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A continuous massive spring formally has an infinite number of degrees of freedom, because to
specify its configuration we would have to give a continuous function describing how much every
point on the spring 18 stretched. Really, of course, a physical spring has a finite but very large
number of degrees of freedom, because it is not actually continuous, but is made up of atoms. But
the difference between co and Avogadro’s number is often not very important.

This brings up an important philosophical point. What the heck is a “point” mass? What is a
“rigid” body? What is a “massless” spring? Most of you have probably been dealing with physics
problems for so long that you are used to these phrases. But it is important to remember that these
are mathematical idealizatiops. Real physical systems are complicated, and in fact, what we choose
for ¢ may depend on what kind of physical questions we want to ask and what level of accuracy we

need in the answer. So for example, for a hockey puck sliding on the ice at the Boston Garden, we
might decide that the configuration is specified by giving the z and y coordinates that determine
the puck’s position in the plane of the ice. Then ¢ would stand for the two dimensional vector,
(z,v). But if we do this, we have ignored many details. For example, for a shot that comes off
the ice, we would need to include the z coordinate to describe the motion of the puck. For some
purposes, we would also need to include descriptions-of the puck itself. For example, we have
not included an angular variable that would allow us to specify how the puck is turned about its
vertical axis. This is probably good enough for most problems. But sometimes, more information
is required to give a good description of the physics. For example, if we wanted to understand how
a rapidly rotating puck moves, we might need this more detailed information. We could also go on
and describe how the puck might deform when hit by the stick, and so on. We could include more
and more information until we got down to the level where we begin to see the molecular structure
of the rubber of the puck. At this point, we begin to see quantum mechanical effects, and classical
mechanics is no longer enough to give an accurate description.




The Art of Theoretical Physics

This is a good lesson. The coordinates that we use to describe the system may depend on what
kind of information we want to get out of our mechanical model of the system, and how accurately
we want our model to reproduce reality. We usually will not go over these niceties each time we
discuss a system, but they are important to remember. There is really a very important point here.
In physics courses, we frequently discuss “toy” systems which are obviously oversimplified, in
which we have clearly left out features that are important in the “real world.” This is not something
to apologize for. This is precisely the art of theoretical physics. We work hard to abstract the
essential physics of a system, without including things that don’t matter at the level of description
that we are interested in. This down-to-earth ability to focus on the crucial parameters is far more
important than fancy mathematical gymnastics.

In fact, I believe, getting better at this art is one of the most useful things you can get out of
this course. It is generally useful far beyond this or future physics courses. The ability to build
mathematical models of phenomena is crucial to many fields. But models can be as misleading as
they can be useful unless they focus on the right parameters, and unless the modeler is aware of the
model’s limitations. Physics is the paradigm for this kind of thinking. This is one of the reasons
why, over the years, trained physicists have been so much in demand in very different fields.

/(9-[/_
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9-7 COMBINED ROTATIONAL
AND TRANSLATIONAL MOTION

Figure 9-28 shows a time-exposure photograph of a rolling
wheel. This is one example of a possibly complex motion
in which an object simultaneously undergoes both rota-
tional and translational displacements.

In general, the translational and rotational motions are
completely independent. For example, consider a puck sliding
across a horizontal surface (perhaps a sheet of ice). You can
start the puck in translational motion only (no rotation), or you
can spin it in one place so that it has only rotational and no
translational motion. Alternatively, you can simultaneously
push the puck (with any linear velocity) and rotate it (with any
angular velocity), so it moves across the ice with both transla-
tional and rotational motion. The center of mass moves in a
straight line (even in the presence of an external force such as
friction), but the motion of any other point of the puck may be
a complicated combination of the rotational and translational
motions, like the point on the rim of the wheel in Fig. 9-28.

As represented by the sliding puck or the rolling wheel,
we restrict our discussion of this combined motion to cases
satisfying two conditions: (1) the axis of rotation passes
through the center of mass (which serves as the reference
point for calculating torque and angular momentum), and
(2) the axis always has the same direction in space (that is,
the axis at one instant is parallel to the axis at any other in-
stant). If these two conditions are valid, we may apply Eq.
9-11 (X 7. = Ia., using only external torques) to the rota-
tional motion. Independent of the rotational motion, we
may apply Eq. 7-16 S F = M3, using only external
forces) to the translational motion.

There is one special case of this type of motion that we
often observe; this case is illustrated by the rolling wheel of
Fig. 9-28. Note that where the illuminated point on the rim

FIGURE 9-28. A time-exposure photo of a rolling wheel. Small lights have been attached to the wheel, one at its center and another
at its edge. The latter traces out a curve called a cycloid.



FIGURE 9-29. A photo of a rolling bicycle wheel. Note that the
spokes near the top of the wheel are more blurred than those near
the bottom. This is because the top has a greater linear velocity.

contacts the surface, the light seems especially bright, cor-
responding to a long exposure of the film. At these instants,
that point is moving very slowly relative to the surface, or
may perhaps be instantaneously at rest. This special case, in
which an object rolls across a surface in such a way that
there is no relative motion between the object and the sur-
face at the instantaneous point of contact, is called rolling
without slipping.

Figure 9-29 shows another example of rolling without
slipping. Note that the spokes of the bicycle wheel near the
bottom are in sharper focus than the spokes at the top,
which appear blurred. The top of the wheel is clearly mov-
ing faster than the bottom! In rolling without slipping, the
frictional force between the wheel and the surface is re-
sponsible for preventing the relative motion at the point of
contact. Even though the wheel is moving, it is the force of
static friction that applies.

®

Not all cases of rolling on a frictional surface result in
rolling without slipping. For example, imagine a car trying
to start on an icy street. At first, perhaps the wheels Spinin
place, so we have pure rotation with no translation. If sand
is placed on the ice, the wheels still spin rapidly, but the car
begins to inch forward. There is still some slipping betweep
the tires and the ice, but we now have some translationa]
motion. Eventually the tires stop slipping on the ice, so
there is no relative motion between them; this is the condi-
tion of rolling without slipping.

Figure 9-30 shows one way to view rolling without slip-
ping as a combination of rotational and translational mo-
tions. In pure translational motion (Fig. 9-30a), the center
of mass C (along with every point on the wheel) moves
with velocity v, to the right. In pure rotational motiopn
(Fig. 9-30b) at angular speed w, every point on the rim has
tangential speed wR. When the two motions are combined,
the resulting velocity of point B (at the bottom of the
wheel) is v, — @R. For rolling without slipping, the point
where the wheel contacts the surface must be at rest; thus
Vem — WR = 0, or

Vem = WR.

(9-36)

Superimposing the resulting translational and rotational
motions, we obtain Fig. 9-30c. Note that the linear speed at
the top of the wheel (point 7) is exactly twice that at the
center.

Equation 9-36 applies only in the case of rolling without
slipping; in the general case of combined rotational and
translational motion, v, does not equal wR.

There is yet another instructive way to analyze rolling
without slipping: we consider the point of contact B to be
an instantaneous axis of rotation, as illustrated in Fig. 9-
31. At each instant there is a new point of contact B and
therefore a new axis of rotation, but instantaneously the
motion consists of a pure rotation about B. The angular ve-
locity of this rotation about B is the same as the angular
velocity w of the rotation about the center of mass. Since
the distance from B to 7 is twice the distance from B to C,
once again we conclude that the linear speed at 7T is twice
that at C.

FIGURE 9-30. Rolling can be viewed as a superposition of pure translation and rotation about the
center of mass. (a) The translational motion, in which all points move with the same linear velocity.
() The rotational motion, in which all points move with the same angular velocity about the central
axis. (c) The superposition of (a) and (b), in which the velocities at T, C, and B have been obtained by
vector addition of the translational and rotational components.
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FIGURE 6-4. Wheel rolling without slipping on a level surface.
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short time interval At — ty —tp, during which the force acts, we obtain
AP =pP! _po_ / Fdt (6.135)

The time integral of the force on the right is cajled the impulse. For
angular motion the integrated form of the equation of motion in (6.48) is

ty

body rotations abouyt a fixed z axis, we cap use (6.119) to rewrite the
angular-impulse equation (6.136) as

The cue imparts an impulse to the stationary ball at 5 vertical dis-

~ tance & above the table, as illustrated in Fig. 6-16. The linear impulse

where V! is the velocity of the CM Jjust after impact. The angular impulse
of (6.137) about the Z axis in Fig. 6-17 which passes through the CM of
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The Earth as a Free Symmetric Top
et

. Since the earth is nearly spherical in shape, the gravitational torque
exerted on the earth by the sun and the moon are quite small. T,

good approximation the rotational motion can therefore be describeq }
Euler’s equations with no external torques. Since the earth is neag
axially symmetric, the principal moments of inertia for the two axes
the equatorial plane are equal. s

L=L=1I (711

The third principal axis with moment of inertia I3 is along the pol
symmetry axis. From (7.88) the differential equations for the earth
motion in an earth-based coordinate frame are '

I; -1

w + wawy =0
I3 -1
I

d)g — Wiwsz = 0

u')3 =0
Any rigid body which obeys this set of torque-free equations is ca,lledw:;j

a free azially symmetric top. The exact solution to this coupled set of
equations is easily obtained. The last equation above implies that wsis

constant.

w3 (t) = w3 (0) = w3 (7118)

it

i

L

e

The equations (7.117) can be solved using the method of (7.97)—(7.101).{?
The solution is ,
wi (t) = acos(Q + a)

ws (t) = asin(Qt + a)

(7.119)

where

-z
—/2’—';2-.2:""‘

L



agnitude of the angular-velocity vector w i

w= \Jod + 0k +uf = yfa? + 3 (7.121)

the components wq and w; in (7.119) trace out a circle of radius a
w3 and w remain constant, an observer on the earth sees the angular-
y vector precesses uniformly about the symmetry axis with angular
y 2, as shown in Fig. 7-16.

|Symmctry axis

‘URE 7-16. Precession of the earth’s spin about the symmetry axis.

he period of precession of w about the earth’s symmetry axis is

2 I 2T
= o= (13 — I) :};— (7.122)

r the earth, since 27/ws = 1 day, the period of precession in days
termined by the moment-of-inertia ratio. For an earth of uniform
ity and oblate spheroidal shape, the value of this ratio, calculated
m the measured radii of the earth, is

I

3 —

~ 300 (7.123)

ough the earth becomes more dense toward its center, the moment-of-
ia ratio is not appreciably changed from the uniform-density result.

Jo-26



Thus the expected precessional period is about 300 days. The precession
of w about the symmetry axis of the earth is known as the Chandler

wobble.

FIGURE 7-17. Star trails in the night sky above the Mauna Kea Observatory in
Hawaii, photographed with a nine hour exposure camera. The stars appear as circular
arcs due to the earth’s rotation. The smallest bright arc is that of Polaris.

The direction of the earth’s axis of rotation (i.e., the direction of w)
can be experimentally determined by location of the point in the night
sky which appears to remain stationary as the earth rotates, as illustrated
in Fig. 7-17. The direction of the earth’s rotational axis is observed to

precess about the symmetry axis with a period of about 440 days. The
angle between w and the symmetry axis is quite small. In fact, at the
north pole, w never moves more than about 10m from the symmetry
axis. The actual motion of w is rather irregular, being strongly affected
by earthquakes and seasonal changes. In fact, it is only due to these
effects that the motion has a nonvanishing amplitude. On a quiet earth,
viscous effects would damp out such a motion, and w would soon lje along
the symmetry axis (this minimizes energy for fixed L). The discrepancy
between the expected period of 300 days and the observed value of about
440 days is primarily due to the nonrigidity of the earth.

/o-2



Appendix T

7.7 The Tennis Racket Theorem

The solution of Euler’s equations for a rigid body with unequal principal
moments of inertia can be beautifully illustrated with a tennis or bad-
minton racket. The three principal axes of a tennis racket are readily
identified to be (1) along the handle, (2) perpendicular to the handle in
the plane of the strings, and (3) perpendicular to the handle and strings.
When a tennis racket is tossed into the air with a spin about one of the
principal axes, a curious phenomenon is observed. If the initial spin is
about either axis (1) or axis (3), the racket continues to spin uniformly
about the initial axis and can easily be recaught. On the other hand, if
the initial spin is about axis (2), the motion quickly becomes irregular,
with spin developing about all three principal axes, which makes it diffi-
cult to catch the falling racket. The explanation of the observed behavior
follows from Euler’s equations. To apply Euler’s equations to the tennis
racket, we choose the origin of the principal-axes coordinate system at
the CM of the racket, as illustrated in Fig. 7-13.

(1)
|
|
|
|

FIGURE 7-13. Principal axes of the tennis racket.

Since gravity is a uniform force in the vicinity of the earth’s surface,
there are no gravitational torques about the CM of the racket. If we ne-
glect torques due to wind resistance, Euler’s equations (7.75) simplify to

Liwy 4+ (I3 — [)wsw; =0
Lwy + (I — I3)wiws =0 (7.88)
I3tg + (I3 — I))wawy =0

These equations can be written as

W +riwws =0; = 1_31—TI_2_ (7.89)
Wy —rowswy = 0; 1y = é—f:gi (7.90)
W3 + rywjwy = 0; 73 = -13;3—11 (7.91)
If we assume the ordering
hEhL<h (7.92)

we consequently have all the r; positive. We note the sign asymmetry in
the three Euler equations (7.89)—(7.91).

The tennis racket theorem concerns stability of spin about the princi-
pal axes. We assume that the racket is initially spun nearly about one of
the principal axes and we will determine if this spin state is stable. As-
sume first that the spin is initially nearly along the intermediate axis (2)
or

W~ wWy; wi,ws < wy (7.93)

If w; and w3 are small as hypothesized their product is negligible and
(7.90) implies that

wy =~ constant (7.94)

Equations (7.89) and (7.91) then comprise a set of coupled linear equa-
tions in w; and ws

d)l + (rlwz)w;.; =0

) (7.95)
w3 + (r3w2)w1 =0
For the trial exponential solution
A
w1 = aze
5o (7.96)
w3 = ase
two algebraic equations must be satisfied
a1 A+ riwyaz =0
1 1w20a3 (7.97)

(l3/\ + rawody = 0



Solving both equations for the ratio as/a;, we obtain

A
B2 o D (7.98)

aj ST A

The second equality determines \ to be

A= :tQ)g\/T'lT‘:g (799)

Then from (7.98) the ratio of amplitudes

a3 = Fay /:—j (7.100)

The general solution is a superposition of these two solutions

w(t) = aeW2VTiTst | pe—w2\/TiTst
(7.101)

r

___aeLUQ\/TlT‘st + be—wzw/rlrat

where ¢ and b are constants determined by the initial conditions. Since
r1 and r3 are positive the solution is a superposition of increasing and
decreasing exponentials in time. The increasing exponential term will
make w; and w3 large even if they started small and hence rotation about
the intermediate axis (2) is unstable. Our solution for axis (2) is of course
strictly valid only at times for which the product w;ws is small.

Next take the initial angular velocity nearly along one of the extreme
principal moment axes, say axis (1)

w = wlf(, W, Ws <L wq (7102)
By (7.89) we obtain

wy =~ constant (7.103)

and wy and ws satisfy
L;)Z — IM'gWiWwsy = 0

(7.104)

w3 + rawjwg =0

Proceeding as before, we know the exponential solutions analogous to

(7.96) must satisfy (7.104) except that in this case

A= :l:wlv—rgrg = :}:iwlqngT‘g
asz = :I:CLQ\/’I‘;}/TQ

The solutions now are oscillatory and can be written in the form
wi (t) = asin (w1+/r2rat + @)
ws(t) = A /Tia cos (w1+/T273 + @)
&)

(7.105)

(7.106)

where a and o are constants determined by the initial conditions. Thus
if wy and ws are initially small, they will remain small. Rotation about
axis (1) is thus stable.

For an initial spin about axis (3) the solution to Euler’s equations is
similar to the case of axis (1). The exponential factor A is again purely
imaginary and the solutions are oscillatory. We conclude that rotations
along extreme azes are stable while the intermediate azis is unstable.

For spin about axis (1) the angular velocity vector w = w;X + wy ¥ +
w3Z precesses in a small cone about principal axis (1) as shown in
Fig. 7-14. A similar picture applies to the largest principal axis (3).
For rotation along principal axis (2) the angular velocities about axes (1)
and (3) grow rapidly with time and the racket tumbles.

To calculate the principal moments of inertia for our specific case of
the tennis racket we use a grossly simplified model for the racket. We
represent the mass distribution of the racket by a circular hoop of radius
a and mass m, connected to a thin rod of length £ and mass m,. The
total mass of the racket is M = m,+m,. The CM of the racket is located
on principal axis (1) at a distance R from the center of the hoop, where

¢
MR = m,(0) + my (a + 5) (7.107)
or
R="2 (04t 7.108
“M\"T2 (7.108)

The moment of inertia of the racket about principal axis (1) comes en-
tirely from the hoop. We use the perpendicular-axis rule in (6.128) to
obtain

Iy = tm.ad® (7.109)



(M

FIGURE 7-14. Stable precession of the angular velocity w about principal axis (1) of
the tennis racket.

LJ

FIGURE 7-15. Dimensions of tennis racket model.

To compute the moment of inertia about principal axis (2), we will make
use of the parallel-axis rule of (6.123). The moment of inertia of the hoop
about an axis through its CM and parallel to principal axis (2) is %maaz.
By (6.123), the hoop makes a contribution to I of

L = imga? + m,R? (7.110)

since R is the perpendicular distance between the two parallel axes. The
moment of inertia of the handle about an axis parallel to principal axis

(2) passing through the CM of the handle is Hmel?. Again using (6.123),

we find that the contribution of the handle to Iy is
, 2
1ot = Lmet® + m, (a t+5— R) (7.111)

where a+£/2 — R is the distance between these pérallel axes. Combining
(7.110) and (7.111) and substituting for R from (7.108), we obtain

my\ 2 2\? Mg\ 2 2\ 2
Igz%macﬂ_*_ma(ﬁz) (a—l—E) —}—%mgﬁ_i_mg(M) (a+5>

This can be further simplified to

. AN
h=jmet 4 g+ T (01 )

Finally, for principal axis (3), the racket lies in a. plane perpendicular to
the axis, and we can use the perpendicular-axis rule of (6.128) to obtain

By comparison of (7.109), (7.112), and (7.113), we see that the principal
moments of inertia are ordered as I; < [, < I3. Characteristic parameters
for our tennis racket model are

a=0.13m £=10.38m
R=0.18m M =033k (7.114)
me = 0.18 kg mg = 0.15 kg

The principal moments of inertia from (7.109), (7.112), (7.113), and
(7.114) are

I; =0.13 x 10~ %kg - m?
I, =1.24 x 107 %kg - m? (7.115)
Is = 1.37 x 107 %kg - m?

The condition of stability of the motion about a principal axis which
has either the largest or the smallest moment of inertia and the instability
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