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Fig.9-9

In Fig. 9-8(a) we start with the parallelepiped in the indicated position and perform the rotation
A, about the z axis as indicated in Fig. 9-8(b) and then the rotation about the y axis as indi-
cated in Fig. 9-8(c). Thus Fig. 9-8(c) is the result of the rotation A, + A, on Fig. 9-8(a). -

In Fig. 9-9(a) we start with the parallelepiped in the same position as in Fig. 9-8(a), but this
time. we first perform the rotation A, about the y axis as indicated in Fig. 9-9(b) and then the
rotation A, about the x axis as indicated in Fig. 9-9(c). Thus Fig. 9-9(c) is the result of the
rotation A, + A; on Fig. 9-9(a). .

Since the position of the parallelepiped of Fig. 9-8(c) is not the same as that of Fig. 9-9(c),
we conclude that the operation A;+ A, is not the same as A, + A, Thus the commutative
law is not satisfied, so that A, and A, cannot possibly be represented by vectors.
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A nonuniform rod of length L has a density that incrcases lincarly from
the end at z = 0 to the end £ = L. The density (mass per unit length)
is given by p = bz, where b is a constant and z is the distance from
the end. The density at the z = 0 end is zero.

a. At a distance z from the z = 0 end, what is the mass of an increment ( a ) f (2‘. ) dx = 6 x a/x
of length dx? [G]

4 2
b. Sum up the contributions to the total mass from all of the elements ( b } M = / f { A ) d AL = 2“ b L

of length dz to find the total mass of the rod (in terms of b and L).

[0] L
¢. Where is the center of mass of this rod? If you can’t recall the (c) M A = / A f (z) d'x
definition of this, refer to a text. Q] c.m. o Z
d. What is the moment of inertia, rclative to an axis through z = 0, = / 4 b P b d X = 3 b
of the clement of mass located in thickness dz at distance from o 3
the z = 0 end? [X] L4l* X = 3“5&»
e. What is the total moment of inertia of this rod relative to an axis 2 c.m.
through the z = 0 cnd? (L] What is the radius of gyration of this 2 X - fz_ L
rod relative to the z = 0 end? [Y] CMm

£, What is the moment of inertia relative to an axis through the center

of mass? (Use the parallel axis theorem.) [1] ( 6) j = / L 6 x; d x = 4
]

g. What is the moment of inertia relative to an axis through the z = L —L 4
end? (Get the answer using the parallel axis theorem and by direct K 3 i j ~ # 6 [
integration.) [W] » =
. N # 6Lt
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I a) Thm rod b) Rectangular plate
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Irregularly Shaped Object

Massless Rod
Fixed to Object
N

N
«~—0.6m 0.6m— ‘\ Turntable

Figure 1. Irregularly shaped object rotating about vertical
axis on a turntable which rotates with very little frictional
loss. Two masses M are located on a massless rod held
horizontally fixed to the object.
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(a) (b) ©
Figure 7.4 Rod of mass m and length [ free to
swing in a vertical plane about a fixed pivot.

Figure 7.4(b) depicts the motion of the rod as seen from the perspective of its center
of mass. The angular momentum dL,,; of two small mass elements, each of size dm
symmetrically disposed about thie center of mass of the rod, is given by

dL,; = 2rdp = 2rv dm = 2r(ro)\dr

where \ is the mass per unit length of the rod. The total relative angular momentum
is obtained by integrating this expression from r = 0 to r = [/2.

172

Lre[ = 2)\(,0j
0

2dr = L oDl = L 2

r’dr = T ADPo = <12 ml )w

We can see in the equation above that the angular momentum of the rod about its

center of mass is directly proportional to the angular velocity w of the rod. The

constant of proportionality m/?/12 is called the moment of inertia I, of the rod

about its center of mass. Moment of inertia plays a role in rotational motion similar

to that of inertial mass in translational motion as we shall see in the next chapter.
Finally, the total angular momentum of the rod is

1
Ly = Loy + Lo = gmlz(l)

Again, note that the total angular momentum of the rod is directly proportional to
the angular velocity of the rod. Here, though, the constant of proportionality is the
moment of inertia of the rod about the pivot point at the end of the rod. This moment
of inertia is larger than that about the center of mass. The reason is that more of the
mass of the rod is distributed farther away from its end than from its center, thus
. making it more difficult to rotate a rod about an end.

The total angular momentum can also be obtained by integrating.down the rod,
starting from the pivot point, to obtain the contribution from each mass element dm,
as shown in Figure 7.4(c)

dLy = rdp = rlvdm) = r(re)kdr
i

2 —lmlzw
Ly = A0 o F I‘—3

And, indeed, the two methods yield the same result.
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Shown in Figure 8.7 is a uniform chain of length [ = 2wR and mass m = M/2 that
was initially wrapped around a uniform, thin disc of radius R and mass M. One tiny
piece of chain initially hung free, perpendicular to the horizontal axis. When the
disc was released, the chain fell and unwrapped. The disc began to rotate faster and
faster about its fixed z-axis, without friction. (a) Find the angular speed of the disc
at the moment the chain completely unwrapped itself. (b) Solve for the case of a
chain wrapped around a wheel whose mass is the same as that of the disc, but

concentrated in a thin rim.

Solution:
(a) Figure 8.7 shows the disc and chain at the moment the chain unwrapped. The

final angular speed of the disc is o. Energy was conserved as the chain unwrapped.

i, N/

T .

I/2=mR

Chain ¢ T 2
1/2 = R

{

Figure 8.7 Falling
chain attached to disc, free
to rotate about a fixed z-
axis.

Since the center of mass of the chain ori

fell a distance /2 = 7R, and we have ginally coincided with that of the disc, it

mg£=1]w2+lm2
2 2 o

I_ 1

2= TR v=wR 1= MR

Solving for w? gives

(b) The moment of inertia of a wheel is 7 = MR? ituti

i wheel is [ = MR2. Substltutmg this into the above
28

3R

Even though the mass of the wheel is the same as that of the disc, its moment of -

inertia i i i i
accela 1s.1arger, since all its mass is concentrated along the rim. Thus, its angular
eration and final angular velocity are less than that of the disc. , ¢ Ejllr

(1)2=71
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TRANSLATIONAL & ROTATIONAL
MOTION OF A RIGID BODY

by
J.S. Kovacs

1. Introduction

la. General Description of the Motion of a System of
Particles. The general description of the motion of a system of parti-
cles consists of specifying the motion of the center of mass (CM) of the
system (as if the whole mass of the system were located at the center of
mass) plus the description of the motion of the particles of the system
relative to the center of mass. For a rigid body the particles of the system
are constrained to move such that the relative separation of all pairs of
particles remains unchanged. Theorems about the motion of rigid bodies
will be demonstrated as they apply to a simple rigid system.

1b. Theorems on the Motion of Rigid Bodies. When a set of
forces acting upon a rigid body are such that they combine to produce
an external torque which is directed along one of the principal axes of the
body (see Fig.1), the following theorems may be applied to determine
completely the motion of the rigid body:

a. Relative to an inertial reference system the time rate of change of
the center of mass momentum of a rigid body is equal to the net
external force acting on the rigid body:

&MVQ M =

&w — Lext-

a'. If there is no net external force on a rigid body, the center of mass
momentum is constant, and hence the center of mass velocity is

Fext Figure 1. Torque-producing forces
acting on a body.

@
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constant in magnitude and direction: Pgps = constant vector, Vou
= constant vector.

b. Relative to any point in an inertial reference system, the time deriva-
tive of the angular momentum vector of a rigid body is equal to the
net external torque acting on that body relative to the same point:

dL

lmm = Text-

—

b’. With no external torque on the body the angular momentum vector
relative to any point in an inertial reference system is constant.

c. The total kinetic energy of a rigid body relative to an inertial refer-
ence system is the kinetic energy of the center of mass of that body
relative to the inertial system, plus the kinetic energy of the body
relative to the center of mass. (For a rigid body this latter is the
kinetic energy of the rotation of the body about the center of mass.

2. Application of Rigid Body Theorems to a Simple
System

2a. Description of the Motion of a Rigid Body. The complete
description of the motion of a rigid body consists of the description of the
translational motion of its center of mass as if it were a point mass, plus
the description of its rotational motion about an axis through its center
of mass.> The net external force on the system will determine the former,
while the net external torque will determine the latter.

2b. Example: Collision of a Point Mass with a Dumbbell. As
an illustration of the theorems listed in Sect.1b, consider the following
example:

In far outer space, far from the influence of any appreciable gravita-
tional force, a rigid body consisting of two point masses, of mass M and
4M, at the ends of a massless rod of length d is at rest relative to an
inertial reference frame.2 Another mass, M, makes a collision approach

1The axis is not necessarily fixed in its direction in space. In cases when it is not,
the motion of the direction of the axis is necessary to complete the description. We
will not consider such cases here. See, however, “Torque and Angular Momentum in
Circular Motion” (MISN-0-34) and “Euler’s Equations: The Tennis Racket Theorem”
(MISN-O-57).

2An inertial reference frame is a frame in which Newton’s First Law of Motion is
true.
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Figure 2. A mass M with initial speed ﬂ.\,o approaches to
make a head on collision with a mass 4M , initially at rest.
The mass 4M is attached via a rigid massless rod to an-
other mass M with the orientation of the rod such that it is
perpendicular to the line of flight of the moving mass.

toward this rigid body, moving with a velocity V,, toward a head on col-
lision with the 4M mass directed perpendicularly to the rod connecting
the rigid body masses (See Fig. 2).

2c. Mass and Dumbbell: Translational Motion.  Problem: To
demonstrate that the center of mass of the three mass system moves with
the same velocity before and after the collision.

Answer: First, the center of mass must be located, then its velocity before
the collision occurs must be determined. The center of mass of the rigid
body is located one-fifth of the distance from the 43/ mass along the line
connecting the two masses (at point A in Fig. 3). The center of mass of
the combination of this mass (5M) and the incident mass M is located
along the line joining these masses and one-sixth of the distance from the
5M mass to the incident mass (at point B). Figure 2 shows this location
at the instant when the incident mass is distance DD from the mass 4M.

Problem: How high above the line Jjoining the incident mass with the
struck mass is the center of mass?

Answer: From the similar triangles OPA and OB’B we see that BB’ is
five-sixths of AP so that the length of BB’ is (d/6).

Problem: Where will the center of mass be when the incident mass strikes
the 4M mass?

Answer: It will be at B”, a distance (d/6) above point P, the location
of the mass 4M. With B and B” both the same distance above the line
OP, it is clear that the line BB is parallel to the line OP. Thus, while

MISN-0-43 4
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Figure 3. A geometrical determination of the location of
the center of mass of the system described in Fig. 2.

the incident mass moved distance D, the center of mass moved from B to
B" along a line parallel to line OP. Line BB" is of length (D/6), hence
the center of mass velocity must be one-sixth of the incident velocity and
parallel to the incident velocity:

15

Vou = WS. (1)

Problem: What is the CM velocity after the collision?

Answer: It must be the same because there are no external forces on the
three mass system. (The incident mass and the struck mass exert forces
on each other but these are internal forces.) Because :

dP .
% = \mum.ﬁw = Du va

Pop = constant vector. (3)

To demonstrate this, consider the case where the incident mass sticks
to the mass 4M upon colliding. Before the collision, as observed in an
inertial frame at rest with respect to the rigid body, the only momentum
is MVy. After the collision the momentum is that of the new rigid body
(5M at one end, M at the other). The momentum is thus 6/ Ve where
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QQE is the velocity of the center of mass after the collision. Equating
these two (because there are no external forces) we get:

1
6

exactly what it was before the collision.

Vou = Vo, (4)

2d. Mass and Dumbbell: Rotational Motion. Problem: Is this
the only motion of the combined system?

Answer: Obviously not. The system spins around as it moves. (If the
rigid rod were struck at the center of mass of the system, no spinning
would occur.) To describe completely the motion we must also include
a description of the rotation of the system. Rotational motion is deter-
mined by external torques on the system and how they affect the angular
momentum of the system: .

&MWI\ = gl-.ma? Amv
where [ and 7., are both defined with respect to the same point in
some inertial reference frame. With our system (consisting of the three
masses) there is no net external torque. Therefore the angular momentum,
evaluated relative to any point in an inertial frame, is constant:

L = constant vector. (6)

It is convenient to take the point relative to which the torque is evaluated
as the center of mass of the system.

Problem: First, is this a point in an inertial reference frame?

Answer: If the reference frame in which the rigid rod (before collision) is
at rest is an inertial reference frame, then so is a frame which is attached
to the center of mass and moving with it. That’s because the center of
mass reference frame is moving with constant velocity with respect to the
reference frame which is at rest with respect to the rigid rod. (In frames
of reference which don’t accelerate with respect to each other, observers
see the same force or effect of a force.)

Problem: Relative to this point, what is the angular momentum of the
system before the collision takes place?

Answer: Relative to this point the incident mass is moving to the right
with velocity (5/6)Vp (recall that the center of mass itself is moving to
the right with velocity (1/6)V;). The masses on the ends of the rigid rod

MISN-0-43 6
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Figure 4. The motion of the system described in Fig.2
(before collision) as observed in a reference frame in which
the center of mass is at rest.

are thus both moving to the left with a speed (1/6)V, or with velocity

—(1/6)Vp. Hence, viewed at rest with respect to the center of mass, the
motion observed is as shown in Fig. 4.

The total angular momentum of this system as seen relative to the
center of mass is the vector sum of the individual angular momenta. Each
L = "< m¥, where 7 is the vector from the center of mass to the instanta-
neous location of the mass, and 7 is the velocity of that mass. However,
the magnitude of this cross product is the magnitude of the momentum
times the “lever arm.”3Its direction may be evaluated separately using
the right hand rule. The individual angular momenta are determined as
indicated in Table 1.

3See “Force and Torque” (MISN-0-5)
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Table 1. Determination of the individual angular momenta relative to
the center of mass of the system for each of the three point masses of the
system shown in Fig. 2.

Lever| Magn. of |Direct. of
Object Mass | Speed | Arm | Ang. Mom. Ang. Mom.

incident mass| M WS %& W
mass onrod | 4M | 2V —d —=MVyd |down, into page

b8 ¥

mass on rod M -V —d ﬁ?& Vod | up, out of page

MVod | up, out of page

The resultant angular momentum of the system (before collision) is thus:

1

6
This is also the value of the angular momentum of the rod after the
incident mass struck and attached to the 4M mass. Hence the newly
formed rigid body (M and 5M ) at two ends of a rigid rod of length
d rotates counter-clockwise about the center of mass with an angular
momentum whose magnitude is (d/6)M V.

MVyd directed up, out of page. (7

Problem: What is the angular velocity of rotation of this rigid body?

Answer: For a rigid body rotating about a principal axis I = I& and @
is in the same direction as L. In this case, up out of page: the rotation is
counter-clockwise. I, the moment of inertia, from its definition is the sum
of the “mass times distance squared” contributions for each mass relative
to the axis parallel to I, through the center of mass. It is, therefore,

~|§mg NL&E wa w|mi% (8)
h 6 6 /) 6

We thus find: & = v/ (5d). Consequently, the complete description of
the motion of the system after impact is as follows:

1. The center of mass moves with constant velocity (1/6)Vp in a
straight line parallel to the direction of the velocity of the incident
mass.

ii. The rod rotates counter-clockwise about an axis through the center
of mass (perpendicular to the plane of the paper) with a constant
angular velocity of Vy/(5d)

11
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2e. Mass and Dumbbell: Kinetic Energy. Problem: What is the
kinetic energy of the system?

Answer: Again the answer depends upon the reference frame with respect
to which this kinematical quantity is to be observed. Hence, making the
question more specific:

Problem: What is the kinetic energy of the system relative to a system
which is at rest with respect to the rigid rod before the collision?

Answer: The kinetic energy before the collision is that of the incident

mass: 1
misw.

After the collision it is the kinetic energy of the center of mass as if all
Vy?
6
of all the parts of the system relative to the center of mass. For a rigid
body this is (1/2)1&°. For this object it is:

the mass were concentrated there: (1/2)6 M plus the kinetic energy

1 1
mam = @5\% (9)

The total kinetic energy is thus:

1

1
m‘\a ?Oﬁmc = = 60

\wism +

1
MVE = wm\s:\%. (10)

(5 times as much kinetic energy is in translational motion as there is in
rotational motion. If the incident mass had struck the center of mass, all
the kinetic energy would have been in translational motion.)

Problem: What is the “Q” of this collision?

Answer: According to its definition, @ is the change in the kinetic energy
that occurs as a result of the reaction. If Q is positive, kinetic energy has
been gained as a result of the reaction or collision. For this collision:

Q= |w Awiswv ; (11)

As a result of the collision 80% of the original kinetic energy is lost. (The
collision is obviously inelastic?).

1See “Potential Energy, Conservative Forces, The Law of Conservation of Energy”
(MISN-0-21).

12
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10.

PROBLEM SUPPLEMENT

For the system shown in Fig. 1 of the textual material, determine the
velocity of the center of mass of the system before the collision. Show
that it is parallel to the velocity of the incident mass.

Determine the velocity of the center of mass of the system of Prob-

lem 1 after the collision, assuming the projectile mass sticks to the
mass 4M.

Relative to the center of mass of this above system, determine the
velocity of each of the three component masses before the collision.

Determine the total angular momentum relative to the center of mass
of the above mentioned system before the collision.

Determine the total angular momentum relative to the stationary
mass M (on the rod) before the collision.

Assuming conservation of angular momentum, calculate the angular
velocity of the system relative to the center of mass after the collision.

Assuming conservation of angular momentum, calculate the instanta-
neous angular velocity of the system after the collision relative to the
location of the initially stationary mass M. (This will be the angular
velocity with which that upper mass M sees the other masses begin
to rotate around it.)

Determine the total kinetic energy, relative to a frame at rest with
respect to the rod, of the system before the collision occurs.

Determine the total kinetic energy relative to this same frame (as in
8 above) of the system after the collision.

Determine the gain or loss of kinetic energy as a result of the collision.

14
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Brief Answers:

Equation (1).

Equation (2).

See Fig. 3.

Equation (7).

MVyd, directed up, out of page.

w = V5/(5d) counter-clockwise as viewed looking at the plane of the
paper.

w = Vy/(5d).
1
m>:\o.

Equation (11).

O

MISN-0-43 ME-1

MODEL EXAM

1. For the same problem as was illustrated in the text, Sect.2, find the

kinetic energy of the system before the collision [K], the kinetic energy
after the collision [C] and the Q of the collision [F], all as observed in
a reference frame attached to the center of mass.

In far outer space free from any outside forces and observed in an
inertial frame, there is at rest a uniform rod of length L and mass M.
A point mass, also of mass M approaches the rod with a velocity Vj
directed perpendicular to the long axis of the rod. The mass strikes
the rod at a point that is a distance d away from the center of the
rod, toweard the end of the rod. After the collision, the incident mass
continues along the same straight line in its original direction but with
a reduced velocity, V, /2.

a. Determine the location of the center of mass of the system at an
instant when the incident mass is a distance D from the rod. (L]
Determine the velocity of the center of mass at this instant. [A]

b. Determine the velocity of the center of mass of the rod after the

collision, as observed in the same frame where the rod was initially
at rest. [I]

¢. Determine the velocity of the center of mass of the rod relative to
the center of mass of the system after the collision. [J]

d. Determine the angular momentum of the system, before the colli-
sion, relative to the center of mass of the rod. [B]

e. Determine the angular velocity of the rod about its own center of
mass after the collision. [E]

f. Determine the kinetic energy of the system before the collision, as
observed in the original inertial frame. [H]

g. Determine the kinetic energy of the system after the collision, as
observed in this same frame. M]

h. Determine the Q of this reaction. [G]

i. Assuming an elastic collision, determine the value of d in terms of
L. [D]

16
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Brief Answers:

W

£

M.

CENCERTES

Vo/2

ME-2

(MVyd), directed up, out of page, as seen in a sketch where d is below

center.
MVE/60
d=L/V6
6Vod/L?

—(4/10) MV

/27

MVZ/2

Vo/ 2), same direction as original velocity of point mass.

Zero

(5/12) MV

3d?

1

L2

2

)

Along a line joining the center of the rod to the incident mass and

half-way between the two.

(1/2)M V2 A

L
2

Bd?
?

)
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Center of Percussion: The “Basebaill Bat Theorem”

As an example of the above theory, let us discuss the collision of a ball of mass m,
treated as a particle, with a rigid body (bat) of mass M. For simplicity we shall assume
that the body is initially at rest on a smooth horizontal surface and is free to move in
laminar-type motion. Let P denote the impulse delivered to the body by the ball. Then

the equations for translation are
P = Mv. (8.80)
—P = mv, — mvo (8.81)

where v, and v; are, respectively, the initial and final velocities of the ball and v, is the
velocity of the mass center of the body after the impact. Clearly, the above two equations

imply conservation of linear momentum.
Since the body is initially at rest, the rotation about the center of mass, as a result

of the impact, is given by
Pl

ICIH

(8.82)

w =

in which [ is the distance OC from the center of mass C to the line of action of P, as
shown in Figure 8.16. Let us now consider a point O’ located a distance /' from the

Yo ‘
m @ —t ]

Baseball colliding with a

baf.

center of mas,s. such t.hat the line CO’ is the extension of OC, as shown. The (scalar)
velocity of O’ is obtained by combining the translational and rotational parts, namely

P Pl 1 w
Vo = Uen — l, = — = ! = Pl = =L
¢ S VA ( o ,Cm> (8.83)

In particular, the velocity of O" will be zero if the quantity in parentheses vanishes, that

I

W=7 =k (8.84)

where k,c,,.Z is th; radius of gyration of the body about its center of mass. In this case the
point O’ is the 1nstantgneous center of rotation of the body just after impact. O is called
the tcente; of pjlrcusswn about O'. The two points are related in the same way as the
centers of oscillation, defined previously in our i i
5., y analysis of the physical pendulum

i\hnyone. who has‘ pl_ayed baseball knows that if the ball hits the bat in just the right
spot ere will be.no sting” upon impact. This “right spot™ is just the center of percus-
sion about the point at which the bat is held.

Appendix 1
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