Chapter 9 . - PLANE MOTION
| of RIGID BODIES

'RIGID BODIES

A system of particles in which the distance between any two particles does not change
regardless of the forces acj;ing is called a rigid body. Since a rigid body is a special case
of a system of particles, all theorems developed in Chapter 7 are also valid for rigid bodies.

TRANSLATIONS AND ROTATIONS

A displacement of a rigid body is a change from one position to another. If during
" g displacement all points of the body on some line remain fixed, the displacement is’ called

a rotation about the line. If during a displacement all points of the rigid body move in
"lines parallel to each other the displacement is called a translation. '

EULER’S THEOREM. INSTANTANEOUS AXIS OF ROTATION

The following theorem, called Euler’s theorem, is fundamental in the motion of rigid
bodies. :

Theorem 9.0. A rotation of a rigid body about a fixed point of the body is gquivalent
to a rotation about a line which passes through the point. .

The line referred to is called the instantaneous axis of rotation.

Rotations can be considered as finite or infinitesimal. Finite rotations cannot be
represented by vectors since_the commutative law fails. However, infinitesimal rotations
can be represented by vectors. : -

GENERAL MOTION OF A RIGID BODY. CHASLE’S THEOREM

_ In the general motion of a rigid body, no point of the body may be fixed. In such case
the fol}ov_ving theorem, called Chasle’s theorem, is fundamental.

Theorem 9.2. The general motion of a rigid body can be considered as a translation
plus a rotation about a suitable point which is often taken to be the center of mass.

t

PLANE MOTION OF A RIGID BODY

The motion of a rigid body is simplified considerably when all points move parallel
to a given fixed plane. In such case two types of motion, called plane motion, are possible.

1. Retation about a fixed axis. In this case the rigid body rotates about a fixed axis
A perpendicular to the fixed plane. The system has only one degi'ee of freedom [see Chap-
. ter 7, page 165] and thus only one coordinate is required for describing the motion.
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9. General plane motion. In this case the motion can be considered as a translation

* parallel to the given fixed plane plus a rotation about a suitable axis perpendicular to
the plane. This axis is often chosen so as to pass through the center of mass. - The num-
ber of degrees of freedom for such motion is 8: two coordinates being used to describe
the translation and one to describe the rotation. ' '

The axis referred to is the instantaneous axis and the point where the instantaneous
axis intersects the fixed plane is called the instantaneous center of rotation [see page 229].

We shall consider these two types of plane motion in this chapter. The motion of a
rigid body in three dimensional space is more complicated and will be considered in
Chapter 10. : :

' MOMENT OF INERTIA

A geometric quantity which is of great i'mportance’ in discussing the motion of rigid
bodies is called the moment of inertia. '

The moment of inertia of a particle of mass m about a line or axis AB is defined as
I=m? (1)
where r is the distance from the mass to the line.

The moment of inertia of a system of particles, With

masses M1, M, . . ., My about the line or axis AB is defined as
N B '
i s 2 -— 2 P 2
I = uzl mr: = mrd + myrl -+ + myr2 (2)
where 71,73, . . ., T~ are their respective distances from AB.

"~ The moment of i'nertiavof a continuous distribution of
mass, such as the solid rigid body R of Fig. 9-1,is given by .

I = fq{ r2 dm )

where r is the distance of the elémeﬁt of mass dm from AB.

RADIUS OF GYRATION

N .
Let I = 3 murl be the momient of inertia of a system of particles about AB, and.

N y=1
M = 3 m, be the total mass of the system. Then the quantity K -such that
y=1 ' .
I S mery -
g = g o= o *
S e '
is called the radius of gyration of the system about AB.
For continuous mass distributions (4) is replacéd by
f 2 dm
K = = 2= ®)

L .
M j;dm
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THEOREMS ON MOMENTS OF INERTIA

1. Theorein 9.3: Parallel Axis Theorem. Let I be the moment of inertia of a system
about axis AB and let Ic be the moment of inertia of the system about an axis parallel to
AB and passing through the center of mass of the system. Then if b is the distance between
the axes and M is th,e total mass of the system, we have

I=I,+Mp | (6)

2. Theorem 9.4: Perpendicular Axes Theorem. Consider a mass distribution in the
xy plane of an xyz coordinate system. Let I, I, and I. denote the moments of inertia about
the z, ¥ and z axes respectively. Then

I = L+1, A )

SPECIAL MOMENTS OF INERTIA

The following table shows the moments of inertia of various r1g1d bodies which arise in
practice. In all cases it is assumed that the body has uniform [i.e. constant] density.

Rigid Bedy Moment of Inertia

1. Solid Circular Cylinder
of radius o and mass M ’ 1Ma?
about axis of cylinder.

2. Hollow Circular Cylinder
of radius o and mass M
about axis of cylinder.
Wall thickness is negligible.

8. Solid. Sphere
of radius ¢ and mass M : . 2Ma?
about a diameter. : ’

4. Hollow Sphere
‘of radius o and mass M
about a diameter.
Sphere thickness is negligible.

Ma?

5. Rectangular Plate
of sides o and b and
mass M about an axis FeM(a? + b7%)
perpendicular to the plate
through the center of mass.

6. Thin Rod
of length a and mass M
about an axis perpendicular TyMa?
to the rod through the
center of mass.

COUPLES

A set of two equal and parallel forces which act in
opposite directions but do not have the same line of action
[see Fig. 9-2] is called a couple. Such a couple has a turning
effect, and the moment or torque of the couple is given
by ¥ X F. ‘

The foHowing theorem is important. Fig. 9-2
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Theorem 9.5. Any system of forces which acts on a rigid body can be equivalently
replaced by a single force which acts at some specified point together with a suitable couple.

KINETIC ENERGY AND ANGULAR MOMENTUM ABOUT A FIXED AXIS

‘Suppose a rigid body is rotating about a fixed axis with
angular velocity  which has the direction of the axis AB
[see Fig. 9-3]. Then the kinetic energy of rotation is
given by .

: T = %IcoZ' (8)
where I is the moment of inertia of the rigid body about
the axis. '

Similarly the angular momentum is given by
2 = lo 9. Fig. 9-3

MOTION OF A RIGID BODY ABOUT A FIXED AXIS

Two important methods for treating the motion of a rigid body about a fixed axis are.
given by the following theorems. :

Theorem 9.6. Principle of Angular Momenium. If A is the torque or the moment of
all external forces about the axis and @ = e is the angular momentum, then
d . ‘ :
A = o) = I = Ia (10)
where « is the angular acceleration. - :

Theorem 9.7: Principle of Conservation of Energy. If the forces acting on the rigid
body are conservative so that the rigid body has a pptential energy V, then

T+V = 4s*?+V = E = constant ' (11)

' WORK AND POWER

Consider a rigid body R capable of rotating in a
plane about an axis O perpendicular to the plane, as
indicated in Fig. 9-4. If A is the magnitude of the torque .
applied to the body under the influence of force F at
point A, the work done in rotating the body through
angle d§ is '

aw. = Adf (12)
and the instantaneous power developed is
aw
Where o is the angular speed. ’ , Fig. 9-4

" 'We have the following

Theorem 9.8. The total work done in rotating a rigid body from an angle 6: where
the angular speed is o, to angle 6, Where the angular speed is o, is the difference in the
kinetic energy of rotation at », and »,. In symbols,

[:23 . .
fe Ads = 3ef — a2 : (14)
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IMPULSE. CONSERVATION OF ANGULAR MOMENTUM o “

The time integral of the torque by

g = Adt (15!

4
is called the angular impulse from time ¢ to ta.
We have the following theorems.
Theorem 99., The angular impulse is equal to the change in .angular momentum. In
symbols ty
' | Adt = @ — @ | ' (1.6‘)‘

£

‘ Theorem 9.10: Conservation of Angular Momentum. If the net torque applied to z
rigid body is zero, then the angular momentum is constant i.e. is conserved.

THE COMPOUND PENDULUM

Let R [Fig. 9-5] be a rigid body which is free to oscillate .
in a vertical plane about a fixed horizontal axis through (0]
under the influence of grav1ty We call such a rigid body a
compound pendulum i

Let C be the center of mass and suppose that the arngle
between OC and the vertical OA is 6. Then if I, is the
moment of inertia of R about the horizontal axis through O,
M is the mass of the rigid body and ¢ is the distance OC,
we have for the equation of motion,

Mga

b+ 1, sing. = 0 (17) Fig.9-5
For small osc_illatic)ns the period of vibration is
P = 2mx/I/Mga (18
The length of the equivalent simpie pendulum is
I = Ii/Ma , (19

The following theorem is of interest.

Theorem 9.11. The period of vibration of a compound pendulum is a minimum wher
the distance OC = a is equal to the radius of gyration of the body about the horizonta
axis through the center of mass. .

. GENERAL PLANE MOTION OF A RIGID BODY

The general plane motion of a rigid body can be considered as a translation parallel ti
the plane plus a rotation about a suitable axis perpendicular to the plane. Two importan
methods for treating general plane motion of a rigid body are given by the followm:
theorems.

Theorem 9.12: Principle of Linear Momentum. If r is the position vector of the cente
of mass of a rigid body relative to an origin O, then

t(Mr) = M¥ = F (20

where M is the total mass, assumed constant, and F is the net external force actmg o
the body.
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Them em 9.13: Principle of Angular Momentum. If I is the moment of inertia of the
rigid body about the center of mass, o is the angular veloc1ty angd A, is the torque or
total moment of the external forces about the center of mass, then

: A, = (o) = Igo6 (21)
Theorem 9.14: Principle of Conservation of Energy. If the exterrial forces are conser-
vative so that the potential energy of the rigid body is V, then '

T+V = imr?+ 3o + V = E = constant (22)

Note that ims2 = imv® is the kinetic energy of translation and 3I.* is the Iinetic
energy of rotation of the rigid body about the center of mass.

INSTANTANEOUS CENTER.
SPACE AND BODY CENTRODES

Suppose a rigid body R moves parallel to a given
fixed plane, say the xy plane of Fig. 9-6. Consider
an 'y’ plane parallel to the xy plane and rigidly
attached to the body.

As the body moves there will be at any time t
a point of the moving z’y’ plane which is instan-
taneously at rest relative to the fixed zy plane.
This point, which may or may not be in the body,
is called the instantaneous center. The line perpen-
dicular to the plane and passing through the instan-
taneous center is called the instantaneous awxis. ’ Fig.9-6

~As the body moves, the instantaneous center also moves. The locus or path of the
instantaneous center relative to the fixed plane is called the space locus or space centrode.
The locus relative to the moving plane is called the body locus or body centrode. The motion
of the rigid body can be described as a rolling of the body centrode on the space centrode.

The instantaneous center can be thought of as that point about which there is rotation

without translation. In a pure translation of a rigid body the mstantaneous center IS
at infinity.

STATICS OF A RIGID BODY

The statics or equilibrium of a rigid body is the spec1al case where there is no motlon
The followmg theorem is fundamental.

Theorem 9.75. A necessary and sufﬁc1ent condition for a rigid body to be in equlllbrlum
is that

F=0 A=0 | (29)

where F is the net external force acting on the body and A is the net external torque.

PRINCIPLE OF VIRTUAL WORK AND D’ALEMBERTS [ RINCIPLE

Since a rigid body is but a.special case of a system of particles, the principle of virtual
work and D’Alembert’s principle [see page 171] apply te rigid bodies as well.
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. Then since the mass is’ E a
‘ M = f 2rorhdr - = oma?h v a )
we find 1= {Ma? , dm = ohr dr do
. Méfhod 2, using doﬁﬁle}‘integration. )

Using polar coordinates (r, 6), we see from Fig. 9-12 that
the moment of inertia of the elément of mass dm distant
r from the axis is

2dm = rlchrdrde = chr3drde

" since h#*drds is the volume element and o is the mass per
: unit volume (density). Then the total moment of inertia-is

f f oheddrds =  Ymohat (1) :
‘The mass of the cylinder is given by ‘ . - Fig.9-12
' ' o N2T G - S . ' - “
M = f ’ f ohrdrde - = ora?h 2)
' o=g vr=0 ' ' ‘

-which can also be found dlrectly by not.;mg that the volume o:f the cylinder 13 n-a?h Dw:dmg o
equation (7) by (2), we ﬁnd I/M 3a? or I= lMa2

. 95. Find the radius of gyration, K, of the cylinder of Problem 9.4.
' Since’ K2.=I/M = 4%, K = a/V2 = jaV/2.

-9.6. - Find the (a) moment of inertia and (b) radius’ of gyration of a rectangular plate -

with sides & and b-about a side.
. Method 1, using single integration.
{a) The element of mass shaded in Flg 9-13 1s rrb dx, and its moment of merha about the y axis is

(ob dm)w2 ¢ba? do. - Thus, the total moment of “inertia 1s

. e
I = f . ;‘abxz de = %abas
z=0 -
Since the total mass of the plate is M = abo, we have I/M = }a? or I = }Ma?2.

OB YTy S

b p——  — b @ =
l - @ l _ 22
@ ; . a
Fig.9-13 = : . Fig. 9-14

. Method 2, using double integration.
Asgume the plate has unit thickness., If. dm =odydx is an element of mass [See Fig. 9-14],
the moment of inertia of dm about the side which is chosen to be on the y axis is #2dm = ox2dy dx.

Then the total moment of inertia is
@ b ]
j‘ f ox?dydx = }obad®
2=0 Yy=0

The total mass of the plate is M = abo. Then, as in Method 1, we find ‘7 = }Ma? and K = }aV/3.
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9.7,

‘Fig. 9-15 is, by Problem 9.4, -

Then the total moment of inertia about the z axis is

‘Method 2 usmg tnple integration.

"-shown in Fig. 9-16, into elements of mass dm as indi- ‘h—z .
.cated in the ﬁgure ‘

.o is the density.

"~'As in Method 1, h—2_% oo 2=h w—»r)y, z”
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Find the moment of inertia of a right circular cone of _heighf .-h and radius a

‘about its axis.

Method 1, using single integration. )

The moment of inertia of the circular cylindrieal
disc-one quarter of which is represented by PQE in

2o d2)(r?) = dwort de
sinéé' this disc has volu;ne 7r2dz and radius 7.

From Fig. 9—15 h=2z_1 oi’ 'r"-—-'.cr,(h"z

h a h

R R G R
- i o

AlsO» : ' Fig. 9-15

= #af { }dz = ira*he . R
=0 ) .

: Thus I=——-Ma2 : oz

Subdivide the come, one quarter ‘of whlch is

"In cylmdrlcal coordmates (r,0,2) the element of dm:lwdrde dz

mass dm-of the cylinder is dm = ordrdgdz where

The moment of inertia of -dm about the z axis 1s
r2dm = or3drdedz -

h a. a-

’ Then the to‘cal moment of inertia about the z axis is Fig.9-16

i

Lrad
FoTe oh

h(a—r)/a
f j‘ f ors dr do ds
0 _..

The total mass ‘of the cone is

2 ., hla—1)r
f f f " erdrdeds = }rathe

which can Be wobtained directly by noting that the volume of the cone is }rah.

Thus . I = -1-30—Ma,2.

Find the radius of QYration K of the cone of Problem 9.7. |

2£I/M S5a% and K=a a\/’

THEOREMS ON MOMENTS OF INERTIA

‘9.9,

Prove the parallel axis theorem [Theorem 9.3, page 226].

Let 0Q be any akis and ACP a parallel axig through the centroid C and distant b from OQ
'In Fig. 9-17 below, OQ has ‘been chosen as the z axis ‘so that AP is peupendicular to the &y plane
at P..
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If b, is a unit vector in the direction OP,
then the vector OP is given by

where b is constant and is the distance between
axes.

Let r, and r, be the position vectors of
mass m, relative to O and C respectively. If t
is the position vector of C relative to O then
we have

r, = 1, +F (@)

The total moment of inertia of all masses
m, about axis 0Q is

N
I = 3 myr, b € Fig. 9-17
e
The total moment of inertia of all masses m, about axis ACP is ,'1
! N |
Ip = ugl my (1, * by)? {4
Then using (2) we find
' ~ N N
I = El my(r,+ b2 = 21 'm,,(r,', *b; + 1 b,)?
y== ) =
N N N
= 21 m, () b)2 + 2 E} my(x) by} (Eeby) + EI m,(F + by)?
. p= v= r=
N ) N
= I + 2b<2 m,,r,’,)-bl + 28 m, = Io+ M2
v=1 p=]1
N N
since £+b;=b, ¥ m, = M and X m,r, = 0 [Problem 7.16, page 178].
. v=1 p=1

9.10.

9.11.

surface of the cylinder.is represented by A.

. in the xy plane be

The resqlﬁ is -easily e;{tended to continuous mass systems by using integration in place of
summation,

Use the parallel axis theorem to find the moment of inertia
of a solid circular eylinder about a line on the surface of
the cylinder .and parallel to the axis of the cylinder.

Suppose the cross section of the cy]iqder is represented as in
Tig. 9-18. Then the axis is represented by C, while the line on the -

If ais "phe radius of the cylinder, then by Problem 9.4 and the
parallel axis theorem we have

In = Ig+ Ma2 = }Ma? + Ma? = §Ma? ; Fig. 9-18

Prove the perpendicular axes theorem [Theorem
9.4, page 226].

Let the position vector of the particle with mass m,

r, = %l +
[see Fig. 9-19]. The moment of inertia of m, about the
z axis is m,|r,|2. . : »
Then the total moment of inertia of all particles x i :
about the z axis is : Fig. 9-19
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Ay SR

N

N .
I, =. ; my, Irvlz = v§1 mv(xl%+y3)
N N
= ZImad+ I myd = I, + I,
v=1 =i

where I, and I, are the total moments of inertia about the % axis and Y axis respectively.

" The result is easily extended to continuous systems.

9.12. Find the moment of inertia of a rectangular plate with sides ¢ and b about an axis
perpendicular to the plate and passing through a vertex.

Choose the rectangular plate {see Fig. 9-20] in the
xy plane with sides on the = and y axes. Choose the
z axis perpendicular to the plate at a vertex.

From Problem 9.6 we have for the moments of
inertia about the » and y axes,

I = %, I, = {Me

Then by the perpendicular axes theorem the moment
of inertia about the z axis is

I, = I, +1,

il

LM(b2 + a?)
1M (a2 + b2) Fig. 9-20

COUPLES

9.13. Prove that a force acting at a point of a rigid body can be equivalently replaced
by a single force acting at some specified point together with a suitable couple.

Let the force be F; acting at point P; as in P
Fig. 9-21. If Q is any specified point, it is seen that 1\1"1\&
the effect of F; alone ig the same if we apply two
. forces f; and —f; at Q. T

In particular if we choose f; = —F,, ie if f £,
has the same magnitude as F; but is opposite in )
direction, we see that the effect of ¥y alone is the Q
same as the effect of the couple formed by F, and -+
f; = —F, [which has moment r; X F;] togethet with the Fig. 9-21
force —f; =F,.

9.14. Prove Theorem 9.5, page 227: Any system of forces which acts on a rigid body can
be equivalently replaced by a smgle force Whlch acts at some specified point together
with a suitable couple.

By Problem 9.13 we can replace the force F,
at P, by the force ¥, at @ plus a couple of moment o b
r, X F,. Then the system of forces Fy,F,,...,Fy at o b1
points Py, P,,...,Py can be combined into forces )
Fi, Fy ..., Fy at @ having resultant P
F =F, +F,+ - +Fy |
together w1th couples havmg moments
rlei, 1'2><F2, .‘..,.I‘NXFN

which may be added to yield a gsingle couple. Thus
the system of foreces can be equivalently replaced by
- the single force F acting at @ together with a couple, Fig. 9,-22»
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KINETIC ENERGY AND A‘NGUL'AR MOMENTUM

915 If a rigid body rotates about a fixed axis with
angular velocity o, prove that the kinetic energy
of rotation is T = 4l+®> where I is the moment of
inertia about the axis. .

Choose the axis as AB in Fig. 9-23. A particle P of
mass m, will rotate about the axis with angular speed o.
Then it will describe a circle PQRSP with linear speed
v, = wr, where 7, is its distance from axis AB Thus its
kinetic energy of rotation about AB is $my v2 = im, o 'rf,
and the total kinetic energy of all particles is

N N
o= 3 meed = (3 med)e
v=1 v=1
= 31Ju?
N
where I = % m,r? isthe moment of inertia about AB.

I

v=1

The result could also be proved by using integration in
place of summation. . . Fig.9-23

9.16. Prove that the angular momentum of the rigid body of Problem 9.15 is @ = Jo. ‘ 1

The angular momentum of particle P about axis AB is my r2w. Then the total angulal
momentum of all particles about axis AB is

N .
Q = 2 m,rye = <E 'mu'r,z,>m = Jo
y=1 v=1

N
where I = 3 m,r? is the moment of inertia about AB.

The result could also be proved by using integration in place of summation.

MOTION OF A RIGID BODY ABOUT A FIXED AXIS

' 9.17. Prove the principle of angular momentum for a rigid body rotating about a fixec
- axis [Theorem 9.6, page 227).
By Problem 7.12, page 176, since a rigid body is'a special case of a system of partlcle=

A = dQ/dt where A is the torque or moment of all external forces about the axis and @ is th
total angular momentum about the axis. )
Since 2 =Ie by Problem 9.16, A = adz(lm)'= I%—% = Ja.

9.18. Prove the principle of édnservétion of energy for a rigid body rotating about :
fixed axis [Theorem 9.7, page 227] provided the forces acting are conservative.

The principle of conservation of energy applies to any system of particles in which the force
acting are conservative. Hence in particular it applies to the gpecial case of a rigid body rotatin
about a fixed axis. If 7 and V are the total kinetic energy and the potential energy, we thus hav

T+ V = constant = E

Using the result of Problem 9.15, this can be written 2+ V =E.
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9.19.

9.20.

9.21.

9.22.

9.23.

THE
9.24.

' weight Mg = —Mgj acting vertically downward. Thus

" WORK, POWER AND IMPULSE

Prove equation (12), page 227, for the work done in rotating a rigid body about a
fixed axis. ' :

Refer to Fig. 9-4, page 227. Let the angular velocity of the body be o = ok where k is a
unit vector in the direction of the axis of rotation. The work done by F is

AW = Fedr = F‘-%—Z—dt = Fevdt = FrloXr)dt
S @XFrodt = Arodt = Aodt = Ade

where in the last two. steps we use A = Ak, o = ok and o = de/dt.

Prove equation (13), page 227, for the power developed.

From Problem 9.19 and the fact that de/dt = o,
P = dW/dt = Ade/dt = Ae

Prove Theorem 9.8, page 227.
We have A= Ide/dt so that A = Ide/dt. Then from Problem 9.19 and the fact that
d¢ = o dt, we have :

6o to de (o
Work done = f ‘Ads = I-C—Ewdt = f Iode = . %Iw% — —%Iw%
6 ty E ©y

Prove Theorem 9.9, page. 2928: The angular impﬁlse is equal to the change in

angular momentum.
t2 2 q0 '

i t dt . -

Prove Theorem 9.10, page 229, on the conservation of angular momentum if the net
torque is zZero. _ :
From Problem 9.22, if A =0 then Q, = 02,.

COMPOUND PENDULUM y

Obtain the equation of motion (17), page 228, for
a compound pendulum.

Method 1. _

" Suppose that the vertical plane of vibration of the
pendulum is chosen as the wy plane [Fig. 9-24] where
the 2z axis through origin O is the horizontal "axis of
suspension. i

Let point C have the position vector a relative to O.
Since the body is rigid, |a] = ¢ is constant and is the
- distance from O to C. ’

The only external force acting on the body is its

we have

A = total external torque about z axis
aXMg = —axXMgj = aMgsinoek (2) ' Fig. 9-24
where k is a unit vector in the positive z direction [out of the plane of the paper toward the reader].

it

Also, the instantaneous angular velocity is .
_ S DV
o = —ok- = dtk = —¢k - . @)

so that if I, is the moment of inertia about the z axis
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9.25.

9.26.
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Q = angular momentum about z axis = Ije = —Ioék

Substituting from (I) and (2) into A = dQ/dt,

aMgsingk = 91—(—-105 k) or 5+ Mga sing = 0 3
Method 2.
The force Mg = —Mgj is conservative, so that the potential energy V is such that
- V. V. _QZ - - W _ o WV _ v _
-V = o —1i ay] k = Mg] or F 0, = My, e = 0
from which V = Mgy + ¢ = ~Mgacoss + ¢ (4)£
since y = —a cos 9. This could be seen directly since ¥ = —a cos¢ is the height of C below the

% axis taken as the reference level.

By Problem 9.15, the kinetice energ'y of rotation is Llpw? = 11002 Then the principle off
conservation of energy gives ’ ?

T+V = %1'052-Mgwcosﬂ = congtant = F )

Differentiating e(juation (5) with respect to ¢,
I6% + Mgasines = 0

or, since ¢ is not identically zero, I,8+ Mgasing = 0 as required.

Show that for small v1brat10ns the pendulum of Problem 924 has perlod

P = 2x/Mgall,.

For small vibrations we can make the approximation siné = ¢ so that the equation of motmn
becomes :
Mga

Iy

..

v+ 6 = 0 ' (1);

Then, as in Problem 4.23, page 102, we find that the period is P = 2mV 1/ Mga.

Show that the length I of a simple pendulum equivalent to the compound pendulum
of Problem 9.24 is 1 = Iy/Ma.

The equation of motion corresponding to a simple pendulum of length [ suspended vertica.llyf
from O is [see Problem 4.23, equation (2), page 102]

l

&+ Zsing = 0 (1)
Comparing this equetion with (1) of Problem 9.25, we see that [ = Io/Ma. |

GENERAL PLANE MOTION OF A RIGID BODY

9.21.

9.28.

Prove the principle of linear momentum, Theorem 9.12, page 228, for the general
plane motion of a rigid body. :

This follows at once from the correspondmg theorem for systems of particles [Theorem - 1
page 167], since rigid bodies are special cases. i

Prove the prmmple of angular momentum, Theorem 9.18, page 229, for general
plane motion of a rigid body.

This follows at once from the corresponding theorem for systems of particles [Theorem 7-4
page 168], since rigid bodies are special cases. :

|
|
l
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Chapter 10 |  SPACE MOTION
of RIGID BODIES

GENERAL MOTION OF RIGID BODIES IN SPACE

in Chapter 9 we specialized the motion of ‘rigid bodies to one of translation of the
center of mass plus rotation about.an axis through the center of mass and perpendicular
to a fized plane. In this ¢hapter we treat the general motion of a rigid body in space.
Such general motion is composed of a translation of a fixed point of the body [usually the
center of mass] plus rotation about an axis through the fixed point which is not necessarily -

restricted in direction.

DEGREES OF FREEDOM

_ The number of degrees of freedom [see page 165] for the general motion of a rigid body
in space is 6, i.e. 6 coordinates are needed to specify the motion. We usually choose 3 of
these to be the coordinates of a point in the body [usually the center of mass] and the
remaining 3 to be angles :[for example, the Euler angles, page 257] which deseribe the
rotation of the rigid body about the point.

If a rigid body is constrained in any way, as for example by. keeping one point fixed,
the number of degrees of freedom is of ‘course reduced accordingly. '

PURE ROTATION OF RIGID BODIES

Since the general motion of a rigid body can also be expressed in terms of tmnslation
of a fixed point of the rigid body pius rotation of the rigid body about an axis through the
point, it is natural for us to consider first the case of pure rotation and later to add the
effects of translation. To do this we shall first assume that one point of the rigid body
is fixed in space. The effects of translation are relatively easy to handle and can be obtained
by using the result (10), page 167. : ' :

VELOCITY AND ANGULAR VELOCITY OF
A RIGID BODY WITH ONE POINT FIXED
Suppose that point O of the rigid body R of Fig. 10-1
'is_fixed.. Then at a given instant of time the body
will be rotating with angular velocity o about the. in-
stantaneous axis through O. A particle P of the body .
having position vector v with respect to O will have
an instantaneous velocity v given by

Vi - i'u _ o)Xl'p (1)
See Problem 10.2. '
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9.29. A solid cylinder of radius a and
mass M rolls without slipping down
an inclined plane of angle «. Show
that the acceleration is constant and
equal to 3g sina.

Suppose that initially the cylinder has
point O in contact with the plane and that
after time t the cylinder has rotated
through angle ¢ [see Fig. 9-25].

| The forcés acting on the cylinder at
| © time t are: (i) the weight Mg acting verti- -
i cally downward at the center of mass C;
(ii) the reaction R of the inclined plane act-
: ing perpendicular to the plane; (iii) the
_ frictional force f acting upward along the
incline. Fig. 9-25

Choose the plane in which motion takes place as the xy plane, where the x axis is taken as
positive down the incline and the origin is at 0.

If r is the position of the center of mass at time ¢, then by the principle of linear momentum,
MY'= Mg+ R+ ¢ _ [6))
‘ But‘; g=gsinegi—greosaj, R= Rj, f=—fi. Hence (1) can be written
; MY = (Mgsina— i+ (B— Mg cose)j | @
The total external torque about the horizontal axis through the center of mass is
A = 0XMg+ 0XE + CBXf = CBXf = (-a)X(—fi) = —ofk )
The total angular momentum about the horizontal axis through the center of mass is
0 = Ico = Ig(—6k)-= —Ichk )
where I is the moment of inertia of the cylinder about this axis.
Substituting (3) and (4) into A = dQ/dt, we find —afk = —Is6k or Ic6 = af.
Using = #i+yj in (2), we obtain
ME = Mgsna—f My = R— Mgcose )

Now if there is no slipping, x =af or 0 = x/a. Similarly, since the cylinder remains on the
| incline, ¥ = 0; hence from (5), B = Mg cose. '

_ Using ¢ =2a/a in Ig ¥ = af, we have f=I.%/a% From Problem 9.4, I = 4Ma? Then
substituting f = {M % into the first equation of (5), we obtain # = %g sina as required.

9.30. Prove that in Problem 9.29 the coefficient of friction must be at least ttana.
The coefficient of friction is g = f/R. ' . ’

From Problem 9.29 we have f=41M X = 1My sina and B = Mg cos . Thus in order that
slipping will not occur, ¢ must be at least fIR = { tane. )

9.31. (¢) Work Problem 9.29 if the coefficient of friction between the cylinder and inclined
plane is x and (b) discuss the motion for different values of p.

(@) In equation (5) of Problem 9.29, substitute f = wR = pMg cos e and obtain

% = g(sina— pcosa)

i *  Note that in this case the center of mass"of the cylinder mbves in the sz;.me manner as
e . a particle sliding down an inclined plane. However, the eylinder may slip as well as roll.
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22_f _ @?uMg cosa
e T AMa?

The acceleration due to slipﬁing is ¥x—ad = g{sin @ — 3u cos a).

The acceleration due to rolling is a8 = = 2pg cos a.

(b) If (sin « — 3cosa) >0, ie <?L tan«, then slipping will occur. If (sina — 3y cose) = (
ie. x= }tane, then rolling but no slipping will occur. These results are consistent wit
those of Problem 9.30. ’

9.32. Prove the principle of conservation of energy [Theorem 9.14, p@ge' 229].

This follows from the corresponding theorem for systems of particles, Theorem 7-7, page 16!
The total kinetic energy T' is the sum of the kinetic energy of translation of the center of mas
plus the kinetic energy of rotation about the center of mass,. i.e., .

I
T = fmr2 + Llce? : “

If V is the potential energy, then the principle of conservation of energy states that if 1
is a constant, !

T+V = fmi2+ L +V = B

9.33. Work Problem 9.29 by using the principle of conservation of energy.

The potential energy is composed of the potential energy due to the external forces [in th
case gravity] and the potential energy due to internal forces [which is a constant and can
omitted]. Taking the reference level as the base of the plane and assuming that the height
the center of mass above this plane initially and at any time ¢ to be H and h respectively, we ha

IMr2 + Llce? + Mgh = MgH
or, using H—h=xsine and ° ,=..;:2+2}2 = &2 since y =0,
IMa? + LIce? = Mgw sina

Substituting « = § = &/a and Io = 1Mae?, we find %2 = $gu'sine. -Differentiating with respect
t, we obtain '

22

o 4,5 —_ 2 .
& = zgrsmae or r = g sma

INSTANTANEOUS CENTER. SPACE AND BODY CENTRODES

9.34. Find the position vector of the instantaneous center for a rlgld body movn
parallel to a given fixed plane.

Choose the XY plane of Fig. 9-26 as the fixed b4
plane and the xy plane as the plane attached to
and moving with the rigid body R.. Let point P of o
the @y plane [which may or may not be in the P
rigid body] have position vectors B and r relative Y Pl A -
to the XY and zy planes respectively. If v and Ny 4 e
v, are the respective velocities of P and A relative’ a1t
to the XY system, . '

v=Evy + eXr = vy + o XB-Ry) (1) R A

where R, is the position vector of A relative to O. . B
If P is to be the instantaneous center, then v =0 - A

so that . . : 0
o X (BR—Ry) = —vyu (2 '

@

Multlplymg both sides of (2) by o X and fising (7’), Fig. 9-96
page b, ’
Co{o(R—Ry)} — (R*—RA)('m"m) = —e X vy

Then since o is perpendicular to R — R4, this becomes

X
(R—Rylo? = oXvy or R = RA—{-u&.

[
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9.35. A cylinder moves along a horizontal plane. Find the (a) space centrode, (b) body
centrode. Discuss the case where slipping may occur.

(2) The general motion is one where both rolling be
and slipping may occur. Suppose the cylinder
is moving to the right with velocity v, [the
velocity of its center of mass] and is rotating
about A with angular velocity o.

Since o = —wk and v, = vui, we have
0X vy = —wV,sj so that (3) of Problem 9.34
becomes .
R =R —"(wvA)J = '-—-1)-‘3’ )
AT TR a5 Fig. 9-27

In component form,
Xi+ Y] = Xai+ aj — (va/o)i or X =X, Y = a—wvyle

Thus the instantaneous center is loc.ated verfically above the point of contact of the cylinder
with the ground and at height ¢ — v4/w above it.

Then the space centrode is a line parallel to the horizontal and at distance a—v4/w
above it. If there is no slipping, then v4 = aw and the space centrode is the X axis while
the instantaneous center is the point of contact of the cylinder with the X axis.’

(b) The body centrode is given by |r| = vy/w, or a circle of radius vy/w. In case of no slipping,
vy = aw and the body centrode is the circumference of the cylinder.

9.36. Solve Problem 9.29 by using the instantaneous center.

By Problem 9.85, if there is no slipping then
the point of contact P of the cylinder with the
'plane is the instantaneous center. The motion of
P is parallel to the motion of the center of mass,
so that we can use the result of Problem 7.86(c),
page 191.

The moment of inertia of the cylinder about

. P is, by the parallel axis theorem, AMoa? + Muo? =

2Ma2. The torque about the horizontal axis through
P is Mga sina. Thus

(%M(ﬂe) = Mga sin ¢

or 9 = % sin ¢
Since % = a6, the acceleration is = %9 sine. v ) Fig. 9-28
STATICS OF A RIGID BODY v

9.37. A ladder of length ! and weight W, has one end
against a vertical wall which is frictionless and
the other end on the ground assumed horizontal.
The ladder makes an angle « with the ground.
Prove that a man of weight W, will be able to
climb the ladder without having it slip’ if the:
coefﬁment of friction x between the ladder and. ..

Wm -+ %Wl .
the ground is at least W cot a:

Let the ladder be represented by AB in Fig. 9-29 and .
choose an xy coordinate system as indicated. B Fig. 9-29




242

PLANE MOTION OF RIGID BODIES [CHAP. ¢

The most dangerous situation in which the ladder would slip oceurs when the man is at th
top of the ladder. Hence we would require that the ladder be in ‘equilibrium in such case.

The forces acting on the ladder are: (i) the reaction R; = R,i of the wall; (ii) the weighi
Wi = ~Wpni of the man; (iii) the weight W, = —W,j of the ladder concentrated at C, the center of
gravity; (iv) the reaction R, = R,j of the ground; (v) the friction force f= —fi.

For equilibrium we require that '
F=0  A=20 (.
where F is the total external force on the ladder and A the total external torque taken about s

suitable axis which we shall take as the horizontal axis through A perpendicular to the xy plane
We have

F=R+WadtW+R+f= Bi—Ni+ (Wo—W,+Rp)j = 0
if Ri—f =0 and W —W,+ Ry = 0 (@

Also, A

i

O XR; + (0)XW,, + (AC)X W, + (AB)X R, + (AB) X f

(0) X (Bei) + (0) X (~Wiai) + (4l cosei— 4l sine j) X (—Wi)
.+ (leosai—Isinaj) X (Byf) + (Icosai— Lsinej)x (—fi)

—3lW,cosak + IRycoso k — lf sinak = 0

I}

if —4Wicosa + Bycosa — fsinae = 0 )

Solving simultaneously equations (2) and (3), we find
f = Rl = (Wm+12“Wl) cot a ) and R2 = Wm+Wl

Then the minimum coefficient of friction necessary to prevent slipping of the ladder.is ,

_ j- - Wm'*‘%Wl
LS R T W, Ew, cote

MISCELLANEOUS PROBLEMS

9.38.

‘then the acceleration of mass m, is —Aj.

Two masses m; and me are connected by an inextensible string of negligible mass
which passes over a frictionless pulley of mass M , radius ¢ and radius of gyration K
which can rotate about a horizontal axis through C perpendicular to the pulley.
Discuss the motion.

Choose unit vectors i and j in the plane of rotation %
as shown in Fig. 9-30.

If we represent the acceleration of mass my; by Aj,

Choose the tensions T; and T, in the string as shown
in the figure. By Newton’s second law,

mAj = T; + mg = —Tyj + mygj (1)

| To
—mpAf = Ty +mog = Ty + mogi (@) Z
Thus mA = myg — T, med = T2~— mMyg 3) v Mo
or Ty = mlg—4), Ty = myg+A) 0
The net external torque about the axis through Cis ‘ . Fig. 9-30

A = (—ai) X (-—le)v + (al) X (=Tfy = o(T.~ Tok . - 5)
The total angular momentum about O i » “

Q = Ipo = Took = Io6k ' (6)

‘Since A = dQ/dt, we find from (5) and (6),

(T, =Ty = I8 = MK2% ' ' )
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If there is no slipping about the pulley, we also have .

A = a¥ (8
Using (8) in (?), Ty -1, = -M;Ing ‘ (9)
Using (4) in (9), 4 = (my — ma)g , (10)

my + my + Mk2/a2

Thus the masses move with constant acceleration given in magmtude by (70). Note that if M = O;
the result (10) reduces to that of Problem 3.22, page 76.

Find the moment of inertia of a solid sphere about a diameter.

‘Let O be the center of the sphere and AOB be the
diameter about which the moment of inertia is taken
[Fig. 9-81]. Divide the sphere into dises such as QRSTQ
perpendicular to AOB and having center on AOB at P.

Take the radius of the sphere equal to a, OP =g,
SP =7 and the thickness of the disc equal to.dz. Then
by Problem 9.4 the moment of inertia of the dise about
AORB is

A(@r?e dzr? = mart dz )
From triangle OSP, 2 = a?—22. Substituting into (1),
the total moment of inertia is : B

Q
I = f tro(a?—2)2dz = &noas @

z=—q
The mass of the sphere is
a . ‘
M = f zo(@® =2 dz = %rabo ®

z=—g
which could also be seen by noting that the volume of the sphere is %wa-”.

From (2) and (8) we have I/M = 2a? or I= 2Ma2.

A cube of edge s and mass M is suspended vertically from one of it= edges (a) Show

that the period for small vibrations is P = 2« V2 \/3/3 (b) What is the length of
the equivalent simple pendulum"

(@) Since the diagonal of a square of side s has length '\/82+82 = 82,
the distance OC from axis O to ‘the center of mass is %s\f2— v

The moment of inertia I of a cube about an edge is the same as
that of a square platé about a side. Thus by Problem 9.6,
I = LM(s?+ s?) = §Ms2,

Then the period for small vibi'ations is, by Problem 9.:'2_5,‘

P = 2_,r. 3Ms?/ Mg(ls\/_ 2)] = 9 V7 \/8/3

(b) The length of the equlvalent s1mple pendulum is, by Problem 9. 26,
= EMs*/[M(3sV2)] = 3V2s : Fig. 9-32

Prove Theorem 9. 11 page '298: The perlod of small vibrations of a compound

~ pendulum is a minimum when the distance . OC = a is equal to the radius of gyratlon

of the body about a horizontal axis through ‘the center of mass.

If I; is the moment of inertia about the center of mass axis and Iy is the moment of inertia
about the axis of suspensmn, theni by the parallel axis theorem we have
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Io = Ic+Ma/2

Then the square of the period for small vibrations is given by

2
47}'2I0 . 4,7-2 IC 477.2 KC >
2 = PenR LA R = 2
P Mga g(Ma,+a'> y<w+a

where K{?} = I./M is the square of the radius of gyration about the center of mass axis.

Setting the derivative of P2 with respect to a equal to zero, we find
2 .
d 42 K¢ )
s 2 froaad i — i p——
da,(Pr) P ( a2+1. 0 ‘ ‘
from which & = Kc. This can be shown to give the minimum value since d2(P%)/da? < 0. Thus
the theorem is proved.

The theorem is also true even if the vibrations are not assumed small. See Problem 9.147.

A sphere of radius a and mass m rests on top of a fixed rough sphere of radius b.
The first sphere is slightly displaced so that it rolls without slipping down the second
sphere. Where will the first sphere leave the second sphere? '

Let the my plane be chosen so as to pass
through the centers of the two spheres, with the
center of the fixed sphere as origin O [see Fig.
9-33]. Let the position of the center of mass C of
the first sphere be measured by angle 6, and sup-
pose that the position vector of this center of
mass C with respect to O is r. Let r and 6, be
unit vectors as indicated in Fig. 9-33. :

Resolving the weight W = —mgj into com-
ponents in directions r; and 9,, we have [compare
Problem 1.43, page 24] -

W (Werpr + (W-0,)0,
= (—mgjer)r; + (—mgj*0;)0;
= —mgsingr, — mgcosd §y

The reaction force N and frictional force f
are N “;=‘Nr1, f= f0,. Using Theorem 9.12, .
page 228, together with the result of Problem 1.49, Fig.9-33
page 26, we have ' ‘ ‘

F = ma = m[(¥—rdr + (r§+ 276)0]
= W+ N+F

(N — mg sin o)r; + (f — mg cos 6)8;
from which m(¥ —ré2) = N - mg sine, m(rd + 2ré) = f — mg cos 8 {
Since »=a+b [the distance of C from 0], these equations becomeA
~m(a+bﬁ2 = N — mgsiné, ’ m(a{—_b)? = f — mg cose

We now apply Theorem 9.13, page 229. The total external torque of all forces about t
center of mass C is [since W.and N pass through C,

A = (—ar)Xf = (—ar) X (f8)) = —afk

-Also, the angular acceleration of the first sphere about C is

2 o u
e = —ggletok = —@Fyk

‘Since’ there is onty rolling and no slipping it follows that arc AP equals arc BP, or bg =

Then ¢ =r/2—¢ and y¢ = (b/a)(=/2— ), so that R o
o _,.. . .. . - _".. ;‘2:}- — ar + b se,
e = ..(‘7""‘”1‘ = ( ao>k —(—-—-—-—\a )ok
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Since the moment of inertia of the first sphere about the horizontal axis of rotation through C
is I = Zma?, we have by Theorem 9.13,

‘ @+ b\ . _ : v
A = la, —afk = %ma}( - >0k or f= -—%m(a+b)q
Using this value of f in the second equation of (1), we find
’ o bg . ’
[ @+ cos ¢ (2)
Multiplying both sides by § and integrating, we find after using the fact that 6=0 at t=0 or
6 = w/2, '
o 10g R
9 = g
6 Tat b (1 — sing) €]

- Using (3) in the first of equations- (1), we find N =’%mg(1’7 gin g —10). Then the first sphere
leaves the second sphere where N =0, i.e. where ¢ = sin—110/17.

Supplementary Preblems

RIGID BODIES

9.43. Show that the motion of region ® of Fig. 9-34 can
be carried into region R’ by means of a transglation
plus a rotation about & suitable point.

a44. Work Problem 9.1, page 230, by first applying -2
.translation of the point 4 of triangle ABC."

945, IfA, A4, represent rotations of a rigid body about
the x,y and 2z axes respectively, is it true that the
associative law applies, ie. is Az + (4,+4) =
(A, +4,) + 4.7 Jusgtify your answer. Fig. 9-34

MOMENTS OF INERTIA

9.46. Three particles of masses 3, 5 and 2 are located at the points (-1,0,1), (2.—1,3) and (—2,2,1)
respectively. Find (a) the moment of inertia and (b) the radius of gyration about the = axis.
Ans. T1

947. T¥ind the moment of inertia of the system of particles in Problem 9.46 about (a) the ¥y axis,
(b) the z axis. Ans. (a) 81, (b) 44 . :

9.48. Tind the moment of inertia of a uniform rod of length ! about an.axis pe_rpgndicula'r to it and
passing through (a) the center of mass, (b) an end, (c) a point at distance /4 from an end.

Ans. (@) 5MB, (b) 3MP, (o) MP

9.49. TFind the (@) moment of inertia and (b) radius of gyration ‘of a square of side o about a diagonal.
Ans. (a)- £Ma?, (b) 1a/3

9.50. Find the moment of inertia of a cube of edge o about an edge. Ans. %Mm2

951. Find the moment of inertia of a rectangular plate of sides @ and b about a diagonal.
Ans. 1Ma2b?/(a®+ b2) '

9.52. Find the fnoment of inertia of a uniform paralleiogram of sides o and b and included angle &
about .an axis perpendicular to it and passing through its center, Amns. T1§M(M+ b2) sin? a
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9.53.

9.54.,

9.55. -

9.56.

9.57.

9.58.

9.59.
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Find the moment of inertia of a cube of side o about a diagonal.

Find the moment of inertia of a cylinder of radius o and height
about an axis parallel to the axis of the cylinder and distant b from
its center. '  Ams. 4M(a? + 2b2)

A solid of constant density is formed from a cylinder of radius o
and height & and a hemisphere of radius ¢ as shown in Fig. 9-35.
Find its moment of inertia about a vertical axis through their
centers, Ans. M(2a® + 15a2h)/(10a + 15R) .

Work Problem 9.55 if the cylinder is replaced by a cone of radius a
and height h.

Find the moment of inertia of the uniform solid region bounded
by the paraboloid ¢z = 24 42 and the plane z=7h about the i
z axis. Ans. LMch ) Fig. 9-35

How might you define the moment of inertia of a solid about (a) a point, (b) a plane? Is there
any physical significance to these results? Explain. :

Use your definitions in Problem 9.58 to find the moment of inertia of a cube of side a about
(@) a vertex and (b) a face. Ans. (a) Ma2, (b) +Ma?

KINETIC ENERGY AND ANGULAR MOMENTUM

9.60.

9.61.

9.62.

9.63.

9.64.

9.65.

9.66.

9.67.

A uniform rod of length 2.ft and mass 6 Ib rotates with angular speed 10 radians per second
about an axis perpendicular to it and passing through its center. Find the kinetic energy of
rotation. Ans. 100 1b ft2/sec?

Work Problem 9.60 if the axis of rotation is perpeﬁdicular to the rod and passes through an end.
Ans. 400 1b ft2/sec?

A hollow cylindrieal disk of radius ¢ and mass M rolls along a horizontal plane with speed v.
Find the total kinetic energy. ~Ans. M2

Work Problem 9.62 for a solid cylindrical disk of radi_us a. Ans. 3Mv?
A flywheel having radius of gyration 2 meters and mass 10 kilograms rotates at angular
speed of 5 radians/sec about an axis perpendicular to it through its center. Find the kinetic

energy of rotation. Ans. 1000 joules

Find the angular momentum of (a) the rod of Problem 9.60 (b) the flywheel of Problem 9.64.
Ans. (a) 5 1b ft2/sec, (b) 200 kg m2/sec :

Prove the result of (a) Problem 9.15, page 236, (b) Problem 9.16, page 286, by using integration

. in place of summation.

Derive a “parallel axis theorem” for (@) kinetic energy and (b) angular momentum and explain -
the physical significance.

MOTION OF A RIGID BODY. THE COMPOUND PENDULUM.
WORK, POWER AND IMPULSE

9.68.

9.69.

9.70.

A constant foree of magnitude F, is applied' tang;entially to a flywheel which can rotate about a
fixed axis perpendicular to it and passing through its center. If the flywheel has radius a, radius
of gyration K and mass M, prove that the angular acceleration is given by Fya/MK2.

How long will it be before the flywheel of Problem 9.68 reaches an angular speed wp if it starts
from rest? Ans. MK?u/Fa

Assuming that the flywheel of ‘Problem 9.68 starts from rest, find (a) the total work done,
(b) the total power developed and (¢} the total impulse applied in getting the angular speed
up to wg.  Ans. (a) %MKng, (0) Foawy, () MK2y, :
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9.71. Work (a) Problem 9.68, (b) ProblemA 9.69 and (c) Problem 9.70 if Fy = 10 newtons, a = 1 meter,
K = 0.5 meter, M = 20 kilograms and wg = 20 radians/sec.

Ans. (a) 2 rad/sec?; (b) 10 sec; (¢) 250 joules, 200 joules/see, 100 newton sec

9.72.  Find the period of small vibrations for a simple pendulum assuming that the string supporting
the bob is replaced by a uniform rod of length ! and mass M while the bob has mass m.

Ans. 2 M
V 3 + 2m)g

9.73.  Discuss the cases (@) M =0 and (b) m =0 in Problem 9.72.

9.74. A rectangular plate having edges of lengths a and b respectively hangs vertically from the edge

of length a. (@) Find the period for small oscillations and (b) the length of the equivalent simple
pendulum. Ans. (a) 2=V2b/3g, (b) 2 :

9.75. A uniform solid sphere of radius ‘a and mass M is suspended vertically downward from a point
on its surface. (a¢) Find the period for small oscillations in a plane and (b) the length of the

equivalent simple pendulum. Ans. (a) 2=V Ta/5g, (b) Ta/5

9:76. A yo-yo consists of a cylinder of mass 80 gm around which a string of length 60 e¢m is wound.
If the end of the string is kept fixed and the yo-yo is allowed to fall vertically starting from rest,
find its speed when it reaches the end of the string. Amns. 280 em/sec

9.77. Find the tension in the string of Problem 9.76. y
Ans. 19,600 dynes Yz,

9.7‘8. A hollow cylindrical disk of mass M moving with constant speed v,
comes to an incline of angle «. Prove that if there is no slipping
it will rise a distance v%/(g sina) up the inecline. )

9.79. If the hollpiav disk of Problem 9.78 is replaced by a solid disk, how
high will it rise up the incline? Ans. 31)(2,/(49 sin a)

9.80. In Fig. 9-36 the pulley, assumed frictionless,‘has radius 0.2 meter
and its radius of gyration is 0.1 meter. What is the acceleration of 5 kg
the 5 kg mass? Ans. 2.45 m/sec? Fig. 9-36

INSTANTANEOUS CENTER. SPACE AND BODY CENTRODES .
9.81. A ladder of length ! moves so that one end is on a vertical wall and the other on a horizontal
floor. Find (a) the space centrode and () the body centrode.
Amns. (a) A circle having radius I and center at point O where the floor and wall meet.
(b) A circle with the ladder as diameter

9.82. A long rod AB moves so that it remains in contact with A4
the top of.a post.of height & while its foot B moves on a
horizontal line CD [Fig. 9-37]. Assuming the motion
to be in one plane, find the locus of instantaneous centers.

9.83. What is the ‘(a) body centrode and (b) space centrode
in Problem 9.82? h

9.84. Work Problems 9.82 and 9.83 if the post is replaced .
by a fixed cylinder of radius a. . Fig.9-37

STATICS OF A RIGID BODY

9.85. A uniform ladder of vx;eight W and length [ has its top against a smooth wall and its foot on a
floor having coefficient of friction x. (o) Find the smallest angle « which the ladder ean make
with the horizontal and still be in equilibrium. (b) Can equilibrium occur if ¢ =07 Explain.
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9.86.

9.87.

9.88.

9.89.

9.90.

PLANE MOTION OF RIGID BODIES [cH

Work Problem 9.85 if- the wall has coefficient of friction. y,.

In Fig. 9-38, AB is a uniform bar of length [ and weight W supported at C. It carries weight
at 4 and W, at D so that AC = a¢ and CD =b. Where must a weight W; be placed o
so that the system will .be in equilibrium? .

W, W Wy c D
1 _[c [ S A N
A PN D B A JAY A B

Fig.9-38 Fig. 9-39

A uniform triangular thin plate hangs from a fixed point O by strings OA, OB and O
lengths a, b and ¢ respectively. Prove that the tensions Ty, Ty and T3 in the strings are such
Tyja = Ty/b = Tyfe. . .

A uniform plank 4B of length 7 and weight W is supported
at points C and D distant « from 4 and b from B respec- 0
tively [Fig. 9-89]. Determine the reaction forces at C and D 7\
respectively, @ /\

In Fig. 9-40, 04 and OB are uniform rods having the same
density and connected at O so that 40B is a right angle.
The system is supported at O so that AOB is in a -vertical
plane. Find the angles o and 8 for which equilibrium oceurs,

Ans. o= tan~1(a/b), g = /2~ tan1 (a/b) . Fig. 9-40

MISCELLANEOUS PROBLEMS -

9.91.

9.92.

9.93.

9.94.

9.95.

9.96.

9.97.

9.98.

9.99.

A circular cylinder has radius ¢ and height h. Prove that the moment of inertia about an a
perpendicular to the axis of the cylinder and passing through the centroid is M (k2 + 8a?).

Prove that the effect of a force on a rigid body is not changed by shifting the force along its 1
of action. :

A cylinder of radius ¢ and radius of gyration K rolls without slipping down an .inclined plane

- angle a and length starting from rest at the top of the incline. Prove that when it reaches 1

bottom of the incline ig speed will be V/(2¢la? sin a)/(a? + K?),

A cylinder resting on top of a fixed ¢ylinder is given a slight displacement so that it rolls withe
slipping. Determine where it leaves the fixed eylinder.

Ans. 0 = sin—14/7 where ¢ is measured as in Fig. 9-33, page 244,
Work Problem 9.42 if the sphere is given an initial speed v,.
Work Problem 9.94 if the ceylinder is given an initial speed v,

A sphere of radius ¢ and radius of gyration K about a diameter ‘rolls without slipping dow
an incline of angle . Prove that it descends with constant acceleration given by (ge? sin o)/(a? + Ki

Work Problem 9.97 if the sphere is (a) solid, (b) hollow and of negligibie thickness.
Ans. (a) 2g sine, (b) 29 sing

A hollow sphere has inner radius a and outer radius b. Prove that if M is its mass, then th

moment of inertia about an axis through its center is

Py, ot + a3b 4+ a2b2 + abd + pt
s - a?+ ab+ b2

Discuss the cases b = 0 and a = b,
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9.101.

9,102,

9.103.

9.104.

9.105.

9.106.
9.107.

9.108.

9.109.

9.110.

9.111,

A iadder AB of length ! [Fig. 9-42] has one end A on an

PLANE MOTION OF RIGID BODIES 249

Wooden plates, all having the same rectangular
shape are stacked one above the other as indicated
in Fig. 9-41. (a) If the length of each plate is
2a, prove that equilibrium conditions will prevail
if the (n -+ 1)th plate extends a maximum distance
of ‘a/n beyond the nth plate where n=1,2,8,....
(b) What is the maximum horizontal distance
which can be reached if more and more plates _—
are added? L

‘Work Problem 9.100 if the plates are stacked on
a sphere of radius E instead of on a flat surface
as assumed in that problem. '

Fig. 9-41

A cylinder of radius o rolls on the inner surface of‘é smooth 'cyliﬁder of radius 2¢. Prove that
the period of small oscillations is 27V 8a/2¢ .

A ladder of length l'and negligible weight rests with one end against a wall having coefficient of
friction p, ahd the other end against a floor having coefficient of friction pp: It makes an angle a
with' the floor. (o) How far up the ladder can a man climb before the ladder slips? (b) What is
the condition that the ladder not slip at all regardless of where the man is located?

Ans. (@) pol(ps+tan e)/(ups + 1), (b) tane > 1/ps

Work Problem 9.103 if the weight of the ladder is mnot
negligible. ™

incline of angle o and the other end B on a vertical wall.
The ladder is at rest and makes an angle g with the incline.
If the wall is smooth and the incline has coefficient of
friction p, find the smallest value of p so that a man of
weight W, will be able to climb the ladder without having it
slip. Check your answer by obtaining the result of Problem
9.37, page 241, as a special case.

Work Problem 9.105 if the wall has coefficient of friction py. ) Fig. 9-42

A uniform rod AB with point A fixed rotates about a vertical axis so that it makes a constant
angle « with the vertical [Fig. 9-48]. If the length' of the rod is I, prove that the angular

speed needed to do this is o = V(8¢ seca)/2l.

Fig. 9-43 Fig.9-44 o Fig. 9-45

A circular cylinder of mass m and radius o is suspended from the ceiling by a wire as shown in

. Fig. 9-44. The cylinder is given an angular twist 6, and is then released. If the torque is assumed

proportional to the angle through which the cylinder is turned and the constant of proportionality
is A, prove that the eylinder will undergo simple harmonic motion with period rary mi2n .

Tind the period in Problem 9.108 if the cylinder is replaced by 2 sphere of radius @.

. Ans, 2waV2m/6r

Work (a) Problem 9.108 and (b) Problem 9.109 if damping proportional to the instantaneous
angular velocity is present. Discuss physically.

A uniform beam AB of length ! and weight W [Fig. 9-45] is supported by ropes AC and.BD of
lengths o and b respectively making angles « and B with the ceiling CD to which the ropes
are fixed. If equilibrium conditions prevail, find the tensions in the ropes.’ '
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9.112.

9.113.
9.114.

9.115.

9.116.

9.117.

9.118.

9.119.

9.120..

9.121.
9.122.

9.123.

9.124.

9.125.

"freely about O. If the mass is released from rest, find (a) the angular

- PLANE MOTION OF RIGID BODIES [CHAP. ¢
In Fig. 9-46 the mass m is attached to a rope which is wound aroun_d
a fixed pulley of mass M and radius of gyration K which can rotate
speed of the pulley after time ¢ and (b) the fension in the rope.

Prove that the acceleration of the mass m in Problem 9. 112 is
ga?/(a? + K?),

Describe how Problem 9.112 can be used to determine the radius of
gyration of a pulley. Fig. 9-46

A uniform rod AB [Fig. 9-47] of length I and weight W having its
ends .on a frictionless wall OA and floor OB respectively, slides
starting from rest when its foot B is at a distance d from O. Prove
that.the other end A will leave the wall when tbe foot B IS at a

distance from O given by LV5I2+ 4d2.

A cylinder of mass 10 1b rotates about a fixed horizontal axis through
its center and perpendicular to it.. A rope wound around .it ‘carries
a mass of 20 lb. Assuming that the mass starts from rest, find its
speed after 5 seconds. Amns. 128 ft/sec Fig, 9-47

What must be the length of a rod suspended- from one end so that 1t will be a seconds pendulum
on making small vibrations in a plane? Ans, 149 em

A solid sphere and a hollow sphere of the same radius both start: from rest at. the tbp of ar
inclined plane of angle # and roll without slipping down. the 1nc11ne Which one gets to the
bottom first? Explain. Ans. The solid sphere )

A compound pendulum of mass M and radius of gyration K about a horizontal axis is displaced
so that it makes an angle g; with the vertical and is then released. Prove that if the center of
mass is at distance o from the axis, then the reaction force on the axis is given by

k—g‘—%—wz— V(K2 + 2a?] cos 6 — a2 cos 65)2 + (K2 sin ¢9)2

A rectang‘ular paralleleplped of sides a, b, and ¢ is suspended vertlcally from the gide of length o
Fmd the period of small oscillations.

Find the least coefficient of friction needed to prevent the sliding of a circular hoop down an
incline of angle «. Amns. % tanea

Find the period of small v1bratmns of a rod of length 1. suspended vertlcally about a point %
from one end. .

A ‘pulley system consists of two solid disks of radius »; and 7,

fespectively rigidly attached to each other and capable of rotating

freely about a fixed horizontal akis through the center 0. A weight
4V is suspended from a string wound around the smaller, disk .as shown

in Fig. 9-48. If the radius of gyration of the pulley system is K

and its weight is w, find («) the angular acceleration with which the .
weight descends and- (b) the tension in the string.

Ans. (a) WgTI/(er-I- wK2), (b) WwKz/(Wfrl + wK?)

A solid sphere of radius b rolls on the inside of a smooth hollow
sphere of radius a. Prove that' thé perfod for small oseillations is

given by 27r\/ T(a —b)/5g . ’ =

A thm circular solid plate of radms a is suspended ver’cxcally from a -
horizontal axis passing through a chord AB [see Fig. 9-49].. If 1t'
makes small oscillations about .this axis, 'prove that. the’ frequency
of such oscﬂlatlons is greatest When AB -is “at dlstance a/2 from T

the center. . } . Fig.y9-49_ ’
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9.126.

9.127.

9.128.

9.129,

9.130.

9.131.

9.132.

9.133,

9.134.
9.135,

9.136.

9.137.
19.138. .

9139,
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A uniform rod of length 5! is suspended vertically from a string of length. 2! Whichv has its other

end fixed. Prove that the normal frequencies for small oscillations in a plaﬁe are 21—7;_ g—l and
14/% , and describe the normal modes.
27 l :
A uniform rod of mass m and length [ is suspended from one of its eﬁds. What is the minimum
speed with which the other end should be hit so that it will describe a complete vertical circle?

(@) If the bob of a simple pendulum is a uniform. solid sphere of radius @ rather than a point
mass, prove that the period for small oscillations is 2+VI/g + 2a2/5g1.

(b) For what value of [ is the period in (¢) a minimum? !

A sphere of radius a and mass M rolls along a horizontal plane -with constant speed vy. It comes
to an incline of angle a. Assuming that it rolls without shppmg, how far up the incline will it
travel? Ans. 100%/(Tg sin a)

Prove that the doughnut shaped solid or torus of Fig. 9-50 has
a moment of inertia about its axis given by lM(3a2+ 452),

A cylinder of mass m and radius a rolls w1thout slipping down
a 45° inclined plane of mass M which is on a horizontal friction-
less table. Prove that while the rolling takes place the incline
will move with an acceleration given by mg/(8M + 2m).

Work Prol_)lem 9.131 if the incline is of angle a.
Ans. (mg sin 2¢)/(8M + 2m — m cos 2a)

Find the (a) tension in the rope and (b) accelera- 200 kg
tion of the system shown in Fig. 9-51 if the radius - _ ","|L
of gyration of the pulley is 0.5m and its mass =2
is 20 kg.

Compare the result of I‘*;roblem 9.183 with that

obtained assuming the pulléy to have negligible mass.
: ’ 100 kg

Prove that if the net external torque about an axis

is zero, then it is also zero about any other axis. Fig. 9-51

A solid cylindrical disk of radiys o has a circular hole of radius b whose™center is at distance ¢
from the center of the disk. If the disk rolls down an inclined plane of angle a, find its acceleration. .
[See Fig. 9-52.]

Fig. 9-52 C Fig. 9-53

Fmd the moment of inertia of the region bounded by the lemnigcate 72 = a,2 cos 20 [see Fig. 9-53]
about the x axis. Ans. Ma*(3r — 8)/48 .

Fmd the largest angle of an inclined plane down which a sohd cylmder will .roll Wlthout slipping
if the coefficient of friction is p. : :

Work Problem 9.138 for a solid sphere.
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9.140.

9.141.

9.142.

9.143.

. 9.144,
9.145,
9.146,
9.147.
9.148,

9.149.

9.150.
* as indicated in Flg 9.55. Find the period of small oscillations about

9.151.

9.152.
" in order that a solid cylinder will roll down it without slipping.

PLANE MOTION OF RIGID BODIES [CHAP.9

Discuss the motion of a hollow cylmder of inner radius a and outer radius b as it rolls down an
inclined plane of angle «.

A table top of neghg1ble weight has the form of an eqmlateral triangle ABC of side s. The legs
of the table are perpendicular to the table top at the vertices. A heavy weight W is placed on
the ‘table top at a point which is distant ¢ from side BC and b from side AC. Find that part
of the weight supported by the legs at A, B and C respectively.

2Wa 2Wb <1“2a,+22>

av VB B 3

Discuss the motion of the disk of Problem 9.136 down the inclined plane.if the coefficient of
friction is g

A hill has a cross section in the form of a.‘cycloid

Lty N
~?

‘= a(d + sing), ¥ = a(l — cos g)
as. indicated in Fig. 9-54. A solid sphere of

radius b starting from rest at the top of the hill - %a
©is given a slight displacement so that -it rolls
without slipping down the hill. Find the speed - —

of its center when it reaches the bottom of the hill,

Ans. V10g(2a — b)/T ' Fig. 9-54

Work Problem 3. 108 page 85, 1f the masses and moments of mertla of the pulleys are taken
into account

Work Problem 9.38, page 242, if friction is taken into acéount.

A uniform rod of length [ is rlaced uprlght on a table and “then allowed to fall, Ausummg that its
point of contact with the table does not move, prove that its angular velocity at the instant when

it makes an angle ¢ with the vertical is given in magnltude by V8g(1l—cos6)/2L.

Prove Theorem 9.11, .page 228, for the case where the vxbratlons are not necesgsarily small.
Compare Problem 9.41, page 243.

A rigid body moves parallel to a given fixed plane. Prove that there iz one and only ‘one point '
of the rigid body where the instantaneous acceleration is Zero.

A’ solid hemisphere of radiiis @ rests with jts ¢onvex surface on a horizontal table.. If it is
displaced slightly, prove that it will undergo oscillations Wlth period equal to that of a simple
pendulum of equivalent leng'th 4a/3. .

A solid eylinder of radius a ‘and hélght k is suspended from axis AB

this axis.

Prove that a solid sphere will roll without slipping down.an inclined
plane of angle « if the coefficient of frietion is at least 2 tane

Tind the least coefficient of friction for an inclined plane of angle «

Ans. Ltana _ Fig.9-55



Symmetrical Versus Asymmetrical Bodies
(Optional)

How does the sitnation differ for symmetrical and asym-
metrical rotating bodies? Suppose the rod connecting the

two particles in the symmetrical body of Fig. 10-7 were in-

_clined at an arbitrary angle 8 with respect to the central

shaft. Figure 10-11 shows the connecting rod, the shaft, and
the two bearings (assumed frictionless) that holds the shaft
along the z axis. The shaft rotates at a constant angular
speed o about this axis, the vector & thus pointing along
this axis. Experience tells us that such a system is “unbal-
anced” or “lopsided,” and if the connecting rod were not

rigidly fastened to the vertical shaft near O, it would tend to . -

move until the angle B became 90°; in which position the
system would then be symmetrical about the shaft.

At the instant shown in Fig. 10-11, the upper particle is

moving into the page at right angles to it, and the lower par-

ticle is moving out of the page at right angles to it. The lin- -
ear momentum vectors of the two particles are therefore i
equal but opposite, and so are their position vectors with re- |
spect to O. Hence, by application of the right-hand rule in -

T X P, we find that T is the same for each part1cle and that

their sum, the total angular momentum vector L of the sys-" |
tem, is as shown in the figure, at right angles to the con-

necting rod and in the plane of the page. Hence Land @
are not parallel at this instant. As the system rotates, the an-

Bearingé
<

o

F

-

n

—
%?5 Bearing

. FIGURE 10-11. A rotating two-particle system, similar to Fig.
10-7, but with the axis of rotation making an angle B with the con-
necting rod. The angular momentum vector L rotates with the sys-
tem, as do the forces F and —F exerted by the bearings.

‘ gular mormentum vector while constant in magnitude, ro-
tates around the ﬁxed axis of rotation.
The rotation of L about the fixed axis of Fig. 10-11 is
erfectly consistent with the fundamental relation
' % = dL/dt. The external torque on the entire system arises
from the unbalanced sideways forces exerted by the bearings
on the shaft and transmitted by the shaft to the connecting
rod. At the instant shown in the figure, the upper particle
would tend to move outward to the right. The shaft would be
pulled fo the nght against the upper bearing, which in turn
exerts a force F on the shaft that points to the left. Similarly,
the lower particle tends to move outward to the left. The shaft
| would be pulled to the left against the lower bearing, which
in turn exerts a force —F on the shaft that points to the right.
The torque 7 about O as a result of these forces points per-
‘ pendlcularly out of the page, at right angles to the plane
formed by L. and @, and in the right direction to account for
the rotary motion of L. (Compare with Fig. 10~ 6c, in which
.7 was also perpendlcular to the plane formed by T and &.)
Note that because 7 is perpendlcular to @, there is no com-
ponent of the angular acceleration @ in the direction of @,
and so the angular velocity remains constant. In the absence
of friction, the systern will spin forever. Friction in the bear-
ings would give rise to a torque directed along the shaft (par-
allel to @), which would have an angular acceleration com-
| ponent along & and thus would change the angular velocity.
] \ The forces F and —F lie in the plane of Fig. 10-11 at
the instant shown. As the system rotates, these forces, and
therefore the torque 7, rotate with it, so that 7 always re-
mains at right angles to the plane formed by @ and L. The
| rotating forces ¥ and —F cause a wobble in the upper and
\lower bearings. The bearings and their supports must be
f 'made strong enough to provide these forces. For a symmet-
' rical rotating body there is no bearing wobble, and the shaft
| rotates smoothly. ]



angular momentum is given by

L = m(riXvy 4+ rpxvy) (7.58)

7.5 Dynamical Balance of a Rigid Body

The formulation of the equations of motion in a rotating reference system
is also quite valuable in the description of rigid-body motion. As an
introduction to the general treatment of rigid-body rotational motion,
we discuss a simple example of a dumbbell formed by two point masses
m at the ends of a massless rod of length [ The dumbbell rotates at a
fixed inclination @ with constant angular velocity w about a pivot at the
center of the rod, as shown in Fig. 7-11. The equation of motion (6.48)
in a fixed reference frame for rotation about the pivot of the rod is
dL

N = = (7.57)

where N is the external torque on the rod applied at the pivot. The

FIGURE 7-11. Dumbbell rotating about a pivot at center of the rod at a fixed
inclination angle 4.

Since ry = —r; and v; = w X r; and Vo = w X ry we have
Vg =~V (7.59)
Thus L can be expressed in terms of w and r; as

L = 2mr; X (wXxr;) = 2m [wr? — ry(w -1y)] (7.60)




Since L is perpendicular to r; and lies in the plane determined by r; and
w, it also rotates with angular velocity w. From (7.8), we then have

dt

The external torque from (7.57), (7.60), and (7.61) necessary to maintain
the rotation is

N = wxL = 2m(r; Xw)(r1 - w) (7.62)

We can alternatively derive the result in (7.62) in a coordinate frame
which rotates with the dumbbell. In a rotating reference frame the follow-
ing rigid-body equation of motion can be derived from (7.16) to (7.21):

6L i i i i
—6-1—;' = N4 Xi:rix (Fcf -+ FCar + Fz,z + Ftr), (7'63)

In a coordinate frame rotating with the dumbbell, §L./6¢ = 0 and F‘c o=
Fi, = Fi = 0. Hence, to maintain the rotation, the torque applied at
a

the pivot must balance the torque due to the centrifugal forces.

N = —(r; XFif -+ Ty Xsz) (7.64)

From (7.18) the centrifugal forces are given by

1 —
Fop = —mwX(w Xry) (7.65)
F2; = —mw X (wXr3)

Using r; = —ry, the torque reduces to

N = 2mr; X [w X (wxry)]

= 2mr; X [w(w-r1) - riw?] (7.66) .

= 2m(r; Xw)(ry - w)

in agreement with the result in (7.62).

In terms of the angle # between w and rj, the angular momentum
and torque in (7.60) and (7.62) of the rotating dumbbell can be written

L = imiPw(® — cos bf) (7.67)

N = ¢ml’wsin f cos 64 (7.68)
where fi = r; Xw/|r; Xw|. For § = 7/2, we find

L= (iml)w
=0

N (7.69)

In this orientation the motion does not require an imposed torque.

From (7.67) and (7.68), we see that torques on the rod are present
whenever the angular momentum L does not lie along the axis of rotation

 w. This result is generally true for rigid-body rotations.

A practical application in which it is important that L and w are
parallel is the dynamic balance of automobile tires. If a wheel is not

- balanced, noise and vibration result in the car and excessive wear occurs

on the tire. There are two criteria for complete balance of a wheel:

(1) Static balance: Unless the CM of the wheel lies on the rotation axis,
a time-varying centrifugal force is present. This acts to make the
axle oscillate and imparts vibration to the car. In a static balance
the wheel is removed from the car and mounted on a vertical axis.
Weights are attached around the rim of the wheel until the wheel
is in equilibrium in a horizontal plane.

(2) Dynamic balance: Even when the CM lies on the wheel axis, it is
possible that in rotation the angular momentum does not lie along
the axis. If we specify the z axis as the rotation axis, w = wX, the
angular-momentum vector from (6.105) is

L = (Ingk + Iyo§ + Lo)w (7.70)

Unless the products of inertia Iy, and I,; vanish, L does not lie
along w. The time variation of L then leads to a time-varying
torque, causing the wheel to wobble. A dynamic balance consists
of the application of weights until the wheel spins smoothly with no
wobble. Since modern tires are usually very nearly symmetrical, a
static balance alone is often sufficient to ensure good driving results.




7.6 Principal Axes and Euler’s Equations

For a rigid body of arbitrary shape, the rotational equation of motion
(6.48) in a fixed coordinate system or with origin at the center-of-mass -

point is
dL; d

Nj:—cﬁ_ e

where a sum over the index k is implied. Since the moments and products - :
of inertia I} relative to the fixed coordinate system change as a function

of time as the body rotates, the description of the motion through (7.71) .
can be cumbersome and difficult. The analysis of the motion can often be "
greatly simplified by choosing instead a body-fized coordinate system that

rotates with the body. In this reference frame the moments and products ;

of inertia are time-independent. Using (7.8) and (7.71), the equation of -
motion with respect to the moving body axes is

0L;

N; = =% 4+ (wxL); . (1.72)

6t

A further simplification can be made by a judicious choice of the orien-
tations of the rotating axes with respect to the rigid body. As we shall
shortly prove, it is always possible to make a choice of axes in the body
for which all the products of inertia vanish.

Iij =0 for 4 #] (7.73)

The axes for which (7.73) holds are called the principal azes of the rigid -
body. For these axes the angular-momentum components in (6.105) re--
duce to

Ly =Inw = L

L2 = Izz(.dz = Izwz (7.74)

L3 = I33ws = [3ws

where Iy, Iz, Is denote the principal moments of inertia. From (7.72),
expressing the cross product in cartesian coordinates, we obtain Euler’s
equations of motion for a rigid body in terms of the coordinate system :
aligned with the principal axes of the body.

Ny = Loy + (I3 — Iz)waws

Ny = Lw, + (Il — I3)w1w3 (775) ':

N3 = Izws + (I3 — I1)wowy

It should be emphasized that the angular velocity and torque components

I;xwi) (7.71)

appearing above refer to the w and N vectors of the inertial system pro-
jected onto the principal body axes. The Euler equations are a convenient
starting point for many discussions of rigid body rotations.

To illustrate the application of Euler’s equations, we return to the
rotating rod of the preceding section. The principal axes of the body lie
along and perpendicular to the rod, as illustrated in Fig. 7-12. With the
z axis along the rod and the z axis in thé plane of the rod and w, the
components of w are

wy = wsin f
wy =10 (7.76)

ws = wcosf

where 8 is the angle between w and the rod. The principal moments of

inertia are
£\? \?
L=L=m|-= Z) =Limpe
1= m(z) +m<2) zm (7.77)

Ig = 0
Using (7.76) and (7.77) in (7.75), we find

N1 =0
Ny = (3m4?) w? sin 6 cos § (7.78)
N3 =0

where & = 0 has been used. This result obtained from Euler’s equations
is the same as (7.68).

In the derivation of (7.75) we have used the diagonal property in
(7.73) of the inertia tensor in the principal-axes coordinate system. We
will now establish this property. Suppose that there exists a direction in
space w for which L is parallel to w

L=Iw (7.79)

1f such a direction can be found it will by definition be a principal axis

since the products of inertia vanish and the principal moment is /. In
the original coordinate system, w will in general have three components:

W= wli‘c -+ wa + w32 : (780)




FIGURE 7-12. Principal axes %3, %z, %3 of the dumbbell.

From (7.79) the components of L along the inertial axes are

Ll :le
L2 =Iw2
L3 ::Iw3

These components of L must be equivalent to the expression for L given

in (6.105), namely,

(7.81)

Ly = Inwy + Lawy + L13ws
Ly = Ijwy + Ipaws + Ipzws (7.82)

L3 = 31wy + Izpwy + Iz3ws

Equating the components in (7.81) and (7.82), we find

(I11 = Nwy + Ligwy + 13w =0
Ipwy + (Izz - I)wg + Iygws =0 (783)
I31wi + Iawy + (f33 — w3 = 0

which in vector notation is

3
ZIijwj = Jw; (7.84)
. j=1
o or
Iw=Iw (7.85)

For w # 0, this system of homogeneous equations for (w1,ws,ws) has
- solutions only if the determinant of the coefficients of the w components
- vanishes.

(I —1) Itz I3
i (a-I) ILs |=0 (7.86)
I5; Is2 (Iss = 1I)

" This leads to a cubic equation in I of the form
Bial>4+bl+c=0 (7.87)

- where a, b, ¢ are products of the inertia tensor elements I;;. There are
- three real solutions for I from (7.87), any is appropriate to (7.79). The
- other two solutions refer to the principal moments about two other or-
thogonal principal axes. The detailed proofs are outlined in the exercises.
By construction we have therefore shown that it is always possible to
find a principal-axis system for any rigid body. In many applications the
choice of principal axes is obvious from the symmetry of the body. If two
of the principal moments are equal the body is called rotation symmetric
about the third axis in that plane. If all three principal moments are
equal the body is rotation isotropic.




6.10 Impulses and Billiard Shots

6-28.

6-29.

A pencil of length £ and mass m lying flat on a frictionless horizontal
tabletop receives an impulse on one end at a right angle to the
pencil. What is the orientation and position of the center of mass
of the pencil at a time ¢t after the impulse?

A rod of mass m and length £ hangs vertically from a horizontal
frictionless wire, as shown. Attached to the end of the rod is a small
ball also of mass m. The rod is free to move along the wire.

2 Hook Wire
/ [ 7
é‘ T é
h 72
I Hammer blow
Rod, mass m
Y Ball, mass m

a) Find the location of the center of mass for rod plus ball, taking

the hook as the origin of the coordinate system.
b) Find the moment of inertia for rod plus ball about the hook.

c) Use the parallel-axis theorem and the result in part b to find the
moment of inertia about the center of mass.

d) The rod-ball system is struck by an impulsive hammer blow 2
distance h from the hook. Set up equations for the linear and
angular motion of the system.

e) Find h such that the hook does not move along the wire at the
instant of blow. This point is known as the center of percussion.

6-30. A ball of radius a rolling with velocity v on a level surface col-

lides inelastically with a step of height h < a, as shown. Find the
minimum velocity for which the ball will “trip” up over the step.
Assume that no slipping occurs at the impact point. Hint: compute
the total angular momentum abaut the point of impulsive contact.
This angular momentum is conserved and can be used to compute
the energy change.

6-31.

6.11

- 6-32.

6-33.

In the sport of bowling, if the ball is rolled straight down the middle
of the alley, pins on the sides will often be left standing (wide splits).
A good right-handed bowler will impart a spin to the ball on release,
causing it to curve to the left as it goes down the alley and strike
the pins somewhat to the side. Describe the required spin and show
that the trajectory of the ball is apprmdma’;tely parabolic in shape.

Super-Ball Bounces

One of the Super-Ball examples discussed in the text concerned
a ball dropped straight down with spin. Discuss the subsequent

motion through several bounces.

Under what conditions will a Super-Ball
bounce back and forth as illustrated? How
does the spin change?




d from the plane of the wheel along the wheel axis. The weight of the
wheel then supplies the torque.

N = (Mgd)y (6.78)

Wp

If the wheel has radius @ and mass M and spins with angular velocity w,
the angular momentum is

L = (Mwa?)% (6.79)
The resulting angular velocity of precession about the z axis is

_ 94
wp =~ (6.80)

X

where we have used (6.77) to (6.79). For ¢ = d = 0.3m and a spin rate
of w/27 = 200 r/min, we find precession rate of

wp _ 9.8 x 3,600
2r ~ 200(27)%(0.3)

= 15r/min (6.81)

FIGURE 6-6. Gyroscope effect for a wheel with massive rim. 6.6 The Boomerang

An explanation of why a boomerang returns can be given in terms of the
gyroscope effect. The boomerang can take on a variety of shapes. In its
most common form it appears as two airfoil-shaped blades meeting at
an angle near 90°, as illustrated in Fig. 6-7. However, the characteristic
banana-like shape of most boomerangs has little to do with their ability
to return. Another version consists of two crossed blades, as shown in
Fig. 6-8. The boomerang is thrown overhand in a nearly vertical plane
in the manner of Fig. 6-9. As it leaves the hand, the blades are rapidly
rotating about the CM, and the CM is moving parallel to the ground.
Due to its spin, the boomerang has an angular momentum about the CM
‘that is initially directed to the left, as shown in Fig. 6-10.

to first order dt. The direction of L is rotated counterclockwise, viewed
from above in the z,y plane, through an angle d¢ given by

dL. N :
= — = —dt 6.76) -
dp="F=7 (6.7

If N remains perpendicular to L and in the z, y plane, the angular velocity -
of precession about the z axis is

(6.77)

U)p:

& &

al
7

This result known as simple precession, since we neglected the angular
momentum associated with the precession motion. Whenever the applied
torque is small or the spin large, simple precession is a good a,pproxim?,f;
tion. When the precession angular momentum is taken into account in
the description of the motion, an oscillation called nutation .about the
z,y plane may be present, in addition to the precessional motion.

A popular lecture demonstration experiment that illustrates simpleil
precession uses a bicycle rim loaded with lead. The wheel is oriented in

a vertical plane as in Fig. 6-6. The suspension point is located a distance: 'FIGURE 6-7. Common boomerang.




The aerodynamic “lift” forces on the airfoils act perpendicular to the

plane of rotation, as indicated in Fig. 6-11. The total aerodynamic force

on the boomerang accelerates it perpendicular to the plane of rotation, in
the direction of L. An upper blade of the boomerang moves more rapidly
through the air than a lower blade because the rotation and transla-.
tion velocities add on the upper blade and subtract on the lower blade.
Since the aerodynamic force is larger for higher blade velocities, the up-
per blade experiences a greater force, and an external torque about the
CM is generated by the forces on the airfoils. The torque points opposite
the CM velocity direction. Thus the initial directions of N and L are
identical with those for the wheel in Fig. 6-6. From the gyroscope effect
discussed in § 6.5 we predict that the plane of rotation precesses counter-
clockwise about the vertical axis. This precession of the rotational plane
accompanied by translational acceleration perpendicular to the rotational
plane allows the boomerang to travel in a circular orbit and return to the
thrower; see the illustration in Fig. 6-12.

FIGURE 6-8. Cross-blade boomerang.

To discuss the flight of the boomerang in a more quantitative fashion,
we consider the crossed-blade boomerang of Fig. 6-8. In this case the
CM lies at the blade hub, which simplifies the analysis considerably. We
choose the origin of our coordinate system at the hub. Initially, we take

FIGURE 6-9. Proper method of throwing a boomerang.

- the CM motion along the negative y axis with velocity V = —V§, as in
Fig. 6-10. Rotation occurs around the  axis in a counterclockwise sense
with angular velocity w. One of the blades with length [, mass %M , and
linear mass density p = i—(M /1) is depicted in Fig. 6-13. A point on the
blade at a distance r from the CM is specified as a function of time by

r = r(§ coswt + Zsin wit) (6.82)
The aerodynamic force is dependent on the transverse component v; of
the air velocity over the airfoil in a direction perpendicular to the long
sedge of the blade. The force will be approximated by a quadratic depen-
‘dence on vs. The force on an element of blade at a distance r is

dF = %cvidr (6.83)

The perpendicular air-velocity component v; is due to the rotational mo-
tion of the blade and to the translation motion of the boomerang CM at
velocity V. This tangential velocity component is given by

v; = wr + Vsinwt (6.84)
Using (6.83) and (6.84), we find

dF(r,t) = %c(w?r? + 2wV rsinwt + V2 sin® wt)dr (6.85)




FIGURE 6-10. Boomerang-blade velocities.

As the blade rotates, dF varies in magnitude. The three remaining blades
contribute forces similar to (6.85), but with wt replaced by wt+m /2, wt+
m, and wt + 37 /2, respectively. The net force on the boomerang from all .
four blades due to the elements of length dr at distance r is

2
dF(r) = 4%kc (w2r2 + Yé—) (6.86)
Adding the elements by integration over r, we find the total force normal
to the plane of rotation is

272 2
wl Y ) (6.87)

F=4xcl(——3—~+—§—

From (6.82) and (6.83) the torque about the CM from an element on one
of the blades is

dN = rxdF = r(§ coswt + Zsinwt) X Revidr (6.88)

Aerodynamic
1ift force
A

—————= | No—

'FIGURE 6-11. Aerodynamic forces on a cross-blade boomerang.
- Expansion of this result, using (6.84), gives
dN = cr(w?r? + 2wV rsinwt + V2 sin® wit) (§ sinwt — Zeoswt)dr (6.89)

: ‘We add to this the torques from the other three blades’ elements to find
- the net torque

dN = dcwVrigdr (6.90)
The torque due to all elements is then obtained by integrating (6.90) over




FIGURE 6-12. Typical boomerang orbit.

the length of a blade.
N = tcwV %y (6.91)

The angular momentum L about the CM of the boomerang can be
computed as follows. A blade element at distance r has mass dm
pdr = 3(M/l)dr. As the blade rotates with angular velocity w, the
angular momentum of the element is dL = dmr?w, where w = Xw. The
angular momentum of the whole blade is then

L=

] :
%w/rzdr = L MPw (6.92)
0

The complete boomerang has angular momentum

L=1MPw : (6.93)

The constant of proportionality between L and w is called the moment

of inertia.

I=1iMP (6.94)

FIGURE 6-13. Diagram of one blade in a four-blade boomerang,.

The torque in the § direction induces a precession of the L vector as
given by (6.77). The precession angular velocity is

%chl3 _ 4cVi
%Mpw T M

wp =

Sl

(6.95)

The motion of the CM is influenced by the aerodynamic force normal
to the plane of rotation, gravity, and a drag force due to air resistance.
For actual boomerangs the gravity and drag forces are not negligible
but can be counterbalanced by a small tilt of the boomerang plane from
vertical.

Since a boomerang is supposed to return fo the thrower, we inves-
tigate under what conditions the CM will travel in a circular orbit of
radius R with angular velocity wp. In a circular orbit the aerodynamic
force exactly balances the centrifugal force. In order for the aerodynamic
force to be always radial inward toward the center of a circle, the orbital

)
|
|
i
i
i
i
\
1
i
i




angular velocity wg must match the precession rate wp.
Wy = — = Wwp (6.96)

From (6.95) and (6.96) we can determine the radius of the orbit as

M_ g
C

== (6.97)

R

where p is the linear mass density and c is the lift constant determined
by the airfoil shape and air properties. By equating the magnitude of the
lift force in (6.87) to the mass times the centripetal acceleration,

WP VR MV?
F=4cl (——3 + —2'") =R (6.98)
we obtain
V =4/ dwl (6.99)

For a simple circular return flight the CM velocity V and spin w must be
related as in (6.99).

From (6.97) we see that the boomerang has a flight radius which
is independent of how hard it is thrown. Of course, if it is thrown very
slowly, the effects of gravity will become important, and our theory breaks
down. If an indoor boomerang is desired, it should have an exaggerated
airfoil shape to obtain a small orbit radius in (6.97). For long flights a
boomerang made of dense material is needed, and of course the design
should minimize drag. It is said that some native Australians can throw
the boomerang 90 m and have it return to their feet. Such a record-setting
boomerang would be useless to someone without a very strong arm since
it could not be thrown with a smaller radius of orbit. A typical outdoor
boomerang orbit may have a diameter of about 25 m. The boomerang
starts its flight with a CM velocity of about 25 m/s and a rotation rate
of about 100 r/s. It stays in the air for about 5 s.
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6.7 Moments and Products of Inertia

The dynamics of rigid-body rotations are contained in (6.48), which re-
lates the time rate of change of the total angular momentum tc: the exter-
.na,l torque. The angular momentum L about a point O can be computed
m.terms of the angular velocity w in (6.64). We denote the location rel-
ative to O of a point mass m; in the rigid body by r;. Then from (6.64)
the velocity of the mass m; relative to O is '

Vi = WwXIr; (6100)

The angular momentum about O is
L= Z m;(rixv;) = Zmirix(wxri) (6.101)
1 H

The summation is over all mass points in the body. Using (2-44a) to
expand the triple cross product, we obtain

L=w (};: mi]r;lz) — Zmil‘i(l‘i . w) (6102)

We observe that the angular-momentum vector L will not necessarily

be parallel to the angular-velocity vector w. We can write (6.102) in
cartesian components as .

L, = 2: (2 4 22 z E
z = Wg mi(y; + z;) — Wy MiT;Y; — Wy miT;2;
: -
i 1

Ly=~ws ) myizi+wy ) mi(a? +28) —w, Y miyiz;
,. ,- ,~ (6.103)

L,=-w; Z MiZiT; — Wy Z miziy; + w, Z m,-(a:? + yzz)
i 1 i

For the coefficients of the an i
gular-velocity compo ;
notation Y ponents we introduce the

Iow =32 imi(y + 27) Loy = -3, mizy; Ioo = =%, miziz

Iys = - Zi miYi%i Iy, = Ei m,(a:f + zzz) I, = - Ei miYi2;

Lop = — Zi Mi2;T; Izy = - Zi miz;y; L, = Zi m,(mf + yzz)

(6.104)
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In terms of these quantities we have

Ly = Ipews + I:t:ywy + Igow,
Ly = Iygwe + [yywy + Iyzwz (6.105)

L, =I;w;+ Izywy + I,,w;

The components of angular momentum in (6.105) are then compactly
written

Li=) Ijxwk (6.106)
k

In this expression the superscripts j, k take on the values z, ¥, z The
three quantities I;; are known as moments of inertia, and the six [j
with j # k are called products of inertia. From (6.104) we note that the.
products of inertia are symmetric.

Iy = Iy; (6.107)

The nine quantities I;;x form a symmetric tensor and can be written as a
3 X 3 matrix.

I:z::c I:z:y Ia:z
U= | Ie Iy Iy (6.108)
Iz:z: Izy Izz

In vector notation (6.106) can be written
L=1Iw (6.109)

From (6.48) and (6.106) the equation of motion for general rotations of
a rigid body about its CM point or about a fixed point in space is

dLi _y~ 4 6.110
”2?";#(’]“"“) (6.110)

N;=

or more compactly, in vector notation,

of the moments and products of inertia. The kinetic energy is given by

K= %ZmiVi'Vi = %ng(wxri)-(wxri) = 1w- [Z mir;x(wxri)]

(6.112)
where we have interchanged dot and cross products in the final step.
Using (6.101) and (6.106), we find

K= %w-L = %ZIjkijk (6113)
ik
In vector notation K can be written

K=gwIw (6.114)

6.8 Single-Axis Rotations

The equation of motion in (6.110) simplifies considerably for the case of
rotation about a single fixed axis. For definiteness we choose the z axis as

the axis of rotation, w = w,Z. The components of the angular momentum
in (6.105) are then

Ly =1I;,w,
Ly = Iyzw; (6.115)
L,=1I,w,

The equations of motion from (6.110) are

. d
Ney=L;= "E(Ixzwz)

. d
Ny =Ly = 2 (Iyzw:) (6.116)

: d
Nz - Lz - .(:i—t(Izzwz)

_ For a rigid body that is symmetrical about the z axis, we find from (6.104)
~ .that

Ioz = Iy: =0 (6.117)

- ‘In this case the torques N and N, in (6.116) are zero. On the other
hand, if one of the products of inertia, I, or I, is nonzero, the body is
unbalanced and the bearings must provide the torques N or IV, to keep
the axis of rotation from moving. For single axis rotation the principal
‘moment of inertia is usually known as the moment of inertia.

. d
N=L=—(w) (6.111)

The kinetic energy of a rigid body can likewise be expressed in terms
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The rotational motion about the z axis is accelerated by the external
torque IV,. From (6.104) we observe that the moment of inertia

L.= Y _mi(e} +y}) (6.118)

is time independent, since the perpendicular distance +/ z? + y? from the
rotation axis of the mass point m; is fixed in a rigid body. Thus the
equation of motion for the z component in (6.116) is

Nz = Lz = zzd)z (6119)

The kinetic energy for rigid-body rotation about the fixed z axis is found
from (6.113) to be given by

K =1iI.w} (6.120)

The equation for rotational motion about a fixed axis in (6.119) has
the same mathematical structure as the equation for linear motion in one
direction.

F, = M, (6.121)

In fact, the following direct correspondences can be made between the
physical quantities of angular and linear motion:

Angular motion Linear motion

Moment of inertia, I, Mass, M
Angul lerati =0, =24 Li lerati =0, = &z
ngular acceleration, a, =, = & Linear acceleration, a; = v; = 57
Torque, N, Force, F,
. . d¢ . . o dz
Angular velocity, w, = Linear velocity, v, = 3

Angular position, ¢ Linear position, z

Angular momentum, L,=1,,w, Linear momentum, P, = Mv,

Kinetic energy, K = 1I,,w2 Kinetic energy, K = +Mu?

As a consequence, we can directly apply the techniques for solving
one-dimensional problems in Chapters 1 and 2 to solve (6.113) for ro-

tations about a single axis. For example, if the torque is conservative -

¥

(function only of the angle ¢), we can define a potential energy

)
V(g) = / N,(¢')de (6.122)
s

in correspondence with (2-6).
6.9 Moments-of-Inertia Calculations

The rrfoment of inertia Io of a rigid body about a given axis through
the- point O is related to the moment of inertia Icy about a parallel axis
which passes the center of mass by the parallel-azis rule

Io = Iow + Md® (6.123)

where d is the perpendicular distance between the two axes; see Fig. 6-14.
In practice Iy is often easier to compute than Io, making it advanta-
geous to use the parallel-axis rule. In any case only one moment of inertia
about a set of parallel axes needs to be computed.

FIGURE 6-14. Parallel-axis rule for moments of inertia.
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To prove the parallel axis theorem we use the expression (6.17) for
the system angular momentum about O

L=MRXV+) mr}xv} (6.124)

For the moment of inertia we just need the component of L along w

L-&=Ilow=MRXV-&+Icmw (6.125)

The first term on the right side simplifies to

MR XV -&=M&-RxV

= M& xR-V (6.126)

= M(@ x R)*w

By referring to Fig. 6-14 we see that the length of @ X R is the perpen-

dicular distance d between the two parallel axes, and Io = Md? + Icym

follows.

Another useful rule for moments of inertia, known as the perpendic-
ular azis rule, applies to bodies whose mass is distributed in a single
plane. For a body in the z,y plane with mass density per unit area o,
the moments of inertia about the three axes are

Ipe = /yzddA

Iy = / glodA (6.127)

I,= /(a:2 +y*)odA

From these we derive the perpendicular-axis rule

Iz + Iyy = Iz (6128)

illustrated in Fig. 6-15. When the mass distribution is azimuthally sym-
metrical about the z axis, the two moments in the plane are equal and
we obtain

I = Iy =11, (6-129)

X

FIGURE 6-15. Perpendicular-axis rule for a body whose mass is distributed only in

‘the z,y plane.

In the applications to be considered in the following two sections,
we shall need the moment of inertia of a spherical body about an axis
through its center of mass. For a sphere of radius a the mass density is

M
P=

s a3
371"0,

(6.130)

where M is the total mass. The integral for the moment of inertia about
the z axis,

M
Iom = - /(:1:'2 +y)av! (6.131)

4
37a
can be carried out simply in cylindrical coordinates.
z' = r'cos ¢’

y' = r'sin ¢’ (6.132)
dV' = (r'd¢")dr'dz’




When the moving cue ball makes a head-on collision with a target
ball at rest, the CM of the cue ball momentarily stops, and the target
ball moves forward with the CM velocity of the cue ball, as shown earlier,
in §3.4. Since the balls are assumed smooth, the cue ball retains its spin
wl in the collision. Consequently, the contacting point on the cue ball
moves with velocity V, = —aw} immediately after collision. If wl >0 at
the moment of collision, the friction force acting opposite to the direction
of V, accelerates the cue ball forward, as illustrated in Fig. 6-18. This is
 the so-called follow shot. If wl < 0, the friction force accelerates the cue
ball backward until pure rolling motion sets in. This is the draw shot.
These shots play an important part in the tactics of pool or billiards.

6.11 Super-Ball Bounces

The bizarre behavior observed in bounces of the Wham-O Super-Ball
(Registered trademark of Wham-O Corporation, San Gabriel, CA.) can
be predicted from the rigid-body equations of motion. The Super-Ball
is a hard spherical rubber ball. The bounces of a Super-Ball on a hard
surface are almost elastic (i.e., energy-conserving) and essentially nonslip
at the point of contact. As an idealization, we shall also neglect gravity:
in our calculations, though its inclusion does not change the principal
results.

We begin with an analysis of a single bounce from the floor. We
denote the initial components of the CM velocity by v? and vg and the
initial spin of the ball about the z axis through the CM by w9, as pictured
in Fig. 6-19. The frictional force f; and the normal force f, act on the ball
only for a very short time duration, At. We can determine the changes
in the velocities Avg, Awv, from the linear-impulse equation (6.135), and
the change in spin from the angular-impulse equation (6.137). We obtain

FIGURE 6-19. Super-Ball bounce from a hard surface.

By elimination of the frictional force f, from the first and third equations
we obtain a relation between Av, and Aw, caused by f;. ,

L,
M(vg - vg) = =22 (w} - w)) (6.144)

a

MAv, = — / fzdt ’,I.‘he assumption that f; and f, are independent (i.e., that the deforma-
i txon.s of the superball result in stresses in the z and y directions, which

. are independent of one another) requires that the energies a,ssocia,t’ed with

MAv, = — / f,dt (6.143) the z and y motions be separately conserved. In other words, both f
! and f, are conservative forces. The conservative nature of fy le’ads to :

ty
I 0w, =a / fzdt M (vy)? = IM(v])? (6.145)
to

We conclude that the vertical component of velocity must be reversed by




the action of the normal force fy:

ol = —gf (6.146)

The stipulation that f; be energy-conserving (i.e., no slipping) yields the
condition
Moo (@) + M (v3)" = 3L (w2)” + M (o3)" (6.147)

Equations (6.144), (6.145), and (6.147) govern the dynamics of a
Super-Ball bounce. One possible solution to (6.144) and (6.147) is

85O

=v

8§ -

v
(6.148)

w, =W

N =
N o

This solution corresponds to zero frictional force in (6.143) and is there-
fore relevant only for a smooth ball. The solution appropriate for a Super-
Ball can be obtained by division of (6.144) and (6.147). We find

vl + 1) = a(w} +w)) (6.149)

or by rearrangement

(v} — aw}) = —(v] — aw}) (6.150)

The quantity (vz — aw,) is just the horizontal velocity at the point on the
ball that makes contact with the floor. Hence the velocity at the point of
contact is exactly reversed by a bounce. From (6.144) and (6.150) we can
solve for the spin and horizontal velocity immediately after the bounce
in terms of the initial spin and velocity. With the moment of inertia of
the Super-Ball given by (6.133), we arrive at '

1

voo=

0 0
x V:T-‘+ W

(e
~aph

.01 (6.151)
w, = —5w, + %

a IHCO S}

as the general solution for a Super-Ball bounce.
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FIGURE 6-20. Deflection of a Super-Ball from a vertical bounce.

As an example of the result in (6.151), a Super-Ball which approaches
the floor from a vertical direction (v2 = 0) with initial spin w? will leave
the floor with ’

’U‘,Il: == %—wga
1__3 0

w; = —3w; (6.152)
1_ _y0

'Uy - Vy

as illus'trated in Fig. 6-20.- A smooth ball with the same initial velocity
and spin would bounce back in the vertical direction.

The unexpected behavior of a Super-Ball is even more dramatically
exhibited in successive bounces. As indicated in Fig. 6-21, a Super-Ball
thrown to the floor in such a way that it bounces from the underside
of a table will return to the hand. We can show this quite simply from

- repeated applications of (6.151). If the initial spin of the ball is zero, the
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FIGURE 6-21. Return of a Super-Ball when bounced from the underside of a table.

velocity and spin after the first bounce from the floor are

1 __.3,0
v:l: - 7”::: :
0 (6.153):
1_ 10% :
wz =7 a

For the bounce off the underside of the table, the angular imPulse is
opposite in sign to the impulse in (6.143). With the angular impulse

reversed, the appropriate modifications of (6.151) for the second bounc

are
2

1
2 w,a

3

1
Vg —

e

v s
(6.154

2

Wz

i
|

N -

10
7

8 |¢h

3
_7w

When we substitute (6.153) into (6.154), we get

o
vl =%,
20 (6.155
2 _. 607z
Wz = ~%9 a

Thus the horizontal direction of motion has been reversed. .Fio%‘ the fin
bounce off the floor we again apply (6.151), with (6.155) as initial values
We find

3 _ _333,0 :
Uz = ~343 ”g (6.156
3 _ _ 130
Wy = ~343%

ey

Thus the Super-Ball returns after the three bounces with a slightly
lower velocity than when it started, although the total kinetic energy
remains the same. A smooth ball would not return, but would continue
bouncing between the floor and the table, as indicated by the dashed line
in Fig. 6-21.

- PROBLEMS v
- 6.1 Center of Mass and the Two-Body Problem

6-1. Find the distance of the center of mass of the earth-moon system
- from the center of the earth.

6-2. For a two-particle system in a region of uniform gravitational ac-
celeration g, show that the net gravitational torque about the CM

point of the system is zero.

6-3. A boat of mass 60 kg and length 4 m is at rest in quiet water. If a
man of mass 80 kg walks from the bow to the stern, what distance

will the boat move? Neglect water resistance.

. Two particles on a line are mutually attracted by a force
F=—fr

where f is a constant and r is the distance of separation. At time
t =0, particle A of mass M is located at z = 5 cm, and particle B
of mass %M is located at z = 10 em. If the particles are at rest at
time ¢ = 0, at what value of z do they collide? What is the relative
velocity of the two particles at the moment the collision occurs?

. Compare the magnitude of the gravity forces on the moon due to
the earth and sun. Despite this result show from (6.22) that the sun
is not very important in determining the moon’s motion relative to
the earth. If the moon’s distance from the earth were greater would
your conclusion remain valid?

. The two atoms in a diatomic molecule (masses m; and m;) interact
through a potential energy

bZ
~3—r—3~

where r is the separation of the atoms.



a) Find the equilibrium separation of the atoms and the frequency
of small oscillations about the equilibrium assuming that the
molecule does not rotate. How much energy must be supplied
to the molecule in order to break it up?

b) Determine the maximum angular momentum which the molecule
can have without breaking up, assuming that the motion is in cir-
cular orbits. Find the particle separation at the break up angular
momentum.

c¢) Calculate the velocity of each particle in the laboratory system

at break up, assuming that the center of mass is at rest. Hini: :

break up occurs when Veg no longer has a minimum.

6-7. Two point masses are connected by a spring with spring constant

k but are otherwise free to move in space. The equations of motion
are

’I’l'bli;l = -—]C(I‘l — Iy — l) mzfz = k‘(l’l — Iy — 1)

where 1 = [(r; — r3)/|r1 — 2.

a) Find the equilibrium separation of the masses and the frequency
of oscillation of the masses about equilibrium assuming that the
system does not rotate.

b) How will the equilibrium separation of the masses and the fre-
quency of small oscillations about equilibrium change as the sys-
tem rotates about an axis through the CM perpendicular to the
axis of the oscillator?

c¢) Show that the total energy of the system is conserved.

6-8. Two particles with masses m; and my collide head on. Particle 1

has an initial velocity v; and particle 2 is initially at rest in the lab-
oratory system. The particles interact through a potential energy

a 2
V = Vo (——-—)
12

where V5 > 0 and rjp = |r; — r2l.

a) Compute the total energy and angular momentum of the two par-

ticles in the CM system. Express the results in terms of my, mg,

and vy.

b) Describe the motion qualitatively as it appears in the CM system
and in the lab system.

c) Find the distance of closest approach (minimum separation be-
tween the particles).

d) Find the velocity of particle 2 in the lab system after the collision.

6-9. Two particles of masses m; and

my collide. The initial velocity
of particle 1 in the lab system is

Vi
vy, while particle 2 is initially at o T ?
rest. The initial impact parame- {’f
ter is bg, as shown. The particles i bbbttt 02

interact through a repulsive po-
tential V = Vp/|r; — ra|t.

a) Calculate the total energy and angular momentum in the CM
system in terms of the particle masses and velocities.

b) Derive the equation of motion for the relative coordinate r =
r; — ry. Find the distance of closest approach.

c¢) Show how the angle § between the final velocities of the particles
in the lab can be calculated if the magnitude |v; | of the final lab
velocity of particle 1 is measured.

6.2 Rotational Equation of Motion

6-10.

i6-11.

If the force on m; by mg is F[12] and the force on my by m; is FE,}],
the eztended third law requires that not only F[12] + F[ZU = 0 but
also that the forces act on a line connecting m; and mgy. Show that
the total torque due to this pair of forces about a point p at r, is
zero, thus demonstrating that the extended third law implies zero
total internal torque.

If the potential energy between two particles of a system depends
only on their separation show that this potential energy depends
on the angle of rotation about a fixed axis only through differences
in particle angle coordinates. Then show that the resulting internal
torque is zero.




6.3 Rigid Bodies: Static Equilibrium

6-12.

6-13.

A circular tabletop of radius 1 m and mass 3 kg is supported by
three equally spaced legs on the circumference. When a vase is
placed on the table, the legs support 1, 2, and 3 kg, respectively.
How heavy is the vase, and where is it located on the table? What
is the lightest vase which might upset the table?

A spool rests on a rough table
as shown. A thread wound on
the spool is pulled with force T'
at angle 6.

a) If § = 0 will the spool move
to the left or right?

b) Show that there is an angle @ for which the spool remains at rest.

c) At this critical angle find the maximum T for equilibrium to be

maintained. Assume a coefficient of friction p.

6-14. A cylindrical glass full of ice weighs four times as much as when

6.4
6-15

6-16.

empty. At what intermediate level of filling is the glass least likely to
tip? Neglect the mass of the bottom of the glass. Would the result

change if the glass contained water (of the same density)? Hint

show that the mazimum angle of tip corresponds to the minimum ~

CM height.

Rotations of Rigid Bodies

. Consider again the drag racer of Fig. 1-1 which, while accelerating
horizontally, is in vertical and rotational equilibrium. In §1.3 it was -
found that the maximum acceleration is ug where p is the coefficient -
of friction between the rear tires and the track. Show that in order -
to realize this optimal acceleration the CM must be located such :
that the ratio of its height h above the ground to the distance b; -

forward of the rear wheels satisfies by = ph.

A vehicle has brakes on all four wheels. At rest the weight supporte
by each wheel is the same. Find the deceleration which correspond
to maximum possible braking. Calculate the normal forces the o
front and back wheels when the brakes are applied. Why are th
front brakes the most important in braking?

6.5 Gyroscopic Effect
6-17. A heavy axially symmetric gyro-

scope is supported at a pivot, as
shown. The mass of the gyro-
scope is M, and the moment of
inertia about its symmetry axis to o~

is I. The initial angular veloc- Ve
ity about its symmetry axis is w. SILITTILLLI 7777777777

——rn

- Give a suitable approximate equation of motion for the system,

assuming that w is very large. Find the angular frequency of the
gyroscopic precession. Show that the above approximation is justi-

fied for
g
o[

where all moments of inertia are taken to be roughly M¢2.

6.6 The Boomerang

6-18. Show that if the aerodynamic force on a boomerang blade is propor-

tional to v; (not v? as in the text), the ratio of spin to CM velocity
must still be related as V = \/32: wl for a successful return. Show

that the radius of the orbit is now proportional to the velocity.

~

6.8 Single-Axis Rotations

~ 6-19. A disk of radius R is oriented in a vertical plane and spinning about

its axis with angular velocity w. If the spinning disk is set down
on a horizontal surface, with what translational CM velocity will
it roll away? Hint: friction accelerates the CM and slows rotation
until rolling begins.

~6-20. A spherical asteroid of uniform density 3 g/cm?® and radius 100 m is

rotating once per minute. It gradually acquires meteoritic material
of the same density until a few billion years later its radius has
doubled. If, on the average, this matter has arrived radially, what
is the final rate of rotation?

21. Due to tidal friction the earth’s day increases in length by 4.4 x

10~%s each day.

a) Compute the accumulated error between time based on the earth’s
rotation and absolute time (say by an atomic clock) after one

|
|




6.9

century and after 3000 years. This accumulated error would be
evident in the observation versus prediction of eclipses. Hini:
compare the angle through which an accelerating sphere turns with
that of a sphere rotating uniformly.

b) Estimate the power dissipated assuming a uniform earth. Com-
pare this to a 10° W electrical generation facility.

Moments-of-Inertia Calculations

6-22. A thin, uniform rod of mass M is

6-23.

6-24.

supported by two vertical strings,
as shown. Find the tension in the
remaining string immediately after
one of the strings is severed.

L

A physical pendulum consists of a
solid cylinder which is free to rotate
about a transverse axis displaced by
a distance £ along the symmetry axis
from the center of mass, as illus-
trated. Find the value of £ for which
the period is a minimum. Express
the result in terms of the mass M
and moment of inertia I about a
transverse axis through the CM.

A pendulum consists of two masses
connected by a very light rigid rod,
as shown. The pendulum is free to
oscillate in the vertical plane about
a horizontal axis located a distance
a from m, at a distance b from my.

a) Calculate the moment of inertia
of the system about 0. Find the
location of the center of mass.

b) Set up the equation of motion for the system and derive the
potential-energy function.

c) Take b > a and determine the frequency of oscillation for small
angles of displacement from the vertical.

d) Derive an exact expression for the period of the pendulum
(10mas| < m)-

6-25.

6-26.

e) Find the minimum angular velocity which must be given to the
system (starting at equilibrium) if it is to continue in rotation
instead of oscillating.

A yo-yo of mass M is composed of two disks of radius R separated
by a distance ¢ by a shaft of radius r. A massless string is wound
on the shaft, and the loose end is held in the hand. Upon release
the yo-yo descends until the string is unwound. The string then
begins to rewind, and the yo-yo climbs. Find the string tension and
acceleration of the yo-yo in descent and in ascent. Neglect the mass
of the shaft and assume the shaft radius is sufficiently small so that
the string is essentially vertical.

Find the inertia tensor components about the origin in terms of the
inertial tensor components about the CM. The position of the CM
point is R = XX+ Y§ + Z%.

6-27. A two-dimensional object lies in the z,y plane and is described by

the moments of inertia I,;, Iy, and the product of inertia I, for
rotations in the z,y plane. In a coordinate system rotated by an
angle ¢ the new coordinate components are related to = and y by

' =zcos¢p+ysing
y' = —zsing+ycos¢

a) The tensor of inertia elements in the rotated system are Ipigr, Iy
and Ip. Find the smallest angle ¢y for which Iy vanishes.
Show that the other solutions are ¢g + n% and are equivalent.
The 2’ and y' axes are known as principal azes since for rotations
along these axes L is parallel to w.

b) If for two rotated systems (rotation angle # 7/2) Iy = Ipiy =0,

d) Compute the principal moments in terms of a given set I,

prove that the principal moments are equal. As an example con-
sider an equilateral triangle.

c) If the principal moments are equal and I, = 0 in some coordinate
frame show that the moments are equal in any rotated coordinate
system. As an example consider a uniform square.

Iyy
and I, of inertia elements.
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the point on the wheel is given by .
vo .
V=V0+Vrot=V0+—Ele‘

contact. No slipping means that there

that v = 0 at the point of :
Nt d surface at the contact point.

is no relative motion of the wheel an

(6.72)

In general, the angular velocity w is not the time derivative of any
angular coordinate ¢. As a consequence, angular displacements are quite
different in nature from translational displacements. Only in the special
case of fixed axis of rotation is it possible to express w as the time deriva-
tive of a coordinate. We can show that it is not possible to write w = ¢
in general by the following simple example. If such a representation were
possible, we could compute the coordinates ¢., ¢y, ¢, describing the
orientation of the rigid body by integrating over the components of w.
For example,

$s(t) — ¢2(0) = / wg (t')dt! (6.73)

This would say that the change in orientation ¢ (t) — ¢(0) resulting from
a motion w depends only on the three numbers fot w;(t)dt'. That this
is not true can be seen from the following demonstration. Take a book
and choose fixed axes %X, ¥, Z. First rotate the book by 90° around the
© % axis and then by 90° around the § axis. Then start again from the
original orientation and make the same rotations in the opposite order.
- In the two cases the resulting orientations of the book are different, but
the integral [wdt is the same, namely,

™
Jeeti=5

6.5 Gyroscope Effect

/wydt = g , /wzdt =0 (6.74)

© As an interesting application of the rotational equation of motion (6.48)
~we will discuss the gyroscope effect experienced by a wheel spinning in
a vertical plane, as illustrated in Fig. 6-6. With a counterclockwise spin,
the angular-momentum vector points along the positive z axis. When a
torque which tends to turn the wheel in a counterclockwise sense about
the positive y axis is applied, the wheel is observed to precess about the z
axis. We can predict this precession from (6.48) and derive an expression
for the precession frequency. According to (6.48), the change in angular
momentum in an infinitesimal time interval d¢ is

dL = th (675)

’i‘,hé increment dL is parallel to N and perpendicular to L, as shown in
Fig. 6-6. Since L and N are perpendicular, the length of L is unchanged



FIGURE 7-21. Spinning heavy top coordinates.

angular momentum about the origin is

L = I6% + I$sin 05 + I3(9 + pcos 0)2 (7.136)
where I,, = Is. Using these expressions for w and L and (6.113), the
kinetic energy of the top is

. . . 1 . .
K= %w L= %1(02 + dsin® 6) + ST (b + deos )’ (7.137)

The gravitational potential energy is

V = Mg{cost (7.138)

reaw LIV LALWUY S YHIOIIeCLT fL L UL AR

where £ is the distance from the point of contact to the CM of the top.

The Lagrangian L = K — V for the top is a function of 8, 6, &, b.
Since there is no dependence on ¢ or v there are two conserved general
momenta. The first is

oL

Py = _9—1,; = Ig(qﬁfgﬁcosG)

(7.139)
= I3w3

Thus the angular velocity ws along the symmetry (z) axis is constant.
The second conserved momentum is

0L Y.
Py = -é-q; = I¢sin® 0 + Izws cos d (7.140)

The ¢ equation of motion is then P » = 0 which gives
I$sin 8 = §(Isws — 219) (7.141)
The Lagrange equation py = %éi gives the other equation of motion
1 = (Mgt — Lwsd + I$* cos §) sin 8 (7.142)

Motion in ¢ corresponds to precession and variations in @ are known as
nutation.

We now use this last equation of motion to investigate the conditions
under which the motion is pure precession. For pure precession the angle
6 is constant. For constant ¢ 6 the right-hand side of (7.141) must vanish
and we can solve for qz‘) in terms of 4.

. Iws 4Mgll cos
= I cost (H: \/ 1=~ (7.143)

For physical solutions, the quantity under the radical sign must not be

“negative. Since cosf > 0 for a top on a table, the spin w3 must satisfy

[4Mgel cos 6
ws > ——g—Ig—Cﬂs— (7.144)

Only if the top has at least this minimum value of spin is pure precession
possible. For a spin which is much greater than this minimum value, we
can approximate the square root in (7.143) by the first two terms in a
binomial expansion. We then find two possible approximate solutions for
the precessional rate ¢.

b
B
sl



Slow precession:

. Mgl
= = 7.145
‘Fast precession.:
i I3w3
7.146
¢ Icosf ( )

For the first solution, ¢ < ws, and the angular momentum vector L lies
nearly along the 2 axis. This solution corresponds to slow gyroscopic
precession, as discussed in §6.5. For the second solution, ¢ = ws, and
L lies nearly along the z axis. In this case, Lcosf = Izws and ¢ =
L/I, which is just the angular frequency wy, in the force-free-top limit of
(7.126). This solution with rapid precession about the vertical direction
is independent of gravity in the limit w3 3> (wW3)min-

For a rapidly spinning top, slow precession and small nutation are

frequently observed. To find an approximate solution for the motion
with this condition, the quadratic terms in ¢ and 6 in the differential
equations (7.141) and (7.142) can be neglected. We then obtain

¢51 6= I‘Q’TS
7.147)
. MgE 13w3 . . ( )
g — 5~ —I—~q{> sin 8

In terms of wy, from (7.145) and wy, defined as

wp, = %2 (7.148)
I
these equations can be written
$sind =w b (7.149)
f = wr(w, — ¢)sin g (7.150)

If we time-differentiate (7.149) and substitute (7.150), we find

e

where again we have dropped a quadratic term (of order ¢0) We can -

2 :
Lo 1ot = wlu, (7.151)

immediately write down the solution to this equation for gb
é(t) = wp + acos(wrt + @) (7.152)

For the initial conditions d) =wp, §= 0, § =0y at t =0, we find <,"50 =
from (7.149) and

B(t) = wp — (wp — wp) coswrt (7.153)
The solution for ¢(t) follows by integration.
B(t) = wpt — (‘-"P‘—“"’) sin wrt (7.154)
wL
To solve for 4, we plug (7.153) into (7.149). This gives

f = (wp — wo) sinwptsin @ (7.155)

Since wp and wg are small quantities, we can make the approximation

sin § ~ sin 6y on the right-hand side of this equation. The solution for
is then found by integration.

Wy —wo \ .
0(t) = 6o + (lw-——g) sin fg (1 — coswyt) (7.156)
L
This complétes the formal solution of the equations of motion in the
approximation of slow precession and small nutation.

The solution for 4(t) in (7.150) exhibits nutation of the top between
the angular limits 6o and 6y +2[(w, —wo)/wi]sin 6. The sign of (wp —wy)
determines which is the upper and which is the lower bound on 6. The
precession ¢(¢) in (7.154) has a sinusoidal motion associated with the
nutation which is superimposed on the steady precession. When the
initial precession wg equals w,, the top undergoes steady precessional
motion with no nutation. In Fig. 7-22 the curves traced out by the
symmetry axis of the top are shown for various initial values wy.

The nutation frequency of the top from (7.156) is wz,. We see from
(7.145) and (7.148) that as the spin ws of the top increases, the nuta-
tion frequency wy, increases, while the precession frequency w, decreases.
Furthermore, the nutation amplitude is inversely proportional to wy,, so
that nutation of a fast top is not so visible. When a fast top is spun
on a hollow surface, however, a buzzing tone can often be heard with a
frequency corresponding to the nutation frequency.




As the top rises, kinetic energy is converted into potential energy and
the spin of the top decreases. In addition, some of the energy is dissipated

here. The friction force will also cause a torque

NI pMgt by friction. The rate of frictional dissipation of energy,
about the CM of the top which is roughly perpendicular to the peg for L .
a thin peg, as illustrated in Fig. 7-23. For a rapidly spinning top, L lies R fo (1.162)

nearly along the symmetry axis. Since the frictional torque is perpendic—A
ular to the symmetry axis, L precesses toward the vertical. The angular-
velocity of this precession is

where f is the frictional force and v is the velocity at the point of contact,
can be quite small for a thin peg. Nevertheless, the effects of friction in

i |N| pMgt causing the top to rise are dramatic.
L T Iws Once the top has risen to a vertical position, the poiht of contact is
or ‘the symmetry axis, and the frictional force is much smaller. From (7.142),
; the equation of motion for very small ¢ is then approximately
0 = —pw, (7.161). ,

.

by (7.158). The angular velocity of the rising motion is just the product, 16 — (Mgl — Iyws b+ quz) =0 (7.163)

of the precessional angular velocity and the coefficient of skidding friction.;

provided that the dissipation of energy by friction is neglected. In terms
of the quantities w, and wy, defined in (7.145) and (7.148), this equation
can be written as

.. .1 .
6+ wyg, (—wp +¢é— —¢2) =0 (7.164)
wr
For a given ¢, the motion in @ will be stable about 8 = 0 if
.1,
—wp+op——¢" >0 (7.165)
wr,
The corresponding requirement on éis

o R P ) o YL _ Ay
2(1 1 wL><¢<2(1+\/ ” (7.166)

" For a high value of the spin ws,

wp _ Mgl/Tzws
=<1 (7.167)

FIGURE 7-23. Forces on a rising top. and the condition in (7.166) is satisfied. The spinning top sleeps in the




vertical position until friction slows down the spin to the value

[aMger
wa = Ig (7.168)

wy, = 4w,,

for which

and (7.166) becomes unphysical (i.e., complex). At this point, the §
motion of the top becomes unstable and the top wobbles and goes down
as 0 increases from zero.

To develop a feeling for the motion of a typical top, we consider as
an example a top made of a thin disk of radius @ and mass M which
is supported by a narrow peg of length £ = a/2 and negligible mass,
as illustrated in Fig. 7-23. The moments of inertia about the point of
contact of the peg with the table are

2
b= %MGZ . 1 (7.169)
I= ;{Ma + Ml = -Z—Ma
If the top has a radius @ = 3 cm and is set down with an initial spin of
ws = 300 rad/s (about 50 r/s), the angular velocity of precession from
(7.145) is
Mg(a/2) g 980

=M 4~ 1rad/s 7.170
Y = Tafgtws — amn  3@00) Y (7-170)

For a coefficient of friction p = 1/10, the angular velocity from (7.161)

of the top’s rise toward the vertical is
= —pw, = —0.1 rad/s (7.171)

If the top is started at its maximum angle of inclination,
6 = arctan /2 = 0.46 rad (7.172)
a

the time to rise to the vertical is

6 0.46
6] 0.1

In this length of time the axis of the top has made

wpt  1(5) )
5 698 = 0.8 revolution (7.174)
about the vertical and
wst _ 300(5) ,
o = 628 = 240 revolutions (7.175)

about the symmetry axis. From (7.168), the condition for the motion at
§ = 0 to be stable is

4Mgll 4Mg(a/2)(3Ma?) 4g
= =4 = 7.176
> [HE =[RS g
From the parameters of our top, we find

\/% =4/ il—-(—%@ = 36 rad/s (7.177)

Since the inequality ws > +/4g¢/a is satisfied for the initial spin ws =
300 rad/s, the top will sleep in its vertical position.

7.12 The Tippie-Top

When a tippie-top is spun on a smooth table, it turns itself upside-down,
as pictured in Fig. 7-24. The usual high school and college rings likewise
flip over to spin with their heavy ends upward. This fascinating behavior
is due to a small frictional force at the point of contact with the table.

The frictional force is parallel to the table, opposing the velocity of

slipping, as illustrated in Fig. 7-25. Since the horizontal direction of this

force rotates rapidly with the angular frequency w of the top, the time
average of the force is zero, resulting in little effect on the motion of the

- CM.

The CM of a tippie-top is located close to the center of curvature,
as indicated in Fig. 7-25. The gravitational torque can therefore be ne-

~ glected. Furthermore, the frictional torque is nearly horizontal. This

horizontal torque also rotates with angular frequency w and time aver-
ages to zero. As a result, dL/dt =~ 0, on the average, and the angular
momentum of the top is nearly conserved. If the tippie-top is initially
spun with the spin upward, as in Fig. 7-24, the approximately fixed di-
rection of L is vertical with respect to the table.
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FIGURE 7-24. Flipping of a tippie-top.
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FIGURE 7-25. Frictional force and torque on a tippie-top.

The tipping motion is readily analyzed in a coordinate system which
rotates with the top. In this reference frame the time average of the
torque N is nonzero. The equation of motion (7.72) is

0L
N=— +wxL (7.178)
As a simplifying approximation, we take the three principal moments
of inertia about the CM as equal (the shape of the tippie-top is nearly

spherical). Then
L~ Jw (7.179)

and the wXL term in (7.178) vanishes. L remains vertical and N hor-
izontal throughout the motion. Since L and N are perpendicular, the
torque causes the angular momentum to precess uniformly in the body
frame, according to (7.178). Taking the component of (7.178) along the
symmetry axis 2, we find

0L 4(2-L)

= (7.180)

2-N=2 5 5t

where 0 is the angle between L and Z. From (7.179) and (7.180), we

obtain
0= N = pMgR
L ITw
where R is the radius of the top. Thus 6 increases with time, and the
tippie-top flips over. Once the stem scrapes the table, the subsequent rise
to the vertical is almost the same as an ordinary rising top, as treated in
§7.11. We can estimate the time required for the tippie-top to flip over by
use of (7.181). A spin of w = 300 rad/s is easily imparted to a tippie-top
of radius R = 1.5 cm and moment of inertia I = 2M R? (hollow sphere).
For a coeflicient of friction y = 1/10, we obtain

(7.181)

. 3ug _ 3(0.1)(980)

0= 5Rw — 2(1.5)(300) = 0.3 rad/s (7.182)
The flip time is, roughly,
g ™
=y — 7
503 10s (7.183)




7-3.

7-4.

7-5

PROBLEMS

7.2 Fictitious Forces
7-1.

A particle of mass m moves in a smooth straight horizontal tube
which rotates with constant velocity w about a vertical axis which
intersects the tube. Set up the equations of motion in polar coordi-
nates and derive an expression for the distance of the particle from
the rotation axis. If the particle is at r = rg at t = 0, what velocity
must it have along the tube in order that it will be very close to
the rotation axis after a very long time?

. The WIYN telescope mirror blank was cast on a spinning platform

in an oven. By this spin-casting technique the desired parabolic
shape can be achieved without having to remove much glass by
grinding. Light rays parallel to the symmetry axis of the mirror are
focused to a point on the axis. This focal distance f is one-half the
radius of curvature of the mirror.

a) If the mirror spins with angular velocity w show that the focal
distance is f = g/2w?.

b) The mirror is to have a f/diameter ratio of 1.75 and a diameter
of 3.5 m. Find the required spin in revolutions/min.

A bug of mass 1g crawls out along a radius of a phonograph record
turning at 33% r/min. If the bug is 6cm from the center and
traveling at the rate of 1 cm/s, what are the forces on the bug?
What added torque must the motor supply because of the bug?

When ice skaters spin in place while pulling in their arms and legs,
the striking increase in angular velocity is a consequence of angular
momentum conservation. The fictitious forces which act to spin the
skater are the Coriolis and azimuthal forces. For simplicity assume
the spinning skater holds dumbbells initially at arm’s length and by
internal body forces draws them toward the rotation axis. Neglect
any mass other than that of the dumbbells. Analyze the situation
from the point of view of a rotating coordinate system in which
the dumbbells are at rest except for radial motion. Show that the
resultant forces imply that angular momentum is conserved.

. For problem 7-1 use the Lagrangian method to

a) Find the radial equation of motion of the mass m.

b) Find the general constraint force Q.

c) Interpret this constraint force in terms of the Coriolis force.

7-6. A bead of mass m is constrained to move frictionlessly on a hoop of

radius R. The hoop rotates with constant angular velocity w about
a vertical axis which coincides with a diameter of the hoop.

a) Obtain the equation of motion by applying Newton’s law in the
rest frame of the hoop.

b) Find the critical angular velocity £ below which the bottom of
the hoop provides a stable-equilibrium position for the bead.

c) Find the stable-equilibrium position for w > €2.

7.3 Motion on the Earth

7-7.

7-10.

A spherical planet of radius R rotates with a constant angular veloc-
ity w. The effective gravitational acceleration geg is some constant,
g, at the poles and 0.8 g at the equator. Find geg as a function of
the polar angle § and g. With what velocity must a rocket be fired
vertically upward from the equator to escape completely from the
planet?

. A particle of mass m is constrained to move in a vertical plane

which rotates with constant angular velocity w. Find the equations
of motion of the particle, including the force of gravity.

. A particle moves with velocity v on a smooth horizontal plane.

Show that the particle will move in a circle due to the rotation of
the earth; find the radius of the circle.

A ball is thrown vertically upward with velocity vg on the earth’s
surface. If air resistance is neglected, show that the ball lands a
distance (4w sin #v§ /3g?) to the west, where w is the angular velocity
of the earth’s rotation and 4 is the colatitude angle.

7.4 Foucault’s Pendulum

7-11.

- order in w/wg using the trial solutions z = cge

Show using (7.45) that the Foucault pendulum equations of motion
in cartesian coordinates are .

i+ wiz — 2wcosfy =0

4+ wiy 4+ 2wcosfz =0

where w is the earth’s angular velocity and 0 is the colatitude angle.

Solve this system of coupled equations retaining only the leading

Mt and y = cye™H.

o
B
|




Show that the two allowed angular frequencies are 04 = wptw cosd
and that (cy/cz)+ = =i. Impose the initial values z(0) = @, £(0) =
0, y(0) = 0, y(0) = 0. Use the trigonometric identity in (2.168)
to find the Foucault rotation in the z,y plane and determine the
period of the rotation.

7.6 Principal Axes and Euler’s Equations

7-12. Prove that if I} # I3 # I3 the principal axes are orthogonal. Hini:
start with (7.85) for w(®) and I, and dot with w®. Then do the
same with w®) and I and dot with w(*). Subtract the two equations
and use the fact that I is a symmetric tensor.

7-13. Show that the principal moments of inertia are real. Hint: starting
with (7.85) dot with w* (the complex conjugate) and subtract the
resulting equation from its complex conjugate. Then use the fact
that T is real and symmetric.

7-14. A flat rectangular plate of mass M and
sides @ and 2a rotates with angular velocity
w about an axle through two diagonal cor-
ners, as shown. The bearings supporting
the plate are mounted just at the corners.
Find the force on each bearing.

7-15. A point particle of mass m = 1kg is located at the point (g, yo, 0)
a) Calculate the tensor of inertia.
b) Find the principal axes and interpret the result.

7-16. For a prism mass distribution show that if any two axes perpendic-
ular to the axis of the prism have equal moments of inertia, then
all the axes in this plane are principal axes. Hint: consider the
expression for kinetic energy K in the wy, wy plane where w; and
wy lie in the plane perpendicular to the prism azes. The curve of
constant K is an ellipse. The result follows from the geometry of
the ellipse.

7.7 The Tennis Racket Theorem

7-17. Show that the tennis racket in §7.7 is properly designed so that a
hard stroke to the ball at the center of the racket head does not jar
the player’s hand by causing impulsive torques.

7-18. A tennis racket is swung underhand and released so that it rises
vertically with an initial spin about the unstable principal axis. At

the instant of release the end of the handle is at rest. The racket
subsequently rises to a height of 5m.

a) Determine the time of rise to maximum height.
b) Find the initial angular velocity wy(0) about the CM.

¢) For an initial spin axis w3(0) that is 1 percent of wy(0), compute
the time at which the racket begins to tumble.

7-19. Write 2K and L? for a general rigid body, in terms of the principal-
axis components of w. From this, demonstrate the tennis racket
theorem for a free rigid body using conservation of K and L2.

7.9 The Free Symmetric Top: External Observer

7-20. A coin in a horizontal plane is tossed into the air with angular
velocity components w; about a diameter through the coin and
w3 about the principal axis perpendicular to the coin. If w3 were
equal to zero, the coin would simply spin around its diameter. For
w3 nonzero, the coin will precess. What is the minimum value of
wg /wy for which the wobble is such that the same face of the coin
is always exposed to an observer looking from above? With a little
practice, this is a clever way to arrange the outcome of a coin flip!

7-21. A satellite with three distinct principal axes tumbles as it orbits
the earth. A flexible antenna is deployed which slowly dissipates
energy as the spacecraft tumbles. Eventually the spacecraft stabi-
lizes without further action. Find the final regular rotational state
of the satellite. Hint: consider what happens to the energy and
angular momentum in the principal ares coordinate system.

7.10 The Heavy Symmetric Top

7-22. Why is it difficult to spin a pencil on its point? Illustrate quanti-
tatively with a pencil of length 10 cm and diameter 0.5 cm.

7-23. Give an expression, in terms of rotations about the CM, for the
kinetic energy of a heavy top whose point is fixed but pivots freely.
When the kinetic energy of the CM motion is included show ex-
plicitly that the total kinetic energy is the same as when calculated
relative to the pivot point.

7-24. A spinning heavy top is placed on a smooth horizontal table. The
top point will now trace out a complex curve and the CM will
repeatedly rise and fall. Find the Lagrangian and discuss how it
differs from the fixed-point case.
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FIGURE 7-22. Nutation curves traced out by the symmetry axis of the top for various
initial conditions. The top is started at the same value of # in each case and the
resulting curves are trochoids.

The phenomenon of nutation exhibited by our formal solution above
can be understood from a more elementary viewpoint. For a top which is
spinning rapidly, the angular momentum L is nearly along the symmetry
axis 2 of the top. The gravitational torque is obtained from (7.138)

N = —-f%é = Mg{sin 0% (7.157)

N is perpendicular to the zr axis and causes the precession about the
vertical direction. The angular velocity of precession w, = wpZ; can be

found by equating

dL . pa
T N = —~Mg{sin 6%
to
dL .
i wpXL = w, L(21X2)
Since 2;X% = —%sin @ and L = Izws, we obtain the expected result
Mgt
wp R Ton (7.158)

~ for the angular frequency of steady precession about the vertical z; axis.

For w; very large, the precession rate w, is quite slow and the sym-
metry axis is.nearly stationary. If the top is now given a slight push,
it instantaneously acquires a small angular-momentum component AL
perpendicular to Z. The resulting total angular momentum L=L+AL
points in a direction slightly different from the symmetry axis 2. The en-
suing motion is like that of a free top with the symmetry axis precessing
around L in a small circle. The angular frequency of this circular motion
is found from (7.136) to be
L I3LU3

The complete motion of the symmetry axis is a superposition of this rapid
free-top circular motion about the direction L on the slow precession of
I about the vertical direction.

7.11 Slipping Tops: Rising and Sleeping

When a spinning top similar to that in Fig. 7-21 is set down on a rough
surface, the top usually slips initially. A frictional force directed opposite
to the instantaneous skidding velocity acts to accelerate the CM of the top
until the velocity of slipping is reduced to zero and pure rolling motion
sets in. If the top is spinning rapidly when it is set down, it tends to
maintain a fixed angle § with the vertical, since the nutation is small.

“The normal force at the point of contact is then essentially the entire

weight of the top, and so the frictional force is
|f| ~ pMg (7.160)

where 4 is the coefficient of friction. This friction force will cause the top
to move in the direction of the force but that effect will not be considered




7-25. A hollow conical segment of half
angle a, mass M and side length
£ spins on a sharp pivot at ifs
apex as shown. The cone is made
from a uniform thin sheet and has
an open base.

a) The cone is initially rapidly
spun clockwise as viewed from
above with angular velocity ws
about the symmetry axis. Find
the direction and rate of the
slow precession in terms of
M, g, Is and the distance 2
of the CM from the apex.

b) Calculate the principal mo-
ments, the location of the CM
and the rate of slow precession.

7-26. A disk is spun about a vertical diameter. As it looses energy
through friction it begins to wobble with slowly decreasing angle 6.
Assume that the only motion of the CM is to fall slowly and that
the disk rolls. without slipping.

force

-7 point of {
_»7 contact

a) Show that the rolling condition is w3 = 0.

b) Show that the precession of the line of nodes qS is given by ¢ =
wo/V'sin §, where wp = 2@&. The wobble rate thus increases as
the disk lies down. Hint: Use part a) to establish that L lies along
the § azis. The torque lies along the X axis. Use N = L= qS x L.

c¢) Show that the component of spin along the vertical z-axis is given
by Wyert = wo(sin 0)3/ 2, Thus even though the wobble rate in-
creases without limit as the disk lies down, the spin as seen from
above actually comes to a stop. This effect can be impressively
demonstrated using a heavy disk, with a mark on top, spinning
on a cement floor.

7-27. Apply Euler’s equations to obtain the equations of motion for the
symmetric heavy top. Use the %, ¥,% coordinate system of Fig. 7-
20, where % is the line of nodes. Because of the symmetry of the
top these coordinates form a principal system even though the top
is not at rest. Show that the equations of motion are equivalent to
those of § 7.10. Hint: The X, ¥,% system has angular velocity w —P2
relative to the inertial system.

7.11 Slipping Tops: Rising and Sleeping

7-28. For a top with a spherical peg end, show that the effective peg
radius is § = g sin 8, where @ is the inclination angle. Would you
expect this top to rise higher than a similar top with a cut-off peg?

7.12 The Tippie-Top

7-29. Analyze the motion of a tippie-top using an inertial frame on the
table. Hint: Find the implications for w of the precession of L
about the vertical direction.




F=6 NONEQUILIBRIUM
APPLICATIONS OF NEWTON’S
LAWS FOR ROTATION

In this section we remove the restriction from the previous
section in which the angular acceleration was zero because
the net torque was zero. Here we consider cases in which a
nonzero net torque acts on a body and imparts an angular
acceleration to it.

In the case of linear motion in one dimension, we solve
similar problems using Newton’s second law, % F, = ma,,
where one component of the net force produces a compo-
nent of the acceleration along the same coordinate axis. To
maintain the analogy with Newton’s laws for linear motion,
we continue the restriction that the body rotate about a sin-
gle fixed axis. We use the rotational form of Newton’s sec-
ond law (Eq. 9-11), 37, = lay, where (as in the previous
. section) we have for convenience dropped the “ext” sub-
script with the understanding that we are considering only
external torques in our analysis.

In this section we will analyze problems involving an-
gular accelerations produced by a torque applied to an ob-
ject with a fixed axis of rotation. In the next section we will
broaden the discussion somewhat to include cases in which
the object rotates and also moves linearly (but keeps the
axis of rotation in a fixed direction). In Chapter 10 we con-
sider rotations in which the axis is not fixed in direction.

YraeR)

SAMPLE PROBLEM 9-9. A playground merry-gg-round
is pushed by a parent who exerts a force F of magnitude 115 N at
a point P on the rim a distance of r = 1.50 m from the axis of ro-
tation (Fig. 9-25). The force is exerted in a direction at an angle
32° below the horizontal, and the horizontal component of the
force is in a direction 15° inward from the tangent at P. (a) Find
the magnitude of the component of the torque that accelerates the
merry-go-round. (b) Assuming that the merry-go-round can be

 represented as a steel disk 1.5 m in radius and 0.40 cm thick and
that the child riding on it can be represented as a 25-kg “particle”
1.0 m from the axis of rotation, find the resulting angular accelera-
tion of the system including the merry-go-round and child.

Solution (a) Only the horizontal component of E produces a ver-
tical torque. Let us find F, , the component of F along the hori-
zontal line perpendicular to F. The horizontal component of F is

F, = Fcos32° = 97.5N.
The component of Fy, perpendicular to Tis
F, = F,cos 15° = 942 N.
The (vertical) torque along the axis of rotation is thus

r=rF, = (1.50m)(94.2N) = 141 N-m.

— ——Tangent at P

FicurE 9-25. Sample Problem 9.9, A parent pushes a play-
ground merry-go-round. The parent is leaning down, so the force
has a downward component. Furthermore, because the parent is
outside the rim, the force is directed slightly inward. The horizon-
tal component of the force, F,, is in the plane of the rotating plat-
form and makes an angle of 15° with the tangent at P, the point at

which the force is applied.

Horizontal component of F

The component of F, parallel to r (= F, sin 15°) produces no
torque at all about the axis of rotation, and the vertical component
of F(= F sin 32°) produces a torque perpendicular to the axis
that would tend to tip the rotating platform out of the horizontal
t;:::Iane: (because the parent is pushing down on the platform) if that
b(;r;]r?ggzere not opposed by an equal and opposite torque from the
(b? The merry-go-round is a circular disk of radius R = 1.5 m and
thickness d = 0.40 cm. Its volume is wR%d = 2.83 X iO“ cm®

The dénsity of steel is 7.9 g/em®, so the mass of the merry- o.
round i§ (2.8 X 10* cm®)(7.9 glem®) = 2.23 X 10° g = ng i i
From Figure 9-15¢ we obtain the rotational inertia of a disk rg-.
tated about an axis perpendicular fo its center:

I, = MR? = 4223 kg)(1.5 m)* = 251 kg~ m2.

The rotatio;al inertia of the child, whom we treat as a particle of

mass m = 25k i = i

s g at a distance of » = 1.0 m from the axis of rota-
L= mr? = (25kg)(1.0 m)® = 25 kg -m?

The total rotational inertia is I, = I, + I, = 251 kg-m?® + 25

kg-m? = 276 kg-m* The angular a ti
. . 1
from Eq. 9-11: g cceleration can now be found

T 141 N-m

1 = m = (.51 rad/s2.

@, =

Based on tl'w fiirection of the force shown in Fig. 9-25, the right-
hand rule indicates that both 7, and «, point vertically upward
from the plane of the merry-go-round.

| rnimmaisan xvsiaor oMY
SA%M PLE PROBLEM 9-10. Figure 9-26a shows a pulle
which can be considered as a uniform disk of mass M = 2.5 ky’
and radius R = 20 c¢cm, mounted on a fixed (frictionless) hoﬁzorf
Fal axle. A block of mass m = 1.2 kg hangs from a light cord that
is wrapped around the rim of the disk. Find the accele?ation of the

’ (a) mw;‘$ Block

g

®) y
FIGURE 9_—26. Sample Problem 9-10. (a) A falling block
causes the disk to rotate. (b) A free-body diagram for the block.
(c) A partial free-body diagram for the disk. The directions taken

as positive are shown by the arrows in (). The positi isi
. 0si
out of the page. postive 2 s ¢



7.9 The Free Symmetric Top: External Observer

The description of the earth’s rotational motion as a free symmetric top
in §7.8 was appropriate for an observer at rest in the rotating reference
frame. In this section we concentrate on the motion of a free symmetric
top as viewed by an external observer in an inertial frame. Since any
object tossed into the air is basically a free top, the inertial description
has a wide range of applications.

For a symmetric top the angular momentum and angular velocity
projected onto the principal axes (%,¥,2) in the top are

L = I{w X+ ws¥) + [3wsz

(e EY) s (7.124)
w = (W1 R+ we¥) +wsl

where % is in the direction of the symmetry axis. By eliminating (wiX +

wy¥) in these equations, the angular-velocity vector w can be expressed

in terms of L and Z as

w= <L -0z (7.125)

I3 -1
QE(aI )wg

as before, in (7.120). Since (7.125) is a linear relation among w, L, and
%, these three vectors must lie in a plane. The absence of torques on the
top implies that L is constant in the inertial system. Thus the w, Z plane
rotates (precesses) around the direction of L. According to (7.125), the

where




motion of the top as viewed from the inertial frame can be resolved into
non-orthogonal components wy, along L and ws along Z as

L
wr = —

I (7.126)
Wwg = —£)

Since 2 is a vector fixed in the body (i.e., it rotates with the body), we
have from (7.6) and (7.125)

i =wxz = (wyL)x2 (7.127)

Hence the symmetry axis % rotates (or precesses) with fixed angular ve-
locity wr L about the fixed inertial axis 1. If we were riding on the top
what would we experience? The angular velocity w* of the top as ob-
served from the precessing frame which rotates with angular velocity wrL
is

w*=w —wl = -0

The motion of the top as seen from this body-fixed frame is a rotation
about the symmetry axis 2 at the angular rate —(2. Since this is the rate
that the top rotates with respect to w (which is a fixed vector in the
precessing frame), we conclude that 40 is the rate that w rotates with
respect to the body, in agreement with the result (7.120) found from
Buler’s equations.

In the motion of the top, the angles that the symmetry axis Z makes’

with the vectors L and w remain constant, as can be shown from (7.125)
and (7.127) or from energy- and angular-momentum conservation. Since
there are no torques, both the angular momentum L and the rotational
kinetic energy K are constant. From (7.124) we can write L as

L= Iwnﬁ + Igw;gz (7128) .

where
wpil = WX +we¥ (7.129)

is orthogonal to 2. In terms of the components wn and ws, we have
L? = I*Wk + I32w§

7.130
9K =L - w = Iwk + ;w3 (7.130)

where we used the expression (6.113) for the rotational kinetic energy.
The constancy of L? and K in (7.130) requires in turn that wy and w3 be

constant. The magnitude of w in (7.124),

w= /w2 + wl

is then also constant. From the geometry of Fig. 7-18, the angles of
interest are determined by

w
tang = —=

W3 -
131
tanf = éﬁ = Twn ( )
L3 I3LU3

FIGURE 7-18. Components of angular velocity and angular momentum along the

symmetry axis Z of the top and an axis fi perpendicular to the symmetry axis in the
plane of W and L.

The fixed relative orientation of L, w, and Z follows immediately from
these results. If we eliminate w,/ws in (7.131), we obtain

I3
tana = T tand (7.132)

‘For an oblate top (pancake or coinlike), I3 > I, and the angle « is larger

than 6. For a prolate top (football or cigar-shape), a < 6, which is the
case illustrated in Fig. 7-18.




A simple geometric construction can be made to illustrate symmet-
rical free-top motion in an inertial reference frame. This construction is
based on the constancy of the angles § and a. As the plane containing
the vectors w and Z precesses about L, the vector w sweeps out a cone
(the space cone) of half-angle (§ — ) about the fixed direction L. In
the coordinate system fixed in the top, the vector w sweeps out a cone
(the body cone) of half-angle ¢ Since w sweeps out both the space and
body cones, the line of contact between the two cones is simply the vector
w. The points on the body cone which lie on the vector w are instan-
taneously at rest with respect to the fixed-space cone because w is the
instantaneous axis of rotation of the top. As a consequence, the body
cone must roll on the fixed-space cone without slipping. Thus we have
a qualitative picture of the top’s motion as the body cone rolling on the
space cone. This is illustrated in Fig. 7-19(a) for a prolate top, and in
Fig. 7-19(b) for an oblate top. L ‘

symimetry axis
ay

space cone /

space cone

body cone

(a) Prolate top (b) Oblate top

FIGURE 7-19. Space and body cones for (a) prolate top, (b) oblate top.

7.10 The Heavy Symmetric Top

Untold generations of children have been fascinated by the precessing,
rising, sleeping, and dying of spinning tops. The theory of spinning tops
plays an important role in a wide variety of disciplines ranging from
astronomy to applied mechanics to nuclear physics. In this section we
discuss the motion of a symmetric top in a gravity field for a special case

in which the point of contact of the top with supporting surface, the
pivot, is fixed.

To analyze the motion of the top it is convenient to introduce the
Euler angle coordinates ¢,8,% shown in Fig. 7-20. In this figure the
origin of the inertial coordinate system zr,yr, z1 is at the fixed point of
contact of the top. A coordinate system =z, y, z is obtained by the rotation
through an angle ¢ about Z;, followed by a rotation through 4 about %.
The % axis is called the line of nodes. Then a coordinate system z',y’, 2’
is obtained by a rotation through an angle % about the % axis. The angles
¢,6,v uniquely specify the z',y’, 2’ system relative to zr,ys, z; and are
useful in describing the orientation of a symmetric top as illustrated in
Fig. 7-21, where z',y', 2’ are taken to be the body-fixed axes of the top.

Y44

X
FIGURE 7-20. Euler angle coordinates describing rotations.

The angular velocity of the top is given in terms of the Euler angles

by
w = ¢z + 0% + ¥z (7.133)
Using the geometry of Fig. 7-20
Zr = cos 0z + sin 8§y (7.134)
and thus
w = 0% + dsin 65 + (¥ cos §)z (7.135)

Because the top is symmetric, the moments of inertia I, = gy = I are
the same about any set of orthogonal axes in the %, ¥ plane. Thus the
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20-3 The gyroscope

Let us now return to the law of conservation of angular momentum. This
law may be demonstrated with a rapidly spinning wheel, or gyroscope, as follows
(see Fig. 20-1). 1If we sit on a swivel chair and hold the spinning wheel with its
axis horizontal, the wheel has an angular momentum about the horizqntal axis.

. * That this is true can be derived by compounding the displacements of the particles
_of the body during an infinitesimal time Az. It is not self-evident, and is left to those who
are interested to try to figure it out. )

BEFORE AFTER

Fig. 20-1. Before: axis is hori;pptal;
moment about vertical axis = 0. Af.fer:
axis is vertical; momentum about ver.hc?I
axis is still zero; man and chair spin in

direction opposite to spin of the wheel.



Fig. 20-2. A gyroscope.

Fig. 20-3. A ra| dly spinning top.
Note that the direction of the torque
vector is the direction of the precession.
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Fig. 20-4. The motion of particles in
the spinning wheel of Fig. 20-2, whose
axis is turning, is in curved lines,

Angular momentum around a vertical axis cannot change because of the (friction-
less) pivot of the chair, so if we turn the axis of the wheel into the vertical, then the
wheel would have angular momentum about the vertical axis, because it is now
spinning about this axis. But the system (wheel, ourself, and chair) cannot have a
vertical component, so we and the chair have to turn in the direction opposite
to the spin of the wheel, to balance it.

First let us analyze in more detail the thing we have just described. What is
surprising, and what we must understand, is the origin of the forces which turn
us and the chair around as we turn the axis of the gyroscope toward the vertical.
Figure 20-2 shows the wheel spinning rapidly about the y-axis.. Therefore its
angular velocity is about that axis and, it turns out, its angular momentum is like-
wise in that direction. Now suppose that we wish to rotate the wheel about the
x-axis at a small angular velocity 2; what forces are required? After a short time
At, the axis has turned to a new position, tilted at an angle A8 with the horizontal.
Since the major part of the angular momentum is dué to the spin on the axis (very
little is contributed by the slow turning), we see that the angular momentum vector
has changed. What is the change in angular momentum? The angular momentum
does not change in magnitude, but it does change in direction by an amount A8,
The magnitude of the vector AL is thus AL = Lg A#f, so that the torque, which is
the time rate of change of the angular momentum, is 7 = AL/At = L, AB/AL =
7,08. Taking the directions of the various quantities into account, we see that

r = Q X L. ©(20.15)

Thus, if £ and Lg are both horizontal, as shown in the figure, = is vertical. Tp
produce such a torque, horizontal forces F and —F must be applied at the ends of
the axle. How are these forces applied? By our hands, as we try to rotate the
axis of the wheel into_ the vertical direction. But Newton’s Third Law demands
that equal and opposite forces (and equal and opposite forques) act on us. This
causes us to rotate in the opposite sense about the vertical axis z. ' ’
This result can be generalized for a rapidly spinning top. In the familiar case
of a spinning top, gravity acting on its center of mass furnishes a torque about the
point of contact with the floor (see Fig. 20-3). This torque is in the horizontal
direction, and causes the top to precess with its axis moving in a circular cone about
the vertical. If @ is the (vertical) angular velocity of precession, we again find that

r = dL/dt = @ X L.

Thus, when we apply a torque to a rapidly spinning top, the direction of the
precessional motion is in the direction of the torque, or at right angles to the
forces producing the torque.

We may now claim to understand the precession of gyroscopes, and indeed
we do, mathematically. However, this is a mathematical thing which, in a sense,
appears as a “miracle.” It will turn out, as we go to more and more advanced
physics, that many simple things can be deduced ‘mathematically more rapidly
than they can be really understood in a fundamental or simple sense. This is a
strange characteristic, and as we get into more and more advanced work there are
circumstances in which mathematics will produce results which no one has really
been able to understand in any direct fashion. An example is the Dirac equation,
which appears ‘in a very simple and beautiful form, but whose consequences are
hard to understand. In’our particular case, the precession of a top looks like some
kind of a miracle involving right angles and circles, and twists and right-hand
screws. What we should try to do is to understand it in a more physical way.

How can we explain the torque in terms of the real forces and the accelerations?
We note that when the wheel is precessing, the particles that are going-around the
wheel are not really moving in a plane because the wheel is precessing (see Fig.
20-4). As we explained previously (Fig. 19-4), the particles which are crossing
through the precession axis are moving in curved paths, and this requires application
of a lateral force. This is supplied by our pushing on the axle, which then com-
20-6




municates the force to the rim through the spokes. “Wait,” someone says, “what
about the particles that are going back on the other side?” It does not take long
to decide that there must be a force in the opposite direction on that side. The net
force that we have to apply is therefore zero. The forces balance out, but one of
them must be applied at one side of the wheel, and the other must be applied at the
other side of the wheel. We could apply these forces directly, but because the wheel
js solid we are allowed to do it by pushing on the axle, since forces can be carried

up through the spokes.

"What we have so far proved is that if the wheel is precessing, it can balance
the torque due to gravity or some other applied torque. But all we have shown is
that this is a solution of an equation. That is, if the torque is given, and if we get
the spinning started right, then the wheel will precess smoothly and uniformly.
But we have not proved (and it is not true) that a uniform precession is the most
general motion a spinning body can undergo as the result of a given torque. The
general motion involves also a “wobbling” about the mean precession. This
“wobbling” is called nutation. ‘

Some people like to say that when one exerts a torque on a gyroscope, it turns
and it precesses, and that the torque produces the precession. It is very strange that
when one suddenly lets go of a gyroscope, it does not fa/l under the action of gravity,
but moves sidewise instead! Why is it that the downward force of the gravity, which
we know and feel, makes it go sidewise? All the formulas in the world like (20.15)
are not going to tell us, because (20.15) is a special equation, valid only after the
gyroscope is precessing nicely. What really happens, in detail, is the following.
If we were to hold the axis absolutely fixed, so that it cannot precess in any manner
(but the top is spinning) then there is no torque acting, not even a torque from
gravity, because it is balanced by our fingers. But if we suddenly let go, then there
will instantaneously be a torque from gravity. Anyone in his right mind would
think that the top would fall, and that is what it starts to do, as can be seen if the
top is not spinning too fast.. »

The gyro actually does fall, as we would expect. But as soon as it falls, it is
then turning, and if this turning were to continue, a torque would be required.
In the absence of a torque in this direction, the gyro begins to “fall” in the direction
opposite that of the missing force. This gives the gyro a component of motion
around the vertical axis, as it would have in steady precession. But the actual motion
“overshoots” the steady precessional velocity, and the axis actually rises again to
the level from which it started. The path followed by the end of the axle is a cycloid
(the path followed by a pebble that is stuck in the tread. of an automobile tire).
Ordinarily, this motion is too quick for the eye to follow, and it damps out quickly
because of the friction in the gimbal bearings, leaving only the steady preces-
stonal drift (Fig. 20-5). The slower the wheel spins, the more obvious the nu-
tation is.

When the motion settles down, the axis of the gyro is a little bit lower than it
was at the start. Why? (These are the more complicated details, but we bring them
in because we do not want the reader to get the idea that the gyroscope i$ an abso-
lute mir@clé_. It is a wonderful thing, but it is not a miracle.) If we were holding
the axis absolutely horizontally, and suddenly let go, then the simple precession
quation wouild tell us that it precesses, that it goes around in a horizontal plane.

But that is fmpossible! ¥lthough we neglected it before, it is true-that the wheel has

some moment of inertia about the precession axis, and if it is moving about that
axis, even slowly, it has a weak angular momentum about the axis. Where did it
come from? If the pivots are perfect, there is no torque about the vertical axis.
How then does it get to precess if there is no change in the angular momentum?
The answer is that the cycloidal motion of the end of the axis damps down to the
average, steady motiori of the center of the equivalent rolling circle. That is, it set-
tles down a little bit low. Because it is low, the spin angular momentum now has

a small vertical component, which is exactly what is needed for the precession. So .

you see it has to go down a little, in order to go around. It has to yield a little bit
to the gravity; by turning its axis down a little bit, it maintains the rotation about
the vertical axis. That, then, is the way a gyroscope works.

20-7

Fig. 20~5. Actual motion of tip of
axis of gyroscope under gravity just
after releasing axis previously held fixed.




Fig. 20-6. The angular momentum of
a rotating body is not necessarily parallel
to the angular velocity, :

Fig. 20-7. The angular velocity and

angular momenium of a rigid body -

(A > B> C)

20-4 Angular momentum of a solid body

Before we leave the subject of rotations in three. dimensions, we shall discuss,
at least qualitatively, a few effects that occur in three-dimensional rotations that are
not self-evident. The main effect is that, in general, the angular momientum of a
rigid body is not necessarily in the same direction as the angular velocity. Consider
a wheel that is fastened onto a shaft in a lopsided fashion, but with the axis through
the center of gravity, to be sure (Fig. 20-6). When we spin the wheel around the
axis, anybody knows that there will be shaking at the bearings because of the
lopsided way we have it mounted. Qualitatively, we know that in the rotating
system there is centrifugal force acting on the wheel, trying to throw its mass as
far as possible from the axis. This tends to line up the plane of the wheel so that it
is perpendicular to the axis. To resist this tendency, a torque is exerted by the
bearings. If there is a torque exerted by the bearings, there must be a rate of change
of angular momentum. How can there be a rate of change of angular momentum
when we are simply turning the wheel about the axis? Suppose we break the
angular velocity « into components w; and w, perpendicular and parallel to the
plane of the wheel. What is the angular momentum? The moments of inertia
about these two axes are different, so the angular momentum components, which
(in these particular, special axes only) are equal to the moments of inertia times the
corresponding angular velocity components, are in a different ratio than are the
angular velocity components. Therefore the angular momentum vector is in a
direction in space not along the axis. When we turn the object, we have to turn the
angular momentum vector in space, so we must exert torques on the shaft,

Although it is much too complicated to prove here, there is a very important
and interesting property of the moment of inertia which is easy to describe and to
use, and which is the basis of our above analysis. This property is the following:
Any rigid body, even an irregular one like a potato, possesses three mutually
perpendicular axes through the CM, such that the moment of inertia about one of
these axes has the greatest possible value for any axis through the CM, the moment
of inertia about another of the axes-has the minimum possible value, and the
moment of inertia about the third axis is intermediate between these two (or equal
to one of them). These axes are called the principal axes of the body, and they have
the important property that if the body is rotating about one of them, its angular

momentum is in the same direction as the angular velocity. For a body having -

axes of symmetry, the principal axes are along the symmetry axes. ,
If we take the x-, y-, and z-axes along the principal axes, and call the corre-
sponding principal moments of inertia 4, B, and C, we may easily evaluate the

. angular momentum and the kinetic energy of rotation of the body for any angular

velocity w. If we resolve w into components w,, wy, and w, along the x-, y-, z-axes,
and use unit vectors i, j, k, also along x, y, z, we may write the angular momentum
as

L = Aw,d + Bw,j + Cwk. (20.16)

The kinetic energy of rotation is

KE = (4o + Bui + Cuw?) (20.17)

- iL-w.
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Gyroscope

From Wikipedia, the free encyclopedia

A gyroscope is a device for oo
measuring or maintaining orientation, |~ {r{';ﬁ;:lipe :
based on the principles of N
conservation of angular
momentum.[1] In essence, a
mechanical gyroscope is a spinning
wheel or disk whose axle is free to |
take any orientation. Although this Gimbal
orientation does not remain fixed, it

i

changes in response to an external
torque much less and in a different

direction than it would without the

large angular momentum associated with the disk's high rate of spin and
moment of inertia. Since external torque is minimized by mounting the
device in gimbals, its orientation remains nearly fixed, regardless of any
motion of the platform on which it is mounted.

Gyroscopes based on other operating principles also exist, such as the
electronic, microchip-packaged MEMS gyroscope devices found in
consumer electronic devices, solid-state ring lasers, fibre optic gyroscopes,
and the extremely sensitive quantum gyroscope.

Applications of gyroscopes include inertial navigation systems where
magnetic compasses would not work (as in the Hubble telescope) or would
not be precise enough (as in ICBMs), or for the stabilization of flying
vehicles like radio-controlled helicopters or unmanned aerial vehicles. Due
to their precision, gyroscopes are also used to maintain direction in tunnel

mining. [?]

Conntents

= ]| Description and diagram
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Description and diagram

- Within mechanical systems or devices, a
conventional gyroscope is a mechanism
comprising a rotor journaled to spin about
one axis, the journals of the rotor being
mounted in an inner gimbal or ring; the inner
gimbal is journaled for oscillation in an
outer gimbal for a total of two gimbals.

The outer gimbal or ring, which is the
gyroscope frame, is mounted so as to pivot
about an axis in its own plane determined by
the support. This outer gimbal possesses
one degree of rotational freedom and its axis
possesses none. The next inner gimbal is
mounted in the gyroscope frame (outer
gimbal) so as to pivot about an axis in its

versa.

~ Output axis

Spin axis <y
Imput axis

Diagram of a gyro wheel.
Reaction arrows about the
output axis (blue) correspond
to forces applied about the
input axis (green), and vice

own plane that is always perpendicular to the pivotal axis of the gyroscope
frame (outer gimbal). This inner gimbal has two degrees of rotational

freedom.
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to spin about an axis, which is always perpendicular to the axis of the inner
gimbal. So the rotor possesses three degrees of rotational freedom and its
axis possesses two. The wheel responds to a force applied about the input
axis by a reaction force about the output axis.

The behaviour of a gyroscope can be most easily appreciated by
consideration of the front wheel of a bicycle. If the wheel is leaned away
from the vertical so that the top of the wheel moves to the left, the forward
rim of the wheel also turns to the left. In other words, rotation on one axis of
the turning wheel produces rotation of the third axis.

A gyroscope flywheel will roll or resist about the output axis depending
upon whether the output gimbals are of a free- or fixed- configuration.
Examples of some free-output-gimbal devices would be the attitude
reference gyroscopes used to sense or measure the pitch, roll and yaw
attitude angles in a spacecraft or aircraft.

The centre of gravity of the rotor canbe ina
fixed position. The rotor simultaneously :
spins about one axis and is capable of
oscillating about the two other axes, and, |
thus, except for its inherent resistance due to | Pt
rotor spin, it is free to turn in any direction
about the fixed point. Some gyroscopes %
have mechanical equivalents substituted for —
one or more of the elements. For example, Animation of a gyro wheel in
the spinning rotor may be suspended in a action

fluid, instead of being pivotally mounted in |
gimbals. A control moment gyroscope (CMG) is an example of a fixed-
output-gimbal device that is used on spacecraft to hold or maintain a desired
attitude angle or pointing direction using the gyroscopic resistance force.

In some special cases, the outer gimbal (or its equivalent) may be omitted so
that the rotor has only two degrees of freedom. In other cases, the centre of
gravity of the rotor may be offset from the axis of oscillation, and, thus, the
centre of gravity of the rotor and the centre of suspension of the rotor may
not coincide.
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The earliest known gyroscope-like
instrument was made by German Johann
Bohnenberger, who first wrote about it in

1817. At first he called it the

"Machine".3114] Bohnenberger's machine
was based on a rotating massive

sphere.[3] In 1832, American Walter R.
Johnson developed a similar device that

was based on a rotating disk.[%1l7] The
French mathematician Pierre-Simon
Laplace, working at the Ecole
Polytechnique in Paris, recommended the
machine for use as a teaching aid, and
thus it came to the attention of Léon

Foucault.[8 In 1 852, Foucault used it in
an experiment involving the rotation of

the Earth.[P119] 1t was Foucault who gave
the device its modern name, in an
experiment to see (Greek skopeein, to
see) the Earth's rotation (Greek gyros,
circle or rotation),l1 1] which was visible
in the 8 to 10 minutes before friction
slowed the spinning rotor.

Gyroscope invented by Léon
Foucault in 1852. Replica built by
Dumoulin-Froment for the
Exposition universelle in 1867.
National Conservatory of Arts and
Crafts museum, Paris.

In the 1860s, the advent of electric motors made it possible for a gyroscope
to spin indefinitely; this led to the first prototype gyrocompasses. The first
functional marine gyrocompass was patented in 1904 by German inventor

Hermann Anschiitz-Kaempfe.l12] The American Elmer Sperry followed with
his own design later that year, and other nations soon realized the military
importance of the invention—in an age in which naval prowess was the most
significant measure of military power—and created their own gyroscope
industries. The Sperry Gyroscope Company quickly expanded to provide
aircraft and naval stabilizers as well, and other gyroscope developers

followed suit.[13]

In 1917, the Chandler Company of Indianapolis, created the "Chandler
"ot ith Il ti1 d d tlI Ch dl



11111725 Gyroscope - Wikipedia, the free encyclopedia

inc. in 1982. The chandler toy is still produced by TEDCO today. 141

In the first several decades of the 20th century, other inventors attempted
(unsuccessfully) to use gyroscopes as the basis for early black box
navigational systems by creating a stable platform from which accurate
acceleration measurements could be performed (in order to bypass the need
for star sightings to calculate position). Similar principles were later
employed in the development of inertial guidance systems for ballistic

missiles.[!°]

During World War I, the gyroscope became the prime component for
aircraft and anti-aircraft gun sights.[16]

3-axis MEMS-based gyroscopes are also being used in portable electronic

devices such as Apple's current generation of iPad and iPhone.[!”! This adds
to the 3-axis acceleration sensing ability available on previous generations
of devices. Together these sensors provide 6 component motion sensing;
acceleration for X,Y, and Z movement, and gyroscopes for measuring the
extent and rate of rotation in space (roll, pitch and yaw).

Properties

A gyroscope exhibits a number of e —
behaviours including precession and g
nutation. Gyroscopes can be used to
construct gyrocompasses, which
complement or replace magnetic
compasses (in ships, aircraft and
spacecraft, vehicles in general), to assist
in stability (Hubble Space Telescope,
bicycles, motorcycles, and ships) or be
used as part of an inertial guidance
system. Gyroscopic effects are used in
tops, boomerangs, yo-yos, and A gyroscope in operation wih
Powerballs. Many other rotating devices, freedom in all three axes. The
such as flywheels, behave in the manner rotor will maintain its spin axis
of a g roscope altho gh the g roscopic
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The fundamental equation describing the
behavior of the gyroscope is:

_dl d{iw) T
T= da

where the pseudovectors T and L are, respectively, the torque on the
gyroscope and its angular momentum, the scalar / is its moment of inertia,
the vector m is its angular velocity, and the vector a is its angular
acceleration.

It follows from this that a torque t applied perpendicular to the axis of
rotation, and therefore perpendicular to L, results in a rotation about an axis
perpendicular to both T and L. This motion is called precession. The
angular velocity of precession Qp is given by the cross product:

T =148 x L.

Precession can be demonstrated by [
placing a spinning gyroscope with its axis
horizontal and supported loosely
(frictionless toward precession) at one
end. Instead of falling, as might be
expected, the gyroscope appears to defy
gravity by remaining with its axis
horizontal, when the other end of the axis
is left unsupported and the free end of the
axis slowly describes a circle in a
horizontal plane, the resulting precession
turning. This effect is explained by the
above equations. The torque on the
gyroscope is supplied by a couple of
forces: gravity acting downward on the device's centre of mass, and an equal
force acting upward to support one end of the device. The rotation resulting
from this torque is not downward, as might be intuitively expected, causing
the device to fall, but perpendicular to both the gravitational torque
(horizontal and perpendicular to the axis of rotation) and the axis of rotation
(horizontal and outwards from the point of support), i.e., about a vertical

Precession on a gyroscope
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Under a constant torque of magnitude z, the gyroscope's speed of precession
Op 1s inversely proportional to L, the magnitude of its angular momentum:

T=IpLsing,

where 0 is the angle between the vectors Qp and L. Thus, if the gyroscope's

spin slows down (for example, due to friction), its angular momentum
decreases and so the rate of precession increases. This continues until the
device is unable to rotate fast enough to support its own weight, when it
stops precessing and falls off its support, mostly because friction against
precession cause another precession that goes to cause the fall.

By convention, these three vectors - torque, spin, and precession - are all
oriented with respect to each other according to the right-hand rule.

To easily ascertain the direction of gyro effect, simply remember that a
rolling wheel tends, when it leans to the side, to turn in the direction of the
lean.

Variations

Gyrostat

A gyrostat is a variant of the gyroscope. It consists of a massive flywheel
concealed in a solid casing. Its behaviour on a table, or with various modes
of suspension or support, serves to illustrate the curious reversal of the
ordinary laws of static equilibrium due to the gyrostatic behaviour of the
interior invisible flywheel when rotated rapidly. The first gyrostat was
designed by Lord Kelvin to illustrate the more complicated state of motion
of a spinning body when free to wander about on a horizontal plane, like a
top spun on the pavement, or a hoop or bicycle on the road.

MEMS

A MEMS gyroscope takes the idea of the Foucault pendulum and uses a
vibrating element, known as a MEMS (Micro Electro-Mechanical System).
The MEMS-based gyro was initially made practical and producible by
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gyroscopes.

FOG

A fiber optic gyroscope (FOG) is a gyroscope that uses the interference of
light to detect mechanical rotation. The sensor is a coil of as much as 5 km
of optical fiber. The development of low-loss single-mode optical fiber in
the early 1970s for the telecommunications industry enabled the
development of Sagnac effect fiber optic gyros.

VSG or CVG

A Vibrating structure gyroscope (V SG), also called a Coriolis Vibratory

Gyroscope (CVG),[18] uses a resonator made of different metallic alloys. It
takes a position between the low-accuracy, low-cost MEMS gyroscope and
the higher-accuracy and higher-cost FOG. Accuracy parameters are
increased by using low-intrinsic damping materials, resonator
vacuumization, and digital electronics to reduce temperature dependent drift

and instability of control signals.[ 19]

High-Q Wine-Glass Resonators for precise sensors like HRG [20] of CRG

! "

(211 are based on Bryan's "wave inertia effect". They are made from high-
purity quartz glass or from single-crystalline sapphire.

DTG

A dynamically tuned gyroscope (DTG) is a rotor suspended by a universal

joint with flexure pivots.l?2] The flexure spring stiffness is independent of
spin rate. However, the dynamic inertia (from the gyroscopic reaction effect)
from the gimbal provides negative spring stiffness proportional to the square
of the spin speed (Howe and Savet, 1964; Lawrence, 1998). Therefore, at a
particular speed, called the tuning speed, the two moments cancel each
other, freeing the rotor from torque, a necessary condition for an ideal
gyroscope.

London moment



1111725 v Gyroscope - Wikipedia, the free encyclopedia
A London moment gyroscope relies on the quantum-mechanical
phenomenon, whereby a spinning superconductor generates a magnetic field
whose axis lines up exactly with the spin axis of the gyroscopic rotor. A
magnetometer determines the orientation of the generated field, which is
interpolated to determine the axis of rotation. Gyroscopes of this type can
be extremely accurate and stable. For example, those used in the Gravity
Probe B experiment measured changes in gyroscope spin axis orientation to

better than 0.5 milliarcseconds (1.4 x 10~/ degrees) over a one-year
period.[23] This is equivalent to an angular separation the width of a human
hair viewed from 32 kilometers (20 mi) away.[2%]

The GP-B gyro consists of a nearly-perfect spherical rotating mass made of
fused quartz, which provides a dielectric support for a thin layer of niobium
superconducting material. To eliminate friction found in conventional
bearings, the rotor assembly is centered by the electric field from six
electrodes. After the initial spin-up by a jet of helium which brings the rotor
to 4,000 RPM, the polished gyroscope housing is evacuated to an ultra-high
vacuum to further reduce drag on the rotor. Provided the suspension
electronics remain powered, the extreme rotational symmetry, lack of
friction, and low drag will allow the angular momentum of the rotor to keep

it spinning for about 15,000 years.{25]

A sensitive DC SQUID magnetometer able to discriminate changes as small

as one quantum, or about 2 x 1071> Wb, is used to monitor the gyroscope.
A precesses, or tilt, in the orientation of the rotor causes the London moment
magnetic field to shift relative to the housing, The moving field passes
through a superconducting pickup loop fixed to the housing, inducing a small
electric current. The current produces a voltage across a shunt resistance,
which is resolved to spherical coordinates by a microprocessor. The system

is designed to minimize Lorentz torque on the rotor.[26]

Modern uses

In addition to being used in compasses, aircraft, computer pointing devices,
etc., gyroscopes have been introduced into consumer electronics. Since the
gyroscope allows the calculation of orientation and rotation, designers have
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than the previous lone accelerometer within a number of smartphones. Scott
Steinberg, known for his critiques on newly released technology, says that
the new addition of the gyroscope in the iPhone 4 may "completely redefine

the way we interact with downloadable apps".[27]

Nintendo has integrated a gyroscope into the Wii console's Wii Remote

controller by an additional piece of hardware called "Wii MotionPlus".[28] [t
is also included in the 3DS, which detects movement when turning.

See also

= Aerotrim ,
= Anti-rolling gyro — Ship gyroscopic roll stabilizers.
= Attitude indicator

= Balancing machine

= Countersteering

= Fuler angles

= Fric Laithwaite

= Gyro monorail

= Gyrocar |

= Gyroscopic exercise tool

= Heading indicator

= Reaction wheel

= Rifling

= Top |

= Turn and bank indicator

® Turn coordinator

= LN-3 Inertial Navigation System

= Stabilizer (ship)
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CAPHYSICS

The Motion of a Spinning Top

What drives the motion of a Spinning Top?

There are many forms and shapes of spinning tops, and they are put into motion in an
interesting variety of ways. Some are spun by snap-twisting a center stem with your fingers and
releasing, while the top remains on the ground. Others are held by a support at the top while a
cord wound around the top is pulled to spin it. The spinning top many of us know is launched
from about waist level to the floor by snapping your wrist as you release it, while maintaining a
grip on the cord wound around its body. However they are spun, each type behaves in a similar
fashion. '

The physiés of rotation.

The body of a top has at least one axis about which it will spin steadily and smoothly. This
rotation axis is a symmetry axis of the top, known as a principal axis. For example, the red hoop
in the figure below has two unique symmetry axes indicated, for rotations of the type specified
by the blue arrows.

For each unique symmetry axis, the object has a moment of inertia value that determines how it
will spin when a torque is applied. The way this all works through is described by Newton's
Laws of Rotation. While this can get pretty complicated in detail, there are some circumstances
where the object will spin in a very simple manner. The object's spin about the rotation axis
gives it an angular momentum, which will remain constant until some outside torque works
on it.

The ideal top.

Suppose a top is so perfectly fashioned that its principal rotation axis (spin axis) goes through
its center of mass. (The center of mass, also known as the center of gravity, is the balance point
of the object.) If we spin this top carefully, so that it remains perfectly upright while spinning
(and gravity can't exert a torque on it about its point), it will spin at a steady angular velocity
almost indefinitely. Slidihg friction between its tip and the floor does slow it gradually. But if the
point is very sharp, sliding friction there exerts very little torque on the top about its rotational
axis. Because it's unable to exert a torque on the ground, the top can't exchange angular
momentum with the earth. It spins on until it slowly gets rid of its angular momentum through

sliding friction and air resistance.




Name:

Problem 3: Rotational Collision (15 points)

A uniform cylindrical éhell (hoop) sits on one of its flat sides on a frictionless surface. The hoop '
has mass M, radius R and height H. A bullet of mass u moving horizontally with velocity Vy strikes
the hoop with impact parameter R at mid-height (H/2 from the surface). After the collision the
bullet gontinues with velocity Vp/2 in its original direction. Ignore any hole the bullet creates.

Give all your answers in terms of M, R, H, Vo, and p.

a) What was the angular momentum, L, of the system about the center of the hoop before

the collision?
b) What is the linear velocity, V, of the center of the hoop after the collision?

c) What is the angular velocity, &, of the hoop after the collision?

Os) @ ()\H\V\TI.;«:) bp ( 0wt cné {M{Nﬂ) Va

"\.Q.ﬂ&xﬁ‘w Ty /q o |
' o \7’ A (M
}3) : /p‘/\\/+ /Vi*-{i = \/s, /‘“L t/\;—R/’A
. L 2
D[V = - LL2y | L_9
X om0 Top View >




312 ] More on Angular Momentum and Torque

60.

61.

63.

64.

65.

(I) Electric power is used to speed up a centrifuge whose rota-
tional inertia is 1.2 kg - m?; 1.6 kW of power were used to make
the centrifuge accelerate at a steady rate from rest to 17,000 rev/
min. If the electricity use was 100 percent efficient, how much
time is required to speed up the centrifuge?

() A point mass m = 0.2 kg is attached to a string, which passes
through a hole in a table and rotates in a circle of radius + = 0.8 m
with an angular velocity of 40 rad/s. What mass M must be at-
tached to the end of the string under the table to maintain this mo-
tion? Suppose that mass M is slowly increased by an amount that
makes it descend a distance 0.1 m. What is the amount of the in-
crease of M? What will the new angular velocity of the point mass
be? [Hint: Use angular momentum conservation.]

. (I) Show that (7 X p)- (¥ X B) = r*p? — (¥ p)% [Hint: Itis

convenient, without any loss of generality, to assume that both 7
and P lie in the xy-plane.] Use this result to express the kinetic
energy of a particle in terms of the momentum in the radial di-
rection and of the square of the angular momentum.

(IT) A cylindrical shaft of radius 5 cm is connected by a band to
a solid cylindrical flywheel of mass 300 kg and of radius 0.35 m
(Fig. 10-45). A motor brings the shaft up to a rotational rate of
1400 rev/min. Calculate the amount of work done by the motor,
neglecting the rotational inertia of the shaft.

5 cm
radius

1400 "/ min

A FIGURE 10-45 Problem 63.

(I) A thin rod of mass M, length €, and constant density is stand-
ing on end on a rough table that forms the xy-plane. The rod be-
gins to fall, with its top moving in the +x-direction, but as it
falls, its point of contact does not move. As the rod hits the table,
what are its (a) angular velocity, (b) angular momentum, and (c)
kinetic energy?

(II) An object of mass M moves in a circular planar orbit about a
center of gravitational attraction. The force of attraction has
magnitude F = K/ %, where r is the radius of the circle, and it is

66.

67.

69.

.

directed toward the center. Calculate (a) the velo
dius, (c) the period, T, and (d) the acceleration o
in terms of the angular momentum L, M, and K.

(II) An object of mass m moves in a plane wi
scribed by the radius vector 7 = i A cos wyt +
culate the angular momentum about the o1
direction will the angular momentum point? U
cumstances will the angular momeptum be cons!

(I) A hurricane is a vast swirl of Earth’s atmosph
knowledge of the size of such storms, the deptt
phere, the speed of the winds, the density of air, 2
timate the kinetic energy contained as well .
momentum. Compare your estimate of the angu
with that of Earth itself (see Section 9-5).

(II) A putty ball of mass m = M/S is throwr
? = i and hits the top of the thin rod in Proble;
stands vertically. If the putty ball makes a comy
collision, and if again the point of contact betwe
the table does not move, what are the angular w
momentum, and kinetic energy of the system as i

(D) A particular top can be approximated as a s
mass 100 g and radius 2 cm. A string of negligible :
1 m is wound around the top, which is started by |
tally on the string with a constant force of magnit
top starts from rest at point O, and the string is pulle
friction between the top and the table on which it
is the final velocity of the center of mass of the top?
gular velocity of the top about its center of mass?

(IlT) A uniform solid cylinder of radius R and
against a vertical curb of height &, where h < i
The cylinder is mounted through its axis on a fr
zontal axle. You exert a horizontal force of mag
axle, pushing the cylinder against the curb. What:
value of F that will cause the cylinder to roll up

A FIGURE 10-46 Problem 70.
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- must be constant. In this time interval, vi, = v, and v;, = 0. The
acceleration is then
Avx Vey — Vig Vem — 0 Yem

a, = = = =

At t t t

The x component of Newton’s second law then gives

M
f=Ma, = ==

Ouly the frictional force gives a torque about the center of mass,
so the net torque is % 7, = fR. With o; = —w and w; = —Ve/R
at the instant when rolling without slipping begins (the minus
signs indicating that the cylinder is spinning clockwise), the angu-
lar acceleration is

Aw W= @

o, = =

—"ch/R + )y
fAr ot t '
Newton’s second law for rotation gives fR = I .. Substituting
for fand «. from the above two equations, we obtain
(Mvcm > 2= MR (—vg /R + wp)
t t

using I, = %MR2 from Fig. 9-15. After eliminating common fac-
tors we can solve for vy, to find

Vem = 30gR = $(15 rev/s)(27r rad/rev)(0.12 m) = 3.8 m/s.

Note that v, does not depend on the values of M, g, or u,. What,
however, would occur if any of these quantities were zero?
(b) With f= Mv,,/t and also f= wN = wMg, we can elimi-
nate f and solve for #:

Vem 3.8 m/s

p=tem 2008 gy
g 02DOs0ms) | B
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SAMPLE PROBLEM 9-13. A toy yo-yo* of total mass
M = 0.24 kg consists of two disks of radius R = 2.8 cm con-
nected by a thin shaft of radius Ry = 0.25 cm (Fig. 9-34a). A
string of length L = 1.2 m is wrapped around the shaft. If the yo-
yo is thrown downward with an initial velocity of v, = 1.4 m/s,
what is its rotational velocity when it reaches the end of the
string?

Solution The free-body diagram for the yo-yo is shown in Fig. 9-
34b. The net force is % F, = Mg — T (taking the downward di-
rection to be positive), and the net torque about the center of mass
is % .= TR, (taking counterclockwise torques to be positive).
The translational and rotational forms of Newton’s second law
then give '

Mg —- T = Ma, and TR, = la..

* See “The Yo-Yo: A Toy Flywheel,” by Wolfgang Burger, American Sci-
entist, March-April 1984, p. 137.

(a) (b) y

FIGURE 9-34. Sample Problem 9-13. (@) A yo-yo falls as the
string unwinds from the axle. (b) The force diagram. §

We consider the string to be of negligible thickness and assume’
that it does not slip as it is unwinding. The point where the Strmg
contacts the shaft is instantaneously at rest, just like the point B in”
Figs. 9-30 and 9-31. With v, = wRy, it follows that (in magni-
tudes only) ac, = aRy. In our notation for this problem, ac, = g, ;
(a positive quantity) and a = «, (also a positive quantity). Thus,
taking a, = a,R, and combining the force and torque equations .
to eliminate the tension, we solve for the angular acceleration; :

-8 1
“ Ry 1+ IIMRY'

[43

To complete the solution, we need the rotational inertia, which is
not given. Let us assume that the thin shaft makes a negligible”
contribution to I (the mass and radius of the shaft are both small
compared to the disks). Then the rotational inertia is I = jMR? |
and :

Y S
* " Ry 1+ R¥2R}

_ 980 cm/s?
0.25 cm + (2.8 cm)¥2(0.25 cm)

= 61.5 rad/s’.

To find the final angular velocity from this acceleration, we can
use Eq. 8-6, w, = @y, + a.t, if we know the time ¢ for the yo-yo
to unwind. This time can be found from Eq. 87,
¢ = ¢ + wyt + 3o, The angle through which the yo-yo 0- ]
tates as the string unwinds is ¢ — ¢y = L/R, = 480 rad, and the

SRR RS o A

. initial angular velocity is wy. = vo/Ry = (1.4 m/s)(0.0025 m) = ;

560 rad/s. With these substitutions, Eq. 8-7 then gives
(30.75 rad/s?)t> + (560 rad/s)t — 480 rad = 0.

Solving this quadratic equation, we find ¢ = 0.82 s or —19s. The
positive value is the physically meaningful one, and so

w, = wy, + ot = 560 rad/s + (61.5 rad/s?)(0.82 s) = 610 rad/s.

—




falling block, the tension in the cord, and the angular acceleration
of the disk.

Solution Figure 9-26b shows a free-body diagram for the block,
Note that, in drawing the free-body diagram for the analysis of ro-
tations, it is necessary to show the forces and their points of appli-
cation, so that we may determine the line of action for each force
in calculating the corresponding torque. We choose the y axis to be
positive downward, so that the net force is = Fy, = mg — T, which
. is a positive quantity if the block accelerates downward. Using the
y component of Newton’s second law (% F, = ma,), we have

mg — T = ma,.

Figure 9-26c shows a partial free-body diagram for the disk.
Choosing the positive z axis to be out of the plane of the figure,
the z component of the net torque about O is 3 7, = TR (neither
the weight of the disk nor the upward force exerted at its point of
support contribute to the torque about O, because both their lines
of action pass through O). Applying the rotational form of New-
ton’s second law (Eq. 9-11) gives TR = Ia,, where a is positive
for the counterclockwise rotation. With I = 3MR* and a; = ar/R,
we obtain TR = GMR*)(ar/R) or
T= %MaT.

Because the cord does not slip or stretch, the acceleration a, of the
block must equal the tangential acceleration ar of a point on the

rim of the disk. With a, = a¢ = a, we can combine the equations
for the block and the disk to obtain

Un @)1.2kg)
=g = (9.8 m/s =48 m/s,
a=g 4 om = OB e @2k mrs
and
M 2.5ke
= mg ——— = (1.2 kg)(9.8 m/s? 5
T =mg—r = (12,08 M) e oy T2 k)
= 60N.

As expected, the acceleration of the falling block is less than g,
and the tension in the cord (= 6.0 N) is less than the weight of the
hanging block (=mg = 11.8 N). We see also that the acceleration
of the block and the tension depend on the mass of the disk but
not on its radius. As a check, we note that the formulas derived
above predict a = g and T = 0 for the case of a massless disk
(M = 0). This is what we expect; the block simply falls as a free
body, trailing the cord behind it.
The angular acceleration of the disk follows from

4.8 m/s*

iy ry— = 24 rad/s? = 3.8 rev/s?

a
o, =
= R
and it is positive, corresponding to a rotation in the direction of
the arrow in Fig. 9-26a.

For rotations about a fixed axis, the angular velocity and
acceleration have only one component, and therefore only
that same component of the torque enters into Newton’s
laws. However, we may apply a force to a rigid body in any
direction, and there will in general be two or three compo-
nents to the torque, only one of which actually produces ro-
tations. What happens to the other components?

Consider the bicycle wheel shown in Fig. 9-27. The axle
of the wheel is fixed in direction by the two bearings, s0

" FIGURE 2-27. Arigid body, in this case a wheel, is free to ro-
tate about the z axis. An arbitrary force F, shown acting at a point

, on the rim, can produce torque components along the three coor-

¢ dinate axes. Only the z component is successful in rotating the

: wheel. The x and y components of the torque would tend to tip the
axis of rotation away from the z axis. This tendency must be op-

. posed by equal and opposite torques (not shown) exerted by the

" bearings, which hold the axis in a fixed direction.

. that the rotation axis corresponds to the z axis. A force Fis
. applied to the wheel in an arbitrary direction, and in general
' the associated torque may have x, y, and z components, as

shown in Fig. 9-27. Each component of the torque tends to
produce rotation about its corresponding axis. However, we
have assumed that the body is fixed in such a way that rota-
tion about only the z axis is possible. The x and y compo-
nents of the torque produce no motion. In this case, the
bearings serve to constrain the system to rotate about only
the z axis, and they must therefore provide torques that can-
cel the x and y components of the torque from the applied
force. This indicates what is meant by a body constrained
to move about a fixed axis: only torque components parallel
to that axis are effective in rotating the body, and torque
components perpendicular to the axis are assumed to be
balanced by other parts of the system. The bearings must
Qrovide torques with x and y components to keep the direc-
tlf)n of the axis of rotation fixed; the bearings may also pro-
vide a torque in the z direction, such as in the case of non-

ideal bearings that exert frictional forces on the axle of the

wheel. Since the center of mass of the wheel does not
move, the forces exerted by the bearings must add to the
external forces to give a net force of zero. :




9-7 COMBINED ROTATIONAL AND TRANSLATIONAL MOTION

. FIGURE 9-31. A rolling body can be considered to be rotating
about an instantaneous axis at the point of contact B. The vectors
. show the instantaneous linear velocities of selected points.

SRR

FsaMPLE PROBLEM o-11. A solid cylinder of mass M
4nd radius R starts from rest and rolls without slipping down an

i inclined plane of length L and height & (Fig. 9-32). Find the speed
i, of its center of mass when the cylinder reaches the bottom.

| Solution The free-body diagram of Fig. 9-32b shows the forces

acting on the cylinder: the weight M g, the normal force N, and
the frictional force T. Based on the choice of x and y axes shown

" in the figure, the components of the net force on the cylinder are
S F,= Mg sin 6—fand 3F, =N — Mg cos 6 If we apply
© Newton’s second law with a, = a., and a, = 0, we obtain for the
. yand y equations

Mgsin @ — f= Maey, and N — Mgcos 8= 0.

To find thé net torque about the center of mass, we note that the

lines of action of both N and Mg pass through the center of mass
 and so their moment arms are zero. Only the frictional force con-
. tributes to the torque, and so % 7, = —fR. Newton’s second law
2 for rotation then gives

—fR = Ina,.

In Fig. 9-32, the z axis is out of the page and s0 ¢, is indeed nega-
tive. The condition for rolling without slipping is vem = ®R; dif-

—

A
/g
V
) Mgcos 6 VM

FIGURE 9-32. Sample Problem 9-11. (a) A cylinder rolls
without slipping down the incline. (b) The free-body. diagram of
the cylinder.

1956

ferentiating this expression gives a., = oR, which relates the
magnitudes of 4., and a. Substituting @, = —a;,/R and
I, = YMR? (for a cylinder), we find ‘

Ln, _ _ GMR)(—a/R) _ 1
R R 2

f=- Mag.

Substituting this into the first translational equation, we find
Gn = 38 sin 6.

That is, the acceleration of the center of mass for the rolling
cylinder (%g sin ) is less than its acceleration would be if the

. cylinder were sliding down the incline (g sin 6). This result holds

at any instant, regardless of the position of the cylinder along the
incline.

Because the acceleration is constant, we can use the equa-
tions of Chapter 2 to find the velocity. With v, = ( and taking
x — xp = L (where the x axis lies along the plane), Egs. 2-26
and 2-28 respectively become vey = Geml? and L = %acmtz. Solv-
ing the second equation for the time 7, we find t = V2L/ay,.
With this result the first equation gives

Vem = Qem®

= a,, 2L \I?Lflcm = \/2L(§g sin ) = \f%Lg sin 6

cm

This method also determines the force of static friction needed
for rolling:

F = Mag, = GM)Gg sin 6) = Mg sin 6.

What would happen if the force of static friction between the sur-
faces were less than this value?

[Eess e e e

SAMPLE PROBLEM 9-12. A uniform solid cylinder of
radius R (=12 cm) and mass M (=3.2 km) is given an initial
(clockwise) angular velocity wp of 15 rev/s and then lowered on
to a uniform horizontal surface (Fig. 9-33). The coefficient of ki-
netic friction between the surface and the cylinder is py = 0.21.
Initially, the cylinder slips as it moves along the surface, but after
a time #, pure rolling without slipping begins. (a) What is the
velocity Ve of the center of mass at the time 17 (b) What is the
value of 7 '

Solution (a) Figure 9-33b shows the forces that act on the cylin-
der. The x and y components of the net force are Y F,= fand
% F,= N — Mg. During the interval from time O to time ¢ while
slipping occurs, the forces are constant and so the acceleration

y
AR

-

®) V%ME
FIGURE 9©-33. Sample Problem 9-12. (a) The rotating cylin-

der initially slips as it rolls. (b) The free-body diagram of the
cylinder. .




Body Rolling Down an Inclined Plane

As an illustration of laminar motion, we shall study the motion Qf a round object (cyl-
inder, ball, and so on) rolling down an inclined plane. As shown in Figure 8.14, there
are three forces acting on the body. These are (1) the downward force of gravity, (2) the

of.

Figure 8.14 Body rollihg down an inclineqrplane. :

normal reaction of the plane: Fy, and (3) the frictional force parallel to the plane: Fp.
Choosing axes as shown, the component equations of the translation of the center of
mass are

mi., = mg sin & — Fp ‘ ‘ (8.60)
My = —mg cos 8 + Fy (8.61)

where 0 is the inclination of the plane to the horizontal. Since the body remains in
contact with the plane, we have

Ve = constant
Hence,
Yem = 0
Therefore, from Equation 8.61,
Fy = mg cos 0 (8.62)

The only force that exerts a moment about the center of miass is the frictional force
Fp. The magnitude of this moment is Fpa where g is the radius of the body. Hence, the
rotational equation (Equation 8.59) becomes '

Icm(b = FPa . (863)

To discuss the problem further, we need to make some assumptions regarding the
contact between the plane and the body. We shall solve the equations of motion for two
cases.

Motion with No Slipping
If the contact is Very-rough so that no slipping can occur, that is, if Fp = . Fy where pi;
is the coefficient of static friction, we have the following relations:
om = ad = aw (8.64)
Yo = ad = a®
where ¢ is the angle of rotation. Equation 8.63 can then be written

IL‘I" o

X,
s “eCn
a

= Fp (8.65)

Substituting the above value for Fp into Equation 8.60 yields

" . . Icm "
mXe, = mg sin § — —a?xc,,,

Solving for %, we find .

. mg sin 0 g sin O
xCIl = =
' m + ([cm/az) 1+ (k%,,,/(lz)

(8.66)



10-5 THE SPINNING TOP*

A spinning top provides us with what is perhaps the most
familiar example of the phenomenon shown in Fig. 10-4b,
in which a lateral torque changes the direction but not the
magnitude of an angular momentum. Figure 10-18a shows
a top spinning about its axis. The bottom point of the top is
assumed to be fixed at the origin O of our inertial reference
frame. We know from experience that the axis of this
rapidly spinning top will move slowly about the vertical

‘ axis. This motion is called precession, and it arises from the
configuration illustrated in Fig. 10-4b, with gravity supply-
ing the external torque.

Figure 10-18b shows a simplified diagram, with the top
replaced by a particle of mass M located at the top’s center
of mass. The gravitational force Mg gives a torque about 0
of magnitude.

7= Mgrsin 6. (10-18)

The torque, which is perpendicular to the axis of the top
and therefore perpendicular to T (Fig. 10-18c¢), can change
the direction of L but not its magnitude. The change in Lin
a small increment of time d is given by

dLl. = F dt (10-19)

and is in the same direction as 7—that is, perpendicular to
T.. The effect of 7 is therefore to change Tt L+ df, a
vector of the same length as T but pointing in a slightly dif-
ferent direction.

If the top has axial symmetry, and if it rotates about its
axis at high speed, then the angular momentum will be
along the axis of rotation of the top. As T changes direc-

# See “The Amateur Scientist: The Physics of Spinning Tops. Including
Some Far-Out Ones,” by Jearl Walker, Scientific American, March 1981,
p- 185.
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FIGURE 10-18. (a) A spinning top precesses about a vertical axis.
with the floor. () The torque is perpendicular to the angular momentu

tum vector, causing precession.

tion, the axis changes direction too. The tip of the T vector
and the axis of the top trace out a circle about the z axis, as
shown in Fig. 10-18a. This motion is the precession of the
top.

In a time d, the axis rotates through an angle d¢ (see
Fig. 10-18d), and thus the angular speed of precession wp
is

d¢
= | -2
wp o (10-20)
From Fig. 10-184, we see that
dL Tdt
d¢ = Lsin® Lsing (10-21)
Thus
_de T Mgrsin @  Mgr
“p = d:  Lsin (V] Lsing L (10-22)

The precessional speed is inversely proportional to the
angular momentum and thus to the rotational angular
speed; the faster the top is spinning, the slower it will pre-
cess. Conversely, as friction slows down the rotational an-
gular speed, the precessional angular speed increases.

Equation 10-22 gives the relationship between the mag-
nitudes of @p, L, and 7. These quantities are vectors, and
the vector relationship among them is

F=ap XL (10-23)

You should be able to show that this relationship is consis-
tent with the relationship between the magnitudes (Eq. 10-
22) and also with the directions of the vectors given in Fig,
10-18. Note that for precessional motion about the z axis,
the vector @ is in the z direction. , '
Precession is commonly observed for spinning tops and
gyroscopes. Even the Earth can be considered to be a spin-
ning top, and the gravitational pull of the Sun and Moon on
the tidal bulges near the equator causes a precession (called
in astronomy the “precession of the equinoxes”) in which
the Earth’s rotational axis traces out the surface of a cone

(b) The weight of the top exerts a torque about the point of contact

m vector. (d) The torque changes the direction of the angular momen-

(as in Fig. 10-18) with half-angle 6 = 23.5°, taking about
26,000 years to complete a full cycle.

There are two components to the angular momentum of
the top: its rotational angular momentum about its symme-
try axis and the precessional angular momentum. The total
angular momentum is the sum of these two vectors, which
in general does not lie along the Symmetry axis of the top,
Therefore our assumption that the symmetry axis of the top
follows the direction of the angular momentum vector is
not quite correct. If, however, the precessional angular mo-
mentum is much smaller than the rotational angular mo-
mentum of the top, there is only a very small deviation be-
tween the direction of the symmetry axis and the direction
of the angular momentum. This small deviation causes a
slight oscillation, called a nutation, of the axis of the top
back and forth about the precessional circle.
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7.7 The Tennis Racket Theorem

The solution of Euler’s equatlons for a rigid-body with unequal principal :
moments of inertia can be beautifully illustrated with a tennis or bad-
mirton racket. The three principal axes of a tennis racket are readily -
identified to be (1) along the handle, (2) perpendicular to the handle in"

the plane of the strings, and (3) perpendicular to the handle and strings

When a tennis racket is tossed into the air with a spin about one of the -
principal axes, a curious phenomenon is observed. If the initial spin is
about either axis (1) or axis (3), the racket continues to-spin uniformly -
about the initial axis and can €asily be recaught. On the other hand, if -
the initial spin is about axis (2), the motion quickly becomes irregular;:

with spin developing about all three principal axes, which makes it diffi

cult to catch the falling racket. The explanation of the observed behavior -
- follows from Euler’s equations., To apply Euler’s equations to the tennis '
racket, we choose the origin. of the principal-axes coordinate system at

the CM of the racket, as illustrated in Fig. 7-13. |

T

——

2) CM 2) (3) — e :CM'@'-'——G)

GD
X

FIGURE 7-13. Principal axes of the tennis racket.

Since gravity is a uniform force in the vicinity of the earth’s surface,
‘there are no gravitational torques about the CM of the racket. If we ne-
glect torques due to wind resistance, Euler’s equations (7.75) simplify to

" L+ (I3 — I)wswy =0

Iywy + (Il - Ig)wlwg =0 (788)

Isws + (Iz - Il)wgwi =0

" tions in &y and ws

These equations can be written as

i (7.89)

wy +rwewy =0; r= L ;1 L
-u')z —row3wy =0; 1= I ;2 L (7.90)
W3 + rawiwy =0; T3 = Izv;:; L (7.91)
If we assume: the ordering
L<hL<I - (7.92)

“we consequently have all the r; positive. We note the sign asymmetry in

the three Euler equations (7.89)-(7.91).

" The tennis racket theorem concerns stability of spin about the princi-
pal axes. We assume that the racket is initially spun nearly about one of

the principal axes and we will determine if this spin state is stable. As-

sume first that the spin is initially nearly along the intermediate axis (2)
or

wwyY w,ws<Kwy (7.93)

If w; and ws are small as hypothesized their product is negligible and
{7.90) implies that .

" wy ~ constant (7.94)

Equations (7.89) and (7.91) then comprise a set of coupled linear equa-

L:)]_ + (7’1LU2)OJ3 =0

. 7.95
w3 + (rawz)w; =0 (7.95)
For the trial exponential solution
At
w1 = aye
T, (7.96)
Wy = age

two ?algebra,ic equations must be satisfied

a1+ riWea :‘O‘
. 1 1Wea3 (7.97)
azA+ rawga; =0 .




Solving both equations for the ratio as/a;, we obtain

ag A [0
—_—— = e 7-
aj T1Wsy A ( 98)

The second equality determines A to be

A= :i:wzw/T]_T‘s (799)

Then from (7.98) the ratio of amplitudes

a3 = Fai4 /;’:?1- (7.100)

The general solution is a superposition of these two solutions

wy(t) = qe¥2VTITst 4 pe—wzViTat

(7.101)
w3 (t) — E {_G'GWZVT'ITSt + be"‘wgmt]

T

where @ and b are constants determined by the initial conditions. Since
r; and r3 are positive the solution is a superposition of increasing and
decreasing exponentials in time. The increasing exponential term will

make w; and ws large even if they started small and hence rotation about

the intermediate azis (2) is unstable. Our solution for axis (2) is of course
strictly valid only at times for which the product wjws is small.

Next take the initial angular velocity nearly along one of the extreme
principal moment axes, say axis (1)

W = wli, wy,ws K Wy (7102)

By (7.89) we obtain
wy = constant (7.103)

and wq and wg satisfy

. d)z — Tolilig = 0 (7 104)
L;J3 + rawiwg = 0 '

Proceeding as before, we know the exponential solutions analogous to :

(7.96) must satisfy (7.104) except that in this case

A =dwi/—rerg = j:iwlv TaT3
az = tag/r3/T2

The solutions now are oscillatory and can be written in the form
wi (t) = asin (wiy/Terst + @)
ws(t) = A / T3 4 cos (w14/T2T3 + @)
T2

where a and « are constants determined by the initial conditions. Thus
if wy and ws are initially small, they will remain small. Rotation about
azis (1) is thus stable.

For an initial spin about axis (3) the solution to Euler’s equations is
similar to the case of axis (1). The exponential factor A is again purely
imaginary and the solutions are oscillatory. We conclude that rotations
along extreme azes are stable while the intermediate azis is unstable.

(7.105)

(7.106)

For spin about axis (1) the angular velocity vector w = wiX +w§ +
ws? precesses in a small cone about principal axis (1) as shown in
Fig. 7-14. A similar picture applies to the largest principal axis (3).

For rotation along principal axis (2) the angular velocities about axes (1)
and (3) grow rapidly with time and the racket tumbles.

To calculate the principal moments of inertia for our specific case of
the tennis racket we use a grossly simplified model for the racket. We
represent the mass distribution of the racket by a circular hoop of radius
a and mass m, connected to a thin rod of length £ and mass m¢. The
total mass of the racket is M = mg,+mg. The CM of the racket is located
on principal axis (1) at a distance R from the center of the hoop, where

MR = ma(0) + mq <a + g) (7.107)
or

_ ™ ¢
R=1; <a+ 2) (7.108)

The moment of inertia of the racket about principal axis (1) comes en-
tirely from the hoop. We use the perpendicular-axis rule in (6.128) to
obtain :

I = tmga? (7.109)
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FIGURE 7-14. Stable precession of the angular velocity w about principal axis (1) of
the tennis racket.

FIGURE 7-15. Dimensions of tennis racket model.

To compute the moment of inertia about principal axis (2), we will make
use of the parallel-axis rule of (6.123). The moment of inertia of the hoop
about an axis through its CM and parallel to principal axis (2) is %maa2.

By (6.123), the hoop makes a contribution to I3 of

I3°°P = Lmga® + m,R? (7.110)

since R is the perpendicular distance between the two parallel axes. The
moment of inertia of the handle about an axis parallel to principal axis
(2) passing through the CM of the handle is -m£2. Again using (6.123),
we find that the contribution of the handle to Iy is

/ 2
Izhandle — %mgﬁz + my (a + 5 — R) (7.111)

where a+£/2 — R is the distance between these parallel axes. Combining
(7 110) and (7.111) and substituting for R from (7.108), we obtain

I = 2maa + Mg (“ﬁ) <a+—2—) + sgmel +mz<M) a+§
This can be further simplified to

2
L 2y Mame () £
I = $mga® + Lmel® + i (a+2) (7.112)

Finally, for principal axis (3), the racket lies in a plane perpendicular to
the axis, and we can use the perpendicular-axis rule of (6.128) to obtain

Li=L+1 (7.113)

By comparison of (7.109), (7.112), and (7.113), we see that the principal
moments of inertia are ordered as I} < I, < I3. Characteristic parameters
for our tennis racket model are

a=0.13m £=0.38m
R=018m M =0.33kg (7.114)
mg = 0.18 kg mq = 0.15kg

The principal moments of inertia from (7.109), (7.112), (7.113), and
(7.114) are

I; =0.13 x 107 %kg - m?
I, = 1.24 x 10~ %kg - m? (7.115)
I3 = 1.37 x 10~ %kg - m?

The condition of stability of the motion about a principal axis which
has either the largest or the smallest moment of inertia and the instability




	20120809232455247.pdf
	20120809232525006.pdf
	20120809232701312.pdf
	20120809232911750.pdf

