mechanics) HOBTIEX RN E 3 o 22y 2 B 1 A 553
%%ﬁﬁ%m%ﬁiﬂﬁﬁﬁ‘@@ﬁoﬁﬁmﬁ%ﬁj@ﬁz‘j}%(hmmaﬁcs) =ik
% (dynamics) Fllé /72 statics) , 15 35 FRERYEN B, Ry BalE
BEFRASE N ERE ;2 5 %Mﬁ%%@&@ﬁ@ﬁiﬁ%mﬁmﬁmﬁ%m
HBR #7 P AT 80

L2 /R &

U N T R MBI M R R E— Ry
%;%‘%’“%I/\e%@?&fhﬁ@ﬁﬂ%ﬁ%i%%%%o“Dﬁ,ﬁ " R EEE
LR | :

" Eﬁ%mmﬁfﬁﬁi,%ﬁiﬁﬁ%%ﬁﬂkd\%?%ﬁ%mOXB‘EJE-E%%(&H
RS E 2 S ) DEMBRIANREE M, B mL qm
"F*,ﬁiﬁ%jﬁﬂxﬁf@%ﬁiﬂﬁé@%ﬂﬁxj@%K%&%%E‘J%fjﬁﬂ%&“,%‘Eﬂ‘]fff
%Z‘%ﬁf‘{’&’mﬁ@%%%ﬂﬁd\,?E’E’ff]%f’t~4‘§%‘fﬁ§*é@ﬁ(‘Eﬂ)ﬁ,s%) k4t
ﬁb%ﬁn,J\ﬂ‘]’%"#ﬂiﬁ%ﬁ@%ﬁ?\E%%Eﬁiﬁﬁ]éﬂ%%ﬁ%%%mﬁﬁo5&
o, FIRER Bk, ZERR S 4 H A L BB MRS BRI B 5
IR , BN B AR AT T, HBATH G — 2 b Je by
R (R Fidk) Eﬁﬁﬁ,i%&%ﬁé?ﬂ%ﬁ‘%ﬁ%ﬁbﬁﬁJﬁ&&iﬁ?&‘?ﬁt
ﬂ?ﬂﬁ%%%g‘ﬁimﬁgﬁﬁéﬁﬁi,Eﬁ%@ﬁﬁiﬁijlﬁjﬂﬂﬁgﬁﬂiﬂ%lﬂfﬁ
XL Sk 5 g -

© 3 mechanical — F% “HLALA)” 7112 t” 3y O A
mechanical motion i #2353 (g « YIESD” —FARAE A, 9% B a3, &
%,




-4

4 3%

3%

T 5. (ED)

.7%&' l/m'vc;/:’re- s Zaw;ézZ.

lord &S cubtle — = Fnstein

Jcienijﬁc Method

Observalion

Experimentaliorn .

data a/?aé VATAS

7
Phenomenology

Hypothesis .-/*/Zaw

/\:lo,del — Jheory

Combuimfiana}/ /b/}v.n‘c.r

/ .
foundalion

/:Jf-ma,[[.fm

Clagcificalion
4

AKinem alics

Lvnamics
7,

PEITE 2
5

% 5 5 B

BUREABNER (LSS




24
83, .
P
EJ &8 AT
/?"111 ﬁbz"{k . %'f? 'Acce;r;ib)a
/S ‘g Tnvariable.
53k 2 3
P [0°?
- T 10"
G 0%
M /of
K /0
m 1072
U 1078
7 =7
n [0
b /0~12
7 07
7 ,
19 . —
@ ) pum = (0”" n
/ -/m = 107 m
W FBIFLAT = moc* = 0.5/ Mey
T/ B3 he BBE =3 1 Gev /0/,,
(c) #eit B BT .
AL 3 Mey FIreid &
_ ,
gk T IMRAEFFE 5] 3. /06;\/
’5447{34

14| ‘JUDJJE (.S‘.l?RC) /. 3 GeV 't%f%j?ﬁ

,éwi%«} &—ﬁfﬂﬁgiﬁ /3.0 ey

Lermi lab [ Tev gﬂ;ﬁ"@_\f;

¢ 12

IU C\VI

‘ borpa ) % %‘é
Y adiig=sa" (o
KX IE ,‘%f{ jﬂ/’f‘ ba.)')‘{’/’ m-der a[ nmom tude =

,\{ﬁ Z

‘ Ph”%‘/?'/és — /{; %l; = /%\ Jgﬁ S Awiom—am
ECS TN T ¢ eSS

@zmﬁkmm =8 |



¢
¢

24 .
B
g .

L7 4 M 7B if\iﬂ’fifﬂ

; : 'ﬁ:{i'lﬁ-:ﬂ }ﬂ},tjv\,a‘i}?‘
ﬁﬁé 18k
28 29 T T
%%%H £ L
BDRE m M
Fopivik g LT 7%
R k1 5 E B
T=1= 4 mPs? = (1) cmtr2)?
B=o0 |
‘ Io('f y =0
‘ 2y =1 |
. = A = é/ K /g o ,F = "éL
L~ Pe) /£
| f 7
A A A
. B E L -
R b L AIAD B T 2B £ 7hih
(H5]BRIRIR & 2B hA st gy
A Ay ¢ T . £
ADkD Ky MT2 — g=F_ M%
Rp2 BE o r273 e
E R 1G r !
4 . B
r = ¢ = s5%qf,;? = (M7 ) mees)?
Xt B =0
~3l/5’ + F=e
- 20l = | 5
= x=-4 = B=%  r=z
i imensionless =3
= 2 = constant /- }/r‘;dl
Rayleigh Natare 95 44 (/7!5)
I MY R LB &
| 7
_HEETIE

EIBEA B E A




Comm E/Iéf

What s /Z%/VJ'L' cS

/D/) )/.n'c.s Ly the use - selen j‘%‘c melhod
o J/c'nc/ oul the basic /Dn'ﬂa/‘al " g0 verning

Light and matler , and Yo discoyer

the t}n/b[l:(!@ff:dfz /a[  these lawis z :

There are reeles é// which the wuncverse

f(nci'lfon

Matter and Zjéf




PR

' The Setentif Method

Basie Pra'm:c}é[ef
Q) Seience (5 a 9«:/& _o/[ Z%eopf and ev/berz‘meﬁ{
Ec/bera'menf _7%807

crealed ‘
under cerfam

condition .
. u.
(i dealijation ) sefeel
az.:tracﬁan theo?>  pew ex/bert‘megz{:
wunder” e

. * c A y
under new conditions ondi Lions

theory s nol a

jaoc/ ] a,/b/braxbnaf&an —_— Aew f'éeo/rv

not  valid at
all.
should 50%6 /?rea’t'cé arid ex/b/q,',,)

@ JAeori s
L de destable

74 607 shou
means that many

‘nato value
EX/UZGZ«; a}i;a houds b€ A led
s or With /ew basic f’mc&/o/e.r
f roducible.

@ E«\’/bera'mmtr should be 7P




bstract feasoris‘yet :
 :to captuire reality.

atific American. August 2011

Mario Livio is a theoretical astrophysicist at the Space Telescope
Science Institute in Baltimare. He has studied a wide range of
cosmic phenomena, ranging from dark energy and supemova
explosions to extrasolar planets and accretion anto white dwarfs,
neutron stars and black holes.

PHILOSOPHY OF SCIENCE

Math

Works

Is math invented or discovered?
A leading astrophysicist suggests that the answer
to the millennia-old question is both

By Mario Livio

OST OF US TAKE IT FOR GRANTED
that math works—that sci-
entists can devise formulas
to describe subatomic events
or that engineers can calcu-
late paths for spacecraft. We
accept the view, initially es-
poused by Galileo, that mathematics is the language of
science and expect that its grammar explains experi-
mental results and even predicts novel phenomena.
The power of mathematics, though, is nothing short of
astonishing. Consider, for example, Scottish physicist
James Clerk Maxwell's famed equations: not only do
- these four expressions summarize all that was known
- of electromagnetism in the 1860s, they also anticipat-
ed the existence of radio waves two decades before

 deapest miysteries are often the things
* we také for granted. Most people never
think ‘twice aboitt the fact that scientists
" Uise mathematics to describe and explain
i~ the world. But why should that be the case?

[ZE RO DU N DR S

Math concepts developed for purely ab-
stract reasons tum out to explain real phe-
nomena. Their utility, as physicist Eugene
Wigner once wrote, “is a wonderful gift
which we neither understand nor deserve!”

German physicist Heinrich Hertz detected them, Very
few languages are as effective, able to articulate vol-
umes’ worth of material so succinctly and with such
precision. Albert Einstein pondered, “How is it possi-
ble that mathematics, a product of human thought
that is independent of experience, fits so excellently
the objects of physical reality?” .

As a working theoretical astrophysici t,'"i encoun-
ter the seemingly “unreasonable effectiveness of math-
ematics” as Nobel laureate physicist Eugene Wigner
called it in 1960, in every step of my job. Whether Tam
struggling to understand which progenitor systems
produce the stellar explosions known as type Ia super-
novae or calculating the fate of Earth when our sun ul-
timately becomes a red giant, the tools I use and the
models I develop are mathematical, The uncanny way

IN BRIEF

Part of the puzzle s the question of wheth-
er mathematics is an invention {a creation
of the human mind) or a discovery {some~
thing that exists independently of us). The
author suggests itis both.

August 2011, ScientificAmerican.com 61
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at math captures the natural world has fascinated me through- el-t

it my career, and about 10 years ago I resolved to look into the
sue more deeply. G5su

At the core of this mystery lies an argument that mathemati-@42
ans, physicists, philosophers and cognitive scientists have had ove
r centuries: Is math an invented set of tools, as Einstein be-{¢ €
wed? Or does it actually exist in some abstract realm, with hu-mgnNs

ans merely discovering its truths? Many great mathemati-o
s—including David Hilbert, Georg Cantor and the groy
as Nicolas Bourbaki—have shared Einstein’s view, associ~

ed with a school of thought called Formalism. But other illustrie®
18 thinkers—among them Godfrey Harold Hardy, Roger Pendgs SIOWIL as

se and Kurt Godel—have held the opposite view, Platonism.
Thisdiebate about the nature of mathematics rages on today
s to elude an answer. I believe that by asking simply
athematics is invented or discovered, we ignore the
ésgl ility of a more intricate answer: both invention and dis-
very play a crucial role. I posit that together they account for
;éren h works so well. Although eliminating the dichotomy
‘eén invention and discovery does not fully explain the un-
onalae effectiveness of mathematics, the problem is so pro-

at even a partial step toward solving it is progress.

INVENTION AND DISCOVERY
%&g&g\is unreasonably effective in two distinct ways, one I
ink Of as active and the other as passive. Sometimes scientists

cie

Pgor example, Isaac Newton formulated calculus for the pur-
ig (if capturing motion and change, breaking them up into in-
g.gslgxally sinall frame-by-frame sequences. Of course, such ac-
tions are effective; the tools are, after all, made to order.
at 15 surprising, however, is their stupendous accuracy in some
"lake, for instance, quantum electrodynamics, the mathe-
ttical theory developed to describe how light and matter inter-
}éfghen scientists use it to calculate the magnetic moment of
electron, the theoretical value agrees with the most recent
erimental value—measured at 1.00115965218073 in the ap-
Popriate units in 2008—to within a few parts per trillion!
gzlen more astonishing, perhaps, mathematicians sometimes
gcé é)g{a{xtire fields of study with no application in mind, and yet
ﬁa %e%ﬁven centuries, later physicists discover that these very
Fehes make sense of their observations. Examples of this kind
passive effectiveness abound. French mathematician Evariste
lois, for example, developed group theory in the early 1800s for
s sole purpose of determining the solvability of polynomial
a1ations. Very broadly, groups are algebraic structures made up
sets of objects (say, the integers) united under some operation
r instance, addition) that obey specific rules (among them the
stence of an identity element such as 0, which, when added to
v integer, gives back that same integer). In 20th-century phys-
, this rather abstract field turned out to be the most fruitful
y of categorizing elementary particles—the building blocks of
tter. In the 1960s physicists Murray Gell-Mann and Yuval
‘eman independently showed that a specific group, referred to
SU(3), mirrored a behavior of subatomic particles called had-
15—3 connection that ultimately laid the foundations for the
wern theory of how atomic nuclei are held together.
The study of knots offers another beautiful example of passive
sctiveness. Mathematical knots are similar to everyday knots,

Scientific Ameriran Anenct o011

except that they have no loose
ends. In the 1860s Lord Kelvin
hoped to describe atoms as knot-
ted tubes of ether. That misguid-
ed model failed to connect with
reality, but mathematicians con-
tinued to analyze knots for many
decades merely as an esoteric

he universe

arm of pure mathematics. Amaz-
as regularlt]es, ingly, knot theory now provides

important insights into string
theory and loop quantum gravi-
ty—our current best attempts at

symmetries, that

let thSICIStS articulating a theory of space-
- . time that reconciles quantum
describe it mechanics with general relativi-
mathemaﬁcaﬂy ty. Similarly, English mathemati-
cian Hardy’s discoveries in num-

Aﬂd no one ber theory advanced the field of
knows why. cryptography, despite Hardy's

earlier proclamation that “no one
has yet discovered any warlike purpose to be served by the theo-
ry of numbers.” And in 1854 Bernhard Riemann described non-
Euclidean geometries—curious spaces in which paralle] lines
converge or diverge. More than half a century later Einstein in-
voked those geometries to build his general theory of relativity,

saté methods specifically for quantifying real-world phenomeo# A pattern emerges: humans invent mathematical concepts

by way of abstracting elements from the world around them—
shapes, lines, sets, groups, and so forth—either for some specific
purpose or simply for fun. They then go on to discover the con-
nections among those concepts. Because this process of inventing
and discovering is man-made—unlike the kind of discovery to
which the Platonists subscribe—our mathematics is ultimately
based on our perceptions and the mental pictures we can conjure.
For instance, we possess an innate talent, called subitizing, for in-
stantly recognizing quantity, which undoubtedly led to the con-
cept of number. We are very good at perceiving the edges of indi-
vidual objects and at distinguishing between straight and curved
lines and between different shapes, such as circles and ellipses—
abilities that probably led to the development of arithmetic and
geometry. So, too, the repeated human experience of cause and ef-
fect at least partially contributed to the creation of logic and, with
it, the notion that certain statements imply the validity of others.

SELECTION AND EVOLUTION

MICHAEL ATIvaH, one of the greatest mathematicians of the 20th
century, has presented an elegant thought experiment that re-
veals just how perception colors which mathematical concepts we
embrace—even ones as seemingly fundamental as numbers. Ger-
man mathematician Leopold Kronecker famously declared, “God
created the natural numbers, all else is the work of man” But
imagine if the intelligence in our world resided not with human-
kind but rather with a singular, isolated jellyfish, floating deep in
the Pacific Ocean. Everything in its experience would be continu-
ous, from the flow of the surrounding water to its fluctuating tem-
perature and pressure. In such an environment, lacking individu-
al objects or indeed anything discrete, would the concept of num-
ber arise? If there were nothing to count, would numbers exist?

Like the jellyfish, we adopt mathematical tools that apply to

EDWARD CHARLES LE GRICE Getty Images

our world—a fact that has undoubtedly contributed to the per-
ceived effectiveness of mathematics. Scientists do not choose an-
alytical methods arbitrarily but rather on the basis of how well
they predict the results of their experiments. When a tennis ball
machine shoots out balls, you can use the natural numbers 1,2, 3,
and so on, to describe the flux of balls. When firefighters use a
hose, however, they must invoke other corcepts, such as volume
or weight, to render a meaningful description of the stream. So,
too, when distinct subatomic particles collide in a particle accel-
erator, physicists turn to measures such as energy and momen-
tum and not o the end number of particles, which would reveal
only partial information about how the original particles collid-
ed because additional particles can be created in the process.

Over time only the best models survive. Failed models—such
as French philosopher René Descartes’s attempt to describe the
motion of the planets by vortices of cosmic matter—die in their
infancy. In contrast, successful models evolve as new information
becomes available. For instance, very accurate measurements of
the precession of the planet Mercury necessitated an overhaul of
Newton'’s theory of gravity in the form of Einstein’s general rela-
tivity. All successful mathematical concepts have along shelf life:
the formula for the surface area of a sphere remains as correct to-
day as it was when Archimedes proved it around 250 B.C. Asare-
sult, scientists of any era can search through a vast arsenal of for-
malisms to find the most appropriate methods.

Not only do scientists cherry-pick solutions, they also tend to
select problems that are amenable to mathematical treatment.
There exists, however, a whole host of phenomena for which no
accurate mathematical predictions are possible, sometimes not
even in principle. In economics, for example, many variables—the
detailed psychology of the masses, to name one—do not easily
lend themselves to quantitative analysis. The predictive value of
any theory relies on the constancy of the underlying relations
among variables. Our analyses also fail to fully capture systems
that develop chaos, in which the tiniest change in the initial condi-
tions may produce entirely different end results, prohibiting any
long-term predictions. Mathematicians have developed statistics
and probability to deal with such shortcomings, ‘but mathematics
itself is limited, as Austrian logician Godel famously proved.

SYMMETRY OF NATURE

THIS CAREFUL SELECTION of problems and solutions only partially
accounts for mathematics's success in describing the laws of na-
ture. Such laws must exist in the first place! Luckily for mathema-
ticians and physicists alike, universal laws appear to govern our
cosmos: an atom 12 billion light-years away behaves just like an
atom on Earth; light in the distant past and light today share the
same traits; and the same gravitational forces that shaped the
universe’s initial structures hold sway over present-day galaxes.
Mathematicians and physicists have invented the concept of sym-
metry to describe this kind of immunity to change.

The laws of physics seem to display symmetry with respectto
space and time: They do not depend on where, from which an-
gle, or when we examine them. They are also identical to all ob-
servers, irrespective of whether these observers are at rest, mov-
ing at constant speeds or accelerating. Consequently, the same
laws explain our results, whether the experiments oceur in Chi-
na, Alabama or the Andromeda galaxy—and whether we con-
duct our experiment today or someone €lse does a billion years

from niow. If the universe did not possess these symmetries, any
attempt to decipher nature’s grand design—any mathematical
model built on our observations—would be doomed because we
would have to continuously repeat experiments at every pointin
space and time.

Fven more subtle symmetries, called gauge symmetries,
prevail within the laws that describe the subatomic world. For
instance, because of the fuzziness of the quantum realm, a giv-
en particle can be a negatively charged electron or an electri-
cally neutral neutrino, or a mixture of both—until we measure
the electric charge that distinguishes between the two. As it
turns out, the laws of nature take the same form when we inter-
change electrons for neutrinos or any mix of the two. The same
holds true for interchanges of other fundamental particles.
Without such gauge symmetries, it would have been very diffi-
cult to provide a theory of the fundamental workings of the
cosmos. We would be similarly stuck without locality—the fact
that ohjects in our universe are influenced directly only by their
immediate surroundings rather than by distant phenomena.
Thanks to locality, we can attempt to assemble 2 mathematical
model of the universe much as we might put together a jigsaw
puzzle, starting with a description of the most basic forces
among elementary particles and then building on additional
pieces of knowledge.

Our current best mathematical attempt at unifying all inter-
actions calls for yet another symmetry, known as supersymimne-
try. In a universe based on supersymmetry, every known parti-
cle must have an as yet undiscovered partner. If such partners
are discovered (for instance, once the Large Hadron Collider at
CERN near Geneva reaches its full energy), it will be yet another
triumph for the effectiveness of mathematics.

1 started with two basic, interrelated questions: Is mathemat-
ics invented or discovered? And what gives mathemnatics its ex-
planatory and predictive powers? I believe that we know the an-
swer to the first question. Mathematics is an intricate fusion of
inventions and discoveries. Concepts are generally invented, and
even though all the correct relations among them existed before
their discovery, humans still chose which ones to study. The sec-
ond question turns out to be even more complex. There is no
doubt that the selection of topics we address mathematically has
played an important role in math’s perceived effectiveness. But
mathematics would not work at all were there no universal fea-
tures to be discovered. You may now ask: Why are there univer-
sal laws of nature at all? Or equivalently: Why is our universe
governed by certain symmetries and by locality? I truly do not
know the answers, except to note that perhaps in a universe
without these properties, complexity and life would have never
emerged, and we would not be here to ask the question.

MORE TO EXPLORE

¢ The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Eugene Wigner
in Communications in Pure and Applied Mathematics, Vol 13, No. 1, pages 1-14; February 1960.
P4in the Sky: Counting, Thinking, and Being. John D. Barrow. Back Bay Books, 1992.
Creation v. Discovery. Michael Atiyah in Times Higher Education Supplement; Septem-
ber29,1995.

1s God a Mathematician? Mario Livio. Simon & Schuster, 2010.
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F)PHYSICS APPLIED
The world’s tallest peaks

FIGURE 1-6 The world’s second

highest peak, K2, whose summit is
considered the most difficult of the
“8000-ers.” K2 is seen here from

the north (China).
TABLE 1-6
The 8000-m Peaks
Peak Height (m)
Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna - 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum IT 8035
Shisha Pangma 8013

1-5 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current, consists
of a number and a unit. Often we are given a quantity in one set of units, but we
want it expressed in another set of units. For example, suppose we measure that a
table is 21.5 inches wide, and we want to express this in centimeters. We must use a
conversion factor, which in this case is (by definition) exactly

lin. = 2.54cm

or, written another way,
1 = 2.54cm/in.

Since multiplying by one does not change anything, the width of our table, in cm, is
. . cm
21.5inches = (21.57m.) X (2.54 E) = 54.6 cm.

Note how the units (inches in this case) cancelled out. A Table containing many unit
conversions is found inside the front cover of this book. Let’s consider some Examples.

: ]2 %7 The 8000-m peaks. The fourteen tallest peaks in the world

(Fig. 1 6 and Table 1— 6) are referred to as “eight-thousanders,” meaning their
summits are over 8000m above sea level. What is the elevation, in feet, of an
elevation of 8000 m?

APPROACH We need simply to convert meters to feet, and we can start with the
conversion factor 1in. = 2.54 cm, yvhich is exact. That is, 1in. = 2.5400cm to
any number of significant figures, because it is defined to be.

SOLUTION One foot is 12 in., so we can write
. cm :
1ft = (12'¥m.) (2.54 E) = 3048 cm = 0.3048 m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this
equation to find the number of feet in 1 meter:

11t
0.3048

Im = = 3.28084 ft.
We multiply this equation by 8000.0 (to have five significant figures):
8000.0m = (8000.0°m.) <3.28084 —i—) = 26247 ft.

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the conversion all in one line:

80000m = (8000.0°m.) ( 1010 f > ( 5 2&) ( - ;i;) = 26247ft.

The key is to multiply conversion factors, each equal to one (= 1.0000), and to
make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Example 1-2),
and their names and elevations are given in Table 1-6. They are all in the Himalaya moun-
tain range in India, Pakistan, Tibet, and China. Determine the elevation of the world’s
three highest peaks in feet.

8 CHAPTER 1 Introduction, Measurement, Estimating
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iUz il Apartment area. You have seen a nice apartment whose
ﬂoor area is 880 square feet (ft?). What is its area in square meters?

. APPROACH We use the same conversion factor, 1in. = 2.54 cm, but this time
we have to use it twice.

SOLUTION Because lin.= 2.54cm = 0.0254m, then 1ft* = (12in)%*(0.0254 m/in)? =
0.0929 m2 So 880 ft? = (880 £t?)(0.0929 m?/ft*) ~ 82 m™

NOTE As a rule of thumb, an area given in ft? is roughly 10 times the number of
| square meters (more precisely, about 10.8 X).

I

iz 7| Speeds. Where the posted speed limit is 55 miles per hour
EEARINES P p p

(mi/h or mph), what is this speed (a) in meters per second (m/s) and () in
kilometers per hour (km/h)?

APPROACH We again use the conversion factor 1lin. = 2.54cm, and we recall
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains
(60 min/h) X (60s/min) = 3600s/h.
SOLUTION (a) We can write 1 mile as

. L enl’ 1m _
lmi = (5280,ft’)<12 ,ﬂ/><254 )(100m> = 1609 m.

We also know that 1 hour contains 3600 s, so

mi T 1k m
55 el (55 k><1609 )(36005) = 25—,

where we rounded off to two significant figures.
(b) Now we use 1 mi = 1609 m = 1.609 km; then

mi _ i km km
55 T (55 h ><1.609‘11‘1:L> = 88“];-

NOTE Each conversion factor is equal to one. You can look up most conversion
factors in the Table inside the front cover. :

EXERCISE F Would a driver traveling at 15m/s in a 35 mi/h zone be exceeding the speed
limit?

When changing units, you can avoid making an error in the use of conversion
factors by checking that units cancel out properly. For example, in our conversion
of 1mi to 1609 m in Example 1-4(a), if we had incorrectly used the factor (<2)
instead of (13:%;), the centimeter units would not have cancelled out; we would not
have ended up with meters.
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The Mars Climate Orbiter is prepared for its mission. The
laws of physics are the same everywhere, even on Mars, sO
the probe could be designed based on the laws of physics
as discovered on earth. There is unfortunately another
reason why this spacecraft is relevant to the topics of this
chapter: it was destroyed attempting to enter Mars'
atmosphere because engineers at Lockheed Martin forgot to

convert data on engine thrusts from pounds into the metric
unit of force (newtons) before giving the information to
NASA. Conversions are important!
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1-6 Order of Magnitude: Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This

might be because an accurate calculation would take more time than it is worth

or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check an accurate calculation made

on a calculator, to make sure that no blunders were made when the numbers

were entered.
A rough estimate is made by rounding off all numbers to one significant figure

and its power of 10, and after the calculation is made, again only one significant

figure is kept. Such an estimate is called an order-of-magnitude estimate and can
be accurate within a factor of 10, and often better. In fact, the phrase “order of

magnitude” is sometimes used to refer simply to the power of 10.

BUBERBYER FIHMRELE
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Fig. 2-3. Measuring the Radius af
the Euarth. In this diagram we
assume that Alexandria (4) and
Syene (S) are on the same meridian
line and that Syene is exactly on the
Tropic of Cancer. In these circum-
stances at noon of the summer
solstice the sun’s rays are vertical
at Syene, whereas they make a
measurable angle ( with the vertical
at Alexand.ia. The angle 0 is evident-
ly equal to the angle subtended
at the center of the earth (C) by the
arc AS.

1.3. The change in the direction of the zenith as the traveler
journeys to north or south is well adapted to a measurement of the
actual radius of the earth. If the earth’s surface is spherical, verti-
cals passing through any two points 4 and S on that surface should
meet at the center of the earth, C (Fig. 2-3). Let 0 denote the angle
in degrees between the verticals and let D denote the distance from
A to S, ie., the length of the circular arc subtended by 6 at the
earth’s surface. The ratio of D to the circumference of the earth
must be equal to the ratio of 6 to 360°. Denoting the radius of the
earth by R, we compute its value by means of the simple propor-
tion

R _ 360 ’
=5 @.n

If A is due north of S, the two verticals are in a common meridian
plane. To measure the angle between them we have only to compare
the angles which they make with rays of light from any heavenly
body as it crosses the meridian. (In making the first measurements
of the radius R it was necessary to assume that the distances of the
sun and stars frort the earth are so great in comparison with its size
that rays from any of these heavenly sources incident at different
points on the earth’s surface can be treated as parallel. This crucially
important assumption is fully justified by modern measurements
of the distances to the sun and stars.)

One of the first estimates of R was made by Eratosthenes, an
Alexandrian scientist contemporary to Archimedes, about 230 B.C.
He estimated the distance from Alexandria (4) to Syene (S), sup-
posedly on the Tropic of Cancer due south of Alexandria, to be
5000 “stadia.”” At the summer solstice the sun was reflected ver-
tically from the water in a very deep well in Syene and thus was
almost directly overhead, but at Alexandria. according to Eratos-
thenes, it was one fiftieth part of 360° south of the zenith. In other
words, his value of 0, measured presumably by a ncon shadow,
was 360/50, or 7.2°. On this basis the circumference of the earth is
250,000 stadia. There has been uncertainty regarding the length
to be assigned to the stadium as used by Eratosthenes, since the
Greek and Egyptian values differed. However, if we follow Dreyer*
and call it 516.73 feet, the circumference of the earth as measured
works out to be 24,460 miles. The corresponding radius is 3890
miles. Modern measurements give 24,860 and 3957 miles, respec-
tively, for these distances. The agreement is startling, but largely
accidental. Later, and perhaps more careful, measurements did
not agree very well.’

3 J. L. E. Dreyer, op. cit., pp. 117-118.

+J. L. E. Dreyer, op. cit., p. 175.

s According to Samuel Eliot Morison, the mistake of Columbus in underestimating
the size of the earth was due to a misinterpretation of the unit used in an estimate
made by Arabian geographers in the ninth century and published by Alfragan. See
S. E. Morisen, Admiral of the Ocean Sea (Little, Brown and Co., Boston, 1942), Vol. 1,
p. 87.
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FIGURE 1-7 Example 1-5. (a) How
much water is in this lake? (Photo is of
one of the Rae Lakes in the Sierra
Nevada of California.) (b) Model of
the lake as a cylinder. [We could go one
step further and estimate the mass or
weight of this lake. We will see later
that water has a density of 1000 kg/ me,
so this lake has a mass of about

(10° kg/m?)(10" m?) ~ 10'" kg, which is
about 10 billion kg or 10 million metric
tons. (A metric ton is 1000 kg, about
2200 1bs, slightly larger than a British
ton, 2000 1bs.)]

(ApHysics APPLIED TS TU0s e ESTIMIATE | Volume of a lake. Estimate how much water
Estimating the volume (or mass) of there is in a particular lake, Fig. 1-7a, which is roughly circular, about 1km
a lake; see also Fig. 1-7 across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume, we
can use a simple model of the lake as a cylinder: we multiply the average depth
of the lake times its roughly circular surface area, as if the lake were a cylinder
(Fig. 1-7b).

SOLUTION The volume V of a cylinder is the product of its height / times the
area of its base: V = harr?, where r is the radius of the circular base.’ The radius »
is $km = 500m, so the volume is approximately

V = hm? ~ (10m) X (3) X (5 X 10?m)* ~ 8 x 10°m’ ~ 10"m?,

where 7 was rounded off to 3. So the volume is on the order of 10’ m’, ten
million cubic meters. Because of all the estimates that went into this calculation,
the order-of-magnitude estimate (107 m®) is probably better to quote than the
-8 X 10%m’ figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside.
front cover that 1liter = 103 m® ~ }gallon. Hence, the lake contains
(8 x 105m®)(1 gallon/4 X 107 m’) ~ 2 X 10° gallons of water.

W] ESTIMATE

ZEXANMPLE. Thickness of a page. Estimate the thickness
of a page of this book.

APPROACH At first you might think that a special measuring device, a micrometer

= (Fig. 1-8), is needed to measure the thickness of one page since an ordinary
WAPROBLEM SOLVING ruler clearly won’t do. But we can use a trick or, to put it in physics terms, make
Use symmetry when possible use of a symmetry: we can make the reasonable assumption that all the pages of

this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you 3
measure the thickness of the first S00 pages of this book (page 1 to page 500), |
you might get something like 1.5cm. Note that 500 numbered pages, f

tFormulas like this for volume, area, etc., are found inside the back cover of this book.

10 CHAPTER 1 Introduction, Measurement, Estimating




counted front and back, is 250 separate sheets of paper. So one page must have
a thickness of about
__];'ig_n}_ ~ 6 X 10-3cm — 6 X 10—2mm
250 pages

or less than a tenth of a millimeter (0.1 mm).

I

FodNa02 =7k ESTIMATE | Height by triangulation. Estimate the height
of the building shown in Fig. 1-9, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of
the pole to be 3 m. You next step away from the pole until the top of the pole isin
line with the top of the building, Fig. 1-9a. You are 5ft 6 in. tall, so your eyes are
about 1.5m above the ground. Your friend is taller, and when she stretches out her
arms, one hand touches you, and the other touches the pole, so you estimate that
distance as 2m (Fig. 1-9a). You then pace off the distance from the pole to the
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.
SOLUTION Now you draw, to scale, the diagram shown in Fig. 1-9b using these
measurements. You can measure, right on the diagram, the last side of the
triangle to be about x = 13 m. Alternatively, you can use similar triangles to
obtain the height x:

15m _  x
2m 18 m

’Finally you add in your eye height of 1.5m above the ground to get your final
result: the building is about 15m tall.

v so x =~ 13im.

VIBEE:1=8 Estimating the radius of Earth. Believe it or
not you can estimate the radius of the Earth without having to go into space (see
the photograph on page 1). If you have ever been on the shore of a large lake,
you may have noticed that you cannot see the beaches, piers, or rocks at water
level across the lake on the opposite shore. The lake seems to bulge out between
you and the opposite shore—a good clue that the Earth is round. Suppose you
climb a stepladder and discover that when your eyes are 10ft (3.0 m) above the
water, you can just see the rocks at water level on the opposite shore. From
a map, you estimate the distance to the opposite shore as d ~ 6.1km. Use
Fig. 1-10 with # = 3.0m to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,
¢ = g + b2, where c is the length of the hypotenuse of any right triangle, and a
and b are the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1-10, the two sides are the radius of the
Earth R and the distance d = 6.1km = 6100m. The hypotenuse is approxi-
mately the length R + h, where A = 3.0m. By the Pythagorean theorem,

R* +d* ~ (R + h)?
~ R? + 2hR + K.
We solve algebraically for R, after cancelling R* on both sides:
d* — W (6100 m)? — (3.0m)?

~ = = 2 X 6 = .
R o 60m 6.2 X 10°m 6200 km

- NOTE Precise measurements give 6380 km. But look at your achievement! With a
few simple rough measurements and simple geometry, you made a good estimate
of the Earth’s radius. You did not need to go out in space, nor did you need a very long

measuring tape. Now you know the answer to the Chapter-Opening Question on p. 1.

FIGURE 1-8 Example 1-6. Micrometer
used for measuring small thicknesses.

FIGURE 1-9 Example 1-7.
Diagrams are really useful!

L"US

e V ,

112 m-

1.5m

J 18m |

FIGURE 1~-10 Example 1-8§, but
not to scale. You can see small rocks
at water level on the opposite shore
of a lake 6.1 km wide if you stand on
a stepladder.

N J—
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%47 Dimensions and Dimensional Analysis

‘When we speak of the dimensions of a quantity, W& are referring to the type of base
units or base quantities that make it up- The dimensions of area, for example, are
always length squared, abbreviated [£?], using square brackets; the units can be
square meters, square feet, cm?, and so On. Velocity, 0B the other hand, can be
measured in units of km/h, m/s, O mi/h, but the dimensions are always 2 length [L]
divided by a time [T): that is, [L/T).

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height & is
A = sbh, whereas the area of 2 circle of radius 7 is A= a1t The formulas aré
different in the tWO cases, but the dimensions of area are always [Lz]

Dimensions can be used as @ help in working out relationships, 2 procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship i incorrect. Note that we add Of subtract quantities only
if they have the same dimensions (we don’t add centimeters and hours); and
the quantities o2 each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also e the same o1 both sides of an equation.)

For example, suppose you derived the equation ¥ = vy + Lat?, where v is the
speed of an object after a time f, Vo is the object’s initial speed, and the object
undergoes an acceleration a. Let'sdoa dimensional check to see if this equation

t A check of the gan Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Fach
of these listings may employ more than one funef, but on the other hand, each may also do repairs as
well as tuning. In any case, Out estimate is reasonable.

*Gome Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk (*)- See the Preface for more details.



could be correct or is surely incorrect. Note that numerical factors, like the 1 here,
do not affect dimensional checks. We write a dimensional equation as follows,
remembering that the dimensions of speed are [L/T] and (as we shall see in
Chapter 2) the dimensions of acceleration are [L/TZ]:

5] 2 (5] [#]r - [5] 2

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor (such
as } or 277) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are
. pot sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum 7 (the time to make one back-and-forth
swing) of length £is T = 2aVI/g or T = 2wVg/l, where g is the acceleration
due to gravity and, like all accelerations, has dimensions [L/TZ] (Do not worry
about these formulas—the correct one will be derived in Chapter 14; what we are
concerned about here is a person’s recalling whether it contains £/g or g/f.)
A dimensional check shows that the former ({/g) is correct:

L = VIFl =

whereas the latter (g/f) is not

[L/TZ] [T _ 1
M\ N T m

Note that the constant 27 has no dimensions and so can’t be checked using dimensions.
Further uses of dimensional analysis are found in Appendix C.

ZEXAN | Planck length. The smallest meaningful measure of length is
calied the Planck length,” and is defined in terms of three fundamental constants
in nature, the speed of light ¢ = 3.00 X 10°m/s, the gravitational constant
G = 6.67 X 107" m*/kg-s?, and Planck’s constant % = 6.63 X 107 kg-m?/s.
The Planck length Ap (A is the Greek letter “lambda™) is given by the following
combination of these three constants:

Ap = Pu——.
P C3
Show that the dimensions of Ap are length [L], and find the order of magnitude of Ap.

APPROACH We rewrite the above equation in terms of dimensions. The dimen-
sions of ¢ are [L/T], of G are [L}/MT?], and of h are [ML?*/T].
- SOLUTION The dimensions of Ap are

J[LB/MTZ][MLZ/T N T

[23/7°]

which is a length. The value of the Planck length is

6.67 X 10" m*/kg-2)(6.63 X 10 kg-m?/s
e = _/%ﬁ - \/( /g5 EYS) | 4 x 105 m

(3.0 x 108 m/s)’

‘which is on the order of 107 or 107 m. »

| NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest particles
-(quarks, leptons) have sizes on the order of the Planck length, 107> m. These

theories also suggest that the “Big Bang,” with which the Universe is believed to

have begun, started from an initial size on the order of the Planck length.

e

*SECTION 1-7 Dimensions and Dimensional Analysis
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*]1—7 THE USES OF SCALING

Scaling Laws

In Section 1-3, dimensional analysis was used as a check in problem solving.
There are two oth'er important applications of dimensional analysis. In the first
of these, we can discover scaling laws. Scaling laws reveal how a change in one

dimensiongl pargmeter of a problem leads to changes in another parameter with
the same dimensions. Let us consider a problem that Galileo studied in his book

Dialogue Con'cerning Two New Sciences, namely, the scaling properties of animals:
W}}a.t must glapts look like? Consider a bone (Fig. 1-20) whose length is #, charac-
terizing the height, or linear size, of an animal. The width of the bone is b. It isa

fact that the strength of such a bone is proportional to its cross-sectional area;
that is,
strength = ¢,b%.

The constant factor ¢, is characteristic of the material, and it does not change if
the size of the animal changes. This strength must be such as to support the weight
or, equivalently, the mass m of the animal. But the mass, as long as the animal’s
composition does Yot change, is proportional to the volume, and the volume is in
turn proportional to £3, just as the volume of a cube is equal to the length of the
side cubed. Thus

m= eyt

The precise value of ¢; depends on the precise shape of the animal and need not
concern us. If now the strength of the bone must be proportional to the mass,
we have

strength = cym.

Combining these three equations, we have

¢ b? = cgm = €350

(3

c=,, where ¢= L (1-16)
) b CyCs

The constant ¢ is characteristic of our animal’s internal structure, but not of its

size. .

Now what happens if we try to change the size parameter ¢ by a factor f?
The constant ¢ cannot change, so b must change to compensate for £ changing.
Equation (1-16) can be satisfied when we change ¢ to f x ¢ only if b changes by
a factor /. We find /" by insisting that the ratio £3/b® be constant:

£ _ £
VNI

L. 1 or f'=f%" (1-17)
T -

If the length of the bone changes by a factor f, then its width must change by a
factor 2. For example, if the length is changed by a factor 3, as in Fig. 1-20,
which comes from Galileo’s book, then according to Eq. (1-17), the width of the
bone must change by a factor (3)¥% = 5. The scaling argument shows that the
giant animal cannot have the same proportions as its smaller model (Fig. 1-21)
and helps us to understand why hippopotamuses will never be mistaken for over-
grown chihuahuas.

Understanding the scaling behavior of physical systems is of primary impor-
tance for engineering. Such understanding allows filmmakers to film ripples in a
bathtub in slow motion and convince us that they are mighty waves on the ocean,
or tells us how the stiffness of a beam varies with its length and width. Scaling
arguments tell us how to strengthen structures or how to test small models of large
aircraft in wind tunnels.

Relations Based on Dimensional Analysis

The second major application of dimensional analysis is in'the derivation of new
relations between physical quantities, Consider as an example the simple pen-

23
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FIGURE 1-20 The scaling of bones.
(From Galileo, Dialogue Concerning Two
New Sciences, 1638.)
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Chapter 1 Tooling Up

FIGURE 1-21 The giant ants of the
1950s movie Them have the same
proportions as their normal counterparts
do. Galileo’s scaling analysis shows that
such creatures could not exist, because
their structure could not support their
weight.

multiplied to give an equality for T rather than a proportionality. But it does give 25
the dependence of t on £ and g, and it does say that the mass does not enter into )
the result. One measurement of the period of a pendulum with known length
would determine the unknown numerical coefficient. We might even hope that the
coefficient is not too far from unity. This is in fact very often the case!

Is some dependence on the angle of the pendulum’s swing possible? This angle
is dimensionless and so could enter in any way. For large swings of a pendulum,
there is indeed further dependence on the angle of the swing, so dimensional
analysis is not the whole story. Application of dimensional analysis in this way
is not always simple. Enough experience and knowledge of the physical situation
is required to know just what quantities are relevant to the problem at hand.
Nevertheless, the technique has proven itself throughout the history of science;
and many times, when the problem is so complicated that it can be solved only
numerically, it is an invaluable tool.

dulum, which consists, in idealized form, of a small bob of mass m on the end of
a light string-of length /. A pendulum swings because, when it is displaced away
from the vertical direction, gravity pulls it back down. It overshoots the minimum,
going to the other side, and repeats its motion. One full cycle of this motion takes
a.time © or T, which is called the period. The problem we pose is this: How does
the period depend on the physical parameters of the pendulum?

To answer this question we must gather a list of physical parameters that
might be relevant to the period. This requires some knowledge. Could the period
of the pendulum depend on the internal structure of the bob or of the string? We
must know enough to answer no, because changing the string or changing the bob
from lead to plastic (of the same mass) does not change the period. Nor do we
expect air resistance to play a large role. The list we gather includes the mass
m, with dimension [M]; the length ¢ of the string, with dimension [L]; and the
acceleration of gravity, g, discussed in Section 1—4. The latter quantity has dimen-
sion [g] = [LT™?]. There are no other dimensional quantities on which the period
of the pendulum should depend.

The dimension of the period is time [ T]. We now look for an algebraic com-
bination of m, ¢, and g that has the dimension of . We want to find g, 7, and s

so that '
[] = [m1[#"][g°],

or, in terms of the ‘dimensions,
[T] = [MT]LILT™>].

Now there are no powers of [M] on the left-hand side, so g = 0, and the mass
does not enter at all. In order to match the powers of [T], s = —3, and then, in
order that the powers of [L] on the right-hand side cancel, r = 3. In other words,
the algebraic combination \/{’—/_g_ is the only combination of the parameters that
has the same dimension as that of the period,

-

P4
ToC -
g
(The symbol oc indicates proportionality.) This is an illuminating result. It does
not tell us the dimensionless numerical coefficient by which the square root is

1-7 The Uses of Scaling




SUMMARY]|

The range of quantities relevant to our understanding of the physical world is so
large that it is useful to employ scientific notation. In this notation, any number
can be represented by a decimal number from 1 to 10, multiplied by some power
of 10.

The quantities that appear in physics and engineering have units as well as
sizes. The International System of units, or SI, provides reproducible and precise
definitions of mass, length, and time. The SI units are, respectively, kilograms (kg),
meters (m), and seconds (s). Some quantities are used so often that their units are
given a special name (for example, force is measured in newtons, N, in SI), but
these units are derived units: They can always be expressed in terms of the three
primary units (for example, 1 N = 1 kg-m/s?). Units that appear in equations can
be manipulated algebraically; after conversion to a single unit system, the units of
both sides of any correct equation will match.

Mass, length, and time are the quantities with the three primary dimensions,
abbreviated M, L, T. Dimensions should not be confused with units, which refer

" to a particular choice of unit system. Any physical quantity has dimensions that

are rational combinations of the primary dimensions. Dimensions can be mani-
pulated algebraically, and both sides of any correct equation will have the same
dimensions. When we analyze the dimensions of an equation, we are performing
a dimensional analysis. Dimensional analysis is useful for checking the answers to
problems, for learning scaling laws, and for discovering relations between physical
quantities.

Numbers that represent physical quantities can be measured only to a certain
accuracy. An explicit way to indicate this accuracy is to write a physical quantity
X as a central value + an uncertainty. Calculations involving physical quantities
are meaningful only to within the known accuracy of those quantities. When
several numbers of different accuracies are involved in a calculation, the least accu-
rate quantity is the primary determinant of the accuracy of the result. A second
way to indicate the known accuracy of a physical quantity is with the number of
significant figures with which it is expressed. This is the number of digits between
1 and 10 by which the power of 10 in scientific notation is multiplied.

The ability to estimate is one that should be cultivated. An educated first
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guess is a valuable start to the solution of any problem. An ordcr~of-magnitgde
calculation is such a guess. Similarly, when you arrive at an answer to a physical
problem, it is always wise to ask yourself if it makes sense.

Some, but not all, physical quantities include directional information. Temper-

ature and time do not. Such quantities are scalars: They have magnitl'lde (ingludmg
the appropriate dimensions and units) only. Displacement and velocity do include
directional information; such quantities are represented by ve(':tors: The vectors A
and B are mathematical objects with both magnitude and direction. They obey

the rule
A+B=B+A. (1-2)

Vectors can be expressed in graphical form; we draw them as Arrows of length
equal to their magnitude within a particular coordinate system. The simplest such

system is the Cartesian system, with mutually perpend.icular x-, y-, and z-axes for }
three-dimensional space. We can express any vector V in terms of the unit vectors,

vectors of unit length, for a given coordinate system. Thus the unit vectors i, j,-and
k point along the x-, y-, and z-axes, respectively. Then

V=Vi+ Vj+ Vk (1-14)
The quantities V,, V,, and V, are the components of V. The magnitude of V is
V=V:i+V2it+ V2 (1-15)

Vector equations-are relations that equate different vectors. Ir} such an ‘equat.lon,
the components of the vectors are equal on both sides, so that in three dimensions
a vector equation stands for three separate equations.
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Scaling: Why Giants Don’t Exist
Michael Fowler, UVa 10/12/06

Galileo begins “Two New Sciences” with the striking observation that if two ships, one large and one
small, have identical proportions and are constructed of the same materials, so that one is purely a scaled
up version of the other in every respect, nevertheless the larger one will require proportionately more
scaffolding and support on launching to prevent its breaking apart under its own weight. He goes on to
point out that similar considerations apply to animals, the larger ones being more vulnerable to stress
from their own weight (page 4):

Who does not know that a horse falling from a height of three or four cubits will break his
bones, while a dog falling from the same height or a cat from a height of eight or ten cubits
will suffer no injury? ... and just as smaller animals are proportionately stronger and more
robust than the larger, so also smaller plants are able to stand up better than the larger. I am
certain you both know that an oak two hundred cubits high would not be able to sustain its
own branches if they were distributed as in a tree of ordinary size; and that nature cannot
produce a horse as large as twenty ordinary horses or a giant ten times taller than an
ordinary man unless by miracle or by greatly altering the proportions of his limbs and
especially his bones, which would have to be considerably enlarged over the ordinary.

For more of the text, click here.

To see what Galileo is driving at here, consider a chandelier lighting fixture, with bulbs and shades on a
wooden frame suspended from the middle of the ceiling by a thin rope, just sufficient to take its weight
(taking the electrical supply wires to have negligible strength for this purpose). Suppose you like the
design of this particular fixture, and would like to make an exactly similar one for a room twice as large in
every dimension. The obvious approach is simply to double the dimensions of all components.
Assuming essentially all the weight is in the wooden frame, its height, length and breadth will all be
doubled, so its volume—and hence its weight—will increase eightfold. Now think about the rope
between the chandelier and the ceiling. The new rope will be eight times bigger than the old rope just as
the wooden frame was. But the weight-bearing capacity of a uniform rope does zot depend on its length
(unless it is so long that its own weight becomes important, which we take not to be the case here). How
much weight a rope of given material will bear depends on the cross-sectional area of the rope, which is
just a count of the number of rope fibers available to carry the weight. The crucial point is that if the
rope has all its dimensions doubled, this cross-sectional area, and hence its weight-carrying capacity, is
only increased fourfold. Therefore, the doubled rope will not be able to hold up the doubled chandelier,
the weight of which increased eightfold: For the chandelier to stay up, it will be necessary to use a new
rope which is considerably fatter than that given by just doubling the dimensions of the original rope.

This same problem arises when a weight is supported by a pillar of some kind. If enough weight is piled
on to a stone pillar, it begins to crack and crumble. For a uniform material, the weight it can carry is
proportional to the cross-sectional area. Thinking about doubling all the dimensions of a stone building
supported on stone pillars, we see that the weights are all increased eightfold, but the supporting
capacities only go up fourfold. Obviously, there is a definite limit to how many times the dimensions can
-be doubled and we still have a stable building.

As Galileo points out, this all applies to animals and humans too (page 130): “(large) increase in height
can be accomplished only by employing a material which is harder and stronger than usual, or by
enlarging the size of the bones, thus changing their shape until the form and appearance of the animals
suggests a monstrosity.”
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Galileo understood that you cannot have a creature looking a lot like an ordinary gorilla except that it’s
sixty feet high. What about Harry Potter’s friend Hagrid? Apparently he’s twice normal height
(according to the book) and three times normal width (although he doesn’t look it on this link). But even
that’s not enough extra width (if the bone width is in proportion).

There is a famous essay on this point by the biologist J. B. S. Haldane, in which he talks of the more
venerable giants in Pilgrim’s Progress, who were ten times bigger than humans in every dimension, so
their weight would have been a thousand times larger, say eighty tons or so. As Haldane says, their
thighbones would only have a hundred times the cross section of a human thighbone, which is known to
break if stressed by ten times the weight it normally carries. So these giants would break their thighbones
on their first step. Or course, big creatures could get around this if they could evolve a stronger skeletal
material, but so far this hasn’t happened.

Another example of the importance of size used by Galileo comes from considering a round stone falling
through water at its terminal speed. What happens if we consider a stone of the same material and
shape, but one-tenth the radius? It falls much more slowly. Its weight is down by a factor of one-
thousand, but the surface area, which gives rise to the frictional retardation, is only down by a factor of
one hundred. Thus a fine powder in water---mud, in other words---may take days to settle, even though
a stone of the same material will fall the same distance in a second or two. The point here is that as we
look on smaller scales, gravity becomes less and less important compared with viscosity, or air
resistance—this is why an insect is not harmed by falling from a tree.

This ratio of surface area to volume has also played a crucial role in evolution, as pointed out by
Haldane. Almost all life is made up of cells which have quite similar oxygen requirements. A
microscopic creature, such as the tiny worm rotifer, absorbs oxygen over its entire surface, and the
oxygen rapidly diffuses to all the cells. As larger creatures evolved, if the shape stayed the same more
or less, the surface area went down relative to the volume, so it became more difficult to absorb enough
oxygen. Insects, for example, have many tiny blind tubes over the surface of their bodies which air
enters and diffuses into finer tubes to reach all parts of the body. The limitations on how well air will
diffuse are determined by the properties of air, and diffusion beyond a quarter-inch or so takes a long
time, so this limits the size of insects. Giant ants like those in the old movie “Them” wouldn’t be able to
breathe!

The evolutionary breakthrough to larger size animals came with the development of blood circulation as a




means of distributing oxygen (and other nutrients). Even so, for animals of our size, there has to be a
tremendous surface area available for oxygen absorption. This was achieved by the development of
lungs—the lungs of an adult human have a surface area of a hundred square meters approximately.
Going back to the microscopic worm rotifer, it has a simple straight tube gut to absorb nutrients from
food. Again, if larger creatures have about the same requirements per cell, and the gut surface absorbs
nutrients at the same rate, problems arise because the surface area of the gut increases more slowly than
the number of cells needing to be fed as the size of the creature is increased. this problem is handled by
replacing the straight tube gut by one with many convolutions, in which also the smooth surface is
replaced by one with many tiny folds to increase surface area. Thus many of the complications of
internal human anatomy can be understood as strategies that have evolved for increasing available surface
area per cell for oxygen and nutrient absorption towards what it is for simpler but much smaller
creatures.

On the other hand, there is some good news about being big—it makes it feasible to maintain a constant
body temperature. This has several advantages. For example, it is easier to evolve efficient muscles if
they are only required to function in a narrow range of temperatures than if they must perform well over a
wide range of temperatures. However, this temperature control comes at a price. Warm blooded
creatures (unlike insects) must devote a substantial part of their food energy simply to keeping warm.
For an adult human, this is a pound or two of food per day. For a mouse, which has about one-
twentieth the dimensions of a human, and hence twenty times the surface area per unit volume, the
required food for maintaining the same body temperature is twenty times as much as a fraction of body
weight, and a mouse must consume a quarter of its own body weight daily just to stay warm. This is
why, in the arctic land of Spitzbergen, the smallest mammal is the fox.

How high can a giant flea jump? Suppose we know that a regular flea can jump to a height of three feet,
and a giant flea is one hundred times larger in all dimensions, so its weight is up by a factor of a million.
Tts amount of muscle is also up by a factor of a million, and when it jumps it rapidly transforms chemical
energy stored in the muscle into kinetic energy, which then goes to gravitational potential energy on the
upward flight. But the amount of energy stored in the muscle and the weight to be lifted are up by the
same factor, so we conclude that the giant flea can also jump three feet! We can also use this argument
in reverse—a shrunken human (as in Lshrunk the kids) could jump the same height as a normal human,
again about three feet, say. So the tiny housewife trapped in her kitchen sink in the movie could have just
jumped out, which she’d better do fast, because she’s probably very hungry!

Question: from The Economist, Sept 16, 1995 page 74: "the average 16-year-old Japanese girl has
grown 4% heavier since 1975, although she is only 1% taller." Just how much plumper does she look?
What percent increase would keep her shape exactly the same?

Teaching note: 1 began the lecture with five questions in a powerpoint presentation, to be answered using
clickers. The idea was to get the class thinking about how areas and volumes increase when an object
increases in size, keeping the same proportions. To understand how doubling the diameter of a circle
increases its area fourfold, imagine the circle just fitting inside a square. It’s obvious what happens for
squares—and also that the circle takes up the same percentage of the square’s area no matter what size they
are, provided it just fits. Then a cube, and a ballin a cubical box. Think first about a 2x2x2 cube made of a
child’s cubical building blocks. Visualize both volume and area increase from 1x1x1.

The last two questions were asked later, at the appropriate point in the class.
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Galileo's Two New Sciences, pages 1 -4

FIRST DAY

INTERLOCUTORS: SALVIATI, SAGREDO AND SIMPLICIO

SALV. The constant activity which you Venetians display in your famous arsenal
suggests to the studious mind a large field for investigation, especially that part of the
work which involves mechanics; for in this department all types of instruments and
machines are constantly being constructed by many artisans, among whom there must be
some who, partly by inherited experience and partly by their own observations, have
become highly expert and clever in explanation.

SAGR. You are quite right. Indeed, | myself, being curious by nature, frequently visit
this place for the mere pleasure of observing the work of those who, on account of their
superiority over other artisans, we call "first rank men." Conference with them has often
helped me in the investigation of certain effects including not only those which are
striking, but also those which are recondite and almost incredible. At times also | have
been put to confusion and driven to despair of ever explaining something for which |
could not account, but which my senses told me to be true. And notwithstanding the fact
that what the old man told us a little while ago is proverbial and commonly accepted, yet
it seemed to me altogether false, like many another saying which is current among the
ignorant; for I think they introduce these expressions in order to give the appearance of
knowing something about matters which they do not understand.

SALV. You refer, perhaps, to that last remark of his when we asked the reason why
they employed stocks, scaffolding and bracing of larger dimensions for launching a big
vessel than they do for a small one; and he answered that they did this in order to avoid
the danger of the ship parting under its own heavy weight, a danger to which small boats
are not subject?

SAGR. Yes, that is what | mean; and | refer especially to his last assertion which | have
always regarded as a false, though current, opinion; namely, that in speaking of these and
other similar machines one cannot argue from the small to the large, because ma ny
devices which succeed on a small scale do not work on a large scale. Now, since
mechanics has its foundation in geometry, where mere size cuts no figure, | do not see
that the properties of circles, triangles, cylinders, cones and other solid figures will change
with their size. If, therefore, a large machine be constructed in such a way that its parts
bear to one another the same ratio as in a smaller one, and if the smaller is sufficiently
strong for the purpose for which it was designed, | do not see why the larger also should
not be able to withstand any severe and destructive tests to which it may be subjected.




SALV. The common opinion is here absolutely wrong. Indeed, it is so far wrong that
precisely the opposite is true, namely, that many machines can be constructed even more
perfectly on a large scale than on a small; thus, for instance, a clock which indicates and
strikes the hour can be made more accurate on a large scale than on a small. There are
some intelligent people who maintain this same opinion, but on more reasonable grounds,
when they cut loose from geometry and argue that the better performance of the large
machine is owing to the imperfections and variations of the material. Here | trust you will
not charge me with arrogance if | say that imperfections in the material, even those which
are great enough to invalidate the clearest mathematical proof, are not sufficient to
explain the deviations observed between machines in the concrete and in the abstract.
Yet | shall say it and will affirm that, even if the imperfections did not exist and matter
were absolutely perfect, unalterable and free from all accidental variations, still the mere
fact that it is matter makes the larger machine, built of the same material and in the same
proportion as the smaller, correspond with exactness to the smaller in every respect
except that it will not be so strong or so resistant against violent treatment; the larger the
machine, the greater its weakness. Since | assume matter to be unchangeable and always
the same, it is clear that we are no less able to treat this constant and invariable property
in a rigid manner than if it belonged to simple and pure mathematics. Therefore, Sagredo,
you would do well to change the opinion which you, and perhaps also many other
students of mechanics, have entertained concerning the ability of machines and
structures to resist external disturbances, thinking that when they are built of the same
material and maintain the same ratio between parts, they are able equally, or rather
proportionally, to resist or yield to such external disturbances and blows. For we can
demonstrate by geometry that the large machine is not proportionately stronger than the
small. Finally, we may say that, for every machine and structure, whether artificial or
natural, there is set a necessary limit beyond which neither art nor nature can pass; it is
here understood, of course, that the material is the same and the proportion preserved.

SAGR. My brain already reels. My mind, like a cloud momentarily illuminated by a
lightning-flash, is for an instant filled with an unusual light, which now beckons to me and
which now suddenly mingles and obscures strange, crude ideas. From what you have said
it appears to me impossible to build two similar structures of the same material, but of
different sizes and have them proportionately strong; and if this were so, it would not be
possible to find two single poles made of the same wood which shall be alike in strength
and resistance but unlike in size.

SALV. Soitis,Sagredo. Andto make sure that we understand each other, | say that
if we take a wooden rod of a certain length and size, fitted, say, into a wall at right angles,
i. e., parallel to the horizon, it may be reduced to such a length that it will just support
itself; so that if a hair's breadth be added to its length it will break under its own weight
and will be the only rod of the kind in the world.* Thus if, for instance, its length be a
hundred times its breadth, you will not be able to find another rod whose length is also a
hundred times its breadth and which, like the former, is just able to sustain its own weight
and no more: all the larger ones will break while all the shorter ones will be strong enough
to support something more than their own weight. And this which | have said about the



ability to support itself must be understood to apply also to other tests; so that if a piece
of scantling will carry the weight of ten similar to itself, a beam having the same
proportions will not be able to support ten similar beams.

Please observe, gentlemen, how facts which at first seem improbable will, even on
scant explanation, drop the cloak which has hidden them and stand forth in naked and
simple beauty. Who does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height or a cat from a height
of eight or ten cubits will suffer no injury? Equally harmless would be the fall of a
grasshopper from a tower or the fall of an ant from the distance of the moon. Do not
children fall with impunity from heights which would cost their elders a broken leg or
perhaps a fractured skull? And just as smaller animals are proportionately stronger and
more robust than the larger, so also smaller plants are able to stand up better than larger.
| am certain you both know that an oak two hundred cubits high ,would not be able to
sustain its own branches if they were distributed as in a tree of ordinary size; and that
nature cannot produce a horse as large as twenty ordinary horses or a giant ten times
taller than an ordinary man unless by miracle (note this phrase - Galileo is trying to cover
himself) or by greatly altering the proportions of his limbs and especially of his bones,
which would have to be considerably enlarged over the ordinary. Likewise the current
belief that, in the case of artificial machines the very large and the very small are equally
feasible and lasting is a manifest error. Thus, for example, a small obelisk or column or
other solid figure can certainly be laid down or set up without danger of breaking, while
the large ones will go to pieces under the slightest provocation, and that purely on
account of their own weight.

*The author here apparently means that the solution is unique.
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HFE=1/12, RN(2.15)XF (2. 1)K, BEENESHFE N
1

GRG0 I= Emzz (2.18)
Wt I=—;)~ml2. (2.19)

REREBERARLS T ETENEW—2, 1

LB FERTREEEREN, K FE, =%, 20F%. A%
B30 !“‘*"% MERIEERE RS0

B3 BEEHEH,

f&: ﬁ%%zzk%*’ﬂf&fﬁu%%ﬁl%,;ﬁtﬂ%ﬁ THEARTEEEER
RUAFTERE XERNABRNINER BT, XB T HW LB I K
S5MAARNEEARAATRNELENTEm EHEE g 2k |
ﬁéﬁll{f’i‘,ﬁté’l\ﬁﬁ REABMTHEGEEWAE, KBWENX ALY
WAMEE % RNEALKRENY T EXoH, L LELYEEHE
éﬂ?dﬁi%ﬁl’$ﬂbT FEYHFRE-NETENENEE.

© R.Rabinoff, Am. J. Phys. , 53(1985) ,501; E3CIL{ ey HRY) 1987 445 7 45,
£,
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m g L |\T E

M{i1 0 0|0 1

Ljo 1 110 2
T|0 -2 0,1 -2

MRY T RA

1 0 0%y 0 1 0 0% 1
0 1 1{ay, =0 ® |0 1 1|z, |={2 |
0 -2 0Mg,) U 0 -2 0lg,) 2
|
Ly 0 T 1
Ty = -172] =1
L33 172 Ly 1

HEHEHER-Mm=2 NEEHNL4E

Hl =T -g—-, H] ='_E_-
A mgl

BB (2. 14)REANTT LS i

I E
sz/gd)(m—gz),’ (2.20)

XEWNBR QTR ENELE P TR T . mgl REEA N 0° WHAAXNT
BIREWSE, IL REAPLBEFANACEE AZEBRAR L1, T
BEHHFEWNRELRET:

E E \?

. @ :C°+Cl(.m_ﬂ)+cz(mgl) .

FA -

T=QJ%1LMH;%ﬂ%HﬁZJZmJ, (2.21)

R¥ Gy, C=C,/Cy, C=C,/C, EHRHH ., ENABRWHRKRT, EXTR
HREE-R, XA TEEREME /1,=-0/2n
X, XEBEBLK. BRWEHLREHK

&

B |
RES W, bR N, (2200 |
K W AT KA K AW EF A |

() =4K(/I1/2), (2.22)
O—0 8 K—a/2, A\T§ &— Cy=2m,3X
RAXBBWER, AKEEHAHESL O 1 2

E/mgl




L

§1. ERDMELFRELAIR 63

EU EMYANEZEREN, AH THENEENER T, =2u/1/g F K,
£ E/mgl=18H(E4£90°), T ¥4 18%; E/mgl=2 ¥ (24 180°, B A E
FWEREEET), T—w. |

B4 —ENAFERENE A,

FRESANA My, -, my BN AT ER KA - TRATEEA
FEEE,ENEE—FELE L TLEXH h 2, -, 2. FH-—FREI M
WRAPHFREL XL AABLELHWR 0. HHARATEA
BUE, PERT n ki, # 5B K%, WELWEN I, REPHE
Fis D hmE? EREENT? BRANEENER,

B BRRAWWHBEE N AAFANANMELEE, 7, ---,xN
FINAANAREM, my, -, my, R—RIANTERNKRE R lel, WL
WAE Y, IR AALBEIELE, bm'Iméd%i)ﬁ‘zﬁPéﬁ@ﬁ%ﬁzﬁﬁn
foRk#E v, WERINSIANHERWEALAGZHEH2NANLTEHNE: o/,

Y TN/ T MM, e, my/me THBILERNE N 2, m, v, BIIWE
Pz

| =
M| 0 1 0
L 1 0 1
T|0 0 -1
EAFRFNE, EMATHEARESANL L TEHE nfo/v, R
RERFEREHR T .
n:(p(_l’ o T T Ty ie}), (2.23)
T x X m m
U _ (T B My My
v Y,(x-’ Tz’ m’ T om’ e})- (2.24)

CATHEE S v, BXKo Y v, — 30, B, AEAE n LK, K& v, — 30, |
BIs HABERZEFLTHEZEERBTAINAWER.
fB: FEHE - HRNTENAZETE LN, CHZHRER
AEWAR A AR S EEFr WX ZEAEZARRX,HE5TENR
EmREW: _mC
e
FEWEREN Ko AR TIHRELAFE CHRN, ERHTTE
WEEEMPEASGEL AR 2 EAMN AL E = ST HIAY

(2.25)
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64 ET8 BROTTIINEE

CIT A At — e R B R BRI R T %
|l ¢ £ Lo/
M| 0 1 1] 0
L [n+sl 2 2] 3
T| 2 2 4| =2
NEABRETES, xS ETULR—AEERE

A g\ Ry
| () () -
REFET 22, HMF !
CL3 ;3:1_ E 2(771.1-:12
= = C (75> &(IT), (2.26)

AFHESGHERERRAXWHECLERNS BE(WHEIE), ORI
ENAREFNER ATALE G TR/ TEAMEAYEE, 51TE Y
WR(WE  L)EX, FERF D=1, n=2, CHAWEZEB(5TEHNREE
M IER)F(225)RFWH S Er W FFRAN, 5TENRE m R IE
o I

Blfic —HEFEZHKENYH,

WHRERAFATFHEME 2, ¥HERAFEMAR. AEGEEWE, T
BEERZEAMEERN, EFTR(AXEE)L#ETNETFESKERA,
HERRNEREWERIp 5EBz EERMWBEHAR?

BB BRTEBNXEFREHEF, FXNSENEEZFWLE c;
REAGRETRE, AXNSERALYREE . NERAE
2 C h{p'

M0 0 1]1
Lo -1 2 -1
T 0 -1 -1]-2

TUAEE [p] =[2]"[c][R], B

p o S8, (2.27)

B op LT 2 AT, | ?

BURE7T RABHESUEE T HALD. hEEcMmitsic, %
hEEp, FHREAHEZ 0, FHEHHR A ZHAWXE,

- n%ﬂx/cmpax, Do | ‘

B HO 1 B AR, 158 3 =S80 L BT 1/3. O =

© RALM—AEBYEHER,
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W RENRESE B AT HTEREYEEN B R 7 Xk
W 0. 499 ; i /¢ Pk, EEHEIERL 2. 5 ~2. 522; %t D e, B EE
T & EREER, BN ENELXR  ERER LRIEHN.
7R B AR B TG 2 BT, 4 B(W. Wien) B RIEH = REIEN, &
IRR AR SIS A AN T R BB R
(v, T) =0v3§b(-’—7’;), (2.28)

o ¢ WEEFE, v B, T HRAOFRE RERN ¥R —F
BE @ WIBRBE T, EREURMNTUBRSEE -FHEEE®E
Mg BABER HLRIERIBE TREER A

R(T) = j:r(y, TYdy = cj:f@(-vf)dy =c:r*‘j: (%)3@(—;—,)d(—;—)
=cT4j:x3d§(ac)dx,

FRAEBNERSRAS T RENER, FRRNBAT R=0cT H%H
(H450E - B E B ) B LB R B o RA, |
HTRREBMGERE, SIERRGBEIEQ 2DRKA L= o/v
o dv=~fgd)t, 7, TYdA = (s, T dy | F 1475
| A, T) =%<p(f§); (2.28")
TERE TR r(A, T)EBARERAT
. T 5 ,
TN U by o v
Ty, &' 183 dd(%)/dr. KABL TR TRR:
50(x) +a®'(x) =0 (x=¢/AT),
BWRNTF @ = /AT =2, &b, F£
AT = ¢/%,  (EBIBERE).
TR A, B o/, WRE,
BIEs BEiipi
B AR ELEWUEZERNCELEEEBHNETRE, LRE
AEETURAEREENSF S, ¥ TETHEEAIH, RNTTH
AAHEREMUET( BT LREEIRET B2, S5 AN ¥
ERBAREE c P h(EREEE), % TEER(DE KT, ¢, by =4

© EME. SWEES. dbE . HEHE MR, 1965, S M,
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ERGENAZ, AR CINHWERRFIE T

ET ¢ th
M1 0 11
L2 1 270
T]-2 -1 -1}-3

i k12
[R] = [kT1*[c][R] 7,
MR« T, ABHRE-RELBEH o o« KY/CH (HALHE AR R
BRN o =20"K/15¢h°, B L ok #5889 W% B b 2m/15 240. 80)
ERBRYERED hw RETFE, €, h, HERETA
(M) = [KTT ' [e][R],
W hax =¥ B D, BEFE b ch/(FIRAEYEARTEN b kR, &
HEH b=0.2014ch/k), |
BT, A TR H B b 02 JE , T DR B3 AU B
FREE R A BRES TR, BRI o, b B SRS EE
ENSEEEEE, ¢, RZANEKBXLREZRERET,
IR L B
2 r i EEE (L2 -4a) 348
TEFHAZEA L, BEE
BT AES M (E 2 - ¢ |\
4b) . BEE LA B, R
SUEEE, RALETLANE
HERA N EBENERE °
W/2 K/NBEE F MR, TR
— A IRE T B 918 o (B
W T LT EERS, BFUA o |
310 B T M AT B A 0 7 /

— AR /AN I LR B N
B8, B AR TR n;é
B RITEAF—T, - W2

WHERERTERN, YE &
T, LG5, AE= 4 E
LY UM, ORI AT (B 2 - 4e) o X—K—E, BB T
FE B BT BER AR B AL, MURIAS Sy AL/L, PYI4EIIE b F AR

=T
T

s s

\\\’;u

W2-4 #HEI— THEBHAYE
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WERARE ¥ RIS AL/L BRI DA R o, W L=Ra, Al=7Ta,
# AL/l =7/R.

BISHO EREHMNAESLEHER,

. REWEEM,AHE M, HERY

(M, ] = ML*T,
HEKEEWEN N
[Y] =ML™'T?,
WA E W w
My
1, = v

NEEBRE, F—NEEAWEHREIL =v/R %R 2%, 211"
Ly=Y7ro(L),

j&éﬂﬁi%,MWmAl/l=r/R éj(f”ﬂl@ocvﬂ/R,%%’% :
< Yr*/R, (2.29)

EPWﬁ%EEtL?@%*ﬁWJEHW?f BT ERH, LRXPWILAZHE
w/4, B My=nYr'/4R. |

BIS10 REXEERWEEA - —EXTHY, CREXTHWEN
THET, ZREN  BREATE W AR L AT R B H A %
YN EAE —AERERE, BE v 5ALEE r= 127 WERBE
Z, BAEENEHREERR? BAESHERRTERR?

fB: ZRERIREAE, vo/y/pr(EERREIERR);EHRE
FE, mFY&&wﬂ£%¢HNﬁ¢yﬁ%ﬁkﬁ%ﬁpﬁmm
E,eNEHMEE

BIE1l RS RSAKENELRE, REBAKNEE L WD H, T
AL TR TWEARRER. Eh<tWHEFEBE, vEFHAT
Bk THETEE. RABREMN v 5 b WERBE R,

. vx/gh |

YU (tsunami) 2 B #7B S R M —FEE B TR L 2004 45 12 A ENEERE
HYER S0, B S WA R R E Y, BN L E Tk, AR T~
A0 Tin, M KA JLE TR o IR LIS THEE h~3. 8km, B/NF
0%:ﬁﬁ%%?&ﬁﬁuﬁ&ﬁf%&vJF"u@#m¢ﬂwﬁhﬁA |

2 y~193m/s =695 km/h, MUK A ~463km. ZEFFMEHIPET FEIRIER
%RE*@R+@%m,EUE%EM%RTAEHZE#W%M&%éE
b bR BEE S KO IREE ko ROV, PR v — 5 — MBI, SRR




68 FE EFDTRER

ERTR Bk — S — B S, B ALk IRRIE R R -
AR T EH A AT, X FAE 300 1 A0, KR SRR E 5,
v=/gxr®(II),
XE IT=7x/h, FEBEMERERRIT, (T EG W TFHRETY:
{ II—ou, oI — ¥,
IIT— o B, &) — 77
Tk H B W, & =tanh T M
A v =/gx tanhv/h/ i o -(2.30)
TR BT E R S IR A /

ARG B S, R T R SR, R E A E
BikpEamlf, EaE— BT NSRS A, AT, EhltiERE
HRBEMARS . HREESENEE, XERA YN BN AE
BB T 1%, 1S BRI LR M A, EEEEWHE [ 4 &5
A% S7 , 7 BRAbBRAS 20, T BB — B 5 _E B4 B L AR 25 1Y

§2. EHREWMIHE TR

2.1 BAIHIPERETHNSESHARMA?

Hi#l (Lord Rayleigh) & RRIEHE A B P ENEEREZ—, 1915 4
B AIITIE T30 E MU s) SRR, AR SR B 2 A O
PP, fih B O REEXT BUAF S A fE IR AHEAR

Hi M BEHTS R A R0 £ K 5 K S B WA 4B T ATE 5 i
AHEHELRFERET BRI EHROEE YK, 5L RARE
ERWEREE 0. R L2 ERE, R B AR F W 4
HEHWER. MARSEEEIESEBN . WRNHELRE |, BbxT
PG RFRE v, B2 0, MIRBALETRIIHE c TR o BHF T
RUBRAL IR TTOH BRI E M, K L, BHE T 240, BB RE 0 e
QUEEXFFH B H SR RTAIEWM) . LI ELESENERIIT T .

I v 6 ¢ «k|H
M{O 0 0 0 0j0O0
L1 1 0 -3 110
T|0 -1 0 0 1 |-1
® 0 0 1 -1 110
Q0 0 o0 1 11

I~

HRIL6 NLE(n=6), 5 NMEAE, FNAE n-m=1 M TERALE. H
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BB 5 X5 WTHIRNBASET 0, BAE—ATHEO, FTLIEAETS S RIEA
ZHR—NTERE XENHNTENEN

I, _H 1, _lve
xl@ K
[ lve
H=Kzeqs(__). (2.31)
K

TR FEAE L « BIERT, HELTIEZE 6; WAME RBURT v fl ¢ 1Y
e, X TARM o HMe, REvHc Ferh—kE, HBEMAR.
WA Fi i ( Psr6ymmmein) S B AL A HEISVE THEPE. A BGX 5 4
EESE BN, EBUEFHN M, L. T =548, BEMMERNESR
BEEMEN, FTEXEFDREEZATENEHRUAE
I I v «k ‘ ¢c k H
M{O0O 0 1]0 0 1
L |1 1 2-3 1 2
T 0 -1 -2{0 -1 -3

XEAURE=ATENE
11 =—Ii‘, 11, =L£’ II; =cl.
X klB K
Prids H = klod (28 cp). (2.32)
K

XFEH TG, I, k AR H AT v flc TR, BREBIRT c A H,
TEXT MR TRHT L (OB R B R B O M AR U R BT R M R &, 5
HEHEBE TR ENMAOSEERNNAX—FEN, AR E TZE
FEH, HEREEH—SHRIT.RNELEEEEFNEENMER TR
BERE FBLE, ZEFREPIREMMREYE MR sul generis (CRFE LK)
B, RESTEBRMENETRINA A HE— SR, FERITE T L LART
PR R B R EIR A, R R — M EE, BRI
R, TS BT R R A A B e M TR TR B IEE R B LR 0 T VR
AR LR, '
T XA, R E R R EETE TS IEWN)E 3k Bridgman 1Y, 3t
FIEEXE LA AHE ST XA F B SR B H G 3mF gk

© A EIE I Nature, V.95,1915,p. 69 WA JoCHi £ A9 I IL Nature, V.95,
1915, p.105; BFIAIZE I, Nature, V.95, 1915, p.646; XBEFEBA T I H4E:
Bridgman,P. W., Dimensional Analysis, New Haven, Yale University Press, 1932.




70 B_E BHROIIRESR

BBEZNF, TR — B, YRR ES AL B, 5
S LRI E S HIanFAEFR MKSA By RG22 8 ] (n =4) , 3
P ST (n =3) B EH 2. BFISR FHAY T ITE (i 8 ch i &
THHYEEE PO EE MU EEEEE L, TR i 280 5 o i
ERNN 5350 , B

[J] = ML*/T*Q, [k] = ML*/T°®.
EMECSEN, MZIE T IO aEEE, XRE—, BRI i £a

B TENE 3
o meTe /
ST (2. 30) SRS »
H =g d(H28 ZeL). (2.31)
K

BIF I, RE B B S AR (2. 31) R E— . BB,
B BAAT IR,

AT, FRA R BRI 09, 0P 8 B S BB
Fofls, DR SR BUTIAT, FUAEE B AN Y E T — SR EE,
BRI 1E(2. 30 eh ) & BRSEIR ERAAT 11, = T°L. i mpx
EIEI T SR 5

M AT LU H 05 IR ISR LR A B R i
A, A B FRREMTEEMEA R R BN 08 B A
EEB R AREA TN, FEEZ—symE s,

2.2 YRS EPRRIVESS 5o

FEAESIE | 0 T HE M, A1 AP I 5 S
o, SEHWBBER S ARF LIRS 17, \TRE H 3, FIH A4
TR R — R m R RS RN & BT, |
HBPMIRK , 0 S EITHNEE o 5 M OB 318 8 LIRS
R R @ W ¢ 94
FRENTRY g,

ma?=—lc(x—l) +mg, (2.33)
Iy St
[%],. =1, (2.34)
dzx1 _
[ELO"O' | (2.35)

©® T[Z*% E. A. Desloge,Am. J. Phys. , 52(4),312(1984).
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S m=k=1,NH5HELN
&’z

0 =—x+l+1, (2.36)
WG SAETE R ARAS . B RS R AR
x=1l+1-cost. (2.37)

XFERYBEEENEEEET R RE M. FERE S HIEHRE ¢
LR E R =h/2m)o AMIFBR S c=T=1"HHHE Wc=T
=1 BB, FREANEEEARNMABURUETRIATAN

E-/pFl (p WEHE, m HRE) (2.38)
B RET AR
pn =5 (e T HAT,m B FRE) (2.39)

gt o F R ENARBWEET o RO A BRBAH" .
BATREEE g 4 c= hi=1"" B B c= =1 WERAHK" ZH4
87 WE A EHE, IS K E SR AW R I AR
IFRATEF—T §1 HEXIEEEFNER. EEE m AN ELFEN
BAfr R BATAT IR m A B RE LI T BB P, P,, -, P WEBERA
AR KBS 1V ey, Vay, =y 1oy, XETERT B A R B EUE P,
P, -, PLAYRIBAE R o
Pi=aP, (i=1,2, -, m). (2.40)
i EAIR (2. 10)A A, KB & P, Py 5 Pa 7E3 I H B 2 E A HUE
RKERHN
P =o' a0 P, (=1,2, - ,n-m). (2.41)
B o, =P, WA .
Pi=1 (i=1,2, -, m);
{ PL,=I; (j=1,2,,n-m).
XE I, RLERNN . &t BRBAEE, 25t FiRBEAA S, R I R
KRBT .
F(PL, PL, e PLY =f(1,1, vy 1T, -, I, ) =0

+

Sf(Py, Py, -+, Pp) =0.
FEFIRES SRR ERMEREXNEE Al S m =k
=g=1" B“Blm=k=g=1 HBAH" B, BAHALTHRP, =m, P, =k, P,
g HEE, L a, =1/m, a,=1/k, 0, =1/g, \TiH P{=m'=1, P;=k'=1,
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Pi=g' =1 B EMERMRENZREFNBMET m =k' =g =1. &TF
E’Jg W, t F(HET Py, P, - ) REHE 0 2, tﬁ%(#ﬁéﬂ:f’m“
P, ), ENIHERTENNT o T‘(” 33)—(2.35) B HEHE I
SHERE IR Y o
PR IRA R HAMAIRE 7 B (2. 13)RK, FIH - E S IR 018
Pt EENEHX.

'm k gla: I i
M|{1-1 0|0 0 0 ;
Lo o 1/1 0 o "
T|0 -2 2/0 0 1
78 5|
(2] =[1] =[k]"'[m][g],
[t] =[k]7*[m]"
M

BB (2.35)=, B

' =1l'"+1-cost'.

% =l+%g-(1_cos /&t) (2.42)
m o

EHFBRAER E, m, g B TIRE.
- EERTHRTRANAKEMHFOTUESE=MEYE Ko,
EANEEABUT A7 BEABRE, B ABEEE, S%, A& BHEk g
HG— T o G (2.36), (2.37)RFMM, AEERE =A%
Blo BARL TR o =P;', TRM s =1. | P, =c, P,= %, Py=m, Ko,
=1/¢, @, =1/T, a;=1. WIERNTRIRE (2.36) | (2.37)KF ¥ % c. % %
SHHRENBAZN A UBRIIRAREAS:
l c h m [ E p e ug

45
3

MO0 1 1|1 1 1/21/2
Li1 2 0/]2 1 372572
T|-1 -1 0|-2 -1 -1 -1
H LR
[E] =[c]*[m], [p] =[c][m],

[l =[] LRI?, [ug) = [e] ™[ 7] [m] "
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AT 2 o q
E' =E/¢, p' =p/ec,

e =e//ch, ,u§3=,u,B«/C/’ﬁ2.
FENMRAIRRY (2. 36), (2.37)5, Bl
E' =/p"%+m'?, we=e'/2m',

EIECE
, E = c/p+mic?, (2.43)
eh
%ﬂ B ”—vzmc' (2'44)

SR B o, T 1831 TR,
§3. R 5 B AR

EIRFRUEETHFSTIRS , 1% HER AERRER A
SERRELZ BIBEST , Blin AR RE A RIS BN E E R MR sh, BT
B A48 /N AR B 7 KR R I L B, B X NMUEE A& T B TR
KIFAL , FH BRI, T ERFERIT T E— B E LIS L BT
TCEIREI T MM E L o B REA BB AT IR I 45 R B A XY 3C
RS ENRICBEREEEBASI . RBRENEFHHINTF.
3.1 FARHVERERE 2 — — BEman@

R FEENRENRSINE EEENERENEE, BN d,
MTERR S =wd’ /4. SRATYRTHTE BN EE XN YBE, BF Rk
I p T 7 TV 5= Qu/S, DLRIERAE Ap/AL B, d. 5%
CFESE FIHTAXLYEENERNIT
lp a 5| n Ap/Al

Mil1 0 0}1 1
Li-31 1-1 -2
T|0O 0 -1 -1 -2
HHRE R AN TERNSE
7 I _(Ap/Al)d
1 pd'U ? 2 p'sz

B 1T, BRI S S Reynolds number) , {2 98, RyifkH 2
e R EEM T EAE R T S8, SR B E R TS

'ﬁ? AF A 2 ~2
AF _Ap o _p¥°S 4/ py _ Tp0°d
= S =5 d(R) T (), (2.45)

X ETERNEE &(B)FNSBRENERH, T FIRE T BB, SHiky
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BRI RRNFEER B RAR, G

_ d AF md  Ap wd Ap

Q =08 = —= T T = == TR I e

v pV B(R) Al 4pv &(#) Al 4qnRd(R) A’

4
£ Q,= (%) LA (2. 46)

, n Al
= £ AT ORI R ) = Ll —,
R 95— N ERARL () =77

WAL (2. 44)F0 (2. 45) T LB H, 23R EE 95 0k B R
O(R)E, T(B). IMEBRAE— 5 ER G P AR MK+
FBE ) B B () S EHEH # IRBEER , FrE SR ATV L T
(AN 7K4R ) TER I AR A T FP o Shid hn AR Ao HE AT 1B
T GREEE/NFAE, TSN REEN )5S AES g E R,
B2 - 5 FRIFHN T X — 5, KR ZS & A S B IR B 7 2 R 4 9 7E [ —
MiZk b -

REM B ETHBARRNER — BRAER B2 -5 FiRg
WHEEEY , B O(B)EH X, — XN TFRE, B—X M TR, %
BN — B X BT R B R AR (G. Hagen) F 1839 4EFIIE AT I (J.
L. M. Poiseuille) F 1840 4 FISCI0 B 7 0, 7E &8 IR MBI O
BT, R A R, T FESRE Q, S8 (BE p)Ba
X7, TREN(2. 44)Z AR T(B)NEE, BB HEHRR O(RB) « 27 1
W AT AR, A ISR T R B AR N

wd? Ap

Qv = 1287 AL’ (2.47)

ERFCARIAR . SHEAM AR LEE S, I'(R) =5§—8, PN

P(B)=2 = L 2 -5 b m— BRI AR T, T
DI, FE /N B 5 AR A FRIT . AT RAE B L 92.=2000 ~
2600 36 B N SR BRI T AR E— K, BRI T I
M KR E I B R SE — R b, XM R TE M A X
BE O(2)RA—&SERH AT S =R RHE, BER ARG
SEH BRSO IERE LS, RITIEE 2,. EREEERE— R
RO BE  ER R B 0 T B R FT LA 2SR ‘
3.2 FABVERIMREY — — SR ZREE
BUAETA TR B TE PR B LA ST B v 1530 B0 M B I (0, et 2
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N\ - g - BV 4
AN 5%
o
0.012 . e
N % o
.\%“ &*v,,o‘ﬂﬂ‘
;\ T, €2 dxe ¢ o
0.008 < ° ¥ Begmal
. 3 x .W}wnd,dy
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WRRE, TR v RS AR BB T E U R S BT
B TR BT R BRE oo IR BEER S, TR

f=0, LZS, (2.48)

A C, MIRERSIRE (drag coefficient) , N\EHR &, BN E T EHNR
B, RATBE S BN B ER BE X TRIE, S=ar’ =ad’/4. B2 -
6 BTN J SRk py 851 WO, SEHNRIR R LI ML, f BT L, 52
IBIE A R R SE R — Sk Loy, X B<1 AT, Cdoc%“’; o Jp~
10° ~10° B, C, L5 B Tk, HASIZHTUSHS ~’

C
C, =—%—‘§(1+C,%), (2.49)

LR, W T NEEL B foon 7 0; MTFRERY, oo, SEER

Ko

TR R R S R NR, TR N A2 4 A — B FE Tl
A f=6mnyry, (2.50)
KA r=d/2 JARRFER, XARERERIGRISHTE KM, RIBE T LIE H (2. 48)
KPRy C, =24 (H—FWEISITHTER C, =3/16),
BIR12 ANETMAKKE 108, R IKEEHFE 30em R I 7 i
ARUTHECESATH TEREEMANERE S LRT?
B YEHHSEAMESFHE:
myg =6myroy,
KREUNEE v HETE:
. __mg
6mwnr
ERTEAWEE 7=1.8x10"N-s/m*>, RN LR, £
Y= 107%kg x9. 8 m/s’
6mx1.8x107°N-s/m* x0. 15m
REEFERFRGOE, ERETEN. | .
EREHAER R K EIFRN, EE R RIENSIR, THERRER,
BEEELZEHILTER L v=50m/s FE MK EFE p=1.29kg/m’, B

=1.9x10°m/s.

© 0. LT EBHE BESKEH%E TH ABIHEE b AREF
H B, 1959, 542.

ME2 -6 BATE N, HERNFEE R —ERE, B R C, 7R
BRI TR X IRR I R 5] 7 7 35 (drag crisis), '

k.
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TR B A

% _pdv _1 29kg/m’ xOS. 3mx0.75m/szms!
n 1.8x10”N-s/m”

BESRERE N EREPEHAN MFXHEROEHRE IHREHAKXEE
R T, SEBNIESERSERINAR. (2. 48)AhmEE5—, %
BB R C,=C,C, =24 x3/16 =972, RA(2.4T)K, S HFEA S E5ES
mg 45, BRI T I LARE B (terminal velocity) :

o4 [mg j
V= d 0.8m/s, | .

SOEUE R B R SR T o
MEEFARNEED, TENSE B =pol/n ERGHFENEEM,
E L RRATINE R RS, i R E AR AT R LA
BEas S WL EEE KR (wind tunnel ) B S50 B AR B KL
BRSF LT BEESE RS, RESBHALS, SE ke, 5F
K p, FE RN n. SkshES I (kinetic theory of gases) & iFRAT,
E—WERET 15 p Fok, AT Uk KB EMREREFTIERA

A5 BT FERR M S AR P AN B S SAER e R B A H =2

IR S bl B o
3.3 BN RMAVBRUIERE

TRE S SR B S o o A8 R A AR (DA B TR, LS RS
2 L AF FESS L IR BRFE TR AT S TR | A 454 (AT JRAT AR
R IEIRE, 4518 R R U R B B M R f TS BORRAE . ZERX LR
YR SR Y FIANALL o, BTEMEBNAN MLTT™, FETES, MARML
MAMEEE N THRETEN, MBAERNER pg HR—TEENSE.
AR E L MfE P ARENSEBERN— T TERE o 5,
I FRATENT &30, e T 89 A B RA PR GBI 37, BATTE
W LRBEIA I A TERNE

p Y
BBy "TLow

EEEIRAS SCYRRRSESESIEL N Y, o p A2, EIRE g B

R 4 PRI LT L B9 L GI4a /N, TR 1T, A28, (BB BB 7 L
45 /INRHMRIE IT, RAE2 M RE HIFRBA A IMET oL Fr £ B A —K,
M g EREEEZE RO, BRI RO S REIE T, LB R AR
g. ELhRFHERXFEME(ZRE2 -7),
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B 2-7 #E R E S

3.4 [RFEIRNENIR

1945 427 A 16 A £ E7EH BT HMRB T H—PURERTH, 1947 FXE
?75‘#%—-—-%5‘])15@%}??3?}%‘;’?}5‘B"Jﬂfé‘il‘ﬁﬂﬂ‘lﬁl%}*%!ﬁ’ﬂﬁﬁﬁ%%, FEAR TS
HEAGT(LE?2 -8 FE2 - 9) BZET BN BEEIRRE,

PN

H2-8 EFRKHBAFAZ—
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80 ETE SRDTIIRER

100 m

H2-9 RFRAKBRAFIZZ
HE H 2R EH (G L Taylor)1950 4E £ F T —H X E®, REXLEAF
FIRAE R TFHRNEERELET . X %%@ﬁﬁﬁ?mwwgﬁ&ﬁu
R R — R
HEHRERTEN? R ANEERNDIT.
KEREE R BERTE ¢ AL EERIE RN R
t/ms | R/m || t/ms’| R/m | t/ms | R/m || t/ms | R/m || t/ms | R/m

0.10 | 11.1 ]| 0.80 | 34.2 || 1.50 | 44.4 || 3.53 | 61.1 || 15.0 | 106.5
0.24 | 19.9 || 0.94 | 36.3 || 1.65 | 46.0 |l 3.80 | 62.9 || 25.0 | 130.0
0.38 | 25.4 || 1.08 | 38.9 |l 1.79 | 46.9 || 4.07 | 64.3 | 34.0 | 145.0
0.52 | 28.8 || 1.22 | 41.0 i| 1.93 | 48.7 |} 4.34 | 65.6 || 53.0 | 175.0
0.66 | 31.9 || 1.36 | 42.8 |} 3.26 | 59.0 || 4.61 | 67.3 | 62.0 | 185.0

B AR - B R E 2 - 10, RITEHA T R—FRIEN0. 41

@ G.1. Taylor, Proc. Roy. Soc. , A201(1065),175,1950.
G. Batchelor, The Life and Legacy of G. I. Taylor, Cambridge University
Press, 1996.
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2.4
22— el

g
2.0 ,/

1.8 asﬁ’/
1.6 ﬁwﬂ/k\\%$04
AWM

1.4 O

1.2 el

1.0L8 : ~
—40 35 30 2.5 -2.0 -15 1.0

log t—>

log B —

BW2-10 RFBJEEXRKR-T X R
Ho
SEBF Itk h 2 7 B e, 8 8 —Fh B A E 3) (self-similar
motion) % , S — 15 &t SRR B P A R v R TR A AR
B, THRRERER E. SEHEEp IRERERELL y $=15E,
EFREASN, BE RF L, AAEES y EREHNN, HIMNEA-FTHR

— I LERE:

H_E#
=5
#I1EE Rt R R AL
R= (E)Ustw@(fy), (2.51)
p

Bl Roc £ AFREhEE R B IR B A RIER T BRI ERR, M
iy &7, EERTESATFRVRFHT, MRS BEE, y=7/5=
1.40. {EAEEE T4 TR A B EREAREE, M y=9/7~1.29, K&
ATRERBET, My=5/3~1.67. MRIERELy TS, BHRUES
M EEEIBER, DRBRAATHERRATET . HMuANFIIRASE
FE%E/E logR-logt R8-S —2/5 =-0. 4 RIRLEAT, {FLIE, AR
FOTHRRGE v T B MRS SM . N EIE B FRHR, &

B = W(Y)B_t%, (2.52)

K W(y) =7 (y) 5 O(y) Bhy MEEHRE EBE ¥(y) HEE
FH 1, Blp=1.25kg/m’, TP R/ =6.67x10°m*/s*, M LA
T R T R MR B U BE R VBB A

5
E ~Q§— ~8.34x10%J ~10™J.




PO g

82 =—= BRATIRER

Y N TERRARR (y) ERE—EIBAK, BHARHE, ARy E

T w(y) BUEINT, (2. 52)NE AR A RE B (E R RAITE T H .

” | 120 .30+ 1.40 1. 667

P(y) 1.727 1.167 0.856 0. 487
E/10°3 14.4 9.74 7.14 4.06

TNT LB/ F | 34 . 2.29 1. 68 0. 95

& 1 TNT %8 = 10°kcal = 4.18x10°J.
B y 520 140, M E=7.14x10"T =1.68 W TNT 248, 3KI(E

B B A& =R i

§4. EMROTEE

4.1 RABEL hNABBILLE

e IR R0, 3 DL A S ) ROBERR R LA il B b R AR
o A SN B ERAE NABERHE R LA, SEAR [l o 4 R
JLEEE TR (S - RS REEA K ST EANTS
e s X s - M EY B RAE, AR EAARE AR 7 B
2 ILEE) ECHEFEFAAA K4 BERKLE, ek (F he,
WA ED, FINEAL RPRRALIDE T LIRS, P E
BHESENA/N, RS RERNTE. NBANAEE, K E L i
[ T =% 2 A A B R T AT . BULH) EIERERAER
%, 18 HHEEERY B SWift) 5T —4H 4 BRI AN A 51

0 Gulliver’s travels)), FHAULT FAAKEFIHIE NN BT RAER

518, ERXFARRTREZR, B FAUAE R, ROTRHREUE, £E
SE— B ITEAT , Bt R — YR R AR L R A5 o _
BT HE, RIVBEXERAFDAITRE | BSERAZ—

SR (B R e R T B I PO 2 K e PO B AR

RABIM.

s — T RNE A R BT E S RATHER , AT
T o ), TBBRORER o I, BB AR LAE nB SR
L AT RATM 10 45 . BEE B HEMA— WA T, WEAS, BahA
SRS I H TR . B (HOE) B R S R A B R EE T H
SR RN o 1, WSS AT 1045, BIE
o6 o BT AR O SR BE S T RRATIEY 100 fi5 0 FTRAR A B9 RS
BB R BRI — 5 RO , 75U A1 B B T B E AT K 100 £
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BT IE B F o< mg o< I, TIZSBES o TR o« U, HUBRRAEIR
PR oc 1, R A 928 BRSRE, tk T 10/, BPEES ST M8 B L
HHRL . SHAR AAEENARIEX— 8 L RFH L, 4]
e BIRL S 2 BTG R AT/ 100 4, B b TTH R M LI
INMEZ (EEY RS /N E A — AR R BB AE T
Bl EBEAS T o ST, WAL A RS 65 60U B LB TR AR EEAG
B AT L, SO AR AT LR R . AR RATA— RERARAERE
PevE— R, R AR BB S , .

ST /DR R A R B B RITIARRRIEEN (37°0),
SR TR — IR AT, HRIR A RS H AR, A AR AL
o O IE T BB RO TR (oo )0 AT, BRI R A M AERAMS,
SCHVETE T BB o B)o TTIL, 5 B S B, MAERNA
M AR AT 10 R AR IR . Bk, BATAT AKITR, RIS
NP B AR IR 60c A/D, KB A RFISEHIBK, D AR ER,
BT, A A B R/ A B HRATR 10 45 BUE MM A BLEE RS b
(1186 10 45, MZE A4 L EDBOSF RIANEA TR —REC o JELRABATAY 5 BT
B HRRAE0/ 10 45, BN RRATRO S LT EN 30 DFRIE (AR LB
FLED 3 AV, 48 T AT St B AR R > 10 5o

VAR R TGRS EE S R , UL LR R R E
ARG . R EAZSEIERIR B REE RN SRS, A2
WA/, T E RN
4.2 B—EFKENTER

LR AR, A E AT 52 T RIS AN
¥

e AR, AT R T R LR IHEOR (B4 /D) M RS T
SEER B A —F R BT Bk E BRI
B BREEB—T 2 KT X BRI LT R B R (R R R TR
B B R LA = A RO W s R T R AR R (B E
U . &SR BRI VR, M BT R , AR LA BT iR
BEp R KRR R BRI . S, B EIRE h RN REE moh = mocl®, T
WL B R B B LI F T moc P, AT 1 BORBRS LTOR B4 S]
Wy Feib o/, BEBk Y BEAE SR b iR —HE . AT R B B RS
Rl |

R ey T LA , E A B AR T AL AR R, X




84 g7 EROMNER

— BB E ot IR R 0y, EME
e, 3 — BB M & B A IE 3h E R R A
BEE WIEREHEH THREENE
VEZ o XAEMER(KTRRHR I
%% ( Dialog on Two New Sciences)),
XERE2 - 11 ghR A T EH Tk
0. B EMmBRAEL, / MNI—REBEE H2-11 feflus
PR E Sk, KP—BRE—FEREE R (X TAMFAFNNE) Z0EE
Bk, XRERIK, T BHLERH -’

Fo—fE, MFIREIEH , A T RS T B BB E , XAERWELLMEER
W — B MR R L O BAE JFE (R T PRI R TE) FFIRID 8T Bl
BT — LB 2% T #03E  “FEE KR RF KB A sb R, L
BRI IIEENEREER TREFHUNAER.” XRIEFIXT HF
S B, B A0 SE BT R , W /M B TR T b 1 JLRT AR 1D 30 3% Bb
I, 15 AR A ARG L T BT, SEERN BN EE (R
¥ B ESHAT) oo e I, TARE BEA AR S oc I°, AT IX B AR BE
R B R BT o L ARAIK, BRI TEFR B R A AR, TR ER
HELA K B E A SR B BEnE ANRETES®mRHIT
BRSNSk, AT UMNAEAET ECE BB T REZ2T%,
ZBRMNREAR FBRIE TR (XHEYTESEHILTE), T AaBRHESE.
TS AR Y PO AR R , 5T/ NEU B A i BB AN EL 1 89 o B8 B R Y PR L
Y RREAEEEER R IR, R ETKWEN, EIIH&HEENE
BIE,

BUSE 13 B — R4 S5kg WK B EE3 Nif, i — R Okg 9 KB F
E LK

B, 3 AR =5 e, XAEIH S - LELN AT LITRN
R

Bl BMAWE FERHE,FAREAS CEREFERAT . 40
By KT —BI5 T S me AN LB, B A E AL R T 187

I DELGREESSN RN SELERE W=amg VG, HEEH#
B AEE , BREA BT AR .

' f=CSpv*, (2.53)

Hh S BAENER, p MESEE, v BE W WVTHEE, CRMEE
I BB RERR TCHISER S > W, ED
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m
v > /_CTS’%'
A WE—MET 2 LRI, RIS BTN U, FE moc iR o 1]
Socl?, FEECHIEFEE voell, FETHE/N UTERRLE 20kn/h,
T 8% 15 g L R BT 25 £, AT WA R B/ 25 =5 6%, B
2255 100 k/h, X B4R WHUE GERNER , BEK IS R
KRBV SEFR B B FERE R R 40km/h,

B LI R T
EFBAT, BIREXF
BN N R R B Y K
&, BUHERNE
BRAREHA. N
REAELBEI =S A
AT —F T, BiAE  H2-12 SEARERHRADREIME K il

SRETATH I TR Jo 19, I SR B T ok E AR MBI T — B, 3
I\ BT R, A B A T WATROIE BB . H A BRI AT
SHRERE, THEBSKInS, B¥EEHT EANKREREE
KB (] f IR » AR EHE —Fh e A B2 s Yy, SR T (B 2 -
12), BEEA K5k 16 m, BSRXFE R A B R EER Y, BRAFIE LIE
BEET B AE R MR , IR LR R W IR B IR o |

AN B HOAT AR ER R DL B — AR L AR, XA S T
AT . THEELHEE,

4.3 BRAWRER

ST — AR r fse0 FAE R, B e R E R E LA AMIEFHE L,
B A RN T BTN ESAERBEN, EFREI N TE
PSR E A 1, , Tl 1 R RE R E N B BB AR 1k, IR 213, A
FAREAE L RO TR RO £ 6 SERERTE AR 35 (2. 28) R My Y7*/R,

n¥rt ¥r' 0. ( ! )

R l "R

My o<
TR EERIEE N

yr

AE . = LOMW dg < = ¢, (2.54)
THEENELTEEN(LE2 - 13)

l
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IR EER W=nrlpg, MENBENBAESR

272
AE =_WA;z=;%z‘L9- &, (2.55)

R RERERE L B B|AE ;| 2AEy
W, BSCREESRRR, Wl B | AE g |= ABy
PiE o M(2.53)F1(2.54)K _

”12pg§ o Yo'/l L}z
Bl l ;

2, 1/3
l. o (5;;) o« 2. (2.56) T

W, — B B EAERA T RER

TR EHFE A ERF

2 r 3SR A, HEE 100

fERT I AR R K 27 =

1.59 f&. _ £
(2. 54) Xz IR ARR 10t

BESHEXRNAEL, &

B MR, AR, AR R

FF, ;i_[:ﬁﬁ’r?ﬂ“ﬁ, lﬁﬁﬁ[\, 6’% 1'0.0] 0'.1 1_'0 1'0

SRR F B R BR T a/m
PARES H2 - 4B gy s B

JLEMMRAEY 1-d RRAEE
(d=27KER), FERELERERTHEREE, Y A AR ER R
BOREN, WESNARET /3. BRNTERER - cd” W, H
A TR FR A B R R, X B C=34.9. B R B BOE A IR AR £
RFMBFIR AL b, BIE R RIERBERE 2/3. P EEERMET
AR 4, BB TR E R M A S LN EEE R

S 4.2 % BIKE, R AR — MK E RRIES YR FE, A1
EBAERR S o< I FIFRE m o e ¥ W%, S 5 m SEEINWS)

S o« m2/3 - m0,67. ’

NATTER AR ( B o PR 7= A B A ) g R — Lol , B oc
m?® =m®S {HE 1932 4 Kleiber XML 504 19 LI MR 45 RIF A RIXH
TR Socm®® (2 - 15)MF= e m* ™ (H2 - 16), EZHEBEARKLE
B IR DAXT |k 2 — 4 < B RO FUER Pk o

BT R BRNTAOEE, RXERITEXE, RIS AR A A AR A SR 4R




§4. EYREITER ' 87 .

Bk, XHFR—FERES o

FTaOMs . B R E MM, SEE L
AR L 5¥E T AT T 4
H IR L O
loc ¥ B ro P2, § 0% e
BRI R wrile 1, WTIR o ah HE0E
Bmo I , ﬁ«;‘%i}élot'mw . B o
GEER(EEREREHME TS T [ T U T: 107
) 5socrlem™ e
5/8 —0.625, JEMHEEE 0. 63. B 2-15 4% kA L3 Ay oo R R E AR
SysRABRI R, BATARL |
s EER, MAEHERATHE | [ A0 *

WA H TR, XTRPFT
BTG B 77 5 1 L B WA 40 1Y R 2R
v. LWER: FEWILSDE
BAERLA K BT o =F/S
BERREN; T REMNL 4, L

FEH#ER/(keal d™)—
5 5
T T
—

P R LA B N/ s A
) , 107 102 100 100 100 10° 10° 10°
POCO'S’UOCS, . mikg—>

B S RMANEEER, B goo6smxsmash ks
ERTF 7 em™, T&

P o ,),),1,3/4 = m0.75.
WMER[MERFHREE L TFTHEP, B2 - 16 B sE RE AR T R,
o TR AR ) R 3 B T O LR UM EEREELT
m®™ 3 sE R BRI FREFEHESE, TEEE 2 TP FR S Kleiber E#E.®

SO0 B TS 0 1 38 IE H O RE R AR, BE Boe mo, T BRALANTRD
BEILIRE «cmy, KB v 20BIRR, MBI HEEN ST RMEE
BL, BFREAE my ocm” ", B ILAR |

y o« m%
ﬁ%ﬁ%%ﬁﬂ%?ﬁﬂ%ﬁli‘ﬁﬁﬁ%foi’éiﬁﬁ??io %5&J:tﬁiﬁ&%?ﬂ?ii—~
Bo B AT B — 5 X EL B AL A ] BEAVE LS, T A, =

@ M. Kleiber, The Fire of Life, Wiley,N. Y. 1961.
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fﬁ%@%ﬁ%ﬁm;m%ﬁWﬂa%ﬁﬁwmﬁcﬁmﬁmam%mwﬁm

s, LB — A L B B AR o ®

E AR (2. 54) WERI AT AT IR EL S B R A AT M L BIRR
SRR W, AR, B A RREENR R, FAE, U
uﬁmﬁmﬁzu%xw_$%ﬁm~§wm%w%§¢wmmwyoé
2 ) (B B2 B 2B 2 , XA T I B TA TR T o

§5. AkBREESHAR

5.1 EHViRER

TS —E 1.3 FREE AR R — 1T R, B IR KO M2k B PR B AE
VE: Inrocd, A, roce’ miE RV IBL B B A K, E—EEXL
P, 0 FAETHE ¢, B I A B A S T S RG AR R 8] ¢ R g
Ak, AT A EA R ST R, AEH KRFLLTFBHHIKR
N HE B KR E R

JEROE KRR LE AT EM R ER, WAFE TABESA D KB
[ o L N fRZR A, AN/ dE I AH e IR A D KRE TR

BAE:
WAV (a>0), (2.57)
BB R . -
N = Nye™, (2.58)

XA AR 1798 EHEZFFRD/REH (Thomas Malthus )32 H
o

TR EE R Y BRI 8 N A 4 2 2R IR /R 3 (Charles Darwin )2 H “ #3E
T R LI 1 B R AR o TR R SCIE HiEEEHE.“1838 £ 10 A,
BERTTIERGHNEE 1S AE AR R EARHIEE T BIR AT
CEY o 2 B FAE ) 5 HE B T M B ERBIF B EIR
%), A A B TR TE I o T AR BT YR 0L BN$TEh T 3K, EERIIRE, 7
SRERE T, AR 2 R AR B T R, A A His B R IR, TRRE
FRRT — e SR TENER,.” K PERT R ENEZ BT IARSN T
SRS, BEEBR N, ARSI AR IAF=EE LB TR E 1S
LZHER, NFEAREIS s LR BEAR O RS , ISR AL 11 B3 R I il
HEE SRS YL TR R B K, S T AR BEHT B S AL S B Ay

SRR, AT CANERETRE”, ADREF T, ME A, 1E

@ T.McMahon, Science, 179 (1973), 1201.
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« E IEAL R %té§%HE§7:,J\?é%ié?éﬁ—*ﬁﬂ?ﬁﬁ%%ﬂ?E%%%>é§ﬂ§@%o B
g7 §Eﬁié%friiﬁ*£§fﬁﬂﬁﬁgﬂﬁ?TEED

1846 4 b BT & Verhulst 4T D /REERTRY L 5 T /RBEETS
(2. 57) BN

%=A(1 _NJL)N (A >0), (2.59)

iiﬁifqmm;ﬁ%ﬁﬂgfﬂ?%ﬂiFﬁ%fEi?Bﬁj\[lJ:FEJ iﬁfiﬂtﬁﬁ,)\ﬁl*%i&@léﬁ??ﬁﬂ
i@é’ﬁciﬁﬁﬁﬁjﬁ'ﬁmm W IR T XA W N— N, BT, AH BTE
s N > Npoy BT, AR R ﬁﬁﬁfﬁiﬁi(Z-59)ﬁ$§biﬁﬁﬁﬁﬁ$§
(Logistic) 51, AN Nl

Niax '

Nmax ~-Al
“W7F‘ﬂe

/2 — 17 TR /R BT T A A
AR R, T UEH, M N<

N =

. (2.60)

H2-17 B FEH
Py T s Ve
ﬁfﬂﬁﬁjzjﬂﬁa b%%L@%ﬂ{gNmaO Eiﬁ%%/\ui@%%

5.0 ERIEHHSEZDE
i%ﬁ%%ﬁ%ﬁ@%ﬁ~%%ﬁ%%ﬁﬁ%omn@%ﬁﬂﬁ%

s 3Ey PR %2 (Fibonacci) TEEARE." A G — X T e ER B

ﬁﬁwwﬂaﬁﬁﬁﬂ@M%?E~ﬁ$%ﬁ@rﬁﬁﬁﬂ%¢?;ﬁﬁ

R L SR T A PN ER AR ﬂ%\&ﬁ\%ﬁ
w5 AR RAE—M RS, —TARENET N | &
N B TE=AH, BRXE—NAR, IT L0
. S Lk 2 1t
sts S, BV EE RS R 312 |1
et - 4132
1. 1,2,3,5,8, 13,21, 34, 55, 86, 144, - 515 |3
S R AREREE), T R R L1 +1 =2, 6 | 8 | 3
142=3, 243 =5, 345 =8, -, BVARARTIZ AN 7 113 | 8
BF—RAARIAES, H Z 2 i
F . =F, +F,, (n=1,2,3,"), (2.61) 0 55 2
RE A BT . S o
F,o=1, F =1, 26 | 1, | a4 | 89 |

-2 P ST B AR o




- BTE BASTTER

M BRI, HHIAE K
YT M TR E ., AR
DIFE 2 - 18 FTmBieE, SEfE
— AT WIEFRE, BE
—MkR 1 MIERESZIF
3, SRIE1ERKEN 2 MIETTTE
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Introduction and Review

convert data on engine thrusts from pounds into the metric
unit of force (newtons) before giving the information to
NASA. Conversions are important!

Chapter 0. Introduction and
Review

0.1 Introduction and Review

If you drop your shoe and a coin side by side, they hit the
ground at the same time. Why doesn't the shoe get there first, since
gravity is pulling harder on it? How does the lens of your eye
work, and why do your eye's muscles need to squash its lens into
different shapes in order to focus on objects nearby or far away?
These are the kinds of questions that physics tries to answer about
the behavior of light and matter, the two things that the universe is
made of.

0.1.1 The scientific method

Until very recently in history, no progress was made in
answering questions like these. Worse than that, the wrong
answers written by thinkers like the ancient Greek physicist
Aristotle were accepted without question for thousands of years.
Why is it that scientific knowledge has progressed more since the
Renaissance than it had in all the preceding millennia since the
beginning of recorded history? Undoubtedly the industrial
revolution is part of the answer. Building its centerpiece, the steam
engine, required improved techniques for precise construction and
measurement. (Early on, it was considered a major advance when
English machine shops learned to build pistons and cylinders that
fit together with a gap narrower than the thickness of a penny.)
But even before the industrial revolution, the pace of discovery
had picked up, mainly because of the introduction of the modern
scientific method. Although it evolved over time, most scientists
today would agree on something like the following list of the basic
principles of the scientific method:

(1) Science is a cycle of theory and experiment. Scientific
theories are created to explain the results of experiments that were

http://www.lightandmatter.com/htmI_books/Osn/chOO/chOO.html
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Introduction and Review
created under certain conditions. A successful theory will also
make new predictions about new experiments under new
conditions. Eventually, though, it always seems to happen that a
new experiment comes along, showing that under certain
conditions the theory is not a good approximation or is not valid at
all. The ball is then back in the theorists' court. If an experiment
disagrees with the current theory, the theory has to be changed,
not the experiment.

(2) Theories should both predict and explain. The

requirement of predictive power means that a theory is only
meaningful if it predicts something that can be checked against
experimental measurements that the theorist did not already have
at hand. That is, a theory should be testable. Explanatory value
means that many phenomena should be accounted for with few
basic principles. If you answer every “why” question with
“because that's the way it is,” then your theory has no explanatory
value. Collecting lots of data without being able to find any basic
underlying principles is not science.
N (3) Experiments should be reproducible. An experiment
should be treated with suspicion if it only works for one person, or
only in one part of the world. Anyone with the necessary skills
and equipment should be able to get the same results from the
same experiment. This implies that science transcends national
and ethnic boundaries; you can be sure that nobody is doing actual
science who claims that their work is “Aryan, not Jewish,”
“Marxist, not bourgeois,” or “Christian, not atheistic.” An
experiment cannot be reproduced if it is secret, so science is
necessarily a public enterprise.

As an example of the cycle of theory and experiment, a
vital step toward modern chemistry was the experimental
observation that the chemical elements could not be transformed
into each other, e.g., lead could not be turned into gold. This led to
the theory that chemical reactions consisted of rearrangeménts of

" the elements in different combinations, without any change in the
identities of the elements themselves. The theory worked for
hundreds of years, and was confirmed experimentally over a wide
range of pressures and temperatures and with many combinations
of elements. Only in the twentieth century did we learn that one

http://www.lightandmatter.com/html_books/0sn/ch00/ch00.html
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Introduction and Review
element could be trans-formed into one another under the
conditions of extremely high pressure and temperature existing in
a nuclear bomb or inside a star. That observation didn't completely
invalidate the original theory of the immutability of the elements,
but it showed that it was only an approximation, valid at ordinary
temperatures and pressures.

self-check: A psychic conducts seances in which the
spirits of the dead speak to the participants. He says he
has special psychic powers not possessed by other
people, which allow him to “channel” the communications
with the spirits. What part of the scientific method is being
violated here? (answer in the back of the PDF version of
the book)

The scientific method as described here is an idealization,
and should not be understood as a set procedure for doing science.
Scientists have as many weaknesses and character flaws as any
other group, and it is very common for scientists to try to discredit
other people's experiments when the results run contrary to their
own favored point of view. Successful science also has more to do
with luck, intuition, and creativity than most people realize, and
the restrictions of the scientific method do not stifle individuality
and self-expression any more than the fugue and sonata forms
stifled Bach and Haydn. There is a recent tendency among social
scientists to go even further and to deny that the scientific method
even exists, claiming that science is no more than an arbitrary
social system that determines what ideas to accept based on an in-
group's criteria. I think that's going too far. If science is an
arbitrary social ritual, it would seem difficult to explain its
effectiveness in building such useful items as airplanes, CD
players, and sewers. If alchemy and astrology were no less
scientific in their methods than chemistry and astronomy, what
was it that kept them from producing anything useful?

Discussion Questions

withintro{Consider whether or not the scientific method is
being applied in the following examples. If the scientific method
is not being applied, are the people whose actions are being
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Introduction and Review
described performing a useful human activity, albeit an
unscientific one? }

¢ Acupuncture is a traditional medical technique of Asian
origin in which small needles are inserted in the patient's
body to relieve pain. Many doctors trained in the west
consider acupuncture unworthy of experimental study
because if it had therapeutic effects, such effects could not
be explained by their theories of the nervous system. Who is
being more scientific, the western or eastern practitioners?

¢ Goethe, a German poet, is less well known for his theory
of color. He published a book on the subject, in which he
argued that scientific apparatus for measuring and
quantifying color, such as prisms, lenses and colored filters,
could not give us full insight into the ultimate meaning of
color, for instance the cold feeling evoked by blue and green
or the heroic sentiments inspired by red. Was his work
scientific?

0 A child asks why things fall down, and an adult answers
‘because of gravity.” The ancient Greek philosopher
Aristotle explained that rocks fell because it was their nature
to seek out their natural place, in contact with the earth. Are
these explanations scientific?

¢ Buddhism is partly a psychological explanation of human
suffering, and psychology is of course a science. The
Buddha could be said to have engaged in a cycle of theory
and experiment, since he worked by trial and error, and
even late in his life he asked his followers to challenge his
ideas. Buddhism could also be considered reproducible,
since the Buddha told his followers they could find
enlightenment for themselves if they followed a certain
course of study and discipline. Is Buddhism a scientific
pursuit?

0.1.2 What is physics?

Given for one instant an intelligence which could
comprehend all the forces by which nature is animated and the
respective positions of the things which compose it...nothing

http://www.lightandmatter.com/html|_books/0sn/ch00/ch00.htmi
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Introduction and Review
would be uncertain, and the future as the past would be laid out
before its eyes. -- Pierre Simon de Laplace

\/Physics is the use of the scientific method to find out the
basic principles governing light and matter, and to discover the
implications of those laws. Part of what distinguishes the modern
outlook from the ancient mind-set is the assumption that there are
rules by which the universe functions, and that those laws can be
at least partially understood by humans. From the Age of Reason
through the nineteenth century, many scientists began to be
convinced that the laws of nature not only could be known but, as
claimed by Laplace, those laws could in principle be used to
predict everything about the universe's future if complete
information was available about the present state of all light and
matter. In subsequent sections, I'll describe two general types of
limitations on prediction using the laws of physics, which were
only recognized in the twentieth century.

Matter can be defined as anything that is affected by
gravity, i.e., that has weight or would have weight if it was near
the Earth or another star or planet massive enough to produce
measurable gravity. Light can be defined as anything that can
travel from one place to another through empty space and can
influence matter, but has no weight. For example, sunlight can
influence your body by heating it or by damaging your DNA and
giving you skin cancer. The physicist's definition of light includes
a variety of phenomena that are not visible to the eye, including
radio waves, microwaves, x-rays, and gamma rays. These are the
“colors” of light that do not happen to fall within the narrow violet
-to-red range of the rainbow that we can see.

self-check: At the turn of the 20th century, a strange new
phenomenon was discovered in vacuum tubes:
mysterious rays of unknown origin and nature. These rays
are the same as the ones that shoot from the back of your
TV's picture tube and hit the front to make the picture.
Physicists in 1895 didn't have the faintest idea what the
rays were, so they simply named them “cathode rays,”
after the name for the electrical contact from which they
sprang. A fierce debate raged, complete with nationalistic
overtones, over whether the rays were a form of light or of
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matter. What would they have had to do in order to settle
the issue? (answer in the back of the PDF version of the
book)

Many physical phenomena are not themselves light or
matter, but are properties of light or matter or interactions between
light and matter. For instance, motion is a property of all light and
some matter, but it is not itself light or matter. The pressure that
keeps a bicycle tire blown up is an interaction between the air and
the tire. Pressure is not a form of matter in and of itself. It is as
much a property of the tire as of the air. Analogously, sisterhood
and employment are relationships among people but are not
people themselves.

Some things that appear weightless actually do have
weight, and so qualify as matter. Air has weight, and is thus a
form of matter even though a cubic inch of air weighs less than a

grain of sand. A helium balloon has weight, but is kept from
falling by the force of the surrounding more dense air, which
pushes up on it. Astronauts in orbit around the Earth have weight,
and are falling along a curved arc, but they are moving so fast that
the curved arc of their fall is broad enough to carry them all the
way around the Earth in a circle. They perceive themselves as
being weightless because their space capsule is falling along with
them, and the floor therefore does not push up on their feet.

Optional topic: Optional Topic: Modern Changes in the Definition of Light and
Matter

Einstein predicted as a consequence of his theory
of relativity that light would after all be affected by gravity,
although the effect would be extremely weak under
normal conditions. His prediction was borne out by
observations of the bending of light rays from stars as
they passed close to the sun on their way to the Earth.
Einstein's theory also implied the existence of black holes,
stars so massive and compact that their intense gravity
would not even allow light to escape. (These days there is
strong evidence that black holes exist.)

Einstein's interpretation was that light doesn't really
have mass, but that energy is affected by gravity just like

R 7 4K 52
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mass is. The energy in a light beam is equivalent to a
certain amount of mass, given by the famous equation

E=mc?, where c is the speed of light. Because the speed
of light is such a big number, a large amount of energy is
equivalent to only a very small amount of mass, so the
gravitational force on a light ray can be ignored for most
practical purposes.

There is however a more satisfactory and
fundamental distinction between light and matter, which
should be understandable to you if you have had a
chemistry course. In chemistry, one learns that electrons
obey the Pauli exclusion principle, which forbids more
than one electron from occupying the same orbital if they
have the same spin. The Pauli exclusion principle is
obeyed by the subatomic particles of which matter is
composed, but disobeyed by the particles, called photons,
of which a beam of light is made.

Einstein's theory of relativity is discussed more fully
in book 6 of this series.

The boundary between physics and the other sciences is
not always clear. For instance, chemists study atoms and
molecules, which are what matter is built from, and there are some
scientists who would be equally willing to call themselves
physical chemists or chemical physicists. It might seem that the
distinction between physics and biology would be clearer, since
physics seems to deal with inanimate objects. In fact, almost all
physicists would agree that the basic laws of physics that apply to
molecules in a test tube work equally well for the combination of
molecules that constitutes a bacterium. (Some might believe that
something more happens in the minds of humans, or even those of
cats and dogs.) What differentiates physics from biology is that
many of the scientific theories that describe living things, while
ultimately resulting from the fundamental laws of physics, cannot
be rigorously derived from physical principles.
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Visolated systems and reductionism

To avoid having to study everything at once, scientists
isolate the things they are trying to study. For instance, a physicist
who wants to study the motion of a rotating gyroscope would
probably prefer that it be isolated from vibrations and air currents.
Even in biology, where field work is indispensable for
understanding how living things relate to their entire environment,
it is interesting to note the vital historical role played by Darwin's
study of the Galapagos Islands, which were conveniently isolated
from the rest of the world. Any part of the universe that is
considered apart from the rest can be called a “system.”

Physics has had some of its greatest successes by carrying
this process of isolation to extremes, subdividing the universe into
smaller and smaller parts. Matter can be divided into atoms, and
the behavior of individual atoms can be studied. Atoms can be
split apart into their constituent neutrons, protons and electrons.
Protons and neutrons appear to be made out of even smaller
particles called quarks, and there have even been some claims of
experimental evidence that quarks have smaller parts inside them.
This method of splitting things into smaller and smaller parts and
studying how those parts influence each other is called
reductionism. The hope is that the seemingly complex rules
governing the larger units can be better understood in terms of
simpler rules governing the smaller units. To appreciate what
reductionism has done for science, it is only necessary to examine
a 19th-century chemistry textbook. At that time, the existence of
atoms was still doubted by some, electrons were not even
suspected to exist, and almost nothing was understood of what
basic rules governed the way atoms interacted with each other in
chemical reactions. Students had to memorize long lists of -
chemicals and their reactions, and there was no way to understand
any of it systematically. Today, the student only needs to
remember a small set of rules about how atoms interact, for
instance that atoms of one element cannot be converted into
another via chemical reactions, or that atoms from the right side of

the periodic table tend to form strong bonds with atoms from the
left side.
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Discussion Questions

¢ I've suggested replacing the ordinary dictionary definition
of light with a more technical, more precise one that involves
weightlessness. It's still possible, though, that the stuff a
lightbulb makes, ordinarily called “light,” does have some
small amount of weight. Suggest an experiment to attempt
to measure whether it does.

0 Heat is weightless (i.e., an object becomes no heavier
when heated), and can travel across an empty room from
the fireplace to your skin, where it influences you by heating
you. Should heat therefore be considered a form of light by
our definition? Why or why not?

¢ Similarly, should sound be considered a form of light?

0.1.3 How to learn physics

For as knowledges are now delivered, there is a kind of
contract of error between the deliverer and the receiver; for he that
delivereth knowledge desireth to deliver it in such a form as may
be best believed, and not as may be best examined; and he that
receiveth knowledge desireth rather present satisfaction than
expectant inquiry. -- Francis Bacon

Many students approach a science course with the idea that
they can succeed by memorizing the formulas, so that when a
problem is assigned on the homework or an exam, they will be
able to plug numbers in to the formula and get a numerical result
on their calculator. Wrong! That's not what learning science is
about! There is a big difference between memorizing formulas and
understanding concepts. To start with, different formulas may
apply in different situations. One equation might represent a
definition, which is always true. Another might be a very specific
equation for the speed of an object sliding down an inclined plane,
which would not be true if the object was a rock drifting down to
the bottom of the ocean. If you don't work to understand physics
on a conceptual level, you won't know which formulas can be used
when. '
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Most students taking college science courses for the first
time also have very little experience with interpreting the meaning
of an equation. Consider the equation w=A/k relating the width of
a rectangle to its height and area. A student who has not developed
skill at interpretation might view this as yet another equation to
memorize and plug in to when needed. A slightly more savvy
student might realize that it is simply the familiar formula A=w# in
a different form. When asked whether a rectangle would have a
greater or smaller width than another with the same area but a
smaller height, the unsophisticated student might be at a loss, not
having any numbers to plug in on a calculator. The more
experienced student would know how to reason about an equation
involving division --- if % is smaller, and A4 stays the same, then w
must be bigger. Often, students fail to recognize a sequence of
equations as a derivation leading to a final result, so they think all
the intermediate steps are equally important formulas that they
should memorize.

When learning any subject at all, it is important to become
as actively involved as possible, rather than trying to read through
all the information quickly without thinking about it. It is a good
idea to read and think about the questions posed at the end of each
section of these notes as you encounter them, so that you know
you have understood what you were reading.

Many students' difficulties in physics boil down mainly to
difficulties with math. Suppose you feel confident that you have
enough mathematical preparation to succeed in this course, but
you are having trouble with a few specific things. In some areas,
the brief review given in this chapter may be sufficient, but in
other areas it probably will not. Once you identify the areas of
math in which you are having problems, get help in those areas.
Don't limp along through the whole course with a vague feeling of
dread about something like scientific notation. The problem will
not go away if you ignore it. The same applies to essential
mathematical skills that you are learning in this course for the first
time, such as vector addition.

Sometimes students tell me they keep trying to understand
a certain topic in the book, and it just doesn't make sense. The
worst thing you can possibly do in that situation is to keep on
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staring at the same page. Every textbook explains certain things
badly --- even mine! --- so the best thing to do in this situation is
to look at a different book. Instead of college textbooks aimed at
the same mathematical level as the course you're taking, you may
in some cases find that high school books or books at a lower
math level give clearer explanations.

Finally, when reviewing for an exam, don't simply read
back over the text and your lecture notes. Instead, try to use an
active method of reviewing, for instance by discussing some of the
discussion questions with another student, or doing homework
problems you hadn't done the first time.

0.1 .4' Velocity and acceleration

Calculus was invented by a physicist, Isaac Newton,
because he needed it as a tool for calculating velocity and
acceleration; in your introductory calculus course, velocity and
acceleration were probably presented as some of the first
applications.

If an object's position as a function of time is given by the
function x(#), then its velocity and acceleration are given by the
first and second derivatives with respect to time,

Y == v

dt

2
d x
anda =

dt?
The notation relates in a logical way to the units of the quantities.
Velocity has units of m/s, and that makes sense because d x is
interpreted as an infinitesimally small distance, with units of
meters, and d ¢ as an infinitesimally small time, with units of
seconds. The seemingly weird and inconsistent placement of the
superscripted twos in the notation for the acceleration is likewise
meant to suggest the units: something on top with units of meters,
and something on the bottom with units of seconds squared.

Velocity and acceleration have completely different
physical interpretations. Velocity is a matter of opinion. Right
now as you sit in a chair and read this book, you could say that
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your velocity was zero, but an observer watching the Earth rotate
would say that you had a velocity of hundreds of miles an hour.
Acceleration represents a change in velocity, and it's not a matter
of opinion. Accelerations produce physical effects, and don't occur
unless there's a force to cause them. For example, gravitational

forces on Earth cause falling objects to have an acceleration of 9.8

m/s?.

Example 1: Constant acceleration

¢ How high does a diving board have to be above the
water if the diver is to have as much as 1.0 s in the air?

¢ The diver starts at rest, and has an acceleration of 9.8

m/s®>. We need to find a connection between the distance
she travels and time it takes. In other words, we're looking
for information about the function x(f), given information
about the acceleration. To go from acceleration to
position, we need to integrate twice:

a;z//adtdt

= / (at + v, ) dt [to i3 a constant of integration.

= / atdt [t is zero because she’s dropping from rest.]

[ —

i

21 . . .
at® + x4 [;‘L‘o is a constant of lxltegrut.loll.]

¢

r

¢

I
-

il

[ o7 ]

at [to can be zero if we define it that way.]

Note some of the good problem-solving habits
demonstrated here. We solve the problem symbolically,
and only plug in numbers at the very end, once all the
algebra and calculus are done. One should also make a
habit, after finding a symbolic result, of checking whether
the dependence on the variables make sense. A greater
value of t in this expression would lead to a greater value
for x; that makes sense, because if you want more time in
the air, you're going to have to jump from higher up. A
greater acceleration also leads to a greater height; this
also makes sense, because the stronger gravity is, the
more height you'll need in order to stay in the air for a
given amount of time. Now we plug in numbers.

1

T o=

(9.8 m/s?) (1.0 5)°

(37|
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=49 m

Note that when we put in the numbers, we check that the

units work out correctly, (m/s*)(5)*=m_\We should also
check that the result makes sense: 4.9 meters is pretty
high, but not unreasonable.

The notation d g in calculus represents an infinitesimally
small change in the variable q. The corresponding notation for a
finite change in a variable is A gq. For example, if g represents the
value of a certain stock on the stock market, and the value falls
from g,=5 dollars initially to g/~3 dollars finally, then A g=-2

dollars. When we study linear functions, whose slopes are
constant, the derivative is synonymous with the slope of the line,
and d y/d x is the same thing as A y/A x, the rise over the run.

Under conditions of constant acceleration, we can relate
velocity and time,

Av
(1 = e
At

or, as in the example 1, position and time,

e

E ]
T = =al® 4 vt + 14

*

| 3]

It can also be handy to have a relation involving velocity and
position, eliminating time. Straightforward algebra gives

vP=vl+2alx,

where vy is the final velocity, v, the initial velocity, and A x the

distance traveled.

0 Solved problem: Dropping a rock on Mars — problem
17

0 Solved problem: The Dodge Viper — problem 19

0.1.5 Self-evaluation

The introductory part of a book like this is hard to write,
because every student arrives at this starting point with a different
preparation. One student may have grown up outside the U.S. and
so may be completely comfortable with the metric system, but
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may have had an algebra course in which the instructor passed too
quickly over scientific notation. Another student may have already
taken vector calculus, but may have never learned the metric
system. The following self-evaluation is a checklist to help you

figure out what you need to study to be prepared for the rest of the

course.

If you disagree with this statement...

you should study
this section:

I am familiar with the basic metric units
of meters, kilograms, and seconds, and
the most common metric prefixes: milli-

(m), kilo- (k), and centi- (c).

subsection ?? Basic
of the Metric
System

I am familiar with these less common
metric prefixes: mega- (M), micro- ),
and nano- (n).

subsection ?7? Less
Common Metric
Prefixes

I am comfortable with scientific notation.

subsection ?7?
Scientific Notation

I can confidently do metric conversions.

subsection 77
Conversions

T understand the purpose and use of
- significant figures.

subsection ??
Significant Figures

It wouldn't hurt you to skim the sections you think you
already know about, and to do the self-checks in those sections.
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0.1.6 Basics of the metric system

The metric system

Units were not standardized until fairly recently in history,
so when the physicist Isaac Newton gave the result of an
experiment with a pendulum, he had to specify not just that the

string was 37 /g inches long but that it was “37 7/s London inches

long.” The inch as defined in Yorkshire would have been
different. Even after the British Empire standardized its units, it
was still very inconvenient to do calculations involving money,
volume, distance, time, or weight, because of all the odd
conversion factors, like 16 ounces in a pound, and 5280 feet in a
mile. Through the nineteenth century, schoolchildren squandered
most of their mathematical education in preparing to do
calculations such as making change when a customer in a shop
offered a one-crown note for a book costing two pounds, thirteen
shillings and tuppence. The dollar has always been decimal, and
British money went decimal decades ago, but the United States is
still saddled with the antiquated system of feet, inches, pounds,
ounces and so on.

Every country in the world besides the U.S. has adopted a
system of units known in English as the “metric system.” This
system is entirely decimal, thanks to the same eminently logical
people who brought about the French Revolution. In deference to
France, the system's official name is the Systéme International, or
SI, meaning International System. (The phrase “SI system” is
therefore redundant.)

The wonderful thing about the SI is that people who live in
countries more modern than ours do not need to memorize how
many ounces there are in a pound, how many cups in a pint, how
many feet in a mile, etc. The whole system works with a single,
consistent set of prefixes (derived from Greek) that modify the
basic units. Each prefix stands for a power of ten, and has an
abbreviation that can be combined with the symbol for the unit.
For instance, the meter is a unit of distance. The prefix kilo- stands

for 10°, so a kilometer, 1 km, is a thousand meters.

df 16 I~ 52 I
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The basic units of the metric system are the meter for
distance, the second for time, and the gram for mass.

The following are the most common metric prefixes. You
should memorize them.

prefix  meaning example

kilo- k 10° 60 kg = aperson’s mass

-2

centi- ¢ 10 28 cm = height of a piece of paper

milli- m 1073 1 ms =time for one vibration of a
guitar string playing the note D

The prefix centi-, meaning 1072 is only used in the
centimeter; a hundredth of a gram would not be written as 1 cg but
as 10 mg. The centi- prefix can be easily remembered because a

cent is 107 dollars. The official SI abbreviation for seconds is

73R
S

(not “sec”) and grams are “g” (not “gm”).
The second

The sun stood still and the moon halted until the nation had
taken vengeance on its enemies... -- Joshua 10:12-14

Absolute, true, and mathematical time, of itself, and from
its own nature, flows equably without relation to anything
external... -- Isaac Newton

When I stated briefly above that the second was a unit of
time, it may not have occurred to you that this was not really much
of a definition. The two quotes above are meant to demonstrate
how much room for confusion exists among people who seem to
mean the same thing by a word such as “time.” The first quote has
been interpreted by some biblical scholars as indicating an ancient
belief that the motion of the sun across the sky was not just
something that occurred with the passage of time but that the sun
actually caused time to pass by its motion, so that freezing it in the
sky would have some kind of a supernatural decelerating effect on
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everyone except the Hebrew soldiers. Many ancient cultures also
conceived of time as cyclical, rather than proceeding along a
straight line as in 1998, 1999, 2000, 2001,... The second quote,
from a relatively modern physicist, may sound a lot more
scientific, but most physicists today would consider it useless as a
definition of time. Today, the physical sciences are based on
operational definitions, which means definitions that spell out the
actual steps (operations) required to measure something
numerically.

Now in an era when our toasters, pens, and coffee pots tell
us the time, it is far from obvious to most people what is the
fundamental operational definition of time. Until recently, the
hour, minute, and second were defined operationally in terms of
the time required for the earth to rotate about its axis.
Unfortunately, the Earth's rotation is slowing down slightly, and
by 1967 this was becoming an issue in scientific experiments
requiring precise time measurements. The second was therefore
redefined as the time required for a certain number of vibrations of
the light waves emitted by a cesium atoms in a lamp constructed
like a familiar neon sign but with the neon replaced by cesium.
The new definition not only promises to stay constant indefinitely,
but for scientists is a more convenient way of calibrating a clock
than having to carry out astronomical measurements.

self-check: What is a possible operational definition of
how strong a person is? (answer in the back of the PDF
version of the book)

The meter

The French originally defined the meter as 107 times the
distance from the equator to the north pole, as measured through
Paris (of course). Even if the definition was operational, the
operation of traveling to the north pole and laying a surveying
chain behind you was not one that most working scientists wanted
to carry out. Fairly soon, a standard was created in the form of a
metal bar with two scratches on it. This was replaced by an atomic
standard in 1960, and finally in 1983 by the current definition,
which is that the meter is the distance traveled by light in a
vacuum over a period of (1/299792458) seconds.
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The kilogram

The third base unit of the SI is the kilogram, a unit of
mass. Mass is intended to be a measure of the amount of a
substance, but that is not an operational definition. Bathroom
scales work by measuring our planet's gravitational attraction for
the object being weighed, but using that type of scale to define
mass operationally would be undesirable because gravity varies in
strength from place to place on the earth.

There's a surprising amount of disagreement among
physics textbooks about how mass should be defined, but here's
how it's actually handled by the few working physicists who
specialize in ultra-high-precision measurements. They maintain a
physical object in Paris, which is the standard kilogram, a cylinder
made of platinum-iridium alloy. Duplicates are checked against
this mother of all kilograms by putting the original and the copy
on the two opposite pans of a balance. Although this method of
comparison depends on gravity, the problems associated with
differences in gravity in different geographical locations are
bypassed, because the two objects are being compared in the same
place. The duplicates can then be removed from the Parisian
kilogram shrine and transported elsewhere in the world. It would
be desirable to replace this at some point with a universally
accessible atomic standard rather than one based on a specific
artifact, but as of 2010 the technology for automated counting of
large numbers of atoms has not gotten good enough to make that
work with the desired precision.

Combinations of metric units

Just about anything you want to measure can be measured
with some combination of meters, kilograms, and seconds. Speed

can be measured in m/s, volume in m®, and density in kg/m’. Part
of what makes the SI great is this basic simplicity. No more funny
units like a cord of wood, a bolt of cloth, or a jigger of whiskey.
No more liquid and dry measure. Just a simple, consistent set of
units. The SI measures put together from meters, kilograms, and

seconds make up the mks system. For example, the mks unit of
speed is m/s, not km/hr.
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Checking units

A useful technique for finding mistakes in one's algebra is
to analyze the units associated with the variables.

Example 2: Checking units

S|

¢ Jae starts from the formula V= SA"' for the volume of a
cone, where A is the area of its base, and h is its height.
He wants to find an equation that will tell him how tall a
conical tent has to be in order to have a certain volume,
given its radius. His algebra goes like this:

"
A=mar?
Vo= %m"zh.

,-—7.2
(i
h = =

T3V
Is his algebra correct? If not, find the mistake.

0 Line 4 is supposed to be an equation for the height, so
the units of the expression on the right-hand side had
better equal meters. The pi and the 3 are unitless, so we
can ignore them. In terms of units, line 4 becomes

o}

1“__1

m =

=
W

1° m
This is false, so there must be a mistake in the algebra.
The units of lines 1, 2, and 3 check out, so the mistake
must be in the step from line 3 to line 4. In fact the result
should have been

h = 3‘/.

ar

V]

Now the units check: m = m®/m?.

Discussion Question

0 Isaac Newton wrote, “... the natural days are truly unequal,
though they are commonly considered as equal, and used
for a measure of time... It may be that there is no such thing
as an equable motion, whereby time may be accurately
measured. All motions may be accelerated or retarded...”
Newton was right. Even the modern definition of the second
in terms of light emitted by cesium atoms is subject to
variation. For instance, magnetic fields could cause the
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cesium atoms to emit light with a slightly different rate of
vibration. What makes us think, though, that a pendulum
clock is more accurate than a sundial, or that a cesium atom
is a more accurate timekeeper than a pendulum clock? That
is, how can one test experimentally how the accuracies of
different time standards compare?

0.1.7 Less common metric prefixes , /[Njne little

The following are three metric prefixes which, while less 10-9  nano «—[ NUNS '
common than the ones discussed previously, are well worth N e
_memorizing. 10'5_ migro, f‘L'm'X‘
103 mii ~_  milky

e

103 kil —«—//
106 mega H—{:ngS

g / This is a mnemonic 1
help you remember tr
most important metr
prefixes. The word “little”
to remind you that the i
starts with the prefixe
used for small quantitie
and builds upward. Tt
exponent changes by .
except that of course th:
we do not need a speci

prefix for 10°, which equa
one.

prefix meaning example
mega- M 10° 6.4 Mm = radius of the earth
micro- p107% 10mumunit = size of a white blood cell
nano- n107° 0.154nm = distance between carbon nuclei in an ethane molecule

Note that the abbreviation for micro is the Greek letter mu,
i --- a common mistake is to confuse it with m (milli) or M

(mega).

There are other prefixes even less common, used for
extremely large and small quantities. For instance, 1

femtometer=10""> m is a convenient unit of distance in nuclear
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physics, and 1 gigabyte=10° bytes is used for computers' hard
disks. The international committee that makes decisions about the
SI has recently even added some new prefixes that sound like
jokes, e.g., | yoctogram = 107! g j5 about half the mass of a proton.
In the immediate future, however, you're unlikely to see prefixes
like “yocto-" and “zepto-" used except perhaps in trivia contests at
science-fiction conventions or other geekfests.

self-check: Suppose you could slow down time so that
according to your perception, a beam of light would move
across a room at the speed of a slow walk. If you
perceived a nanosecond as if it was a second, how would
you perceive a microsecond? (answer in the back of the
PDF version of the book)

0.1.8 Scientific notation

Most of the interesting phenomena in our universe are not
on the human scalee. It would take  about
1,000,000,000,000,000,000,000 bacteria to equal the mass of a
human body. When the physicist Thomas Young discovered that
light was a wave, it was back in the bad old days before scientific
notation, and he was obliged to write that the time required for one
vibration of the wave was 1/500 of a millionth of a millionth of a
second. Scientific notation is a less awkward way to write very
large and very small numbers such as these. Here's a quick review.

Scientific notation means writing a number in terms of a
product of something from 1 to 10 and something else that is a
power of ten. For instance,

32 = 3.2 x 10"
320 = 3.2 x 10°
3200 = 3.2 x 10°
Each number is ten times bigger than the previous one.
Since 10! is ten times smaller than 10% , it makes sense to

use the notation 10° to stand for one, the number that is in turn ten

times smaller than 10' . Continuing on, we can write 10! to stand
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for 0.1, the number ten times smaller than 10° . Negative
exponents are used for small numbers:

3.2 =3.2 x 10"
032 =32x10""
0.032 = 3.2 x 107°

A common source of confusion is the notation used on the
displays of many calculators. Examples:

3.2x10% (written notation)
3.2E+6 (notation on some calculators)

3.2 (notation on some other calculators)

The last example is particularly unfortunate, because 3.26
really stands for the number 3.2 x 3.2 x 3.2 x 3.2 x 3.2 x 3.2=

1074, a totally different number from 3.2 X 10°=3200000. The
calculator notation should never be used in writing. It's just a way
for the manufacturer to save money by making a simpler display.

self-check: A student learns that 10% bacteria, standing in
line to register for classes at Paramecium Community
College, would form a queue of this size:

The student concludes that 10 bacteria would form a line
of this length:

Why is the student incorrect? (answer in the back of the
PDF version of the book)

0.1.9 Conversions

I suggest you avoid memorizing lots of conversion factors
between SI units and U.S. units, but two that do come in handy
are:

{}1inch=2.54 cm
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An object with a weight on Earth of 2.2 pounds-force
has a mass of 1 kg.

The first one is the present definition of the inch, so it's
exact. The second one is not exact, but is good enough for most
purposes. (U.S. units of force and mass are confusing, so it's a
good thing they're not used in science. In U.S. units, the unit of
force is the pound-force, and the best unit to use for mass is the
slug, which is about 14.6 kg.)

More important than memorizing conversion factors is
understanding the right method for doing conversions. Even
within the SI, you may need to convert, say, from grams to
kilograms. Different people have different ways of thinking about
conversions, but the method I'll describe here is systematic and
easy to understand. The idea is that if 1 kg and 1000 g represent
the same mass, then we can consider a fraction like

10% g
1 kg

to be a way of expressing the number one. This may bother you.
For instance, if you type 1000/1 into your calculator, you will get
1000, not one. Again, different people have different ways of
thinking about it, but the justification is that it helps us to do
conversions, and it works! Now if we want to convert 0.7 kg to
units of grams, we can multiply kg by the number one:

10% ¢
1 ke

0.7 kg x

If you're willing to treat symbols such as “kg” as if they were
variables as used in algebra (which they're really not), you can
then cancel the kg on top with the kg on the bottom, resulting in

3 o
110.53700;;

¥

To convert grams to ki.lograms, you would simply flip the fraction

0.7 k€ x

upside down.

One advantage of this method is that it can easily be
applied to a series of conversions. For instance, to convert one
year to units of seconds,
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365 iy 24 hours 60 ity 60 s

1  year x
= 3.15 X 107 s
Should that exponent be positive, or negative?

A common mistake is to write the conversion fraction
incorrectly. For instance the fraction

103 kg

lg

(incorrect)

does not equal one, because 10% kg is the mass of a car, and 1 g is
the mass of a raisin. One correct way of setting up the conversion
factor would be

1073 ke
lg

(correct)

You can usually detect such a mistake if you take the time to
check your answer and see if it is reasonable.

If common sense doesn't rule out either a positive or a
negative exponent, here's another way to make sure you get it
right. There are big prefixes and small prefixes:

big prefixes: kM
small prefixes: m un

(It's not hard to keep straight which are which, since
“mega” and “micro” are evocative, and it's easy to remember that
a kilometer is bigger than a meter and a millimeter is smaller.) In
the example above, we want the top of the fraction to be the same
as the bottom. Since k is a big prefix, we need to compensate by

putting a small number like 10 in front of it, not a big number

like 10°.
0 Solved problem: a simple conversion — problem 6

0 Solved problem: the geometric mean — problem 8
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Discussion Question

0 Each of the following conversions contains an error. In
each case, explain what the error is.

) Lkg
(@) 1000 kg x 1000 2 =1lg

1 cm

"
(b) 50 m x o0

= (.5 cm

(c) “Nano” is 10, so there are 10° nm in a meter.
(d) “Micro” is 10®, so 1 kg is 10° ug.
0.1.10 Significant figures

An engineer is designing a car engine, and has been told
that the diameter of the pistons (which are being designed by
someone else) is 5 cm. He knows that 0.02 cm of clearance is
required for a piston of this size, so he designs the cylinder to have
an inside diameter of 5.04 cm. Luckily, his supervisor catches his
mistake before the car goes into production. She explains his error
to him, and mentally puts him in the “do not promote” category.

What was his mistake? The person who told him the
pistons were 5 cm in diameter was wise to the ways of significant
figures, as was his boss, who explained to him that he needed to
go back and get a more accurate number for the diameter of the
pistons. That person said “5 cm” rather than “5.00 cm”
specifically to avoid creating the impression that the number was
extremely accurate. In reality, the pistons' diameter was 5.13 cm.
They would never have fit in the 5.04-cm cylinders.

The number of digits of accuracy in a number is referred to
as the number of significant figures, or “sig figs” for short. As in
the example above, sig figs provide a way of showing the
accuracy of a number. In most cases, the result of a calculation
involving several pieces of data can be no more accurate than the
least accurate piece of data. In other words, “garbage in, garbage
out.” Since the 5 cm diameter of the pistons was not very accurate,
the result of the engineer's calculation, 5.04 cm, was really not as
accurate as he thought. In general, your result should not have

http://www.lightandmatter.com/html_books/0sn/ch00/ch00.html

R 26 I~ K 52 I

2011/7/23



Introduction and Review
more than the number of sig figs in the least accurate piece of data
you started with. The calculation above should have been done as
follows:

5 cm (1 sig fig)
+0.04 cm (1 sig fig)

=5 cm (rounded off to 1 sig fig)

The fact that the final result only has one significant figure
then alerts you to the fact that the result is not very accurate, and
would not be appropriate for use in designing the engine.

Note that the leading zeroes in the number 0.04 do not
count as significant figures, because they are only placeholders.
On the other hand, a number such as 50 cm is ambiguous --- the
zero could be intended as a significant figure, or it might just be
there as a placeholder. The ambiguity involving trailing zeroes can

be avoided by using scientific notation, in which 5x10' cm would

imply one sig fig of accuracy, while 5.0 10" cm would imply two
sig figs.

self-check: The following quote is taken from an editorial
by Norimitsu Onishi in the New York Times, August 18,
2002.

Consider Nigeria. Everyone agrees it is Africa's most
populous nation. But what is its population? The United
Nations says 114 million; the State Department, 120
million. The World Bank says 126.9 million, while the
Central Intelligence Agency puts it at 126,635,626.

What should bother you about this? (answer in the back of
the PDF version of the book)

Dealing correctly with significant figures can save you
time! Often, students copy down numbers from their calculators
with eight significant figures of precision, then type them back in
for a later calculation. That's a waste of time, unless your original
data had that kind of incredible precision.
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The rules about significant figures are only rules of thumb,
and are not a substitute for careful thinking. For instance, $20.00 +
$0.05 is $20.05. It need not and should not be rounded off to $20.
In general, the sig fig rules work best for multiplication and
division, and we also apply them when doing a complicated
calculation that involves many types of operations. For simple
addition and subtraction, it makes more sense to maintain a fixed
number of digits after the decimal point.

When in doubt, don't use the sig fig rules at all. Instead,
intentionally change one piece of your initial data by the
maximum amount by which you think it could have been off, and
recalculate the final result. The digits on the end that are
completely reshuffled are the ones that are meaningless, and
should be omitted.

self-check: How many significant figures are there in each
of the following measurements?

(1)9.937 m
(2)4.0s

(3) 0.0000000000000037 kg (answer in the back of the
PDF version of the book)

0.2 Scaling and Order-of-Magnitude
Estimates

0.2.1 Introduction

Why can't an insect be the size of a dog? Some skinny
stretched-out cells in your spinal cord are a meter tall --- why does
nature display no single cells that are not just a meter tall, but a
meter wide, and a meter thick as well? Believe it or not, these are
questions that can be answered fairly easily without knowing
much more about physics than you already do. The only
mathematical technique you really need is the humble conversion,
applied to area and volume.

R 28 I~ # 52

b
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a / Amoebas this size ai
seldom encountered.
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Area and volume

Area can be defined by saying that we can copy the shape
of interest onto graph paper with 1 cm x 1 ¢cm squares and count
the number of squares inside. Fractions of squares can be
estimated by eye. We then say the area equals the number of
squares, in units of square cm. Although this might seem less

“pure” than computing areas using formulae like 4=n #* for a
circle or A=wh/2 for a triangle, those formulae are not useful as
definitions of area because they cannot be applied to irregularly
shaped areas.

Units of square cm are more commonly written as cm? in
science. Of course, the unit of measurement symbolized by “cm”
is not an algebra symbol standing for a number that can be literally
multiplied by itself. But it is advantageous to write the units of
area that way and treat the units as if they were algebra symbols.

For instance, if you have a rectangle with an area of 6 m? and a

width of 2 m, then calculating its length as (6 m?)/(2 m)=3 m gives
a result that makes sense both numerically and in terms of units.
This algebra-style treatment of the units also ensures that our
methods of converting units work out correctly. For instance, if we
accept the fraction

100 cm
I m

as a valid way of writing the number one, then one times one
equals one, so we should also say that one can be represented by

100 ¢cm 100 ¢m
X
Im Im

which is the same as

10000 em?
1 m?
That means the conversion factor from square meters to square

centimeters is a factor of 10%, i.e., a square meter has 10* square
centimeters in it.
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All of the above can be easily applied to volume as well,
using one-cubic-centimeter blocks instead of squares on graph

paper.

To many people, it seems hard to believe that a square
meter equals 10000 square centimeters, or that a cubic meter
equals a million cubic centimeters --- they think it would make

more sense if there were 100 cm? in 1 m?, and 100 ¢cm® in 1 m’,
but that would be incorrect. The examples shown in figure b aim
to make the correct answer more believable, using the traditional
U.S. units of feet and yards. (One foot is 12 inches, and one yard
is three feet.)

1t 1yd=3ft

1yd3=2713

b / Visualizing conversions of area and volume using
traditional U.S. units.

self-check: Based on figure b, convince yourself that there

are 9 ft? in a square yard, and 27 ft* in a cubic yard, then
demonstrate the same thing symbolically (i.e., with the
method using fractions that equal one). (answer in the
back of the PDF version of the book)

0 Solved problem: converting mm? to cm? — problem 31

0 Solved problem: scaling a liter — problem 40

Discussion Question

¢ How many square centimeters are there in a square inch?
(1 inch = 2.54 cm) First find an approximate answer by
making a drawing, then derive the conversion factor more
accurately using the symbolic method.
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0.2.2 Scaling of area and volume

Great fleas have lesser fleas
Upon their backs to bite 'em.
And lesser fleas have lesser still,
And so ad infinitum. -- Jonathan Swift

Now how do these conversions of area and volume relate
to the questions I posed about sizes of living things? Well,
imagine that you are shrunk like Alice in Wonderland to the size
of an insect. One way of thinking about the change of scale is that
what used to look like a centimeter now looks like perhaps a meter
to you, because you're so much smaller. If area and volume scaled
according to most people's intuitive, incorrect expectations, with 1

m? being the same as 100 cm? then there would be no particular
reason why nature should behave any differently on your new,
reduced scale. But nature does behave ‘differently now that you're
small. For instance, you will find that you can walk on water, and
jump to many times your own height. The physicist Galileo
Galilei had the basic insight that the scaling of area and volume
determines how natural phenomena behave differently on different
scales. He first reasoned about mechanical structures, but later
extended his insights to living things, taking the then-radical point
of view that at the fundamental level, a living organism should
follow the same laws of nature as a machine. We will follow his
lead by first discussing machines and then living things.

Galileo on the behavior of nature on large and small
scales

One of the world's most famous pieces of scientific writing
is Galileo's Dialogues Concerning the Two New Sciences. Galileo
was an entertaining writer who wanted to explain things clearly to
laypeople, and he livened up his work by casting it in the form of
a dialogue among three people. Salviati is really Galileo's alter
ego. Simplicio is the stupid character, and one of the reasons
Galileo got in trouble with the Church was that there were rumors
that Simplicio represented the Pope. Sagredo is the earnest and
intelligent student, with whom the reader is supposed to identify.
(The following excerpts are from the 1914 translation by Crew
and de Salvio.)
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Sagredo: Yes, that is what | mean; and | refer
especially to his last assertion which | have always
regarded as false...; namely, that in speaking of these and
other similar machines one cannot argue from the small to
the large, because many devices which succeed on a
small scale do not work on a large scale. Now, since
mechanics has its foundations in geometry, where mere
size [ is unimportant], | do not see that the properties of
circles, triangles, cylinders, cones and other solid figures
will change with their size. If, therefore, a large machine
be constructed in such a way that its parts bear to one
another the same ratio as in a smaller one, and if the
smaller is sufficiently strong for the purpose for which it is
designed, | do not see why the larger should not be able
to withstand any severe and destructive tests to which it
may be subjected.

Salviati contradicts Sagredo:

Salviati: ... Please observe, gentlemen, how facts
which at first seem improbable will, even on scant
explanation, drop the cloak which has hidden them and
stand forth in naked and simple beauty. Who does not
know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the
same height or a cat from a height of eight or ten cubits
will suffer no injury? Equally harmless would be the fall of
a grasshopper from a tower or the fall of an ant from the
distance of the moon.

The point Galileo is making here is that small things are
sturdier in proportion to their size. There are a lot of objections
that could be raised, however. After all, what does it really mean
for something to be “strong”, to be “strong in proportion to its
size,” or to be strong “out of proportion to its size?” Galileo hasn't
given operational definitions of things like “strength,” i.e.,
definitions that spell out how to measure them numerically.

Also, a cat is shaped differently from a horse --- an
enlarged photograph of a cat would not be mistaken for a horse,
even if the photo-doctoring experts at the National Inquirer made

o W32 H52 W

h / Galileo discussex
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it look like a person was riding on its back. A grasshopper is not
even a mammal, and it has an exoskeleton instead of an internal
skeleton. The whole argument would be a lot more convincing if
we could do some isolation of variables, a scientific term that
means to change only one thing at a time, isolating it from the
other variables that might have an effect. If size is the variable
whose effect we're interested in seeing, then we don't really want
to compare things that are different in size but also different in
other ways.

Salviati: ... we asked the reason why [shipbuilders]
employed stocks, scaffolding, and bracing of larger
dimensions for launching a big vessel than they do for a
small one; and [an old man] answered that they did this in
order to avoid the danger of the ship parting under its own
heavy weight, a danger to which small boats are not
subject?

After this entertaining but not scientifically rigorous
beginning, Galileo starts to do something worthwhile by modern
standards. He simplifies everything by considering the strength of
a wooden plank. The variables involved can then be narrowed
down to the type of wood, the width, the thickness, and the length.
He also gives an operational definition of what it means for the
plank to have a certain strength “in proportion to its size,” by
introducing the concept of a plank that is the longest one that
would not snap under its own weight if supported at one end. If
you increased its length by the slightest amount, without
increasing its width or thickness, it would break. He says that if
one plank is the same shape as another but a different size,
appearing like a reduced or enlarged photograph of the other, then
the planks would be strong “in proportion to their sizes” if both
were just barely able to support their own weight.

33 I 52
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g / 1. This plank is as long as it can be without collapsing
under its own weight. If it was a hundredth of an inch longer,
it would collapse. 2. This plank is made out of the same kind
of wood. It is twice as thick, twice as long, and twice as
wide. It will collapse under its own weight.

Also, Galileo is doing something that would be frowned on
in modern science: he is mixing experiments whose results he has
actually observed (building boats of different sizes), with
experiments that he could not possibly have done (dropping an ant
from the height of the moon). He now relates how he has done
actual experiments with such planks, and found that, according to
this operational definition, they are not strong in proportion to
their sizes. The larger one breaks. He makes sure to tell the reader
how important the result is, via Sagredo's astonished response:

Sagredo: My brain already reels. My mind, like a
cloud momentarily illuminated by a lightning flash, is for
an instant filled with an unusual light, which now beckons
to me and which now suddenly mingles and obscures
strange, crude ideas. From what you have said it appears
to me impossible to build two similar structures of the
same material, but of different sizes and have them
proportionately strong.

In other words, this specific experiment, using things like
wooden planks that have no intrinsic scientific interest, has very
wide implications because it points out a general principle, that
nature acts differently on different scales.

To finish the discussion, Galileo gives an explanation. He
says that the strength of a plank (defined as, say, the weight of the
heaviest boulder you could put on the end without breaking it) is
proportional to its cross-sectional area, that is, the surface area of
the fresh wood that would be exposed if you sawed through it in

the middle. Its weight, however, is proportional to its volume.:

How do the volume and cross-sectional area of the longer
plank compare with those of the shorter plank? We have already
seen, while discussing conversions of the units of area and
volume, that these quantities don't act the way most people naively
expect. You might think that the volume and area of the longer
plank would both be doubled compared to the shorter plank, so

http://www.lightandmatter.com/html_books/0sn/ch00/ch00.html

dR 34 ™ H 52

j / The muffin comes out «
the oven too hot to ec
Breaking it up into fou
pieces increases f
surface area while keepir
the total volume the sam:
It cools faster because ¢
the greater surface-t
volume ratio. In genere
smaller things have greatt
surface-to-volume ratio:
but in this example there
no easy way to compul
the effect exactly, becaus
the small pieces aren't tr
same shape as the origin
muffin.

k / Example 3. The b
triangle has four time
more area than the litt
one.

2011/7/23



Introduction and Review
they would increase in proportion to each other, and the longer
plank would be equally able to support its weight. You would be
wrong, but Galileo knows that this is a common misconception, so
he has Salviati address the point specifically:

Salviati: ... Take, for example, a cube two inches
on a side so that each face has an area of four square
inches and the total area, i.e., the sum of the six faces,
amounts to twenty-four square inches; now imagine this
cube to be sawed through three times [with cuts in three
perpendicular planes] so as to divide it into eight smaller
cubes, each one inch on the side, each face one inch
square, and the total surface of each cube six square
inches instead of twenty-four in the case of the larger
cube. It is evident therefore, that the surface of the little
cube is only one-fourth that of the larger, namely, the ratio
of six to twenty-four; but the volume of the solid cube itself
is only one-eighth; the volume, and hence also the weight,
diminishes therefore much more rapidly than the surface...
You see, therefore, Simplicio, that | was not mistaken
when ... | said that the surface of a small solid is
comparatively greater than that of a large one.

The same reasoning applies to the planks. Even though
they are not cubes, the large one could be sawed into eight small
ones, each with half the length, half the thickness, and half the
width. The small plank, therefore, has more surface area in
proportion to its weight, and is therefore able to support its own
weight while the large one breaks.

Scaling of area and volume for irregularly shaped
objects

You probably are not going to believe Galileo's claim that
this has deep implications for all of nature unless you can be
convinced that the same is true for any shape. Every drawing
you've seen so far has been of squares, rectangles, and rectangular
solids. Clearly the reasoning about sawing things up into smaller
pieces would not prove anything about, say, an egg, which cannot
be cut up into eight smaller egg-shaped objects with half the
length.
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Is it always true that something half the size has one
quarter the surface area and one eighth the volume, even if it has
an irregular shape? Take the example of a child's violin. Violins
are made for small children in smaller size to accomodate their
small bodies. Figure i shows a full-size violin, along with two

violins made with half and 3/4 of the normal length.? Let's study
the surface area of the front panels of the three violins.

Consider the square in the interior of the panel of the full-

size violin. In the 3/4-size violin, its height and width are both

smaller by a factor of 3/4, so the area of the corresponding,

smaller square becomes 3/4%x3/4=9/16 of the original area, not 3/4

of the original area. Similarly, the corresponding square on the

smallest violin has half the height and half the width of the
original one, so its area is 1/4 the original area, not half.

The same reasoning works for parts of the panel near the
edge, such as the part that only partially fills in the other square.
The entire square scales down the same as a square in the interior,
and in each violin the same fraction (about 70%) of the square is
full, so the contribution of this part to the total area scales down
just the same.

Since any small square region or any small region covering
part of a square scales down like a square object, the entire surface
area of an irregularly shaped object changes in the same manner as
the surface area of a square: scaling it down by 3/4 reduces the
area by a factor of 9/16, and so on.

In general, we can see that any time there are two objects
with the same shape, but different linear dimensions (i.e., one
looks like a reduced photo of the other), the ratio of their areas
equals the ratio of the squares of their linear dimensions:

A _ (LY
Ay \La

Note that it doesn't matter where we choose to measure the linear
size, L, of an object. In the case of the violins, for instance, it
could have been measured vertically, horizontally, diagonally, or
even from the bottom of the left f-hole to the middle of the right f-
hole. We just have to measure it in a consistent way on each
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violin. Since all the parts are assumed to shrink or expand in the |
same manner, the ratio Li/L, is independent of the choice of

measurement.

It is also important to realize that it is completely
unnecessary to have a formula for the area of a violin. It is only
possible to derive simple formulas for the areas of certain shapes
like circles, rectangles, triangles and so on, but that is no
impediment to the type of reasoning we are using.

Sometimes it is inconvenient to write all the equations in
terms of ratios, especially when more than two objects are being
compared. A more compact way of rewriting the previous
equation is

Ao [?,

The symbol “oc” means “is proportional to.” Scientists and
engineers often speak about such relationships verbally using the
phrases “scales like” or “goes like,” for instance “area goes like
length squared.”

All of the above reasoning works just as well in the case of
volume. Volume goes like length cubed:

Vo3,

If different objects are made of the same material with the same

density, p =m/V, then their masses, m=p V, are proportional to L,
and so are their weights. (The symbol for density is p, the lower-
case Greek letter “rho.”)

An important point is that all of the above reasoning about
scaling only applies to objects that are the same shape. For
instance, a piece of paper is larger than a pencil, but has a much
greater surface-to-volume ratio.

One of the first things I learned as a teacher was that
students were not very original about their mistakes. Every group
of students tends to come up with the same goofs as the previous
class. The following are some examples of correct and incorrect
reasoning about proportionality.
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Example 3: Scaling of the area of a triangle

¢ In figure k, the larger triangle has sides twice as long.
How many times greater is its area?

Correct solution #1: Area scales in proportion to the
square of the linear dimensions, so the larger triangle has

four times more area (22=4).

Correct solution #2: You could cut the larger triangle into
four of the smaller size, as shown in fig. (b), so its area is
four times greater. (This solution is correct, but it would
not work for a shape like a circle, which can't be cut up
into smaller circles.)

Correct solution #3: The area of a triangle is given by

A=bh/2, where b is the base and h is the height. The
areas of the triangles are

Ay =bihy/2

Az = byha/2

= (201)(2h1)/2

= 21

AafAy = (2byhy) /(b1 /2)
=4

(Although this solution is correct, it is a lot more work than
solution #1, and it can only be used in this case because
a triangle is a simple geometric shape, and we happen to
know a formula for its area.)

Correct solution #4: The area of a triangle is A= bh/2. The
comparison of the areas will come out the same as long
as the ratios of the linear sizes of the triangles is as
specified, so let's just say b1=1.00 m and b2=2.00 m. The

heights are then also h1=1.00 m and h2=2.00 m, giving
areas A1=0.50 m? and A»=2.00 m?, so Ax/A+1=4.00.

(The solution is correct, but it wouldn't work with a shape
for whose area we don't have a formula. Also, the
numerical calculation might make the answer of 4.00
appear inexact, whereas solution #1 makes it clear that it
is exactly 4.)

Incorrect solution: The area of a triangle is A=bh/2, and if

you plug in b=2.00 m and h=2.00 m, you get A=2.00 m?,
so the bigger triangle has 2.00 times more area. (This
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solution is incorrect because no comparison has been
made with the smaller triangle.)

Example 4: Scaling of the volume of a sphere

0 In figure m, the larger sphere has a radius that is five
times greater. How many times greater is its volume?

Correct solution #1: Volume scales like the third power of
the linear size, so the larger sphere has a volume that is

125 times greater (5°=125).

Correct solution #2: The volume of a sphere is V=(4/3)mr

P so

RO g
Vo/V) = (-’-)%me) / (%mf) =125

Incorrect solution: The volume of a sphere is V=(4/3) 7,
SO

9 ; i
Vo Vi = (:éqm"}) / (;-;-TF'I'?) =5

(The solution is incorrect because (5r1)% is not the same
as 5r;%.)
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Example 5: Scaling of a more complex shape

¢ The first letter “S” in figure n is in a 36-point font, the
second in 48-point. How many times more ink is required
to make the larger “S™? (Points are a unit of length used in

typography.)

Correct solution: The amount of ink depends on the area
to be covered with ink, and area is proportional to the
square of the linear dimensions, so the amount of ink
required for the second “S” is greater by a factor of

(48/36)?=1.78.

Incorrect solution: The length of the curve of the second
“S” is longer by a factor of 48/36=1.33, so 1.33 times
more ink is required.

(The solution is wrong because it assumes incorrectly that
the width of the curve is the same in both cases. Actually
both the width and the length of the curve are greater by a
factor of 48/36, so the area is greater by a factor of

(48/36)?=1.78.)
0 Solved problem: a telescope gathers light — problem 32

¢ Solved problem: distance from an earthquake — problem
33

Discussion Questions

¢ A toy fire engine is 1/30 the size of the real one, but is
constructed from the same metal with the same proportions.
How many times smaller is its weight? How many times less
red paint would be needed to paint it?

¢ Galileo spends a lot of time in his dialog discussing what
really happens when things break. He discusses everything
in terms of Aristotle's now-discredited explanation that
things are hard to break, because if something breaks, there
has to be a gap between the two halves with nothing in
between, at least initially. Nature, according to Aristotle,
“abhors a vacuum,” i.e., nature doesn't “like” empty space to
exist. Of course, air will rush into the gap immediately, but at
the very moment of breaking, Aristotle imagined a vacuum
in the gap. Is Aristotle's explanation of why it is hard to
break things an experimentally testable statement? If so,
how could it be tested experimentally?
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0.2.3 Order-of-magnitude estimates

It is the mark of an instructed mind to rest satisfied with
the degree of precision that the nature of the subject permits and
not to seek an exactness where only an approximation of the truth
is possible. -- Aristotle

It is a common misconception that science must be exact.
For instance, in the Star Trek TV series, it would often happen that
Captain Kirk would ask Mr. Spock, “Spock, we're in a pretty bad
situation. What do you think are our chances of getting out of
here?” The scientific Mr. Spock would answer with something
like, “Captain, I estimate the odds as 237.345 to one.” In reality,
he could not have estimated the odds with six significant figures
of accuracy, but nevertheless one of the hallmarks of a person with
a good education in science is the ability to make estimates that
are likely to be at least somewhere in the right ballpark. In many
such situations, it is often only necessary to get an answer that is
off by no more than a factor of ten in either direction. Since things
that differ by a factor of ten are said to differ by one order of
magnitude, such an estimate is called an order-of-magnitude
estimate. The tilde, ~, is used to indicate that things are only of the
same order of magnitude, but not exactly equal, as in

odds of survival ~ 100 to one

The tilde can also be used in front of an individual number to
emphasize that the number is only of the right order of magnitude.

Although making order-of-magnitude estimates seems
simple and natural to experienced scientists, it's a mode of
reasoning that is completely unfamiliar to most college students.
Some of the typical mental steps can be illustrated in the following
example.

Example 6: Cost of transporting tomatoes

¢ Roughly what percentage of the price of a tomato
comes from the cost of transporting it in a truck?

0 The following incorrect solution illustrates one of the
main ways you can go wrong in order-of-magnitude
estimates.

dR 41 ™ 4K 52 I
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o / Consider a spheric
COow.
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Incorrect solution: Let's say the trucker needs to make a
$400 profit on the trip. Taking into account her benefits,
the cost of gas, and maintenance and payments on the
truck, let's say the total cost is more like $2000. I'd guess
about 5000 tomatoes would fit in the back of the truck, so
the extra cost per tomato is 40 cents. That means the cost
of transporting one tomato is comparable to the cost of
the tomato itself. Transportation really adds a lot to the
cost of produce, | guess.

The problem is that the human brain is not very good at
estimating area or volume, so it turns out the estimate of 5000
tomatoes fitting in the truck is way off. That's why people have a
hard time at those contests where you are supposed to estimate the
number of jellybeans in a big jar. Another example is that most
people think their families use about 10 gallons of water per day,
but in reality the average is about 300 gallons per day. When
estimating area or volume, you are much better off estimating
linear dimensions, and computing volume from the linear
dimensions. Here's a better solution:

Better solution: As in the previous solution, say the cost of
the trip is $2000. The dimensions of the bin are probably 4 m x 2

m x 1 m, for a volume of 8 m®. Since the whole thing is just an
order-of-magnitude estimate, let's round that off to the nearest

power of ten, 10 m’. The shape of a tomato is complicated, and I
don't know any formula for the volume of a tomato shape, but
since this is just an estimate, let's pretend that a tomato is a cube,

0.05 m % 0.05 m x 0.05 m, for a volume of 1.25x10™ m>. Since

this is just a rough estimate, let's round that to 10* m®. We can
find the total number of tomatoes by dividing the volume of the

bin by the volume of one tomato: 10 m3/10* m*=10° tomatoes.
The transportation cost per tomato is $$2000/1075$
tomatoes=$0.02/tomato. That means that transportation really
doesn't contribute very much to the cost of a tomato.

Approximating the shape of a tomato as a cube is an
example of another general strategy for making order-of-
magnitude estimates. A similar situation would occur if you were

trying to estimate how many m? of leather could be produced from
a herd of ten thousand cattle. There is no point in trying to take
into account the shape of the cows' bodies. A reasonable plan of
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attack might be to consider a spherical cow. Probably a cow has
roughly the same surface area as a sphere with a radius of about 1

m, which would be 47 (1 m)® Using the well-known facts that pi
equals three, and four times three equals about ten, we can guess

that a cow has a surface area of about 10 m?, so the herd as a

whole might yield 10° m? of leather.

The following list summarizes the strategies for getting a
good order-of-magnitude estimate.

1. Don't even attempt more than one significant figure of
precision.

2. Don't guess area, volume, or mass directly. Guess linear
dimensions and get area, volume, or mass from them.

3. When dealing with areas or volumes of objects with complex
shapes, idealize them as if they were some simpler shape, a
cube or a sphere, for example.

4. Check your final answer to see if it is reasonable. If you
estimate that a herd of ten thousand cattle would yield 0.01

m? of leather, then you have probably made a mistake with
conversion factors somewhere.

Homework Problems

74658
1. Correct use of a calculator: (a) Calculate 53222 -+ 97554
on a calculator. [Self-check: The most common mistake results in
97555.40.] (answer check available at lightandmatter.com)
(b) Which would be more like the price of a TV, and which would

be more like the price of a house, $3.5x10° or $3.5°?

2. Compute the following things. If they don't make sense
because of units, say so.
(a@)3cm+5cm
(b)1.11lm+22cm
(c) 120 miles + 2.0 hours
(d) 120 miles / 2.0 hours

3. Your backyard has brick walls on both ends. You
measure a distance of 23.4 m from the inside of one wall to the
insidé of the other. Each wall is 29.4 cm thick. How far is it from
the outside of one wall to the outside of the other? Pay attention to
significant figures.
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4. The speed of light is 3.0x10® m/s. Convert this to
furlongs per fortnight. A furlong is 220 yards, and a fortnight is 14
days. An inch is 2.54 cm.(answer check available at
lightandmatter.com)

5. Express each of the following quantities in micrograms:

(a) 10 mg, (b) 10* g, (c) 10 kg, (d) 100x10° g, (e) 1000 ng.
(answer check available at lightandmatter.com)

6. (solution in the pdf version of the book) Convert 134 mg
to units of kg, writing your answer in scientific notation.

7. In the last century, the average age of the onset of
puberty for girls has decreased by several years. Urban folklore
has it that this is because of hormones fed to beef cattle, but it is
more likely to be because modern girls have more body fat on the
average and possibly because of estrogen-mimicking chemicals in
the environment from the breakdown of pesticides. A hamburger
from a hormone-implanted steer has about 0.2 ng of estrogen
(about double the amount of natural beef). A serving of peas
contains about 300 ng of estrogen. An adult woman produces
about 0.5 mg of estrogen per day (note the different unit!). (a)
How many hamburgers would a girl have to eat in one day to
consume as much estrogen as an adult woman's daily production?
(b) How many servings of peas? (answer check available at
lightandmatter.com)

8. (solution in the pdf version of the book) The usual
definition of the mean (average) of two numbers a and b is

(atb)/2. This is called the arithmetic mean. The geometric mean,

12 (i.e., the square root of ab). For the

however, is defined as (ab)
sake of definiteness, let's say both numbers have units of mass. (a)
Compute the arithmetic mean of two numbers that have units of
grams. Then convert the numbers to units of kilograms and
recompute their mean. Is the answer consistent? (b) Do the same
for the geometric mean. (c) If @ and b both have units of grams,
what should we call the units of ab? Does your answer make sense
when you take the square root? (d) Suppose someone proposes to

you a third kind of mean, called the superduper mean, defined as

(ab)®. Is this reasonable?
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9. In an article on the SARS epidemic, the May 7, 2003
New York Times discusses conflicting estimates of the disease's
incubation period (the average time that elapses from infection to
the first symptoms). “The study estimated it to be 6.4 days. But
other statistical calculations ... showed that the incubation period
could be as long as 14.22 days.” What's wrong here?

10. The photo shows the corner of a bag of pretzels. What's
wrong here?

11. The distance to the horizon is given by the expression
v2rh, where r is the radius of the Earth, and % is the observer's
height above the Earth's surface. (This can be proved using the
Pythagorean theorem.) Show that the units of this expression make
sense. (See example 2 on p. 27 for an example of how to do this.)
Don't try to prove the result, just check its units.

12. (solution in the pdf version of the book) (a) Based on
the definitions of the sine, cosine, and tangent, what units must
they have? (b) A cute formula from trigonometry lets you find any
angle of a triangle if you know the lengths of its sides. Using the
notation shown in the figure, and letting s=(a+b+c)/2 be half the
perimeter, we have

tan 4/2 =

Show that the units of this equation make sense. In other words,
check that the units of the right-hand side are the same as your
answer to part a of the question.

13. A physics homework question asks, “If you start from

rest and accelerate at 1.54 m/s* for 3.29 s, how far do you travel
by the end of that time?” A student answers as follows:

1.54 x3.29=5.07m

His Aunt Wanda is good with numbers, but has never taken
physics. She doesn't know the formula for the distance traveled
under constant acceleration over a given amount of time, but she
tells her nephew his answer cannot be right. How does she know?

ik 45 I~ 4K 52 I
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14. You are looking into a deep well. It is dark, and you
cannot see the bottom. You want to find out how deep it is, so you
drop a rock in, and you hear a splash 3.0 seconds later. How deep
is the well? (answer check available at lightandmatter.com)

15. You take a trip in your spaceship to another star.
Setting off, you increase your speed at a constant acceleration.
Once you get half-way there, you start decelerating, at the same
rate, so that by the time you get there, you have slowed down to
zero speed. You see the tourist attractions, and then head home by
the same method.

(a) Find a formula for the time, 7, required for the round trip, in
terms of d, the distance from our sun to the star, and a, the
magnitude of the acceleration. Note that the acceleration is not
constant over the whole trip, but the trip can be broken up into
constant-acceleration parts.

(b) The nearest star to the Earth (other than our own sun) is

Proxima Centauri, at a distance of d=4x10'® m. Suppose you use

an acceleration of a=10 m/s®, just enough to compensate for the
lack of true gravity and make you feel comfortable. How long
does the round trip take, in years?

(c¢) Using the same numbers for d and g, find your maximum

speed. Compare this to the speed of light, which is 3.0x10% m/s.
(Later in this course, you will learn that there are some new things
going on in physics when one gets close to the speed of light, and
that it is impossible to exceed the speed of light. For now, though,
just use the simpler ideas you've learned so far.) (answer check
available at lightandmatter.com)

16. You climb half-way up a tree, and drop a rock. Then
you climb to the top, and drop another rock. How many times
greater is the velocity of the second rock on impact? Explain. (The
answer is not two times greater.)

17. (solution in the pdf version of the book) If the
acceleration of gravity on Mars is 1/3 that on Earth, how many
times longer does it take for a rock to drop the same distance on
Mars? Ignore air resistance.
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18. A person is parachute jumping. During the time
between when she leaps out of the plane and when she opens her
chute, her altitude is given by an equation of the form

y=b~c<t+ke“"/k) ,

where e is the base of natural logarithms, and b, ¢, and k are
constants. Because of air resistance, her velocity does not increase
at a steady rate as it would for an object falling in vacuum.

(a) What units would b, ¢, and & have to have for the equation to
make sense?

(b) Find the person's velocity, v, as a function of time. [You will

need to use the chain rule, and the fact that d(e*)/d x=¢".] (answer
check available at lightandmatter.com) '
(c) Use your answer from part (b) to get an interpretation of the

constant ¢. [Hint: e™ approaches zero for large values of x.]

(d) Find the person's acceleration, a, as a function of time.(answer
check available at lightandmatter.com)

(e) Use your answer from part (b) to show that if she waits long
enough to open her chute, her acceleration will become very
small.

19. (solution in the pdf version of the book) In July 1999,
Popular Mechanics carried out tests to find which car sold by a
major auto maker could cover a quarter mile (402 meters) in the
shortest time, starting from rest. Because the distance is so short,
this type of test is designed mainly to favor the car with the
greatest acceleration, not the greatest maximum speed (which is
irrelevant to the average person). The winner was the Dodge
Viper, with a time of 12.08 s. The car's top (and presumably final)
speed was 118.51 miles per hour (52.98 m/s). (a) If a car, starting
from rest and moving with constant acceleration, covers a quarter
mile in this time interval, what is its acceleration? (b) What would
be the final speed of a car that covered a quarter mile with the
constant acceleration you found in part a? (c) Based on the
discrepancy between your answer in part b and the actual final
speed of the Viper, what do you conclude about how its
acceleration changed over time?
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20. The speed required for a low-earth orbit is 7.9x10% m/s
(see ch. 10). When a rocket is launched into orbit, it goes up a
little at first to get above almost all of the atmosphere, but then
tips over horizontally to build up to orbital speed. Suppose the
horizontal acceleration is limited to 3g to keep from damaging the
cargo (or hurting the crew, for a crewed flight). (a) What is the
minimum distance the rocket must travel downrange before it
reaches orbital speed? How much does it matter whether you take
into account the initial eastward velocity due to the rotation of the
earth? (b) Rather than a rocket ship, it might be advantageous to
use a railgun design, in which the craft would be accelerated to
orbital speeds along a railroad track. This has the advantage that it
isn't necessary to lift a large mass of fuel, since the energy source
is external. Based on your answer to part a, comment on the
feasibility of this design for crewed launches from the earth's
surface.

21. Consider the following passage from Alice in
Wonderland, in which Alice has been falling for a long time down
a rabbit hole:

Down, down, down. Would the fall never come to an end?
“I wonder how many miles I've fallen by this time?” she said
aloud. “I must be getting somewhere near the center of the earth.
Let me see: that would be four thousand miles down, I think” (for,
you see, Alice had learned several things of this sort in her lessons
in the schoolroom, and though this was not a very good
opportunity for showing off her knowledge, as there was no one to
listen to her, still it was good practice to say it over)...

Alice doesn't know much physics, but let's try to calculate
the amount of time it would take to fall four thousand miles,

starting from rest with an acceleration of 10 m/s®. This is really
only a lower limit; if there really was a hole that deep, the fall
would actually take a longer time than the one you calculate, both
because there is air friction and because gravity gets weaker as
you get deeper (at the center of the earth, g is zero, because the
earth is pulling you equally in every direction at once). (answer
check available at lightandmatter.com)

http://www.lightandmatter.com/html_books/0sn/ch00/ch00.html

R 48 I # 52

2011/7/23



Introduction and Review
22. How many cubic inches are there in a cubic foot? The
answer is not 12.(answer check available at lightandmatter.com)

23. Assume a dog's brain is twice as great in diameter as a
cat's, but each animal's brain cells are the same size and their
brains are the same shape. In addition to being a far better
companion and much nicer to come home to, how many times
more brain cells does a dog have than a cat? The answer is not 2.

24. The population density of Los Angeles is about 4000

people/km?. That of San Francisco is about 6000 people/km?. How
many times farther away is the average person's nearest neighbor
in LA than in San Francisco? The answer is not 1.5. (answer check
available at lightandmatter.com)

25. A hunting dog's nose has about 10 square inches of
active surface. How is this possible, since the dog's nose is only
about 1 in x 1 in X 1 in = 1 in®? After all, 10 is greater than 1, so
how can it fit?

26. Estimate the number of blades of grass on a football
field.

27. In a computer memory chip, each bit of information (a
0 or a 1) is stored in a single tiny circuit etched onto the surface of
a silicon chip. The circuits cover the surface of the chip like lots in
a housing development. A typical chip stores 64 Mb (megabytes)
of data, where a byte is 8 bits. Estimate (a) the area of each circuit,
and (b) its linear size.

28. Suppose someone built a gigantic apartment building,
measuring 10 km x 10 km at the base. Estimate how tall the
building would have to be to have space in it for the entire world's
population to live.

29. A hamburger chain advertises that it has sold 10 billion
Bongo Burgers. Estimate the total mass of feed required to raise
the cows used to make the burgers.

30. Estimate the volume of a human body, in cm®.
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31. (solution in the pdf version of the book) How many

cm? is 1 mm??

32. (solution in the pdf version of the book) Compare the
light-gathering powers of a 3-cm-diameter telescope and a 30-cm
telescope.

33. (solution in the pdf version of the book) One step on
the Richter scale corresponds to a factor of 100 in terms of the
energy absorbed by something on the surface of the Earth, e.g., a
house. For instance, a 9.3-magnitude quake would release 100
times more energy than an 8.3. The energy spreads out from the
epicenter as a wave, and for the sake of this problem we'll assume
we're dealing with seismic waves that spread out in three
dimensions, so that we can visualize them as hemispheres
spreading out under the surface of the earth. If a certain 7.6-
magnitude earthquake and a certain 5.6-magnitude earthquake
produce the same amount of vibration where I live, compare the
distances from my house to the two epicenters.

34. In Europe, a piece of paper of the standard size, called
A4, is a little narrower and taller than its American counterpart.
The ratio of the height to the width is the square root of 2, and this
has some useful properties. For instance, if you cut an A4 sheet
from left to right, you get two smaller sheets that have the same
proportions. You can even buy sheets of this smaller size, and
they're called A5. There is a whole series of sizes related in this
way, all with the same proportions. (a) Compare an A5 sheet to an
A4 in terms of area and linear size. (b) The series of paper sizes
starts from an AO sheet, which has an area of one square meter.
Suppose we had a series of boxes defined in a similar way: the B0
box has a volume of one cubic meter, two B1 boxes fit exactly
inside an B0 box, and so on. What would be the dimensions of a
B0 box? (answer check available at lightandmatter.com)

35. Estimate the mass of one of the hairs in Albert
Einstein's moustache, in units of kg.

36. According to folklore, every time you take a breath,
you are inhaling some of the atoms exhaled in Caesar's last words.
Is this true? If so, how many?
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37. The Earth's surface is about 70% water. Mars's
diameter is about half the Earth's, but it has no surface water.
Compare the land areas of the two planets.(answer check available
at lightandmatter.com)

38. (solution in the pdf version of the book) The traditional
Martini glass is shaped like a cone with the point at the bottom.
Suppose you make a Martini by pouring vermouth into the glass to
a depth of 3 cm, and then adding gin to bring the depth to 6 cm.
What are the proportions of gin and vermouth?

39. The central portion of a CD is taken up by the hole and
some surrounding clear plastic, and this area is unavailable for
storing data. The radius of the central circle is about 35% of the
outer radius of the data-storing area. What percentage of the CD's
area is therefore lost? (answer check available at
lightandmatter.com)

40. The one-liter cube in the photo has been marked off
into smaller cubes, with linear dimensions one tenth those of the
big one. What is the volume of each of the small cubes?(solution
in the pdf version of the book)

41. Estimate the number of man-hours required for
building the Great Wall of China. (solution in the pdf version of
the book)

42. (a) Using the microscope photo in the figure, estimate
the mass of a one cell of the E. coli bacterium, which is one of the
most common ones in the human intestine. Note the scale at the
lower right corner, which is 1 um. Each of the tubular objects in
the column is one cell. (b) The feces in the human intestine are
mostly bacteria (some dead, some alive), of which E. coli is a
large and typical component. Estimate the number of bacteria in
your intestines, and compare with the number of human cells in

your body, which is believed to be roughly on the order of 10",
(c¢) Interpreting your result from part b, what does this tell you
about the size of a typical human cell compared to the size of a
typical bacterial cell?

43. The figure shows a practical, simple experiment for
determining g to high precision. Two steel balls are suspended
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from electromagnets, and are released simultaneously when the
electric current is shut off. They fall through unequal heights A x;
and A x,. A computer records the sounds through a microphone as
first one ball and then the other strikes the floor. From this
recording, we can accurately determine the quantity T defined as
T=A t-A 11, 1.e., the time lag between the first and second impacts.
Note that since the balls do not make any sound when they are
released, we have no way of measuring the individual times A #
and A #.
(a) Find an equation for g in terms of the measured quantities 7, A
x1 and A x;.(answer check available at lightandmatter.com)
(b) Check the units of your equation.
(c) Check that your equation gives the correct result in the case
where A x is very close to zero. However, is this case realistic?

(d) What happens when A x1=A x;? Discuss this both
mathematically and physically.

Footnotes

df 52 ™ # 52

[1] Galileo makes a slightly more complicated argument, taking into account the effect of leverage
(torque). The result I'm referring to comes out the same regardless of this effect.
[2] The customary terms “half-size” and “3/4-size” actually don't describe the sizes in any accurate

way. They're really just standard, arbitrary marketing labels.

http://www.lightandmatter.com/html_books/0sn/ch00/ch00.html
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Dynamic similarity,
1ensionless

Dimensional analysis, a framework for drawing physical parallels between systems of disparate
scale, affords key insights into natural phenomena too expanswe and too energetic to rephcafe in

the lab.

pr essor ofphysncs att e Umvers;ty'o ,Oregon )

Many experiments seem daunting at first glance,
owing to the sheer number of physical variables they involve.
To design an apparatus that circulates fluid, for instance, one
must know how the flow is affected by pressure, by the ap-
paratus’s dimensions, and by the fluid’s density and viscosity.
Complicating matters, those parameters may be temperature
and pressure dependent. Understanding the role of each
parameter in such a high-dimensional space can be elusive
or prohibitively time consuming.

Dimensional analysis, a concept historically rooted in
the field of fluid mechanics, can help to simplify such prob-
lems by reducing the number of system parameters. For ex-
ample, in a fluid apparatus in which the flow is isothermal
and incompressible, the number of relevant parameters can

- :.often be reduced to one. The rewards of such a reduction can

be spectacular: It may allow a model the size of a children’s
toy to yield insight into the dynamics of a jet airplane, or a
fluid-filled cylinder the size of a garbage can to elucidate the
behavior of a stellar interior. (See box 1 for a brief history of
dimensional analysis.)

Dimensional reasoning

Dimensional analysis comes in many forms. One of its sim-
plest uses is to check the plausibility of theoretical results. For
example, the displacement x(t) of a falhng body havmg initial
displacement x, and initial velocity u, is

X =Xg+ gt + Egtz,

where g is its acceleration due to gravity. According to the
principle of dimensional homogeneity, if the left- and right-
hand sides of the equation are truly equal, they must share
the same dimensions. Indeed, each term in the equation
has dimensions of length. Despite the modesty of the
dimensional-homogeneity requirement, it is violated by a
number of equations often used in the hydraulics literature,
such as the Manning formula for flow in an open channel and
the Hazen-Williams formula, which describes flows of water
through pipes.

Dimensional analysis can also help to supply a theoretical

result. Consider the ray of light illustrated in figure 1, which,
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in accordance with general relativity, is deflected as it passes
through the gravitational field of the Sun. Assummg the Sun
can be treated as a point of mass m and that the ray of light
passes the mass with a distance of closest approach r, dimen-
sional reasoning can help predict the deflection angle 6.}
Expressed in terms of mass M, length L, and time T, the
variables” dimensions—denoted with square brackets—are

www.physicstoday.org




[6] = L°T°M?, [r]=L!T°M°, and [m] = LOTOM?1, Tt follows that
no combination of powers of r and m can be dimensionally
homogeneous with 6.

Adding the gravitational constant G, which has dimen-
sions [*T2M™, and the speed of light ¢, which has dimensions
L}T-1MP®, seems sensible for a problem concerning gravity and
light. Of the potential expressions containing m, v, ¢, and G, al-
gebraic calculations reveal that dimensional homogeneity is
achieved only with solutions of the form m*™c*G", where x is
any real integer. (See reference 1 for a step-by-step treatment.)

If the light ray skims just across the Sun’s surface,
then r=6.96x10°m, m=199 x10®kg, and the quantity
e 2Gr will be small —on the order of 10 when i = 1. The
i =1 term will give the largest effect, and higher-order terms
can be neglected. Arguments based purely on dimensional
reasoning suggest, then, that

o Gm
= ,
c2r

where a is an unknown constant. When Isaac Newton con-
sidered the problem more than 300 years ago, he arrived at
anidentical expression, with a = 2. General relativity predicts
a=4, and the latest experiments agree with that result to
within 0.02%.

Prototypes, models, and similitude

In fluid dynamics, dimensional analysis is used to reduce a
large number of parameters to a small number of dimension-
less groups, often in spectacular fashion. In addition to easing
analysis, that reduction of variables gives rise to new classes
of similarity.

Consider the simple example of flow around a prototype
airfoil, p, and a much smaller model, m, as illustrated in
figure 2. The model and prototype are geometrically similar if
all of their corresponding length scales, including surface

www.physicstoday.org

Figure 1. A light beam is deflected as it
passes through the gravitational field of a star.
Here, m is the star's mass and r is the distance
of closest approath_. Even without knowing

. the underlying physics, one can use dimen:

 sional reasoning to predict that the deflection

" angle 8 scales as Gmr-'c?, where G is the grav-

. itational constant and c is the speed of light.

roughness, are proportionate. Likewise, flows in the two sys-
tems are kinematically similar if the velocity ratios u,/u,, are
the same for all pairs of corresponding, or homologous, points.

Depending on what is to be learned from the model,
kinematic similarity may be too lax a requirement. The
stricter standard of dynamic similarity exists if the ratios of
all forces acting on homologous fluid particles and boundary
surfaces in the two systems are constant. Dynamically similar
systems are by definition both geometrically and kinemati-
cally similar.

An important conclusion of fluid mechanics is that in-
compressible, isothermal flows in or around geometrically
similar bodies are considered dynamically similar if they
have the same Reynolds number Re, where Re is the ratio of
inertial to viscous forces (see box 2). Consider the example of
a typical attack submarine, 110 mlong and.capable of moving
at 20 knots, or about 10 m/s. In water, that corresponds to
Re=1.13 x 10°. If all design tests must be conducted on a
6-m-long scale model that can be towed at a top speed of 10
knots, the highest achievable Re would be about 3 x 107, about
1/36 that of an actual submarine. The model would be a poor
descriptor of large-Re effects such as turbulence.

If the same model were placed in a very large wind tun-
nel blowing air at, say, half the speed of sound, Re would be
about 7 x 107— closer to, but still well short of, true submarine
conditions. Further options are to cool the air, thus lowering
its viscosity and increasing its density—and thereby reduc-
ing the kinematic viscosity —or to operate at high pressures,
increasing density more still. Adopting just that strategy, en-
gineers at the National Transonic Facility at NASAs Langley
Research Center in Virginia reached Re of about 1 x10° in a
cryogenic wind tunnel.

Cryogenic tunnels are currently among the most ad-
vanced test facilities available. Remarkably, one of the small-
est such tunnels, just 1.4 cm in.diameter, is capable of reach-
ing Re as high as 1.5 million.?

Figure 2. A prototype airfoil (left) can be tested - .
~with a much smaller model (right), provided the
objects are geometrically similar and that the flows
around them are dynamically similar. Dynamic -
 similarity is achieved if the characteristic flow
> velocities U, and U, are suich that the forces atall
homologous points—such as the two marked by
 asterisks—are proportionate. (Adapted from ref. 15.)
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fFlgure 3. The frlctlon factor, the dlmenSlonless shear stress
exerted by afluid on a pipe, is plotted asa funct:on of the
Reynolds number Re. Blue symbols- correspond to data ob-
itamed froma 12~cm—w:de, 34-m-long “superpipe” operated

~-at room’ temperature Black symbols'correspond to data

tedin a pipe roughly 1/100 000 that size, operated at

; cryogemc_temperatures Where they overlap, the data sets

- ‘agree to within about 2%, safely within the error margin of
‘both experiments. The solid line is the theoretical result for

- laminar flow, and the dlscontlnwty near Re = 2 x 10% corre-
.sponds to the transmon to turbulence (Adapted fromref. 5.)

The friction factor

One consequence of dynamic similarity in pipe flows is that
the so-called friction factor A—the dimensionless shear
stress exerted by the fluid on the pipe, and vice versa—is a
function of Re only, provided entrance effects, surface rough-
ness, and temperature variations are small. The friction fac-
tor is especially significant in engineering. The standard
A{Re) plot, compiled from the results of eight papers pub-
lished between 1914 and 1933, is reproduced in nearly all
fluid dynamics texts and spans Re from 1 x 10° to 3 x 10° Two
devices exploiting two different strategies have charted new
territory.

In 1998 the Princeton University team of Mark Zagarola
and Alexander Smits published the first results from their
“superpipe,”® a closed-loop, 34-m-long pipe with a nominal
diameter of 12 cm. Using room-temperature air compressed
as high as 187 atmospheres, the pair measured A(Re) for Re
up to 3.6 x 107,

Later, a University of Oregon group led by one of us
(Donnelly) designed a device consisting of a 28-cm-long pipe,
roughly a half-centimeter in diameter, housed in a tabletop
helium cryostat.? Several room-temperature gases—helium,
oxygen, nitrogen, carbon dioxide, and sulfur hexafluoride—
were used to measure A(Re) for relatively small Re; liquid He
was used to attain the highest Re, up to 1.1 x 10°.

Figure 3 shows datasets from both experiments. Com-
bined, the data span Re ranging from 11 to 37 million. Despite
a dramatic difference in scale—the Princeton superpipe
weighs about 25 tons, the Oregon tube about an ounce—the

44 September 2011  Physics Today
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overlapping data sets agree® to within about 2%. It is a testa-
ment to the power of dynamic similarity.

Rayleigh-Bénard convection

Thermally driven convection is a conceptually simple but ex-
penmentally challenging problem. In the lab it’s typically car-
ried out in a Bénard cell like that sketched in figure 4a, a con-
tainer of fluid heated from below and cooled from above. The
temperature difference AT gives rise to a density gradient; for
typical fluids having a positive thermal expansion coefficient,
the denser fluid will lie above the less dense fluid. If the den-
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i ‘ iﬁyljé'ig'h.—Bénard
convection. (a) ABérard cell R
" ¢onsists of alayer of fluid of 4 K

- thickness L that’s heated from

- below and cooled from above.

"'For normal fluids having a posi-
tive thermal expansion coeffi-

- ¢ient g, the configuration can
be unstable==with denser fluid
resting atop less dense fluid— L
and lead to convection. To study

* fotation effects, the cell can be

“rotated about its axis with angu-
jar velocity.Q. (b) Even inthe
nonrotating case, the relation-
ship between the temperature
difference T,~T, and the heat
transfer rate (shown here in. "
dimensionless form as the -

“Rayleigh and Nusselt numbers,
respectively) rernains a matter. .- -

of debate, Data obtained at the University of Oregon (red),

Joseph Fourier University (green), and the University of

2

Géttingen (blue) agree at moderately large Ra, but diverge
for Ra > 10, (Data are from refs. 6, 7, and 9. (c) In a rotated -
Bénard cell, the influence of rotatiori is less a function of the -
 Rossby number Ro, the ratio of buoyant to Coriolis forces, than
of the Ekman number , the ratio of viscous to Coriolis forces,
The dashed line corresponds to Nu = 0.18 £-%; it indicates where
the thicknéss &, of the Ekman boundary {ayer equals the thick-
ness 6, of the thermal boundary layer, and it marks the transition
between rotationally dominated and nonrotationally dominated
convection. (Adapted from ref. 10.)

sity gradients are large enough, the configuration destabi-
lizes, leading to circulating flow known as Rayleigh-Bénard
convection. That convection enhances the heat transfer from
the hot lower boundary to the cool upper one.

As detailed inbox 2, the character of a Rayleigh-Bénard
flow can be described wholly in terms of dimensionless pa-
rameters. The Nusselt number Nu, the dimensionless heat-
transfer rate, depends on the Rayleigh number Ra, the dimen-
sionless temperature difference, and the Prandtl number Pr,
the ratio of the diffusivity of vorticity to thermal diffusivity.
(We've assumed that the system’s geometry is fixed.) For
small Ra, the fluid layer remains at rest, heat transfer is en-
tirely conductive, and Nu is relatively small. But as Ra grows,
the fluid begins to convect and Nu increases. A series of com-
plicated flow transitions ensues, until eventually —roughly,
around Ra = 106—the flow becomes turbulent. In that turbu-
lent regime, dimensional arguments suggest that Nu « Ra’,
where heuristic arguments suggest that y should vary from
around 2/7, or 1/3, to an asymptotic value of 1/2. (Other ex-
pressions for Nu(Ra) have been hypothesized; see, for exam-
ple, the article by Leo Kadanoff, PHYSICS TODAY, August 2001,
page 34.)

The experimental challenge is to explore Nu in the highly
turbulent regimes of large Ra. Dynamic similarity affords
multiple ways to do so. One way to boost Ra—defined as
gaL3AT/xv, where ¢, ¥, and v are the thermal expansion co-
efficient, the vorticity diffusivity, and the thermal diffusivity,
respectively—is to create large temperature gradients. A
drawback of that approach, however, is that it can yield large

www.physicstoday.org

= e
& -
%103_
2 4
éloz'
10%
L RAYLEIGH NUMBERRa . - '
s T
| \
Y °
10_0;' e %\ 0°° 0% o ° o
=B W, o o7, oo :
R 40k Eelt 0 e °°
S5 R g ° o o, © 0 ®
:0 o\ o0 o
@
F o ¢ 00 ®
5 ) & 69\\- 9@0
= B o 0 \
EIJ 10: o8 \ °® Ekman number
BE o \ 010
o f 0 \ o 107
2t R | o 4x10°8
8 \‘ ©2x107
' R \ e 107
6,=0g \ e 3x10°6
0 U e L 10t

. CONVECTIVE ROSSBY NUMBER Ro

density variations, which complicate theoretical modeling.
When AT is large, a central assumption of the Boussinesq
equations that describe thermal convection—namely, that
density depends linearly on temperature—no longer holds
true (see box 2).

Another strategy for obtaining large Ra is to use a thick
fluid layer. Because Ra scales as L3, modest increases in L can
produce substantial gains in Ra. Alternatively, one can choose
a fluid having large a/xv. By those measures, low-
temperature He is, to our knowledge, the most ideal fluid
available. Extreme increases in a/xv, however, can lead to un-
desirably large changes in Pr.

Several experiments adopt some combination of the
above strategies to explore heat transfer at the higher reaches
of Ra. A University of Oregon team led by Donnelly used low-
temperature He to explore Ra spanning 11 orders of magni-
tude.® Strikingly, the data, shown in red in figure 4b, are de-
scribed cleanly by a single power law, with y = 0.31.

In 2001, about the same time as the Oregon data ap-
peared, researchers at Joseph Fourier University in Grenoble,
France, used a nearly identical cryogenic cell to obtain the re-
sults shown in green in figure 4b.” As Ra nears 2 x 101, the
Grenoble data switch from a power law described by y = 0.31
to one described by y =0.39. One potentially exciting inter-
pretation is that the switch marks the transition to the “ulti-
mate state,” a state predicted by Robert Kraichnan for asymp-
totically large Ra, in which the viscous boundary layers at the
ends of the Bénard cell become turbulent.?

The discrepancy between the Oregon and Grenoble data
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as plotted in figure 4b seems quite small. Is it of any real con-
sequence? In geophysical and astrophysical fluid dynamics,
the answer is yes. Natural phenomena such as mantle con-
vection in Earth’s outer core, atmospheric and oceanic winds,
and flows in gas giants and stars are estimated to have Ra
ranging from 10% to 10%, perhaps larger in stellar systems.
Extrapolated to such geophysical and astrophysical propor-
tions, a slight difference in scaling relationships could yield
order-of-magnitude differences in Nu.

The ideas of dynamic similarity can help resolve the dis-
crepancy. Guenter Ahlers of the University of California, Santa
Barbara and colleagues at the University of Gottingen in Ger-
many explored the range of Ra between 10° and 10% using He,
N,, and SF, at ambient temperatures and pressures up to 15 at-
mospheres.? The high pressure, a feature absent from the Ore-
gon and Grenoble experiments, limits changes in Pr.

Ahlers and company’s data, shown in blue in figure 4b,
agree closely with the Oregon results and contradict the
ultimate-state interpretation of the Grenoble data. But as the
figure shows, there Is still no consensus for large-Ra behavior,
and the story continues to unfold. It remains unclear whether
Kraichnan’s ultimate state exists, and if so, where it begins.

Rayleigh-Bénard convection, with rotation

Most convection systems of geophysical and astrophysical
interest also involve rotation. The influence of rotation is
studied in the lab by spinning a Bénard cell about its axis with
some angular velocity (). Again, the flow behavior can be de-
scribed in dimensionless terms. Except now, in addition to Ra
and Pr, two new dimensionless numbers are also important.

The first is the convective Rossby number
Ro = (gaAT/4Q2L)"?, the ratio of temperature-induced buoy-
ant forces to rotation-induced Coriolis forces. One might an-
ticipate that the transition between rotationally dominated
and nonrotationally dominated flow should occur some-
where near Ro=1. '

But there is also the Ekman number E=v(2QL)?, the
ratio of viscous to Coriolis forces. Coriolis forces tend to
sweep away the viscous boundary layer that exists near the
container walls, and so the thickness &; of that boundary layer
scales as EY2. A competing length scale is the thickness 0, of
the thermal boundary layer, which scales as Nu'L. In general,
communication between the container and the bulk fluid will
be limited by the thinner of the two boundary layers. One
might anticipate that the transition between rotationally
dominated and nonrotationally dominated convection
should occur when 6;=6,.

As shown in figure 4c, data from experiments at UCLA’s
simulated planetary interiors laboratory confirm that the con-
dition 6, = 0,, not Ro = 1, governs the transition from rotation-
ally dominated to nonrotationally dominated convection.’
When §; <0,, rotation acts to prevent convection, and heat
transfer is less efficient than in a nonrotating system. When
b > 6, rotation effects are negligible, and Nu scales as it does
in the nonrotating case. With that crucial observation, the
UCLA researchers were able to estimate the temperature gra-
dients in Earth’s liquid-metal outer core as corresponding to
Ra=7x10* Of course, the extrapolation of carefully con-
trolled laboratory experiments to geophysical fluid mechanics
carries caveats, several of which are detailed in reference 10.

A real-world pendulum

Among the first problems posed to undergraduate physics
students is that of a simple pendulum: a point mass sus-
pended in a vacuum, oscillating with small amplitude. A real
pendulum oscillating in a viscous fluid, however, presents a

46 September 2011 Physics Today
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when () Re > Re (Adapted from re

greater challenge. Wilfried Schoepe and colleagues at the
University of Regensburg in Germany studied the problem™
using a 100-pm sphere immersed in liquid He. Their data,
shown in figure 5, indicate a deviation from laminar flow at
a critical Re near 700.

At the University of Oregon we duplicated the experi-
ment with a 1-inch steel bob oscillating in watér. The bob was
256 times as large as and 37 million times heavier than the
Regensburg group’s sphere. Yet our experiment yielded a
nearly identical - relationship between dimensionless drag
and Re and showed a similar deviation from laminar flow at
large Re. Photos revealed that the steel bob starts to shed vor-
tex rings when Re surpasses the critical value.”?

Beyond fluids

A quick check with an internet search engine reveals the ubig-
uity of dynarmc similarity. Steven Vogel of Duke University
has helped pioneer the use of dimensional analysis in bio-
physics.”® He has used the concepts to highlight bounds on
certain forms of physical behavior, such as the maximum
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height of a tree if getting sap t0 the leaves is the crucial factor
(see PHYSICS TODAY, November 1998, page 22).

Principles of similarity also underlie key economic mod-
els, such as the debt-to-income ratio. For a long time now,
economists have had a good understanding of what that ratio
should be, regardless of total annual income, if the debt is to
be manageable. A recent article, “Dimensions and Econom-
ics: Some Problems,” suggests that many commonly used
models are not dimensionally homogeneous, which could re-
sult in problems during application and analysis."

As with all tools, it is important to be aware of the poten-
tial limitations of dynamic similarity. The principle of similar-
ity could be crudely construed as follows: Two systems can be
considered completely similar when all dimensionless num-
bers are the same. In practice, complete similarity is impossible
to achieve unless the two systems are exactly the same.

For example, in the submarine problem, we ignored
flow-compressibility effects, which become pronounced
when flow speeds approach the speed of sound. Sound trav-
els much more slowly in air than in water, so one must be
cautious. Itis typically assumed that as long as the flow speed
is less than half that of sound, compressibility can be neg-
lected. Similarly, Rayleigh-Bénard experiments hint that Pr,
often assumed to be negligible, may play a more important
role in heat transfer than once thought.

History demonstrates, however, that it is certainly pos-
sible to use principles of similarity to draw valuable parallels
between systems that aren't entirely similar. Currently, dy-
namic similarity and dimensional analysis are topics that en-
gineering students learn as part of their fluid mechanics
course, typically in the second or third undergraduate year.
We believe that emphasis on dimensional reasoning would
be useful to students in many branches of physics as well.

The authors are grateful to Guenter Ahlers, Jonathan Aurnou, Paul
Roberts, Alexander Smits, Edward Spiegel, and Katepalli Sreenivasan
for their useful suggestions.
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