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9-5 EQUILIBRIUM APPLICATIONS
OF NEWTON’S LAWS FOR
ROTATION

It is possible for the net external force acting on a body to
be zero, while the net external torque is nonzero. For exam-
ple, consider two forces of equal magnitude that act on a
body in opposite directions but not along the same line.
This body will have an angular acceleration but no linear or
translational acceleration. It is also possible for the net ex-
ternal torque on a body to be zero, while the net external
force is not (a body falling in gravity); in this case there is a
translational acceleration but no angular acceleration. For a
body to be in equilibrium both the net external force and
the net external torque must be zero. In this case the body
will have neither an angular acceleration nor a translational
acceleration. According to this definition, the body could
have a linear or an angular velocity, as long as that velocity
is constant. However, we will most often consider the spe-
cial case in which the body is at rest.
We therefore have two conditions of equilibrium:

2F=0 (9-22)
and
' D Fe = 0. (9-23)

Each of these vector equations can be replaced with its
equivalent three component (scalar) equations:

SFE =0 SF=0XF=0 (924
and
Sr=0 X7r=0  X7,=0 (925

where for convenience we have dropped the subscript “ext”
from these equations. At equilibrium, the sum of the exter-
nal force components and the sum of the external torque
components along each of the coordinate axes must be
zero. This must be true for any choice of the directions of
the coordinate axes.

The equilibrium condition for the torques is true for any
choice of the axis about which the torques are calculated.
To prove this statement, we consider a rigid body on which
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many forces act. Relative to the origin O, force F, is ap-
plied at the point located at ¥, force F, at T¥,, and so on.
The net torque about an axis through O is therefore

?0=?1+?2+.“+?N
=EXF, + T X Fy+ o + Ty x By, (9-26)

Suppose a point P is located at displacement Tp with re-
spect to O (Fig. 9-21). The point of application of F,, with
respect to P, is (F; — Tp). The torque about P is

?P=(?1’?P)Xﬁ1+(?z“?P)XF2
+"' +(?N~?P)X?N

=[?1XﬁI+F2XF)2+ A +?N><FN]
[Ep X By + Fa X By + -0 + Tp X Fpl.

The first group of terms in the brackets gives #o according
to Eq. 9-26. We can rewrite the second group by removing
the constant factor of Tp:

Fp=To— [Fp X @ + Tyt + Fy)l

=7 — [Fr X (2 Fe)]

=
= To,

where we make the last step because 2 Fm = 0 for a body
in translational equilibrium. Thus the torque about any two
points has the same value when the body is in translational
equilibrium.

Often we deal with problems in which all the forces lie
in the same plane. In this case the six conditions of Eqgs. 9-
24 and 9-25 are reduced to three. We resolve the forces into
two components:

XF=0, XF=0,

and, if we calculate torques about a point that also lies in
the xy plane, all torques must be in the direction perpendic-
ular to the xy plane. In this case we have

(9-27)

27=0,

(9-28)

&1

FIGURE 9-21. The force 'F, is one of N external forces that act
on a rigid body (not shown). The vector T, locates the point of ap-
plication of F, relative to O and is used in calculating the torque
of F, about 0. The vector T; — Tp is used in calculating the
torque of F, about P.

CHAPTER © / ROTATIONAL DYNAMICS

i

We limit ourselves mostly to planar problems to sim
plify the calculations; this condition does not impose any
fundamental restriction on the application of the general
principles of equilibrium. '

Equilibrium Analysis Procedures

Usually in equilibrium problems, we are interested in deter-
mining the values of one or more unknown forces by apply-
ing the conditions for equilibrium (zero net external force
and zero net external torque). Here are the procedures' you
should follow: _ .

1. Draw a boundary around the system, so that you can
clearly separate the system you are considering from its en-
vironment. ’

2. Draw a free-body diagram showing all external
forces that act on the system and their points of application.
FExternal forces are those that act through the system
boundary that you drew in step 1; these often include grav- i
ity, friction, and forces exerted by wires or beams that cross .
the boundary. Internal forces (those that objects within the
system exert on each other) should not appear in the dia-
gram. Sometimes the direction of a force may not be obvi-
ous in advance. If you imagine making a cut through the
beam or wire where it crosses the boundary, the ends of this ;
cut will pull apart if the force acts outward from the bound-
ary. If you are in doubt, choose the direction arbitrarily, and
if you have guessed wrong your solution will result in nega-
tive values for the components of that force.

3. Set up a coordinate system and choose the direction
of the axes. This coordinate system will be used to resolve
the forces into their components.

4. Set up a coordinate system and axes for resolving the
torques into their components. In equilibrium, the net exter-
nal torque must be zero about any axis. Often you can
choose to calculate torques about a point through which
several forces act, thereby eliminating those forces from the
torque equation. In adding torque components, we follow
the sign convention that the torque along any axis is posi-
tive if acting alone it would produce a counterclockwise ro-
tation about that axis. The right-hand rule for torques can
also be used to establish this convention. 1

Once we have carried out these steps in setting up the
problem, we can carry out the solution using Egs. 9-22 and
9-23 or 9-27 and 9-28, as the following problems illustrate.
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The Angular momentum L is defined as

L=rxp]|.

The cross product of two vectors a x b is a “vector”, with
magnitude absin 6 (area of the the parallelogram bounded by a
and b) with orientation defined by a right-hand rule.

The torque IN defined as r x F' causes change of angular
momentum just as F' causes change of linear momentum.

dL d d
_c-i—{:l p—{—rx—c—il:-:TXF:N.

it

A




screw from a to b.

Mathematically we can write

T 7 k
axb= ai
or tensorially

az as| ,
b1 0o

We associate the cross product a x b as a vector of magnitude

absin @ and direction perpendicular to @ and b as a right-handed




~ Angular

anme'ntUnfi and the Area Law

co-ordinates

Y

conserved. Pictorially this implies the area law.
A

Obviously, for a free particle with F' = 0 angular momentum is

i

PN G




tes

in the polar co-ord
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- Central force in the polar co-ordinates
By definition the central force is defined as F' =
holds.

4

r)7, which
always tugs radially. N =7 x F' =0, and so the area law still
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Since
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' Central force in the pola

co-ordinates
Since L is a vector, the conservation of its magnitude leads to the
area law while the conservation of its direction
motion is essentially planar, in a plane perpend

supposes that the
icular to L.




gular momentum and the Area Law

3

We want to solve
d?r GMm

proi r)r = — =
where r is the relative radius vector from the Sun of mass M to
the planet of mass m. To begin with, we consider the attractive
force as a force field, i.e. the Sun is assumed to be stationary at
the centre. Correction to the motion of the Sun will be discussed

later. The equations of motion are then

|

m (7 — r6? F.
m(rf + 270) =0 .

The second equation can be integrated easily

mr?0 = constant = L |,

just a restatement of the conservation of angular momentum.

By tj h

!

Central force in the polar co-ordinates
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In polar co-ordinates

Central force in the polar

co-ordinates

the kinetic energy is given as

E. = =m (7% + r%9?
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mntum and the Area Law

In polar co-ordinates the kinetic energy is given as

—m (7% + r?f*

Immediately, we can evoke the energy conservation equation
2

o L

—mr- +

+ Vi(r
2mr?
where the constant E represents the total energy. The energy

equation involves only the variable r, we can scoop up the two r
dependent terms as the effective potential

L2
eff —

2mr2+vr '

. Central force in the polar co-ordinates
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Two typical cases:
A

co-ordinates

A
a b
/

> T

@ The left diagram shows a repulsive core and an attractive tail.

@ The right diagram shows an attractive core and repulsive tail.

il

Ay




Cen

tral force in the polar co-ordinates

A typical effective potential for the Kepler problem is of the form

R Vetr () e () A Verr ()
min = max TTTTToTmesocE
' Pmin  Fmax
+ > ¥ } e > ; >
“\-memeflmea- E Fmin
@ For E = V,,;y the motion is a circle.
@ For 0 > E > V,,;n the motion is bounded within
’rmax > T > Tmln
@ For £ > 0 the motion is unbounded from r = 00 to r = Tmin. :

gl




ow take
GMm
r) = — = ——.
-
he radial velocity is given by
T

e i N o I

t m i
Solving this will give the r

dr _dodr _
dtdo

Here we shall going to get 7(0), its locus in space. We can

r

L dr
mr2df

2

m

2p

5

Central force in the polar co-ordinates

trajectory. We shall discuss this later.
r

write




Ahgu;‘lgrl;’_ ,_r_r_gomgniurﬁand the Area Law

So we have to integrate

Central lfovrce in the polar co-ordinates -

do

B (L/7%)dr
Jem (E+ 5 - 4
It is convenient to employ the variable uw = 1/7 so that
du = —1/7"2dr, and
do

B —Ldu |
V2m (E + ku) — L2u?

—du,
02 2 2
(38 ) o B
This is a standard integral. The result is
L21
0 — 0y = cos™*




Angular momenturh and the Area Law

- Central force in the polar co-ordinates ‘
Setting 0y = 0 and writing
I? \/1 R 2FL?
o = — po— e
mk’ mk2 ’
we have the orbit equation

— =1+ ¢€cosb
"

Bertrand Theorem: —k/r and —%—krz are the only two potentials
that have closed orbits for all bounded states.

@ > -
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lar momentum and the Area Law

Central force in the polar co-ordinate

Notice that o has the d'imension of a length.
- By definition € > 0 and

o If E = —mk?/(2L?) =

—k/(2a), then € = 0 and the motion
Is a circle.

If 0 > E > —k/(2a), then 1 > € > 0 and the motion is
bounded, called the bounded state (ellipse).

@ If £ >0, then ¢ > 1 and the motion is unbounded, called the
scattering state (parabola or hyperbola).

The parameter € will be proved to be the eccentricity of a conic
section.
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Central force in the polar co-ordinates

Take Cartesian co-ordinates
x =r1cosf, = rsinf.
The orbit equation will be

o =T+ €x,

a—ex) =1r?,
o? — 2cax + 2 =22 + y2 :
bviously, ;

€ = Circle

> € > Ellipse,
€ = Parabola,
€ > Hyperbola.

= B ©ace




entum and the Area Law |

The equation of the ellipse is thus

- Central force in the polar co-ordinates

2
87
X

1 — €2

2
87

1 — €2
Hence

b
and




a heli a
rmax(aphelion) =
1+¢’ — €

e = 0.01674 , for the Earth’'s orbit

aphelion (July 2

Jan 2




gular momentum and the Area Law
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Consider the conservation of angular
perihelion and aphelion.
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Central force in the polar co-
1 L2(1 — €)?

»otdittgtveis
k(1 — €
— = F @)
om o o ’
2 2
1 L*(1+e€ _l{:1—|~e o
2m o2 o
Subtracting, we get |
LZ
o = _W;E .
Substituting back, we get the expression
1 —¢€)? ol
—(l—¢€) = —,
2 k
2 =

2E L2
=1+

mk? |
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mentum and the Area Law

Therefore

If T is the period, and from dA/dt = L/2m, we have

b= —T
mTa o ,

L27TCL

B 4m?
With (1 — €2)a = a = L?/(mk) we got

31——62@,

T2
CLS

B 42

- GMwt

Central force in the fpolar co-ordinates
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Conic section

Conic section - Wikipedia, the frec encyclopedia

From Wikipedia, the free encyclopedia

In mathematics, a conic
section (or just conic) is
a curve obtained by
intersecting a cone (more
precisely, a right circular
conical surface) with a
plane. In analytic
geometry, a conic may
be defined as a plane
algebraic curve of degree
2. It can be defined as
the locus of points whose
distances are in a fixed
ratio to some point,
called a focus, and some
line, called a directrix.

The three types of conic
section are the
hyperbola, the parabola,
and the ellipse. The

Types of conic sections:
1. Parabola

2. Circle and ellipse

3. Hyperbola

circle is a special case of the ellipse, and is of
sufficient interest in its own right that it is sometimes
called the fourth type of conic section.

The conic sections were named and studied as long
ago as 200 BC, when Apollonius of Perga undertook
a systematic study of their properties.

Contents
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3.2 Degenerate cases ]l Table of conics, Cyclopaedia, 1728
3.3 Eccentricity, focus and R
directrix

3.4 Generalizations

3.5 In other areas of
mathematics

= 4 Cartesian coordinates

4.1 Discriminant classification
4.2 Matrix notation

4.3 As slice of quadratic form
4.4 Eccentricity in terms of
parameters of the quadratic
form

4.5 Standard form
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4.7 Modified form

5 Homogeneous coordinates
6 Polar coordinates

7 Applications

8 Intersecting two conics

9 See also

10 Notes

11 References

12 External links

History

Menaechmus

It is believed that the first definition of a conic section is due to Menaechmus. This work
does not survive, however, and is only known through secondary accounts. The definition
used at that time differs from the one commonly used today in that it requires the plane
cutting the cone to be perpendicular to one of the lines that generate the cone as a surface
of revolution (a generatrix). Thus the shape of the conic is determined by the angle formed
at the vertex of the cone (between two opposite generatrices): If the angle is acute then the
conic is an ellipse; if the angle is right then the conic is a parabola; and if the angle is
obtuse then the conic is a hyperbola. Note that the circle cannot be defined this way and
was not considered a conic at this time.

Euclid is said to have written four books on conics but these were lost as well.[1]
Archimedes is known to have studied conics, having determined the area bounded by a
parabola and an ellipse. The only part of this work to survive is a book on the solids of
revolution of conics.

en.wikipedia.org/wiki/Conic_section a7
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Apollonius of Perga

The greatest progress in the study of conics by the ancient Greeks is due to Apollonius of
Perga, whose eight volume Conic Sections summarized the existing knowledge at the time
and greatly extended it. Apollonius's major innovation was to characterize a conic using
properties within the plane and intrinsic to the curve; this greatly simplified analysis. With
this tool, it was now possible to show that any plane cutting the cone, regardless of its
angle, will produce a conic according to the earlier definition, leading to the definition
commonly used today.

Pappus is credited with discovering importance of the concept of a focus of a conic, and
the discovery of the related concept of a directrix.

Al-Kuhi

An instrument for drawing conic sections was first described in 1000 CE by the Islamic
mathematician Al-Kuhi.[2113]

Omar Khayyam

Apollonius's work was translated into Arabic (the technical language of the time) and much
of his work only survives through the Arabic version. Persians found applications to the

theory; the most notable of these was the Persian*] mathematician and poet Omar
Khayyam who used conic sections to solve algebraic equations.

Europe

Johannes Kepler extended the theory of conics through the "principle of continuity”, a
precursor to the concept of limits. Girard Desargues and Blaise Pascal developed a theory
of conics using an early form of projective geometry and this helped to provide impetus for
the study of this new field. In particular, Pascal discovered a theorem known as the
hexagrammum mysticum from which many other properties of conics can be deduced.
Meanwhile, René Descartes applied his newly discovered Analytic geometry to the study
of conics. This had the effect of reducing the geometrical problems of conics to problems
in algebra.

Features

The three types of conics are the ellipse, parabola, and hyperbola. The circle can be
considered as a fourth type (as it was by Apollonius) or as a kind of ellipse. The circle and
the ellipse arise when the intersection of cone and plane is a closed curve. The circle is
obtained when the cutting plane is parallel to the plane of the generating circle of the cone —
for a right cone as in the picture at the top of the page this means that the cutting plane is
perpendicular to the symmetry axis of the cone. If the cutting plane is parallel to exactly
one generating line of the cone, then the conic is unbounded and is called a parabola. In the

en.wikipedia.org/wiki/Conic_section 3nT
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remaining case, the figure is a hyperbola. In this case,
the plane will intersect both halves (nappes) of the cone,
producing two separate unbounded curves.

Various parameters are associated with a conic section,
as shown in the following table. (For the ellipse, the ~
table gives the case of a>b, for which the major axis is Q) )
horizontal; for the reverse case, interchange the symbols
a and b. For the hyperbola the east-west opening case is
given. In all cases, a and b are positive.)

©

Conics are of three types:
parabolas (1), ellipses, including
circles (2), or hyperbolas (3).

conic equation eccentricity linear semi-latus ali':lclfel ter
section 1 (e) eccentricity (¢)| rectum (f) P ®)
circle 2> +9° =ad*|0 0 a 00
. 2y [ b2 b? b?
ellipse = + —';3 =11/1~— ) a’? — b - 2 _ b2
parabola |y° = daz |1 a 2a 2a
2 2 a 9 9
sy .' b? b b
hyperbola |— — Z- = 1[{/{1+ — Va2 + il .
P a? b \/ + 2 |V + 0 a va?+ b2

Conic sections are exactly those ==
curves that, for a point F, a line e divectrices .
L not containing F' and a non-
negative number e, are the locus
of points whose distance to F ] ) i

. . 4. acpl parapeter
equals e times their distance to -
L. F is called the focus, L the -
directrix, and e the eccentricity.

Latus rectiim

\ Dlinor axis

. pamn woare v e

.t
.....

linear eccentricity

AAAAA
-
......
-
4
_____

The linear eccentricity (c) is
the distance between the center
and the focus (or one of the two foci "
foci).

i
i
f
i

Conic parameters in the case of an ellipse

The latus rectum (2¢) is the
chord parallel to the directrix and passing through the focus (or one of the two foci).

The semi-latus rectum (¢) is half the latus rectum.

The focal parameter (p) is the distance from the focus (or one of the two foci) to the
directrix.

The following relations hold:

en.wikipedia.org/wiki/Conic_section 417
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" pe=/{
B (c = C,

Properties

Just as two (distinct) points determine a line, five points determine a conic. Formally, given
any five points in the plane in general linear position, meaning no three collinear, there isa
unique conic passing through them, which will be non-degenerate; this is true over both the
affine plane and projective plane. Indeed, given any five points there is a conic passing
through them, but if three of the points are collinear the conic will be degenerate (reducible,
because it contains a line), and may not be unique; see further discussion.

Irreducible conic sections are always "smooth". More precisely, they never contain any
inflection points. This is important for many applications, such as aerodynamics, where a
smooth surface is required to ensure laminar flow and to prevent turbulence.

Intersection at infinity

An algebro-geometrically intrinsic form of this classification is by the intersection of the
conic with the line at infinity, which gives further insight into their geometry:

m ellipses intersect the line at infinity in 0 points — rather, in 0 real points, but in 2
complex points, which are conjugate;

= parabolas intersect the line at infinity in 1 double point, corresponding to the axis
— they are tangent to the line at infinity, and close at infinity, as distended ellipses;

m hyperbolas intersect the line at infinity in 2 points, corresponding to the
asymptotes — hyperbolas pass through infinity, with a twist. Going to infinity
along one branch passes through the point at infinity corresponding to the
asymptote, then re-emerges on the other branch at the other side but with the
inside of the hyperbola (the direction of curvature) on the other side — left vs.
right (corresponding to the non-orientability of the real projective plane) — and
then passing through the other point at infinity returns to the first branch.
Hyperbolas can thus be seen as ellipses that have been pulled through infinity and
re-emerged on the other side, flipped.

Degenerate cases

For more details on this topic, see Degenerate conic.

There are five degenerate cases: three in which the plane passes through apex of the cone,
and three that arise when the cone itself degenerates to a cylinder (a doubled line can occur
in both cases).

“When the plane passes through the apex, the resulting conic is always degenerate, and is
either: a point (when the angle between the plane and the axis of the cone is larger than

en.wikipedia.org/wiki/Conic_section 517
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tangential); a straight line (when the plane is tangential to the surface of the cone); or a pair
of intersecting lines (when the angle is smaller than the tangential). These correspond
respectively to degeneration of an ellipse, parabola, and a hyperbola, which are
characterized in the same way by angle. The straight line is more precisely a double line (a
line with multiplicity 2) because the plane is tangent to the cone, and thus the intersection
should be counted twice.

Where the cone is a cylinder, i.e. with the vertex at infinity, cylindric sections are
obtained;[>] this corresponds to the apex being at infinity. Cylindrical sections are ellipses
(or circles), unless the plane is vertical (which corresponds to passing through the apex at
infinity), in which case three degenerate cases occur: two parallel lines, known as a ribbon
(corresponding to an ellipse with one axis infinite and the other axis real and non-zero, the
distance between the lines), a double line (an ellipse with one infinite axis and one axis
zero), and no intersection (an ellipse with one infinite axis and the other axis imaginary).

Eccentricity, focus and directrix

The four defining conditions above can be S ;
combined into one condition that depends on a “\, /
fixed point F (the focus), a line L (the directrix) \ /

not containing F' and a nonnegative real number
e (the eccentricity). The corresponding conic

section consists of the locus of all points whose
distance to F equals e times their distance to L.
For 0 < e < 1 we obtain an ellipse, fore = 1 a ,
parabola, and for e > 1 a hyperbola. TR w

For an ellipse and a hyperbola, two focus-
directrix combinations can be taken, each giving
the same full ellipse or hyperbola. The distance

from the center to the directrix is a / e, where a |

is the semi-major axis of the ellipse, or the Ellipse (e=1/2), parabola (e=1) and
distance from the center to the tops of the hyperbola ( e=2) with fixed focus F and

hyperb.ola. The distance from the center to a directrix (e=co).
focus is a €.

In the case of a circle, the eccentricity e = 0, and one can imagine the directrix to be
infinitely far removed from the center. However, the statement that the circle consists of all
points whose distance to F is e times the distance to L is not useful, because we get zero
times infinity.

The eccentricity of a conic section is thus a measure of how far it deviates from being
circular.

For a given a, the closer ¢ is to 1, the smaller is the semi-minor axis.

en.wikipedia.org/wiki/Conic_section 6/17
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Generalizations

Conics may be defined over other fields, and may also be classified in the projective plane
rather than in the affine plane.

Over the complex numbers ellipses and hyperbolas are not distinct, since there is no

meaningful difference between 1 and —1; precisely, the ellipse x% + y2 = | becomes a
hyperbola under the substitution y = iw, geometrically a complex rotation, yielding

2—wt=1-a hyperbola is simply an ellipse with an imaginary axis length. Thus there is
a 2-way classification: ellipse/hyperbola and parabola. Geometrically, this corresponds to
intersecting the line at infinity in either 2 distinct points (corresponding to two asymptotes)
or in 1 double point (corresponding to the axis of a parabola), and thus the real hyperbola is
a more suggestive image for the complex ellipse/hyperbola, as it also has 2 (real)
intersections with the line at infinity.

In projective space, over any division ring, but in particular over either the real or complex
numbers, all non-degenerate conics are equivalent, and thus in projective geometry one
simply speaks of "a conic" without specifying a type, as type is not meaningful.
Geometrically, the line at infinity is no longer special (distinguished), so while some conics
intersect the line at infinity differently, this can be changed by a projective transformation —
pulling an ellipse out to infinity or pushing a parabola off infinity to an ellipse or a
hyperbola.

In other areas of mathematics

The classification into elliptic, parabolic, and hyperbolic is pervasive in mathematics, and
often divides a field into sharply distinct subfields. The classification mostly arises due to
the presence of a quadratic form (in two variables this corresponds to the associated
discriminant), but can also correspond to eccentricity.

Quadratic form classifications:

quadratic forms
Quadratic forms over the reals are classified by Sylvester's law of inertia, namely by
their positive index, zero index, and negative index: a quadratic form in variables can
be converted to a diagonal form, as :r‘f + g;:g et 1;" — in g zz s where
the number of +1 coefficients, k, is the positive index, the number of —1 coefficients, /,
is the negative index, and the remaining variables are the zero index m, so
k+ 1+ m = n. In two variables the non-zero quadratic forms are classified as:

= x2+ y2, — positive-definite (the negative is also included), corresponding to

ellipses,
n 32 — degenerate, corresponding to parabolas, and
2 2

= x* — y~ — indefinite, corresponding to hyperbolas.

en.wikipedia.org/wiki/Conic_section mni
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In two variables quadratic forms are classified by discriminant, analogously to conics,
but in higher dimensions the more useful classification is as definite, (all positive or all
negative), degenerate, (some zeros), ot indefinite (mix of positive and negative but no
zeros). This classification underlies many that follow.

curvature

The Gaussian curvature of a surface describes the infinitesimal geometry, and may at
each point be either positive — elliptic geometry, zero — Euclidean geometry (flat,
parabola), or negative — hyperbolic geometry; infinitesimally, to second order the

surface looks like the graph of X%+ yz,, x2 (or 0), or x2 - yz.. Indeed, by the
uniformization theorem every surface can be taken to be globally (at every point)
positively curved, flat, or negatively curved. In higher dimensions the Riemann
curvature tensor is a more complicated object, but manifolds with constant sectional
curvature are interesting objects of study, and have strikingly different properties, as
discussed at sectional curvature.

Second order PDEs
Partial differential equations (PDEs) of second order are classified at each point as
elliptic, parabolic, or hyperbolic, accordingly as their second order terms correspond to
an elliptic, parabolic, or hyperbolic quadratic form. The behavior and theory of these
different types of PDEs are strikingly different — representative examples is that the
Laplacian is elliptic, the heat equation is parabolic, and the wave equation is
hyperbolic.

Eccentricity classifications include:

Mobius transformations
Real Mobius transformations (elements of PSLy(R) or its 2-fold cover, SL,(R)) are
classified as elliptic, parabolic, or hyperbolic accordingly as their half-trace is
0 < |tr|/2 <1, tr|/2=1,or|tr|/2 > 1, mirroring the classification by
eccentricity.

Variance-to-mean ratio
The variance-to-mean ratio classifies several important families of discrete probability
distributions: the constant distribution as circular (eccentricity 0), binomial distributions
as elliptical, Poisson distributions as parabolic, and negative binomial distributions as
hyperbolic. This is elaborated at cumulants of some discrete probability distributions.

Cartesian coordinates

In the Cartesian coordinate system, the graph of a quadratic equation in two variables is
always a conic section — though it may be degenerate, and all conic sections arise in this
way. The equation will be of the form

Az’ + Bry + Cy' + Dz + Ey+ F = 0 with A, B, C not all zero.

As scaling all six constants yields the same locus of zeros, one can consider conics as
points in the five-dimensional projective space p?
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Discriminant classification

The conic sections described by this equation can be classified with the discriminant!®]
B? —4AC.

If the conic is non-degenerate, then:

s if B2 — 44C < 0, the equation represents an ellipse;
» if 4 = C and B = 0, the equation represents a circle, which is a special
case of an ellipse;

= if B2 — 44C = 0, the equation represents a parabola;

w if B2 —4A4C > 0, the equation represents a hyperbola;
w if we also have 4 + C = 0, the equation represents a rectangular
hyperbola.

To distinguish the degenerate cases from the non-degenerate cases, let A be the determinant
of the 3x3 matrix [4, B/2, D/2 ; B/2, C, E/2 ; D/2, E/2, F ]: that is, A = (AC - B2/4)F +
BED/4 - CD?/4 - AE%/4. Then the conic section is non-degenerate if and only if A # 0. If
A=0 we have a point ellipse, two parallel lines (possibly coinciding with each other) in the
case of a parabola, or two. intersecting lines in the case of a hyperbola.m:p'63

Moreover, in the case of a non-degenerate ellipse (with B2 — 44C < 0 and A#0), we have
a real ellipse if CA < 0 but an imaginary ellipse if CA > 0. An example is

X2+ y2 + 10 = 0, which has no real-valued solutions.

Note that A and B are polynomial coefficients, not the lengths of semi-major/minor axis as
defined in some sources.

Matrix notation

Main article: Matrix representation of conic sections

The above equation can be written in matrix notation as

o A B/2| |z __ _
[;.L y][BfZ G][y}—{—Daz«}—Ey—}—F-—-O.

The type of conic section is solely determined by the determinant of middle matrix: if it is
positive, zero, or negative then the conic is an ellipse, parabola, or hyperbola respectively
(see geometric meaning of a quadratic form). If both the eigenvalues of the middle matrix
are non-zero (i.e. it is an ellipse or a hyperbola), we can do a transformation of variables to
obtain
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(522) (3 &) (570)=e

B F =G

y—c 7 C y—c
wherea,c,andGsatisfyD+2aA+Bc:O,E—i—‘BGc—i— Ba = 0, and
G = Aa? + Cc* + Bac — F.

The quadratic can also be written as

A Bj2 D/2| |z
[z v i].1B/2 C E/2).1y| =0
p/2 E/2 F | |1

If the determinant of this 3x3 matrix is non-zero, the conic section is not degenerate. If the
determinant equals zero, the conic is a degenerate parabola (two parallel or coinciding
lines), a degenerate ellipse (a point ellipse), or a degenerate hyperbola (two intersecting
lines). |

Note that in the centered equation with constant term G, G equals minus one times the ratio
of the 3x3 determinant to the 2x2 determinant.

As slice of quadratic form

The equation
A2 + Boy+ Cy*+ D+ Ey + F =0

can be rearranged by taking the affine linear part to the other side, yielding
Az?+ Bzy + Cy® = —(Dx + Ey + F).

In this form, a conic section is realized exactly as the intersection of the graph of the

quadratic form z = Ax? + Bxy + C'y2 and the plane z =— (Dx + Ey + F). Parabolas and
hyperbolas can be realized by a horizontal plane (D = E = 0), while ellipses require that
the plane be slanted. Degenerate conics correspond to degenerate intersections, such as
taking slices such as z = — 1 of a positive-definite form.

Eccentricity in terms of parameters of the quadratic form

When the conic section is written algebraically as
Az’ + Bry+Cy* + Dz + Ey+ F =10,

the eccentricity can be written as a function of the parameters of the quadratic equation.[s]
If 44C = B2 the conic is a parabola and its eccentricity equals 1 (if it is non-degenerate).
Otherwise, assuming the equation represents either a non-degenerate hyperbola or a non-
degenerate, non-imaginary ellipse, the eccentricity is given by
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2,/(A—C)? + B?
n(A+C) +/(A—C)? + B?

where = 1 if the determinant of the 3x3 matrix is negative or 1= -1 if that determinant is
positive.

Standard form

Through change of coordinates these equations can be put in standard forms:

Circle: % + y* = d®

a2 e
Ellipse: = + 7= 1

Parabola: y‘q = daz, g‘;Q — 4ay
22 g2 22 P
Hyperbola: —_ _ ¥y _ 1. = =
a? b "2 a?
Rectangular Hyperbola: xy = o2

=1

Such forms will be symmetrical about the x-axis and for the circle, ellipse and hyperbola
symmetrical about the y-axis.

The rectangular hyperbola however is only symmetrical about the lines y = x and y = — X.
Therefore its inverse function is exactly the same as its original function.

These standard forms can be written as parametric equations,

Circle: (acos 8,asin 0),

Ellipse: (acos 0,bsin 0),

Parabola: (atz,Zat),

Hyperbola: (asec 0,btan 0) or (+a coshw, bsinh ).

Rectangular hyperbola: (c:t, -;)

Invariants of conics

A 2 L : :
B/2 Bg, } are both invariant with respect to both rotation

of axes and translation of the plane (movement of the origin).[9]

The trace and determinant of‘:

The constant term F is invariant under rotation only.

Modified form
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Three different types of conic sections. Focal-points corresponding to all conic sections
are placed at the origin.

applications, it is important to re-arrange the standard form so that the focal-point can be
placed at the origin. The mathematical formulation for a general conic section is then given
in the polar form by
[
r=—
1 —ecosf

and in the Cartesian form by

Vat+yr =1+ er)

le 2 ) 2
;13_.___:_2. 1__6-.-—
1l—e l{ }y 1

_ 3
3 &

le

From the above equation, the linear eccentricity () is given by ¢ = 1 &
. 6’-‘

From the general equations given above, different conic sections can be represented as
shown below:

= Circle: z2 + 3* = r2
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= Ellipse: (1 - m)g 2

a? +55:1

= Parabola: y? = 4a(z + a)
2

s Hyperbola: (@ A bg)~ _ (_l;’_e_ _ 1
a? b2

Homogeneous coordinates
Tn homogeneous coordinates a conic section can be represented as:
A1x2 + Ay + A322 +2Bqxy + 2Byxz + 2B3yz = 0.

Or in matrix notation

4-111 B1 BQ €T
[z y 2].|Bi A Bs|.ly| =0
BQ Bg Ag _»?IT
A, B, By
The matrix A = | By A, Ba|is called the matrix of the conic section.
By B; Az
A=det(M)=det| | B Ay Bs| |is called the determinant of the conic section.
By Bg As

If A = 0 then the conic section is said to be degenerate; this means that the conic section is
either a union of two straight lines, a repeated line, a point or the empty set.

1 0 0] |z
For example, the conic section[a; Yy 4] 10 —1 0].ly| = 0reduces to the union of
0 0 0} |2z

two lines:
(22 -y’ =0t={(z+y)z—y) =0 ={z+y= 0}u{z—y=0}
Similarly, a conic section sometimes reduces to a (single) repeated line:

{-:L‘:Q—}—Z:L'gﬁ—-y2 =0} = {(:11+y)2 =0} = {o+y = 0}U{a+y = 0} = {z+y = 0}.

d = det ( {gl Iii} ) is called the discriminant of the conic section. If § = 0 then the
1 g

conic section is a parabola, if 8 < 0, it is an hyperbola and if 6 > 0, it is an ellipse. A conic
section is a circle if 8 > 0 and A; = A, and By =0, it is an rectangular hyperbola if 6 <0
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and A; = —A,. It can be proven that in the complex projective plane CP? two conic
sections have four points in common (if one accounts for multiplicity), so there are never
more than 4 intersection points and there is always one intersection point (possibilities:
four distinct intersection points, two singular intersection points and one double intersection
points, two double intersection points, one singular intersection point and 1 with
multiplicity 3, 1 intersection point with multiplicity 4). If there exists at least one
intersection point with multiplicity > 1, then the two conic sections are said to be tangent. If
there is only one intersection point, which has multiplicity 4, the two conic sections are said

to be osculating.[lo]

Furthermore each straight line intersects each conic section twice. If the intersection point
is double, the line is said to be tangent and it is called the tangent line. Because every
straight line intersects a conic section twice, each conic section has two points at infinity
(the intersection points with the line at infinity). If these points are real, the conic section
must be a hyperbola, if they are imaginary conjugated, the conic section must be an ellipse,
if the conic section has one double point at infinity it is a parabola. If the points at infinity
are (1,i,0) and (1,-1,0), the conic section is a circle. If a conic section has one real and one
imaginary point at infinity or it has two imaginary points that are not conjugated it is neither
a parabola nor an ellipse nor a hyperbola.

Polar coordinates

In polar coordinates, a conic section with one focus at the origin and, if any, the other on the
x-axis, is given by the equation

[

= —,

1+ ecost
where ¢ is the eccentricity and [ is the semi-latus rectum (see below). As above, for e =0,
we have a circle, for 0 < e <1 we obtain an ellipse, for e = 1 a parabola, and fore>1 a

hyperbola.

Applications

Conic sections |
are important in ‘
astronomy: the i
orbits of two | .
massive objects |
that interact

according to e=512,00 |
Newton's law of hyperbola :
ETHM  aboloid sh ¢ universal * g
%Arehpara Olf':i S apde © , gravitation are | |
| Archeocyathids produces conic - L . _ *
i Y P conic sections if Development of the conic section as the

!
i
i
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' their common 5 eccentricity e increases

center of mass is LT
considered to be at rest. If they are bound together, they will both trace out ellipses; if they
are moving apart, they will both follow parabolas or hyperbolas. See two-body problem.

| sections on rock faces

In projective geometry, the conic sections in the projective plane are equivalent to each
other up to projective transformations.

For specific applications of each type of conic section, see the articles circle, ellipse,
parabola, and hyperbola.

For certain fossils in paleontology, understanding conic sections can help understand the
three-dimensional shape of certain organisms.

Intersecting two conics

The solutions to a two second degree equations system in two variables may be seen as the
coordinates of the intersections of two generic conic sections. In particular two conics may
possess none, two or four possibly coincident intersection points. The best method of
locating these solutions exploits the homogeneous matrix representation of conic sections,
i.e. a 3x3 symmetric matrix which depends on six parameters.

The procedure to locate the intersection points follows these steps:

= given the two conics C; and C consider the pencil of conics given by their linear
combination AC + pCy

= identify the homogeneous parameters (A1) which corresponds to the degenerate
conic of the pencil. This can be done by imposing that det(ACy + pCyp) =0,
which turns out to be the solution to a third degree equation.

m given the degenerate conic Cg, identify the two, possibly coincident, lines
constituting it

® intersects each identified line with one of the two original conic; this step can be
done efficiently using the dual conic representation of Co

= the points of intersection will represent the solution to the initial equation system

See also

Focus (geometry), an overview of properties of conic sections related to the foci
Lambert conformal conic projection

Matrix representation of conic sections

Quadrics, the higher-dimensional analogs of conics

Quadratic function '

Rotation of axes

Dandelin spheres
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Projective conics

Elliptic coordinates

Parabolic coordinates

Director circle
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1/11/10 Conic Sections
Math2.org Math Tables: Conic Sections
(Math)

Ellipse (h) Parabola (h) Hyperboia (h)

Fe4a—f 22, —c—
' ' iy S, kAo
- N N
o . — 1] ,:'”— .X.} e (- ( Ofe \ hy 8- R
-~ e ; A
| 1 [ A \
0 0 0 0
Definition: Ellipse (v) Parabola (v)  Hyperbola (v)
A conic section FbH b
is the o\ T !
intersection of a g} ( j +oop S
H w
plane and a 3/ i '
cone. i) d

By changing the angle and location of intersection, we can produce a circle, ellipse, parabola or hyperbola;
or in the special case when the plane touches the vertex: a point, line or 2 intersecting lines.

Point - Line Double Line

y=mx+b
1 /
oF e /,/f;
b !
q 03

The General Equation for a Conic Section:
Ax2+Bxy +Cy2+Dx+Ey+F=0

The type of section can be found from the sign of: B2 - 4AC

If B2 - 4AC is...[then the curve is a...

<0 ellipse, circle, point or no curve.

=0 parabola, 2 parallel lines, 1 line or no curve.
>0 hyperbola or 2 intersecting lines.

The Conic Sections. For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-

math2.org/math/algebra/conics.htm
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j) and each y term with (y-k).

Conic Sections

Circle Ellipse Parabola Hyperbola
2.2 02 /2=
Equation (horiz. vertex):  |x? +y? = 2 7]( /a®+y"/b 4px = y? 2 /a2 -y2/b2=1
Equations of Asymptotes: y =+ (b/a)x
2 .20 2 /2=
Equation (vert. vertex): x2 +y? = 2 31' /a®+x7/b 4py = *x2 v / a2-x2/b%=1
Equations of Asymptotes: x = * (b/a)y
a = major radius
(= 1/2 length a = 1/2 length major
major axis) — axis
. r = circle b = minor radius p = distance from b = 1/2 length minor
Variables: . = vertex to focus (or .
radius (= 1/2 length ) . axis
. . directrix) .
minor axis) ¢ = distance center to
¢ = distance focus
center to focus
Eccentricity: 0 c/a c/a
Relation to Focus: p=0 a2 - b2 = c? p=p a2 + b2 = c?
Definition: is the locus of [distance to  |sum of distances | .. _ |difference between
. . . . distance to focus = | .. .
all points which meet the  |the originis |to each focus is . . ._|idistances to each foci
- distance to directrix ||.
condition... constant constant is constant
Geometry
Related Topics: section on
Circles

math2.org/math/algebra/conics.htm
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Rocket Propulsion

Rocket propulsion is a striking example of the conservation of momentwm in
action. The mathematical description of rocket propulsion can become guite
complex because the mass of the rocket changes continuously as it burns fuel
and expels exhaust gas. The easiest approach is to compute the change in the
momentum of the total system (including the exhaust gas) for some time in-
terval and use Newton’s law in the form F,, = dP/dt, where F_ is the net
force acting on the rocket. ,

Consider a rocket moving with speed v relative to the earth (Figure 8-44).
If the tuel 1s burned at a constant rate, R = !cfm / erE, the rocket’s mass at time £ is

8-35

m o= my — RE
where 1, is the inilial mass of the rocket. The momentum of the system at
time f is

Py = mu

At a later tme £ -+ Af, the rocket has expelled gas of mass R At. If the gas is
exhausted at a speed u,,, relztive fo the rocket, the velocity of the gas relative to
the earth ts v — u.,. The rocket then has a mass m —R Af and is moving at a
speed © 4 Aw (Figure 8-45).

2+ AT

1Al

Figure B3-44

VA2

Figure 8-15




242 CHAPTER 8 Systems of Particles and Conservation of Momentum

The momentum of the system at t + At is
Pi=(m — RAD@ + Av) + R At(w - Hey)
=mv+mAv ~ vRAt -~ RAAv + v R At — u,, K At
= mv + mAv — U, RAt

where we have dropped the term R Af Ay, which is the product of two very
small quantities, and therefore negligible compared with the others. The
change in momentum is

AP = P — Py = m Av — 1, R Al
and

AP » Av

—=m—— =

At ar "
As At approacles zero, Av/At approaches the derivative do/dt, which is the -
acceleration. For a rocket moving upward near the surface of the earth,
Fosr = —mg. Setting dP/dt = F,, = —mg gives us the rocket equation:

R 8-36

dv
" i Rug,, + Fo = Rug, — mg 837
Rocket equation
oT
do Ru Ru,
B . S ex g ' 8-38

b m gme*Rf“'




The quantity Rug, is the force exerted on the rocket by the exhausting fuel.
This is called the thrust’

dm

8-39
df

Fe = Ruyy i

Definition---flocket thrust

Equation 8-38 is solved by integrating both sides with respect to time. For a
rocket starting at rest at # = 0, the result is

11 Rt
U= Uy ln/—-—[-)——-———) - gt 8-40
: ?n(}

as can be verified by taking the time derivative of v. The payload of a rocket
is the final mass, 1, after all the fuel has been burned. The burn time £, is
given by #p = ing — Rb,, or

_ ﬂlo - T?If

b= % 8-41

Thus, a Tocket starting at rest with mass 1y, and payload of 1, attains a final
speed

Vg = — U IN—" — g1y, | 8-42

Final speed of rocket

assuming the acceleration of gravity to be constant.
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Chapter 8
GRAVITATION

According to Newton’s law of universal gravitation each pair of parti-
cles in the universe is mutually attracted with a force proportional to
the product of their masses, inversely proportional to the square of the
distance between them, and directed along the line joining them. The
proportionality constant G in the gravitational force law is known as
Newton’s constant. Although G is the least precisely measured funda-
mental constant, known only to one part in 104, its constancy is very well
checked by careful analyses of solar system motions to better than one
part in 10'% per year, which corresponds to a variation of no more than
one percent over the age of the universe. Newtonian physics provides a
nearly complete understanding of the motions of the planets, satellites,
stars, galaxies and the universe as a whole. Indeed, it has only been in
this century that a few tiny discrepancies have been uncovered whose
explanation requires the more complete theory of gravity provided by
Einstein’s general relativity.

8.1 Attraction of a Spherical Body: Newton’s Theorem

The statement of Newton’s law of gravity applies to the attraction
between two point masses, whereas celestial bodies are roughly spher-
ical collections of particles. The theorem, first shown by Newton, that
a spherically symmetric body acts as if its mass is concentrated at its
center, is an essential step in the application of the law of gravitation to
celestial mechanics. A corollary is that a particle located in a spherical
mass distribution at a radius r from the center of the distribution ex-
periences a net gravitational force only from the mass M(r) within the
radius 7 and the net force is as if M(r) were located at r = 0. We give a
proof of Newton’s theorem using the concept of potential energy.

The gravitational potential energy between two point masses m and
M separated by a distance r is

V() = - SMm (8.1)

r
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The corresponding force on m due to M is given by

F=-VV()= GMmg— (3) o GMmy  GMm, (82)

r \r re : r3

where r = r, —r,,. It is convenient to def?ne the gravitational force on
m as F = mg, where g is the acceleration of gravity at the position of
m, independent of the value of m. (The fact that any mass at a given
position in a gravitational field has the same acceleration g is known as
the equivalence principle.) Correspondingly the gravitational potential
energy is defined as V = m®, where @ is the gravitational potential, so%

g=-Vd (8.3)
From (8.2) the gravitational potential due to a mass M at a distance r is

o(r) = M L (8.4)

r

- We first calculate the gravitational potential due to a uniform spher-

ical shell of mass M at a distance R from the center of the shell, as

illustrated in Fig. 8-1. To begin, we evaluate the potential energy of a
circular ring element of mass dM shown in Fig. 8-1. If the radius of the
shell is a, the surface mass density is ‘

' M
’ 7= tra?
The circular ring element has differential area dA = 27 (asin 6)(ad6) and
mass

(8.5)

" dM = (2ra?sin 6d6)o- -
. 8.6
= Tsinfdd - (86)
The distance r from dM to the pbint. Wl;efe' the pbtential is being evalu-
ated is given by the law of cosines

r? = a> + R? — 2aRcosf ‘ (8.7)

By differentiation we obtain

aM
rdr = aRsin 0df = 20,Eﬂ—

so that dM can be expressed as

Mrdr

dM = 2aR
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FIGURE 8-1. Gravitational attraction of a point mass m and a differential ring
element dM on a spherical shell of mass M, with (a) m outside the shell and (b) m
inside the shell.

The potential due to the ring mass dM is

GdM GM
do(r) = — = —ZaRdr (8.9)

The contributions of all ring elements on the shell are obtained by inte-
gration over r

i GM
3(r) = [ d2(r) =~ 7o (= i) (8.10)

We see from Fig. 8-1 that rmax = R+a and rgin = |R— a| and thus when

r is outside the shell

Tmax — Tmin = (B +a) — (R —a) = 2a (8.11)
whereas when m is inside the shell,

Tmax — Tmin = (R+a) — (a — R) = 2R (8.12)

Thus the potential is

- —Cil—gi R>a (8.13)
B =1 au
— T R<a (814)

Since ®(r) is constant inside the shell, g vanishes there. When r is outside
the shell, the potential in (8.13) is as if the mass M of the shell were
concentrated at the center of the shell. Since a spherically symmetric solid

‘body can be represented as a collection of concentric spherical shells, the

gravitational force on m due to a spherical body is as if the total mass M
were concentrated at the center of the sphere. Newton’s theorem follows:
the gravitational force of any spherically symmetric distribution of matter
at a distance R from the center is the same as if all the mass within the
sphere of radius R were concentrated at the center.

8.2 The Tides

When a body moves in a non-uniform gravitational field, it is subjected
to tide-generating forces. These shearing forces may even tear the body
apart—this is a possible origin of the rings of Saturn. o

The acceleration of the body ag is the total gravitational force on its
component masses divided by its total mass. (If the body is spherically
symmetric, then the result of Newton’s theorem and the “action equals
reaction” principle is that ap is simply the value of g(r) at the center of

- the body.) If we use coordinates centered on the body (i.e., “falling with

the body”) the gravitational field becomes g(r) —ap. If we separate g
into the part due to the body itself geer (which vanishes at the center of
the body) and to the part due to external masses Zext, then the gravi-
tational field in the frame fixed on the body is gseir + (8ext — ag). The
second term, (gext — ag), is the tidal field.




Tidal forces on a planet are maximum along a line to the external
force center and give two high tides on opposite sides of the planet. For
a planet in a circular orbit about the sun the origin of the double tide
is easily explained by the following argument. The forces acting on a
mass m are the attractive gravitational force GmM/r* and the repulsive
centrifugal force mw?r due to the revolution of the planet about the sun.
At the CM of the planet the gravity force exactly balances the centrifugal
force since there is no radial acceleration in a circular orbit. At the point
closest to the sun, the sun’s gravitational attraction is larger than at the
CM and the centrifugal force is smaller, giving a net tidal force in the
direction of the sun. At the farthest point on the planet from the sun the
centrifugal force exceeds that of gravity and there is a tidal force directed
away from the sun.

The ocean tides on earth are caused by the variation from place to
place of the gravitational attraction due to the moon and the sun. The
atmosphere, the ocean, and the solid earth all experience tidal forces,
but only the effects on the ocean are commonly observed. To estimate
the gross features of the midocean tides, we begin with a static theory
in which the rotation of the earth about its axis is neglected. The daily
rotation of the earth will be invoked later to explain the propagation of
the tides.

To calculate the tide-generating force, we consider the acceleration of
a small mass m on the ocean’s surface under the combined influence of
the gravitational attraction of the earth and a distant mass M, as shown
in Fig. 8-2. The coordinates of the masses m, Mg, M in an inertial frame
are represented by the vectors ry, ry, ra, respectively. For convenience,
we denote the relative coordinates of the masses by '

r=r;—17rIg
R=r;—r3 (8.15)
d=r;—-r3=R+r

With this notation, the motion of m and Mg due to gravitational forces

is determined by
GmMEgt : GmM -

mify = ———3 7 (8.16)
Mgty = _E%gﬂf{ (8.17)

By dividing the first equation by m, the second equation by Mg, and then

x

FIGURE 8-2. Location of a point on the earth’s surface and a distant mass M in an
inertial frame and an earth-centered frame.

subtracting, we find the equation of motion for the relative coordinate r.

g _GMEL_ oy (d R) (8.18)

r? & R

This result could have been directly obtained from (6.22). The first term
on the right-hand side of (8.18) is the central gravity force of the earth on
a particle of unit mass. The second term is the tide-generating force per
unit mass due to the presence of the distant mass M. The tide-generating
force is the difference between the forces on the surface of the earth and
at the center of the earth. The direction and relative magnitude of the
tide-generating force due to M are plotted in Fig. 8-3 for points around



the earth’s equator. The effect of this force is to produce the two tidal
bulges which, as the earth rotates, are observed twice daily as high tides.

— >
To distant
attracting mass M

FIGURE 8-3. Tide-generating force on the surface of the earth at the equator due to
a distant mass.

If the tidal forces are small compared to the gravitational force on
the CM and the distance to the external force center is large compared
to the planetary radius we can approximate (8.18) as follows. By (8.15)
we can express the second factor of (8.18) as

d R _d R _R+r R
2 R & R & R

5 i (8.19)
=R(zs‘“ 'R—) t#

We form the square of d
d=R4+r*+2R T

9R-r  r2\'* (8.20)
d:R(l-i—-—R-z——'{’—RTZ) .

Then for R > r we apply the binomial expansion (14 8)" ~ 1+nf+---,
with # =R -r/R? and n = 1/2, and retain only leading terms

R-r |
d:R(H——Ez——{----) (8.21)

The quantity d=% in (8.19) can be approximated by
1
a3

S ( 1 3R- r>
—®m\"T R?
B\ R (8.22)
1 3R-r
R Rt
where the binomial expansion with n = —3 has been applied. To first
order in r (8.19) becomes
d R . 1 1 T
ﬁ'fﬁzR(&?“ﬁ) * R
3R-r) T (8.23)
- Rt R3
1 ~ ~
~ 73 [—3R(R-r) +r]
In our choice of coordinate system in Fig. 8-2, R = —% and thus
d R 1 R
T REYE (—3z% + 1) (8.24)
In this approximation the tidal acceleration of (8.18) is
- GMgt GM, .
r= —'"—;é—"'- + 'Tz-s-(3$}( - 1‘) (825)

Since gravitational forces are conservative this force per unit mass
can be derived from a potential and we may write

r=-V,® (8.26)

where V, means the gradient with respect to the vector r = X +y¥ + 22
whose origin is at the center of the earth. It is easy to guess that the
potential whose negative gradient is the right side of (8.25) is

_ GMp GM (3 , 1,
&= —— = (23; 5 (8.27)
Since ¢ = rsin 0 cos @, we have

__GMp GM (1Y (3ung o 1
o= . - (R) (23111 f cos® ¢ 2) (8.28)

For equilibrium of the ocean surface, the net tangential force on m
must vanish. Equivalently, the potential at any point on the ocean’s sur-
face must be constant. We choose the constant to be ®(r) = -GMEg/RE,




where R is the undistorted spherical radius of the earth (i.e., when the
distant M is absent). Using this condition in (8.28) gives

M Rg (3 1
S - N < sin? L
r B M, P (2 sin“ @ cos* ¢ 2) (8.29)
Since the height of the tidal displacement
h(0,¢) =r — Rg (8.30)
is quite small compared with Rg, (8.29) gives
M R /3 1
h(8,¢) ~ — =2 | =sin? L
9,9) W B (251n fcos” ¢ 2) (8.31)

For a given colatitude angle # in (8.31), the high tides occur at ¢ =0
and ¢ = 7, and low tides occur at ¢ = 7/2 and ¢ = 37/2. The difference
in height between high and low tide, known as the tidal range, is

Ah == — =Zsin’4 (8.32)

The tidal displacement h is largest at § = 90° (on the equator). The
tidal distortion is illustrated in Fig. 8-4. The tide for an ocean devoid
of continents has a prolate spheroid shape (football-like), with the major
axis in the direction of the distant mass. The calculation of such an ideal
tide was first made by Newton in 1687.

Spherical
shape

Tidal
distortion

FIGURE 8-4. Tidal distortion at the earth’s equator on an exaggerated scale.

The preceding discussion applies to the tidal forces induced by a single
astronomic body. If there are two tide-producing bodies the net tide is the
superposition of the separate tides. (If the bodies are not collinear with
the planet, the total tidal shape is not axially symmetric but a triaxial
ellipsoid instead.) From (8.31) the ratio of the maximum heights of the
lunar (L) and solar (©) tides on earth is

- () () 59

where aj, is the earth-moon distance and ag is the earth-sun distance.
The numerical value of this ratio is

h _ (1/81.5)Mg (1.5 x 108 km>3 99
heo (5 x10%) Mg \38x10°km/ ~

Thus the sun’s tidal effect is smaller than the moon’s, but it is not neg-
ligible. When the sun and moon are lined up (new or full moon), an
especially large tide results (spring tide), and when they are at right an-
gles (first or last quarter moon), their tidal effects partially cancel (neap
tide). The diagram in Fig. 8-5 illustrates these orientations of the moon
relative to the earth and sun.

(8.34)
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FIGURE 8-5. Relation of the phases of the moon to the tides on earth.




The tidal range due to the moon at a point on the earth-moon axis
can be calculated from (8.32). We get

™ 8/ 1 6,371 \° 3
ab (0= 5) =3 (81.5) (384,000) (6,371 x 10°7) = 0.56 m

This figure agrees roughly with the measured tidal difference in midocean.
As the earth rotates about its own axis, the tidal maxima, which lie
on the earth-moon axis, will pass a given point on the earth’s surface
approximately two times a day. More precisely, since the orbital rotation
of the moon about the earth (with period of 271 days) is in the same
sense as the earth’s own rotation (with period 24 h), two tidal maxima
pass a given spot on earth every (24 + 24/27%) h. Thus high tide occurs
every 12 h and 26.5 min, and high tide is observed about 53 min later
each day.

The two high tides are not of the same height because of the inclina-
tion of the earth’s axis to the normal of the moon’s orbital plane about
the earth. In the Northern Hemisphere the high tide which occurs closest
to the moon is higher, as illustrated in Fig. 8-6.

Normal to
moon's orbit

/1 w

Small hig -
tide,,

b

g Large high tide

Moon

FIGURE 8-6. Effect of the inclination angle f of the earth’s axis to the moon’s orbital
plane on the heights of tides. B varies from 17° to 29° as the moon’s elliptical orbit
precesses slowly about the normal to the plane of the earth’s heliocentric orbit.

The tides are in reality more complicated than described above. Along
coastal regions the configuration of the land masses and the ocean bot-
tom cause considerable amplification or suppression of the tidal range.
Over the world, tidal ranges vary as much as twenty meters.

The friction of the moving tidal waves against ocean bottoms and the
continental shorelines dissipates energy at a rate estimated at 7 billion
horsepower. To supply this energy, the earth’s rotation about its axis
slows down at the rate of 4.4 x 1078 s per day. The cumulative time over
a century is about 28 s. This gradual lengthening of the day is confirmed
by the observation that various astronomical events such as eclipses seem
to run systematically ahead of calculations based on observations over
preceding centuries.

8.3 Tidal Evolution of a Planet-Moon System

The earth-moon system has very little external torque acting upon it on
the average. The total angular momentum of the system is thus nearly
constant. The consequence of angular momentum conservation is that
the moon spirals outward about a half a centimeter each month as the
earth’s rotation is slowed by tidal friction. Ultimately the moon’s distance
will increase by over forty percent of its present value and our day will
lengthen by a factor of about 50. The moon will then remain stationary
above one spot on the earth.

To see this, we make the following simplifications, which are suffi-
ciently accurate to represent the physical situation.

1. The spin angular momentum S = Jw of the earth is parallel to the
orbital angular momentum L of the moon about the earth. (The
earth’s spin precesses about the normal to the ecliptic plane with
a period of 26,000 years and the plane of the moon’s orbit about
the earth precesses similarly with a period of about 19 years, so the
average values of both S and L are perpendicular to the ecliptic
plane—the plane of earth’s orbit around the sun).

2. The total angular momentum
J=L+S=(L+9)L (8.35)

is constant (we are neglecting the solar tidal drag).

3. The moon’s orbit about the earth is circular and lies in the ecliptic
plane (point 1 above).




4. The moon is much less massive than the earth and the moon’s spin
angular momentum is negligible.

In a reference frame with the earth at rest at the origin, the energy of
the earth-moon system is
1 a 1

= 5mu"' -—+ ilwz (8.36)
where m is the mass of the moon, v is its velocity, r is its distance from
the earth, & = GmMg, and [ is the moment of inertia of the earth about
its spin axis. It is useful to express E in terms of the angular momenta.
The last term in (8.36) is the spin energy of the earth $?/(2I), where
S = Iw. The first two terms in (8.36) are the orbital energy of the moon,
which can be expressed in terms of L = mur by using the circular-orbit
balance of gravitational and centrifugal forces

v?

m— = % (8.37)

B
We obtain
2 2
ma* S
E= EYY + 5T (8.38)
Because the total angular momentum J = L 4 S is conserved, we can
express S as J — L and thus get E expressed in terms of one independent
variable quantity, L

2 J__LZ
ma+( )

E=-3m oI

(8.39)

If tidal friction is present the energy F (kinetic plus potential) of the
system as well as L and S are not constant. The ultimate state of this
system will be the state of lowest energy. The extreme values of E with
J held fixed are determined by

dE  Mpe? (J-1IL)

0=F = -5 (8.40)
Using (8.38) and S = J — L this condition can be expressed as
L S
L= T (8.41)

The left-hand side is the orbital angular velocity 2 and the right-hand
side is the spin angular velocity w so the condition (8.41) of extreme

energy at fixed total angular momentum is simply corotation
Q=w (8.42)

In general, for fixed total angular momentum J about the CM, the state
of minimum energy of an isolated system is rigid rotation. (Another
example is the state of water in an isolated spinning bucket. Eventually
the water rotates as a rigid body with the same angular velocity as the
bucket.)

At present < w for the earth-moon system. In Fig. 87 we plot 2
and w as a function of r. There are two solutions for corotation.

corotation (a)

sN&”

corotation (b)
present

0.25 0.5 0.75 1 1.25 178~

r/ry

FIGURE 8-7. The spin angular velocity w and the orbital angular velocity € for
the earth-moon system as a function of orbital angular momentum. The subscript 0
denotes present value.

In Fig. 8-8 the energy of the earth-moon-system is plotted versus r.
The two extrema correspond to the corotation points of Fig. 8-7. Case (a)
is an unstable equilibrium; the bulk of the angular momentum is in the
spin of the earth. Case (b) is a stable equilibrium; the bulk of the angular
momentum is in the orbit of the moon. In Fig. 8-9 a more detailed
plot of the energy is shown for the more immediate past and future.
In the past the spin angular momentum S was larger and the orbital
angular momentum L was smaller, corresponding to a higher energy for
the system.

The earth’s day is lengthening by 4.4 x 10~8 s/day, which corresponds
to an angular acceleration of

W = —0.85 x 102! rad/s? (8.43)
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FIGURE 8-8. The energy of the earth-moon system versus the moon’s orbital angular
momentum for constant total angular momentum J. Here Eg and rg are the present
values. The labels (2) and (b) refer to the corotation points of Fig. 8-7.
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FIGURE 8-9. A blow-up of Fig. 8-8 near the present time. As the energy of the
earth-moon system decreases due to tidal drag the moon’s distance r increases.

Using (8.38), L + S constant, and S = Jw, we obtain

i..?:é_ 28 2 S

R A A A (8:44)
Then using the present values we find
7 ~ 0.4 cm/month (8.45)

Thus the moon is spiraling outward roughly one-half centimeter per rev-
olution. This process will continue until the energy reaches minimum at
r = 1.44ry, where rg is the present earth-moon separation. At this point
corotation is achieved and lunar tidal drag vanishes. (From then on, solar
tidal drag evolves the system.)

- - as v eLeLELTY ) e A SAIRLY AN UV R YUY Ay

The torque between the earth and the moon that transfers S to L is
caused by the tidal friction. The earth’s rotation acts to drag the tidal
bulge ahead of the line between the earth and moon, as shown in Fig. 8-
10. The lead angle A can be calculated by equating the torque applied by
the moon to the tidal bulge (which depends on A; it obviously vanishes
for A = 0° or 90°) to the torque implied by w,

N =TI (8.46)

The tidal torque on a volume element of water is

(8.47)

dNiige = pr,0 (R sin 0d0 dg) h(6,¢) (_ 3‘I’tide)

d¢

where pg,o0 is the density of water and —-Q%#:;—e— is the torque per unit
mass. From (8.31) for a tide displaced by an angle A as in Fig. 8-10,

B0, 6) = oL (EE

2
AW ) R [3sin® 0 cos®(¢ — A) — 1] (8.48)

We then integrate (8.47) over the surface of the earth to obtain

6 MLG Rc 2 .
Ntige = ~3 Fcpfbo R? (_}‘2—) sin 2A (8.49)

Equating the two torques (8.46) and (8.49) using (8.43) gives the angle
A that the tide leads the direction to the moon

A ~ 10 degrees (8.50)

moon

earth

FIGURE 8-10. Earth-moon system as seen from above the north pole. Friction drags
the tidal bulge ahead of the moon. This drag is opposed by a torque due to the moon’s
attraction.




In the past the moon was closer to the earth. At the present recession
rate of 0.4 cm per month, two billion years ago the moon would have been
at about three quarters of its present distance. The tidal height would
have been double that at present and the increased tidal bulge would have
caused larger tidal friction. On the other hand, differences in continental
configurations and ocean levels might have decreased tidal drag in the
distant past.

The moon could never have been closer than the Roche limit. Ac-
cording to this limit a moon having the same density as the planet will
be pulled apart by tidal forces at distances closer than R = 2.44Rp.
Most astronomical bodies are held together by their self-gravity, which
is stronger for large bodies than the chemical forces that hold rocks to-
gether. As a satellite comes within the Roche limit tidal forces overcome
the self-gravity and the satellite falls apart.

8.4 General Relativity: The Theory of Gravity

Einstein’s theory of general relativity is a theory of gravity. At this level
we do not have the mathematical tools to completely discuss the theory
because it is expressed most naturally in the language of metric differ-
ential geometry. We can however illustrate some of the physical ideas
which underlie general relativity and explore a few instances in which it
differs from Newtonian gravity. These differences can be dramatic in very
intense gravity fields.

A. The Principle of Equivalence

There are two aspects of mass: inertia as it appears in the second law
and a proportionality constant in the gravity force. The equivalence of
the two has the important consequence that all objects fall equally in a
gravity field. Newton tested this hypothesis by verifying that pendulum
bobs made of different materials have the same period to roughly 1 part
in a thousand. Modern tests of the equivalence principle have improved
this limit to one part in 10%2.

This remarkable equivalence led Albert Einstein to propose that lo-
cally (i.e., at any given point) one cannot distinguish between the accel-
eration of a reference frame (e.g., in an elevator) and gravitational force.
Free fall is indistinguishable from being located in a gravity-free region.
The value of g = —V® is a frame-dependent quantity. The general prin-
ciple of relativity requires that in free fall all physical laws reduce to those
in an inertial frame.

B. Gravitational Frequency Shift

One of the most direct implications of the principle of equivalence is that
“higher clocks run faster” According to Einstein’s theory, if waves are
emitted on the earth with frequency v as in Fig. 8-11(a) they arrive a
distance h below with frequency v' where

h
V=v (l 4 gc—z) (8.51)
é v V= Ta=g
g h
v §% _
=" fa=e
4]
(@ (b)

FIGURE 8-11. Gravitational frequency shift. In (a) the lower observer receives
waves at higher frequency. In (b) the equivalence principle relates this shift to a
Doppler shift, The clocks are supported against gravity in (a), and accelerated in {b),
by strings.

To see how this comes about we invoke the principle of equivalence. The

- same frequency shift will occur in the situation of Fig. 8-11(b), where both

emitter and receiver are being accelerated upward with e = ¢ in a region
far from the earth. Consider waves emitted at ¢ = 0 with frequency v.
When these waves reach the receiver a time h/c later, the receiver is
moving faster by velocity Av = g(h/c) than the emitter at the time
of emission. The waves will therefore be Doppler shifted to a higher

I
I




332 13. The General Motion of a Rigid Body

rod. The wheel D rotates with constant angular velocity wg (see the figure).
The wheel D is a homogeneous thin circular disk of mass m and radius .

The rod S goes through the center of D.
‘The other end of Sis fastened to the mid-point O of a thin, rigid horizontal

axis A, which can turn without friction in two bearings, B and C, that are
fixed in the laboratory. The axle A has length a, and its mass can be ignored

in this problem. .
The rod S may thus turn in a vertical plane perpendicular to the horizontal

axis A. Initially, S is held horizontal, and at rest. At a certain time the rod
is released and S begins to turn in the vertical plane through O. The initial

angular velocity of the rod is thus zero.
Neglect all frictional effects (in particular, the disk D maintains its angular

velocity wo)- , ‘
(1) Find the angular velocity 02 of the rod S at the moment the disk D passes

through its lowest position (where S is vertical).

(2) Find the forces F'n and Fg by which the axle bearing B and C respectively
act on the axle A, when S passes through its lowest position (the angular
velocity vector 2 of the rod is in the direction OC) .

Problem 13.4.

A wheel W is shaped as a homogeneous, flat, circular disk. The wheel is
fastened to a thin axle A that passes through the center of the wheel. We
ignore the mass of A.

The axle A rests in two bearings in such a way that the system can rotate
without friction around a horizontal axis. Note that A is supported only from
below! The radius R of the disk is R = 50 cm, and the distance between the
two bearings is 1 m. The CM of the disk is exactly at the mid-point between
the two bearings.

The wheel is fastened to the axle A in such a way that the normal to the
disk of the wheel forms an angle of § = 1° with the axle A. The acceleration
of gravity is g = 9.8 ms—2 . The wheel is now set in motion, performing v

- revolutions per second.
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14. The Motion of the Planets

;q/:nzlt?::ll now apply Newtonian mechanics to the study of the motion of
Look at the sky on a dark, clear night. Seen from the Earth, the stars and
the planets appear to be fastened inside a huge sphere, calleél the celestial
sphe.re. The celestial sphere appears to rotate, once pér day, around an axis
passing through the north pole and the south pole of the Ee;rth.
The st.:ars are far away from the Earth. Therefore the stars seem to have
fixed positions on the celestial sphere. The stars do not change positions

relative to one another over periods of time comparable to a human life time. .

T}.le planets, on the other hand, are rather close to us. Even though from
one nlgh.t to the next, a planet appears to be fastened on the celestial sphere
over periods of weeks the line of sight, éven to an outer planet, does ch ’
noticeably relative to the stars. , e

The roots of modern science are found in the study of the motion of the
planets. Therefore we begin with some remarks of a historical nature.

14.1 Tycho Brahe

On the island of Hven, between Sweden and Denmark, Brahe built, in the

" years 1576-1597, an astronomical research institution of historical signifi-

cance. Brahe understood the significance of precise astronomical observa-
tlons', and he had the means to construct the necessary instruments. Before
the (‘;n'ne of Brahe, the positions of the heavenly bodies were known x;vith the
precision of 10 minutes of arc (10’). Brahe improved the precision significantl
and reached an accuracy of 1 to 2 minutes of arc, which is close to the 1imi%c,
of precision obtainable with the unaided eye.
) The years 1576-1597, in which Brahe performed his measurements, will
e re.membered as one of the most decisive periods in the history of science,-
and indeed in the history of man. This is impressive, especially when we,‘
recall that the naked-eye observational methods of Bl’rahe were deemed to
become obsolete after half a score of years. In 1609, Galileo pointed a telescope

Faveramde £l wlane e d antonn e L 1c
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one might add that if the observations of the planets made by Brahe had been
even more precise, if these observations had disclosed the “irregularities” in
for instance the motion of Mars (irregularities caused by gravitational fields
from the other planets), Kepler might not have uncovered his three simple
laws for the orbits of the planets. The gravitational law of Newton might
have been more difficult to find, and the history of man had changed. Such
speculations may be considered entertaining, but are not particularly use-
ful. Seen from the viewpoint of physics the remarks merely illustrate that
it is important to find the essential aspects of experimental or observational
material.

14.2 Kepler and the Orbit of Mars

Contrary to Brahe, Kepler initially accepted the heliocentric model of the
solar system, as described by N. Copernicus. The Sun is at rest in the center
of the system, with the planets moving in circular orbits around the Sun.

Originally Kepler looked for a connection between forces and the structure
of the solar system. He realized very soon that the periods of the planets

_increase with the distance of the planet from the Sun. It was Kepler’s belief
that the increase in the periods of the planets was connected to a force from
the Sun, a force that decreased with distance.

Kepler did not succeed in connecting the motions in the solar system to
the concept of force. According to historians of science, he had a quite clear
understanding of the importance of this task. The title of Kepler's principal
book (published in the year 1609) was:

A New Astronomy Based on Causation
or .
A Physics of the Sky
Derived from Investigations of the Motions of the Star Mars.
Founded on Observations made by the Nobleman Tycho Brahe.

If Kepler did not sueceed in explaining the dynamics of planetary mo-
tions, he did succeed in using the empirical material of Brahe in a masterly
way. Kepler condensed this material into an elegant form, a form that be-
came decisive for the work of Newton. Through a nearly superhuman effort
of calculation, Kepler succeeded in showing that planets move around the
Sun, not in: circular orbits with the Sun in the center, but in elliptical orbits
with the Sun in one focus. .

The difficult problem confronting Kepler was to determine the orbit of a
planet relative to the Sun, based solely on observed directions to the planet,
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14.2.1 The Length of a Martian Year

The time needed for a planet to complete one revolution around the Sun is
called the sidereal period. The sidereal period for a planet cannot be directly
observed, but it can be determined as shown below. Assume that the orbits
of the Earth (E) and Mars (M) are circles with the Sun (S) in the center.
The planet Mars is said to be in opposition, when the Sun, the Earth, and

Mars lie on a straight line, and Mars is closer to the Earth than to the Sun
(see the figure). '

The time between two successive oppositions is called the synodic period
of the planet. The synodic period can be determined by observation. When
the synodic period is known the sidereal period may be calculated as follows.

Let the sidereal period of Mars be T' and the synodic period S. The
sidereal period of the Earth — i.e., one year — is called A. The quantities T',
S, and A are the respective periods measured in days (1 day = 24 h).

Mars is an outer planet relative to Earth. In the time between two suc-
cessive oppositions, i.e., during one synodic period, Mars moves 3600 less
relative to the Sun than the Earth moves in the same time.

In one sidereal period Mars moves 360° relative to the Sun. In one day
Mars moves 360° /T relative to the Sun.

In one synodic period Mars moves (S/T)360° relative to the Sun.

During one synodic period for Mars, the Earth moves (S /A)360° relative
to the Sun.

The equation to determine T is thus:

S ne S oano o

T360 = 2360 360_ ,
* 1_1.1
T A §°

From Brahes measurements Kepler knew that the synodic period for Mars
— ie.. the time between two successive oppositions — was S = 779.8 days.
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11 1
T~ 365.24 779.8
T = 687 days.
To trace its orbit around the Sun, Mars thus needs 687 days = 1.88 years.
Kepler actually started by determining the orbit of the Earth. To do this

he used his knowledge about the sidereal period of Mars (687 days) to identify
the dates on which Mars was back in a given point in its orbit.

= 0.0014555 days™*,

Fig. 14.1.

We shall show only the principles used by Kepler. Consider Figure 14.1. Let
the point M mark an opposition of the planet Mars. It will take Mars 687
days to return to the point M in the orbit. During 687 days the Earth has
completed 687/365 ~ 1.88 revolutions around the Sun. The Earth has thus
moved 1.882 X 360° = 677.6° in its orbit, or 42.4° less than two complete
Fevolutions. The Earth will then be located in the point Ei, as shown on
Figure 14.1, i.e., 42.4° “behind” Mars. After an additional 687 days Mars
will again be in the point M, while the Earth will be in the point marked Eq
on Figure 14.1 (assuming circular orbits).

From each successive complete revolutions of the planet Mars, Kepler was
able to find one point of the orbit of the Earth.

Brahe had observed Mars for more than 20 years. The observations in-
cluded ten oppositions of Mars.

Using the method outlined above, Kepler was able to construct the orbit
of the Earth relative to the Sun (relative to the heliocentric reference frame!).
Kepler found that, within the precision of observation, the orbit of the Earth
was a circle, but with the essential feature that the Sun was not located at
the center of the circle. }

By plotting the position of the Earth at various dates, Kepler discovered
that the Farth does not move with the same speed-all year round. The Earth
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The radius vector from the Sun to the planet sweeps out
equal areas in equal amounts of time.

As we have already seen (Chapter 10), this law is a direct consequence of
the conservation of angular momentum in a central field of force.

Now Kepler knew the orbit of the Earth. The next problem was — based
on the observations of Brahe and on the knowledge of the orbit of the Earth
— to find the orbit of Mars relative to the Sun.

- 14.2.2 The Orbit of the Planet Mars

Ke;ﬂer utilized the fact that he knew the length of a Martian year (sidereal
period, 687 days).

Fig. 14.2. Kepler's determination of the orbit of the planet Mars. (SEoMo) is one
opposition of Mars and (SE2M1) is another

Kepler again used the oppositions of Mars. Consider the opposition
marked by the line SEqMy in Figure 14.2. The line of sight to Mars rela-
tive to the stars was known from the measurements of Brahe. When Mars,
687 days later, again is in the point marked My, the:planet is not in op-
position, because the Earth will now be in the point marked E4, ie., 42.4°
“behind” Mars. Kepler knew the orbit of the Earth, and the position of the
Earth at any given date was now also known. That means: Kepler knew the
date on which the Earth was in the point of its orbit marked E;. The posi-
tion of Mars, i.e. the line of sight to Mars on the day the Earth was in E;
could be found from the tables of Brahe. Kepler was able to calculate the
angle SE1Mjp. Using the distance from the Sun to the Farth as unit of length,
Kepler found one point in the orbit of Mars by triangulation.

Using the ten oppositions studied by Brahe, Kepler was able to determine
ten points in the orbit of Mars. Kepler tried to find a circle passing through
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It is interesting to note that before Brahe the positions of the planets
were known with an accuracy of 10’. The improvement of the precision of
observation to about 2’ was therefore decisive. If — before Brahe — one had
tried to fit a circle to the observation points it would have been considered
successful.

Kepler had confidence in the data of Brahe, and he tock the decisive step.
The hypothesis of circular orbits must be rejected. Instead of conserving “the
ideal circular orbits” Kepler chose to believe in observations.

The author Stefan Zweig has written a book with the title Sternstunden
der Menschheit. Here is a Sternstunde in our history, far more important
than any described by Stefan Zweig. A description of Kepler’s achievements
cannot be found in the book by Stefan Zweig.

Kepler found that the ten points of the orbit of Mars could be fitted to
a curve known to the mathematicians for a long time: an ellipse. Johannes
Kepler had thus reached the law that has become known as Kepler’s first
law:

The orbit of a planet relative to the Sun lies in a fixed plane
containing the Sun, and each planet moves around the Sun
in an elliptical orbit with the Sun in one focus.

Through the work of Brahe and Kepler the solar system had disclosed
one of its deepest secrets.

The study of the solar system has resulted in several other decisive ad-
vances in physics: the law of gravity, the finite velocity of light (the “lingering
of light”, Ole Rgmer), and the rotation of the perihelion of the elliptical orbit
of the planet Mercury. Somewhere in the solar system — perhaps on Mars —
we may find the key to the greatest riddle of the natural sciences: the origin
of life itself.

The reason why it was not possible to fit the points of observation of Mars
into a circular orbit around the Sun is the substantial eccentricity (“flatness”)
of the Martian ellipse. For the precise definition of eccentricity, see below. The
eccentricity of the elliptical orbit of Mars is e = 0.09, which is five times larger
than the eccentricity of the elliptical orbit of the Earth, and more than twelve
times the eccentricity of the orbit of Venus. It is, however, important to note
that even for Mars the deviation from the circular form is small.

Kepler’s third law was published - among several more obscure results —
in the year 1619:

The square of the period of revolution of a planet is pro-
portional to the third power of the greatest semi axis of the
ellipse.

14.2.3 Determination of Absolute Distance in the Solar System

The sidereal period of revolution T}, for a planet may be determined via the
observation of the synodic period. From Kepler’s third law, the semi-major
axis a, for the planetary orbit (ellipse, see below) may then be found using
the astronomical unit as the basic measure of distance. One astronomical
unit (1 AU) is defined as the mean value of the distance of the Earth from
the Sun. Measuring T}, in years we have

2
ag aE BT

The absolute distances in the solar system, i.e., distances measured in meters,
can be found only when one distance — for instance the distance from Earth
to Venus, or from Earth to Mars ~ has been determined.

The problem has not been simple to solve. Today one can measure the
distance say, from the Earth to Venus, with high precision by means of radar
signals reflected from the surface of Venus.

Historically the problem was first solved by tmangulatlon From two points
on the Earth, a large distance apart, the direction of the line of sight to a
planet is measured. The two directions of the line of sight will then form
a certain angle, which is larger the closer the planet is to the Earth. The
difficulties with this measurement is obviously the small value of the angle
between the lines of sight. The angle between two lines of sight from the
Earth to the Moon may be about 1°. The angle between two lines of sight
from the Earth to even the nearest planets will never be more than 1’ (1 arc
minute).

Mars is closest to the Earth when in opposition. In the most favorable
oppositions Mars is 0.37 AU from the Earth. Venus may come even closer
(0.26 AU). When Mars is in opposition the illuminated half sphere of Mars

is facing the Earth. Therefore Mars is easy to observe during an opposition.

The orbit of Venus lies within the orbit of the Earth. Therefore when Venus
is closest to the Earth, Venus will have its dark side facing the Earth. Venus
is therefore impossible to observe when it is closest to Earth unless the planet
passes in front of the solar disk. Venus will then be observable as a small dark
spot against the large luminous disk of the Sun. This phenomenon is called
a transit of Venus. The orbits of the Earth and the orbit of Venus lie nearly
in the same plane, but not exactly so. As a rule Venus will bypass the Sun.
A Venus transit is a rare phenomenon. They come in pairs. There were two
in the 19th century (1874 and 1882), and the next pair is 2004 and 2012.
From the first two of the mentioned Venus transits a triangulation mea-

surement was made. Based on this the AU was estimated to be between
TA7 v 106 Lemn and 140 « 106 Tama
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Eros may be as small as 0.15 AU. A favorable opposition of Eros took place
in 1930. At this opposition the astronomical unit was determined as 149.7 x
108 km. The present value is 1 AU = 149.598 x 10 km.

Kepler published his laws as unexplained facts. The full dynamical con-
sequences of these laws were recognized by Newton, after he had formu-
lated his general laws of motion. We shall show that gravitational attraction,
i.e., Newton’s law of gravity is implied by Kepler’s laws. After this we shall
demonstrate the converse: Kepler’s three laws are consequences of Newtonian.
mechanics and the law of gravity.

Before proceeding, we shall briefly review some results related to the ge-
ometry of conic sections.

14.3 Conic Sections

Detailed descriptions of conic sections may be found in books on geometry
or calculus. Here we give a rudimentary introduction.

The curves obtained by intersecting a cone with a plane which does not
pass through the vertex of the cone, are called conic sections. If the plane

i

<>

a b c

Fig. 14.3. Conic sections obtained by intersecting a cone with a plane: (a) parabola,
(b) ellipse, (c) hyperbola

intersecting the cone is parallel to a generator of the cone (Figure 14.3a), the
conic section becomes a parabola. Otherwise the curve produced is called an
ellipse or a hyperbola, depending on whether the plane intersects one portion
of the cone (Figure 14.3b) or both portions (Figure 14.3c). A circle is a special

case of an ellipse. _
The three types of nondegenerate conic sections may be characterized
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PF

Pl —
where PF is the distance from P to F and Pl is the distance from P to . The
line 1, which is called the directrix, does not pass through F.

e, | (14.1)

Fig. 14.4. The equation for conic sections using polar coordinates

Let 2p be the length of the chord perpendicular to the axis of the conic
section and passing through the focus F. By choosing the point P at the
endpoint of the chord, e.g., at the point A (see Figure 14.4) the defining
equation becomes.

p=e(Fl). (14.2)
The quantity p is called the parameter of the conic section.

Measuring the angle from the symmetry axis as in the figure and using

(14.1) and (14.2) we find

T =FP = ¢(Pl) = e(F1 — rcos f),

T =e<§ -rcos&) =p—ercosf.

" Finally we get

p
"= T ee0sd (14.3)
The expression {14.3) is the equation for a conic section for all three cases.
We get an ellipse for 0 < e < 1, a hyperbola for 1 < e, and a parabola for
e = 1. In Figure 14.4 only a part of the curve close to I has been shown. In
this way all three cases may be said to be included in the figure.
For the ellipse (e < 1) the angle § may take all values from 0 to 27. Since
e < 1 the denominator can never become zero. For the parabola (e = 1) we
have: 7 — oo for § — 7 (or —). For the hyperbola one obtains all points on
the branch considered, when.6 is limited to | 6 | < 6, where cos 8y = —1/e;
m/2 < 6g < w. One finds r — oo for | § | — 6y, which give the directions
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Concluding: for any value of € > 0 and p > 0, (14.3) describes a conic
section. The result (14.3) also includes the circle, which is the special case
e = 0. In general, e determines the shape of the conic section, and p determines
the size.

Fig. 14.5. The ellipse is the set of points where the distances to F; and F; have a
constant sum

The ellipse can also be defined as the set of points P where the distances
from two fixed points (the foci) have a constant sum (see Figure 14.5).

The major axis has length 2a, the minor axis 2b. The distance between
the foci is e - 2a, where — as we shall see below — e is the eccentricity. From
the definition we obtain

r+7'=2a.

Furthermore (see Figure 14.5),
(r")? = (2ea + 7 cos0)% + (rsing)?.
Using these two equations wé obtain
. a(l — €?) _
1+ecosf

By comparing (14.4) and (14.3) we find p = a(1 — €?).
The perihelion (smallest value of ) and the aphelion (largest value of r)
are determined by

(14.4)

8 = 0 (perihelion) = rmin = T P _ a{l —e),

+e

6 = 7 (aphelion) = rmax = i__f—e =a(l+e).

From this
Tmax _ l+e

Tein 1—¢’

(14.5)
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The connection between semi-major axis a, semi-minor axis b, and the ec-

centricity is
b=av1-e?. (14.6)

If we — instead of the angle 8 — use the angle ¢ = 7 — 0 as the polar angle we
will have ,
_ a(l—e’) D

= = . 14.7
1—ecosp 1—ecosy ( )

The perihelion is at ¢ = n.

14.4 Newton’s Law of Gravity
Derived from Kepler’s Laws

Newton’s gravitational law is contained within Kepler’s three laws. In Chap-
ter 1 we demonstrated this for the special case of uniform circular motion.
Below we present the general calculations for elliptic orbits.

Kepler’s first law was formulated in two steps. Kepler first showed that
the orbit of a given planet lies in a fixed plane containing the center of the
Sun; then that the planet moves in an ellipse with the Sun at one focus.

We consider motion in a fixed plane. The problem is to deduce the 1/r2
dependence of gravitational attraction only from the observed motion of the
planets.

Fig. 14.6. The orbit of a planet, P, around the Sun, S

We start by calculating the acceleration of a planet moving in an elliptical
orbit with the Sun in one focus. The element of area dA (see Figure 14.6) in
polar coordinates (with origin in the Sun) is
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Kepler’s second law states that the area velocity is constant and we denote
the constant by h/2. We have

1 p 1
dA = §hdt, or A= §h
From Kepler s second law it thus follows that
9A=r¥%=h. (14.9)

We seek the acceleration vector for a Kepler orbit. In polar coordinates the
two components of the acceleration are as follows (see the Appendix):

Radial component:

d2r A :
Angular component:
1 0d [ ,doN] ., =

It will be useful to introduce a substitution. Instead of r we shall use u = 1/r
as a new variable.

From Kepler’s first law we know the shape of the curve r = r(§) or
u = u(f). The goal is to find the two components of the acceleration, a,

and ag, through u = u(f), i.e., through the equation for the orbit. With this -

purpose in mind we eliminate the time from (14.10) and (14.11), ie., we
express 7,7, 6, and § by u, (du/d@) and (d2u/d6?).
From (14.9)

b=— =hu?. (14.12)

Moreover, because (du/df) = —(1/r?)(dr/df), we have
dr d6 1 du du
T rTi d9 h—~— (14.14)

The quantities 6, §, and  are now expressed by u = u(6).
We can then determine ag:

a,g—-2r6’+r€-—2( hd“\xh 4 Lopzsd
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ag = 0.

Based on Kepler’s second law we have shown that the acceleration of the
planet is directed in a radial direction (i.e., towards the Sun). This result,
well known from circular motion, is thus also true for a general elliptical orbit.

We now seek a,. From (14.10) we see that we have to find 7 expressed by

u = u(6).
' Lo & _d/  du
TT @ T @ a8

_d du) df 22du'
= a-§< h@) 5= —h*u T (14.15)

By inserting (14.15) and (14.12) into (14.10) we obtain

h%u? du

ar = —n"u” m +uj . (14-16)

From Kepler’s second law we have found the radial acceleration, expressed

by the area velocity constant h, and the equation of the orbit u = u(f).
From Kepler’s first law

= p inse).
= 1T ec0s0 (an elhpse)f,
or )
u=u(f) = » [1+ecosh] .-
Thus o
du_ _e cosf
ez~ " p '
Inserting (d?u/d6?) and u into (14.16) we finally obtain
R? 1
= e——— . ) 14.17
ar P 7'2 ( )

Conclusion. The acceleration of the planet is directed towards the Sun (the
minus sign), and the acceleration is inversely proport1ona.1 to the square of
the distance from the Sun.

We proceed to apply Kepler’s third law, in order. to demonstrate that the
constant h?/p can depend only on.the physical nature of the Sun, ie., the
value for h?/p is the same for all planets.

Kepler’s third law may be written

—- . - e ~ L] : & & SV DRI, FOUDRDIT S P PR, |
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By integration over a complete revolution (‘14.9) becomes
24 = hT. (14.18)

The area A of an ellipse is A = mab, where a and b are the semi-major and
semi-minor axes respectively. Furthermore,

=a(l—¢e?) and b'=a\/1——e2’=—~p——.
prali=e o

From (14.18) we therefore get, using b = ap,

oo (24) o (2 C o = an2a3 L (14.19)
h "\ h h2’ '
From (14.19) - and applying Kepler’s third law, a?/T? = C - we find that
hZ

a3
—p— = 47rz~f2— = 4772C .

We may then finally write (see 14.17)

4r2C
-

ap = , _ (14.20)
where C is the same for all planets, i.e., C' depends (at most) on properties
of the Sun only.

From Kepler’s three laws we have computed the acceleration of the planet,
and seen that it depends only on the distance of the planet from -the Sun:
The acceleration is directed towards the Sun, and the acceleration is inversely
proportional to the square of the distance from the Sun.

Newton added a decisive new feature to these results in the form of a
theoretical interpretation of the derived formula. Newton introduced the Sun
as the cause of the acceleration of the planets, and this guided him to the
fundamentally new idea about universal gravitation (see Chapter 1).

This most surprising step, rightfully admired by both Newton’s contem-
poraries and by later generations, was Newton’s linking of the fall of bodies
towards the Farth with the motion of celestial bodies.

The interaction that makes an apple fall to the ground also holds the
Moon in its orbit around the Earth.

In Chapter 8 we proved that the Earth acts gravitationally as if all of
its mass was concentrated in the center. From (14.20) we know that the
acceleration near the surface of the Earth is (p = radius of the Earth)

dr2C"
2
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orbit of the Moon: C’ = r3 /T2, where = radius of the lunar orbit and 7T is
the sidereal period of revolution of the Moon. Introducing numerical values,
Newton found the gravitational acceleration g near thé surface of the Earth:

4?3 2
g = ;‘?"‘17—2 = 9.8 ms y

which is in accordance with the observed value. The greatest achievement in
the history of man was completed.

14.5 The Kepler Problem

The derivation of Kepler’s three laws, setting out from Newtonian mechanics
and the law of gravitational attraction, is called the Kepler problem. The
solution of this problem is one of the jewels of theoretical physics.

We start by deriving Kepler’s first law. We first solve the so-called one-

O, center of the Sun /

Fig. 14.7. A planei; moving around the Sun

body problem. It is assumed that the Sun is fixed in the origin of the coordi-
nate system. We furthermore neglect the gravitational interactions between
the planets. We thus consider one planet moving in the gravitational field of
the Sun, which is at rest in the origin of an inertial system (the heliocentric
reference frame).

The angular momentum Ly of the planet around O is

ILpg=rxmr=rxmv.

In a central force field the angular momentum is a constant of the motion.
The plane spanned by r and v is the plane of motion for the planet. The

plane of motion is fixed perpendicular to Lg; and passes through the center
~f tha Cian
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We use polar coordinates. The mass of the planet is m. We write the
equation of motion of the planet:
d’r _ GMmr.
de2 2
The term on the right is the force on the planet. The equation of motion may
be written as:

(14.21)

dr Cr
My = E (14.22)
where C = —-GMm.

In the form (14.22) the equation is more general: for attractive forces C
is negative (gravitational forces, electron in the Coulomb field of a proton).
For repulsive forces C is positive (two electrically charged particles with the
same sign of the charge).

In polar coordinates the acceleration is

2
% =a=(#—r6%)e. + %%(rze)eg ,
with e, being the unit vector along the radius vector, and eg the unit vector
perpendicular to radius vector. The equation of motion (14.22) written in
two components, one along e, and one along eg, becomes

C

m(F —ré?) = =R (14.23)
1d,,;
From (14.24)
%(mﬁﬁ') =0,
or, after integration, .
mr?f =L, (14.25)

where L is the magnitude of the angular momentum of the planet relative
to O. The magnitude of the angular momentum, L = | L |, is constant and
determined by the initial conditions. We have thus introduced a constant of
motion into the process of integration.

From (14.25) we find
L

) = — . 4.26
6. mr? (14.26)
Introducing § into (14.23) gives
2 C

'm.2'r3 - ’)’T).‘T‘2 ’

(14.27)
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of the planet, but in the shape of the orbit. In other words: We are interested
in determining 7 as a function of 6, not r as a function of ¢.
We eliminate ¢ from (14.27) by using (14.26). First we determine

d?r

dr
r = en 7 dt2 y

dt’
both expressed by 6 instead of t.

dr_drdg _dr L
dt ~ dodt  ddmr?’

@r_d(dr I
a2~ dt \dfdmr2 /)’

& L% |d% 2 [dr\?
& = [@ (@) } : (14.29)
We introduce a new variable u(6) = 1/r(). The reason for introducing u as

variable instead of r is that the parenthesis in (14.29) is close to being equal
to (d?u/d6?). We find

(14.28)

or

du 1 dr

a9~ r2de’
Pu_ 1 |dr 2 dr)?
de2 —  r2|de? r \dd )
Using these results we obtain .
d’r _ . B L? dz_u
a2 T mEreder

Introducing (14.30) into (14.27) and using 1/7 = u we obtain the following
differential equation for u = u(#):

(14.30)

fH

d2u Cm
'@2" 4+ u = —-52— . (1431)
This differential equation has the same form as the equation describing the
oscillation of a mass at the end of a spring, hanging in the gravitational field
of the Earth (see Example 2.3).

The solution of (14.31) is

u'=Acos(f + ) — %_1;}_ o (14.32)

The quantities A and g are constants of integration. By the substitution of
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The integration constant g describes the orientation of the orbit in the
plane. By choosing the polar axis in a suitable way we can obtain ¢y = 0.
The result (14.32) may thus be written as follows:

1 Cm ,
We proceed by introducing another constant of integration: The mechanica]
energy L of the planet. The planet moves in a conservative field of force. The
energy is therefore conserved.

We express the integration constant A through E.

= _ Ll o 2pm  C
E._va +r-2m(r +r9)+;—. (14.34)

Using the expressions for i (14.28) and 6 (14.26) we obtain

1 L2 ar\? L]

The total mechanical energy E is — in (14.35) — expressed in terms of the
parameters of the orbit. Using (14.33) we find an equation connecting E and

A. From (14.33)
dr

de
Introducing dr/df in (14.35) gives

=7r2Asing.

2
E = lm( L ) <T4A28in29+7'2) +

2 m2rd r

By using (14.33) again we find

1L2A2 C%m

E= 2om  2L?

or

a9\ 1/2
a=miy + == 2BL .
I2 C?m

Consider again (14.33). Introducing (14.36) and using C = —GMm we obtain
the expression for the orbit of the planet in polar coordinates and expressed
by two constants of the motion, L and E:

1 Gm2M 2EL* \'? ‘
e Zm e [1 - (1 + —————-) cosf| . (14.37)

{14.36)

o I? GPm3 M

Equation (14 37) describes an ellipse Wlth perlhehon for 0 =7 (see Sectlon

“ s~ T PRy R R -
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1 GmZM[ ( 9EL?
2 o1+

- G2m3 M2

1/2.
- T3 > cos(f + )

‘We prefer this choice of ¢y and write our final result as

1 Gm2M 2EL? \'*
; = _PLl?.—_ [1 + (1 -+ W) cosf (14.38)
1 1

Equation (14.39) is the equation, in polar coordinates, for a conic section.
Our result, (14.38), describes a conic section with parameter

L2
P=Gman
and eccentricity
2EL2
=V G
The total energy,
1 o GMm
E = —mv* — ,
2 T

may be either negative, positive, or zero.
From (14.38) we conclude:

1. For E < 0, e < 1, we have an ellipse, e = 0 corresponds to a circular
motion

2. For £ > 0, e > 1, we have a hyperbola

3. For E =0, e = 1, we have a parabola

‘We have shown that Kepler’s first law follows from New-
ton’s second law, in combination with the law of gravita-
tional attraction. :

" Many other important consequences concerning the motion of celestial bodies

may be read from (14.38). Let us conclude.

A planet, a comet, an asteroid, or any heavenly body whatsoever, gov-
erned by the gravitational field of the Sun, will traverse an orbit that is a
conic section. The form of the conic section is determined solely by the total
mechanical energy E, given by the initial conditions. If E > 0 the body is
not bound to the solar system. The orbit is a hyperbola, or for E = 0, a
parabola. If a body with E > 0 passes “close to the Sun”, i.e., if such a body
appears in the solar system at all, it will happen only once. No comet with
E > 0 has been observed until now. For E < 0 we have a “bound state” of
the planet.

The angular momentum L 1s likewise a constant of the motlon given

— N} w
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14.5.1 Derivation of Kepler’s 3rd Law
from Newton’s Law of Gravity

In Chapter 10 we proved that Kepler’s second law is a consequence of con-
servation of angular momentum in a central force field. We shall now show
that Kepler’s third law also follows from Newtonian mechanics.

Kepler’s third law is ' ‘

T2 = -C-,-a,‘3 = ka® .

The constant of proportionality & is the same for all planets.
Kepler's second law can be written as

-dA L
dt — 2m’
To prove the third law we have to introduce T', the sidereal period, into
(14.40). By integration over a complete revolution,

LT :
A=, (14.41)
where A = mab (the area of the ellipse).
From (14.41)
9m\ 2 9m\ 2 :
T2 = (%ﬁ) A% = (-%”—) n2a%b? . (14.42)
From Section 14.2
b2 =a?(1 - €?),
and )
L
— 2y
p=a(l—e) ey

From (14.42) we obtain
T = ——ad® =ka®. (14.43)

The constant k = 472 /GM depends only on the mass of the Sun, and is thus
the same for all planets. Kepler’s third law has been derived from Newtonian
mechanics.
From (14.43)
T = (ka®)Y/?,

or

2
loga = 3 logT + B, where B is a constant.

(14.40)
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Period, s

Fig. 14.8. Kepler's third law for the solar system, loga = glogT + B, B =
constant. Based on Berkeley Physics Course

Kepler’s third law is a consequence of the universal law of gravity and
Newton’s laws of motion. The law is valid also for elliptical orbits of moons
moving around planets. The mass M of the Sun is then replaced by the mass
of the given planet.

Newton tested the validity of Kepler’s third law on the four Jupiter moons
known to him. Newton knew the periods of revolution of the moons of Jupiter
with fairly good accuracy.

The table below shows the radius p in the orbits of the moons; p =7 /R;
is measured in units of the radius R; of Jupiter. The table furthermore gives
the period of revolution T for the moons, and finally (p®/T?). Kepler’s third
law is seen to be valid to a high order of accuracy.

The radius in the orbits of the moons, as given in the table, is measured

_ in units of the radius of Jupiter. The knowledge of the absolute distances in

the solar system was limited at the time of Newton, and the size of Jupiter
was consequently not known.

R |TG6) | AT )

To 5.58 1.53 x 10° | 7.4 x 107°
Europa 8.88 | 3.07x 105 | 7.5x107°
Ganymede | 14.16 | 6.19x 10° | 7.5x 10~°
Callisto * | 24.90 | 1.45 x 10% | 7.4 x 107°
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14.6 The Effective Potential

In this section we shall briefly describe another procedure for the integration
of the equation of motion for a planet moving in the gravitational field of the
Sun. :

The angular momentum L of the planet is assumed to be different from
zero ( L = | L | = 0 corresponds to the planet moving along a radius vector,

away from or into the Sun). '
From Example 10.2 it is known that the total energy of the planet may

be written as follows:
1, L GMm
B=gm g~
The term L2/2mr? is called the centrifugal potential energy.
We look for the differential equation of the orbit. The magnitude of the
angular momentum is

(14.44)

dt

The energy E'and the magnitude of the angular momentum L are known

constants of motion.

‘We transform differentiation with respect to time into differentiation with

respect to 8:
d df d L d

dt dt d6  mr2dd’
Furthermore, we apply the variable transformation u = 1/r. This means that
dr _d 1\ _ 1du _ L du
dt  dt\u/ w?dt mdf-
Equation (14.44) may thus be rewritten as

102 fdu\® 112, ’
5—7;; (@) + —2—-’;’;“ GMmu=2FE. (14.45)
This is a differential equation for u = u(#). The equation may be simplified
by differentiation with respect to 6 and division by (L?/m)(du/d8). We find
d?u _ GMm?
d_e'é‘ +u= —Z'i—
This is the equation integrated in Section 14.5. The solution may be written
— with a suitable choice of polar axes — as u = Acosf + 1/p , where we have
introduced p = L?/GMm?2. )
Instead of the integration constant A we shall use A = e/p, where ¢ is a
new integration constant. The possible orbits then have the form ’

. b
T = e
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It is convenient to express the integration constant e — which obviously is
the eccentricity — by means of E. By differentiating u = (1 + ecos 8)/p with
respect to @ and inserting the result into equation (14.45) we find
_ G2 M?m?
I

_ [, 2EL?
=V G

which is identical to the result found previously.

FE (e2-1),

or

14.7 The Two-Body Problem

We have solved the so-called one-body problem: a material particle moves in
a central field of force of the type 1/r2. The model corresponds to a planet
moving in the gravitational field of the Sun, where the Sun is assumed to be
fixed at the origin.

Below we investigate the motion of two spherically symmetrical bodies
moving in astronomical space. The two bodies are assumed to move exclu-
sively under their mutual gravitational interaction. The problem is called the
two-body problem. As a model one may think of the Sun of mass M and one
of its planets, say Jupiter, of mass m. Consider Figure 14.9.

oy
I

Fig. 14.9. The two-body problem

The center of mass, CM, of the system will be either “at rest” or move
with constant velocity, because no external forces are acting on the system.
Seen from the point of view of the original Newtonian mechanics this means
that CM is either at rest in absolute space (astronomical space) or moves with
a constant velocity relative to that space. The modified form of Newtonian
mechanics are now in logical difficulties: we look for the motion of the Sun
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the description. The astronomical two-body problem illustrates the profound
difficulties connected with the choice of inertial systems.
We choose CM as the origin for an inertial system (see Figure 14.9):

Mry +mry = 0.
The radius vector to m measured from M is denoted r:
SrE=ETr —rg.

"A unit vector in the direction of r is denoted e;:

I ry —Ig
- .

i

€,
T

The equations of motion for each of the two bodies are

d?ry _ GMm
™z T T o

d’vry  GMm
M =,z e

If we add these two equations we reach the not surprising conclusion that the
total momentum of the system is a constant.

Our real aim is to obtain a differential equation for r = ry — ro. Transfer-
ring the masses to the right side of the equations and subtracting the second
equation from the first we get

dzrl d2r2 GMm [1 1 }
- = €r,

@ dae -2 mTu

or
mM dPr _ GMme
M+mdt2 r2

The reduced mass u is defined as

_ mM
#-m—%-M’
or
1 1 1
—= — 14.46
I m+M ( )

We obtain the following differential equation for r, the radius vector from M
to m: ' '

d’r GMm GM +m)p
BEE ST =TT e

This differential equation has the same form as the equation we solved for
the one-body problem. We have réached a fundamental result: the motion of
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mass 4 as defined in (14.46). The two-body problem is reduced to a one-body
problem for the motion of a mass p in the gravitational field of a mass of
magnitude M + m.

Note that m and M enter the problem in a completely symmetrical way.
We could equally well have used (—r) for a description of the motion.

We shall briefly show how the two constants of motion, the angular mo-
mentum L and the mechanical energy E may be expressed by the reduced
mass fi.

See again Figure 14.9. Consider first the total angular momentum I with
respect to CM: ‘

. Loy =re X Mty 411 X mry .

Eliminate M by means of the definition of CM:
—M Iy = TNry .
We get

Loy = —rgxXmry+ry X mn
='(r1—r2)xmi'1.

The term mi; may be rewritten:

m(m-!—M)f

m+ M
= — " (miy + Mi
= arm 1)

m : .
= ey Mzt Mh)
= ur.

mi; = 1

The total angular momentum for the two masses in their motion around CM
is

» LCM =71 X /.LI" . )
We conclude: the angular momentum Ley may be calculated as if the mass
p moved around M. For this calculation the mass M may be taken to be at
rest in an inertial frame.

Next we calculate the total mechanical energy:

1 5 1. 5, GMm
E = j?'mr; + §Mr§ -
1 1
= —mfy f1+ =Mrpsy-Tg — "*——GMm )
2 2 T
or, using g = —(m/M)i1,

« 7 AN A
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Making use of
M . . M

L ) =

r) =

we find 1, GMm 1 , G(M+m)
_ L oo GMm 1 ., m)p
E= 7 Ur T3 Iy —
We conclude that the total energy F may be calculated as if the mass L
moved around A4. For this calculation the mass M may be taken to be at
rest in an inertial frame.

14.7.1 The Two-Body Problem and Kepler’s 3rd Law

The differential equations describing the one-body problem and the two-
body problem are of similar form. With an easily understandable notation
the equations may be written as

d?r GMr
onebody: g = T r

d’r GM+m)r
tWO-bOdy. 'dt—z = -__'['T_; .

For the one-body problem we found Kepler’s third law:

A
a3 GM
For the two-body problem the corresponding expression becomes
T2 472
ad G’(M +m)

The ratio T2/a® is thus not exactly the same for all planets, due to the
fact that m varies from planet to planet. Due to the large mass of the Sun
compared to planetary masses the deviations from planet to planet are small.

14.8 Double Stars:
The Motion of the Heliocentric Reference Frame

Many stars are double stars, i.e., two neighboring stars moving under their
mutual gravitational interaction. For simplicity we assume that the two stars
move in circles around their common CM.

The distance from CM to mass M is called R, and the distance from CM
to m is denoted r (mr = MR).
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Fig. 14.10. Double stars

moving around M. The radius in that circular motion is called p. We have:

p=1+R.
wZ—G’Mm Mm
ppt =G =g

i

For the angular frequency we find
PE
The period of revolution is determined by wT' = 2.
Relative to what do the two stars move? It would be absurd to use the
heliocentric reference frame!
Our own solar system is “nearly a double star system”. The mass of

Jupiter dominates the planetary system. In units of the mass of the Earth
the masses in the solar system are:

Sun: 332946

Jupiter: 317.9

Saturn: 95.2

The rest of the planets together: 33.7

" Neglecting the mass of all the planets except the mass of Jupiter, we can
estimate the position of the CM of the solar system. The distance of Jupiter
from the Sun is

5.2 AU =52 x 1.5 x 108 km,

Roy = %;‘TJ ~ 744750 k.

The radius of the Sun is 700000 km. The CM of the solar system is thus
located about 50000 km above the surface of the Sun.

A coordinate frame with its origin in the center of the Sun, i.e., the he-
liocentric reference frame, has an acceleration relative to the CM of the solar
system. The CM of the solar system moves around the center of the galaxy.
The Sun is about 30000 light years or 3 x 10?2 ¢cm from the galactic center.
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T~ 8x 108 5,

The acceleration of the CM relative to the galactic center is thus

v? 4y 9
=T ez %1.9)(10_6 cms “.
“=7 T2

The tides in the freely falling heliocentric reference frame are so small that we
have not been able to measure them (yet). Therefore we use the heliocentric
reference frame as a local inertial reference frame,

From measurements on radioactive isotopes in minerals in meteorites (and
in rocks from the Moon and the Earth) we know that the solar system formed

4.6 x 10° years ago. The solar system has completed

9
4.6 x 10 ~ 18
2.5 x 108

revolutions around the center of the galaxy, since the system was born. What
did we meet on this long journey? Supernova explosions? Interstellar clouds?
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14.10 Examples

-In this section we discuss.a few examples of motion in the solar system.

Example 14.1. Planetary Orbits and Initial Conditions. We consider
a family of possible orbits for a planet around the Sun, S. The Sun has the
mass M. The planet, P, with mass m, is imagined to be started with a
velocity always perpendicular to the line SP, but with various values of the
magnitude of the initial velocity. The initial distance between S and P is 0.

We begin by determining the magnitude of the velocity necessary for a

uniform circular motion:
GM

Up = —
To

The planet is then imagined to be started with an arbitrary magnitude of
the velocity vp (still perpendicular to SP). We introduce the ratio

— UP

=0
The value o = 1 thus corresponds to a circular orbit. Below we shall show
that

fora = /2 the orbit is a parabola,

fora < /2 the orbit is an ellipse,
~

far A +/9 tho arhit ic o hemashale

I
-1
|
i
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1 5, GMm
E = —mu -
5y o
= Emvzaz—ijm
27 o
1, ., 2,1 o GMm
= “(a®-1 “mvl — .
2(a Jmug + 5™V -

The last two terms in this expression form the energy Fy in a circular orbit,
1
E=FE+ §(a2 — 1)mug.

Question: Show that the total energy in a circular orbit may be written
By = —3mad.

We finally obtain
E=Ey(2-a?),

or, as Ey is negative,
E=(a®~2)|E, | .

From this result we see that:

fora > V2 E>0 (hyperbola),
fora =vV2 E=0 (parabola),
foree < V2 E<0 (ellipse).

The shape of the orbit is determined not only by Newton’s laws but also by
the initial conditions. This fact makes it possible to find out something about
the origin of the solar system. The fact that the planetary orbits lie nearly in
the same plane has something to do with the initial conditions of the system,
and is not dictated by the laws of force and motion. See Example 10.2. A-

Example 14.2. Shape and Size of Planetary Orbits. Consider the figure
(see also Figure 14.4 for the definition of conic sections).

We draw the chord through the focal point F and perpendicular to the axis
of the conic section. The points where the chord intersects the conic section
are denoted A and B. All conic sections with the same value of the parameter
p pass through A and B. The shape of the conic section is determined by
the eccentricity, which again is determined by the distance d = p/e to the
directrix {. -

We have (for a celestial body):

I oo | _2BL
P=Grmz °% GCPmAM?

From this. the arhit far all calectial hndiae writh +ha aavna seacmibada oF
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—~& ]
p
F-o—
P L
e
—B

. The eccentricity, and consequently the shape of the conic section, is also
determined by the total energy E.

Question. Does the value of m influence the size and shape of the orbit?

Answer. No. We proceed to show that the semi-major axis of an elliptical
orbit depends only on E.

For an ellipse p = a(1 ~ €?). From p and e as given above we get (note
E<0) :

o= GMm
2(-E)’
or
E= _G]\/Im '
2a

For a circle, a = 2(r +r) =r. .
- Consider the following figure showing elliptical orbits with the same semi-
major axis a.

{z,
xl
b
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Of all planetary orbits, with the same angular momentum, the circle has
the lowest energy E. This is seen from

or

(e? - 1)G2M>m3

B= 9L2

For a circular orbit €2 = 0.

Example 14.3. Motion Near the Surface of the Earth

The trajectory of a cannonball near the surface of the Earth is — neglecting
air resistance — a parabola. The approximation made is that the acceleration
due to gravity is a constant vector.

The approximation is very good indeed, but strictly speaking we should
consider the top point in the orbit as the aphelion (apogee) in an elongated
ellipse, where the center 0 of the Earth is in one of the foci of the ellipse.

Assume that a cannonball is fired with the initial velocity vy and from

the point P. Assume further more that the Earth is at rest in an inertial

frame. The total energy in an elliptical orbit is determined exclusively by the
semi-major axis a. The energy_E is

1 , GMm GMm
E:amva- ’ = —

20 '
where
p = radius of the Harth,
M = mass of the Earth,
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The major axis 2a is only slightly different from the radius of the Barth, p.
We write

2a=p+A=p<1+%) -

Let us estimate the magnitude of A:

1 , GMm  GMm ( A) -t
- ?}0 - = - 1 + —_ 5
2 P P p
1 , GMm GMm, ( A)
—m'U() — RS e 1 — .
_ 2 p p p
‘We thus obtain
vg vh

where g is the acceleration of gravity at the surface of the Earth. We have
that A = h + d (see the figure).
If the start velocity of the cannonball is v =1 kms™! we find that
2
v

The shape of the elliptic orbit depends not only on the speed vg but also on
the firing angle.

Note. Close to the perihelion it is difficult to distinguiéh a “long ellipse” from
a parabola. For instance, many of the comets observed until now are in orbits
with excentricities very close to 1, i.e., many comets are in orbits that are
nearly parabolic. ~ A

Example 14.4. Velocities in an Elliptical Orbit

Vp

The velocity of a planet in the perihelion (perigeeum) is wp and the corre-
sponding velocity in the aphelion (apogeeum) is va. Both velocities are per-

nandisrnlar +n tho svie of tha allinea and mancvad ralatiten +a +ha halicnsontrin

TEREYE,

.
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From conservation of angular momentum:

MTAVA = MTPpUP ,

TP 1-e
2——‘2}P
TA 1+e

VA
From conservation of energy:

1 o GMm 1 , GMm
—m, s T
AT e 2"

P —

2 a(l—e)

By using va = (1 — e)up/(1 + e) we obtain
GM1l+e
vp =4 —
a l1-e’

VA = 4 ——

For the planet Earth:

e = 0.0167, a=1AU = 149.6 x 105 km,

GM
\/ = = 29.78 kms ™! \/1 te _ 10168,
e

¥ 1 ;
1 va = 29.3 kms™!

vp = 30.3 kms™

For the planet Mars:

e =0.0933, a=1.524 AU,

GM
I = 2424 kms™t, /2E8 1008
a 1—e ’

vp = 26.6 kms“l, vp =22.1 kms™1.

A

Example 14.5. Hohman Orbit to Mars. When a spaceship is sent to
another planet, the ship is first placed in a so-called parking orbit around
the Earth. To enter the transfer orbit, the spaceship must leave the parking
orbit and escape the gravitational field of the Earth.

The rocket engine delivers the thrust necessary for placing the spaceship
in the interplanetary orbit. Exactly when the rocket engines should be started
depends on the relative position of the Earth and the planet of destination.

In calculating the transfer orbit from the Earth to another planet we shall
make a series of simplifying assumptions. We ignore the binding enerev of
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orbit of Barth

orbit of Mars

Fig. 14.11. Hohman orbit to Mars. Launch window: E; Earth at launch; E; Earth
at arrival; My Mars at launch; M, Mars at arrival

We shall briefly discuss a journey from the Earth to Mars along the so-
called Hohman orbit, named after the astronomer who first calculated this
transfer orbit.

The launch should take place as the spacecraft is on the dark side of the
Earth. The velocity of the spacecraft in the parking orbit is then in the same
direction as the velocity of the Earth in its orbit around the Sun.

Let us now assume that the spacecraft is nearly free of the gravitational
field of the Earth, i.e., we neglect the gravitational field of the Earth. The
velocity of the spacecraft in the heliocentric reference frame is assumed to
be the same as the orbital velocity of the Earth in-this frame (= 30 km/s).
As we shall demonstrate below only a rather modest increase in the velocity
of the spacecraft relative to the heliocentric reference frame is necessary to
bring the craft into an elliptical orbit towards Mars.

The Hohman orbit is tangential to the orbit of the Earth at launch, and
tangential to the orbit of Mars at arrival. The Hohman orbit is thus a semi-

* elliptical orbit, whose perihelion coincides with the orbit of the Earth and

whose aphelion coincides with the orbit of Mars.

The exact calculation of a Hohman orbit is involved, particularly due
to the fact that the plane of the orbit of Mars is slightly tilted relative to
ecliptica (¢ == 1°51").

~ The essential aspects of the determination of the transfer orbit are nev-
ertheless present in the calculations below, in terms of our simplified model.

Assume that the orbits of the Earth and Mars are in the same plane, the
ecliptica. Furthermore, assume that the Earth and Mars perform uniform
circular motions around the Sun, with the Sun located in the common center
of the orbits. ‘

The radius in the orbit of the Earth is 1 AU, and the radius in the orbit

L NFeen 1n 1 EA ATT YAT4L +ha necetimndinn Af o cirenlar arhit. the velocitv of

T e AR
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The semi-major axis for the Hohman orbit becomes

14152
T2

The trip to Mars along the Hohman orbit may be determined from Kepler’s
third law. The time for one complete revolution in a Hohman orbit is denoted
Ty. Let Ty be measured in years. The time for a complete revolution of the
Earth (one year) is called T = 1 year, Then, from Kepler’s third law:

ayp =1.26 AU.

Tg_Tg_lz_l
afy o} 137

Ig = ag{z = 1.414 years.

The travel time 7 to Mars corresponds to one half revolution:
T = 258 days.
The sidereal time of revolution for Mars is 687 days. As the spaceship has
moved along the Hohman orbit, Mars has moved
258
360° — 22 135°,
a7 135

If Mars is 45° ahead of the Earth at launch, the spaceship will meet Mars at
the point where the Hohman orbit touches the orbit of Mars.

The velocity at launch. The spaceship is in the perihelion of the Hohman
orbit at launch. The initial velocity should then be

v _\/GMI—%—@__\/GMTA
P ag 1—e V ag mp '

where ay '=1.26 AU.
For the Earth we know that

[GM :
—— =9298kms™!.
ag
1 1.52
=29.84/——=1/ == =32, -1
Up 126 7 32.7kms

When the rocket engine has released the spaceship from the gravitational
field of the Earth, the ship has the same velocity as the Earth relative to
the heliocentric frame, i.e., 29.8 kms™!. By means of the rocket engine the
spaceship should be given an increase in velocitv of An. where

For vp we obtain

14.11 Problems 369.

When this has taken place, the ship will “fall” along the Hohman orbit to
Mars, guided by the gravitational field of the Sun.

At the arrival to Mars, the spaceship is in the apehelion of the Hohman
orbit. The velocity of the ship is then

=yp— = 32.7—— 2 21.5 .
vp 'UPT 3 153 2 km s

If the spaceship is bound to enter an orbit around Mars the rockets must
adjust the velocity of the ship to the velocity of the planet.

Even if the Hohman orbit is inexpensive from the point of view of fuel, it
will not be used in the manned expedition to Mars, due to the long time of
flight. ' A

14.11 Problems

Problem 14.1.

Assume that the Earth is at rest in an inertial frame. A rocket is started, not
along the vertical, but in a direction forming an angle § with the vertical.

(1) Calculate the magnitude of the start velocity vy, when it is assumed that
the rocket just escapes the gravitational field of the Earth.

Remark: the launch facilities of the European Space Agency are located in
South America. Why not in, say, northern Norway?.

(2) This question deals with the escape velocity from the solar system from
a point in the orbit of the Earth: Assume that a rocket interacts only
with the gravitational field of the Sun. Determine the smallest velocity v
relative to the sun that a spacecraft should be given at the distance of 1
AU from the Sun, so that the spacecraft leaves the solar system.
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mechanical energy E and the magnitude L of the angular momentum for the
planet, and show explicitly that the excentricity e is zero. Use

e* =14 _2_}_5’22__
G?m3M2’
M = mass of Sun,
m = mass of planet,
G = gravitational constant.

Problem 14.3. In a double star system (also called a binary star) one of the
stars has the mass m = 3 x 10%° kg and the other has the mass M = 4 x 1030
kg.

Each of the stars performs a uniform circular motion around the center

of mass (CM) of the system and relative to an inertial frame. The stars may -

be considered as mass points. The distance between the stars is 101 m.

(1) Determine the angular velocity w of the motion of the stars.

(2) Determine the magnitude of the total inner angular momentum of the
system, i.e., determine Loy = | Loy |, the angular momentum relative
to the CM of the system.

Problem 14.4. Consider the Earth-Moon as an isolated two body system.
The Farth and the Moon are assumed to move in circular orbits around the
center of mass (CM) of the system. '

(1) Determine the position of the center of mass (CM) for the Earth-Moon
system.

(2) Determine the orbital speed and the orbital period of revolution of the
Moon.-(The CM is assumed to be at rest'in an inertial system.)

Prf)blem 14.5. Comet Halley orbits the Sun in an elliptical orbit. At peri-
helion, the distance of the comet from the Sun is 87.8 x10% km. At aphelion
the distance from the Sun is 5280 x10° km.

(1) Calculate the period of the comet.
(2) Calculate the speed of the comet relative to the heliocentric reference.

system when the comet is in the perihelion (Vp) and when the comet is
in the aphelion (Va).

Problem 14.6. The first artificial satellite, the Sputnik 1, was launched on
October 4, 1957. Sputnik 1 had a perihelion of 227 km above the surface of
the Earth. The speed at perihelion was 8 kms™!, measured relative to the
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(1) Determine the height above the surface of the Earth that Sputnik 1 had

at aphelion.
(2) Determine the orbital period of revolution for Sputnik 1.

Problem 14.7. This problem deals with a Hohman transfer orbit to Venus. -

Assume that the Earth and Venus move in the same plane (ecliptica) and
in circular orbits around the Sun. The radius of the orbit of Venus is 0.72 AU.
(1 AU =1.5x% 108 km). Compare the present problem with Example 14.5. The

r, =072 AU
r,=1AU

spacecraft is in a parking orbit.around the Earth. The launch into a Hohman
orbit to Venus (an inner, planet) occurs when the spacecraft emerges onto
the sunlit side of the Earth. The initial velocity of the spacecraft includes
two contributions: the orbital velocity of the Earth about the Sun plus the
orbital velocity of the spacecraft around the Earth. When the spacecraft is
on the sunlit side of the Earth these contributions are in opposite directions.
A rocket thrust in the direction of the orbital motion of the craft around the
Earth will allow the spacecraft to escape from the gravitational field of the
Barth. ’

Once the spacecraft is essentially free of the influence of the Barth, the
spacecraft will move in an elliptical orbit around the Sun, with an initial
speed vp relative to the heliocentric reference frame. Note: 2a = 1.72 AU.

(1) Determine vg such that the spacecraft enters a Hohman transfer orbit to
Venus (compare with Example 14.5). Show that vy < vg, where vg is the
orbital speed of the Earth around the Sun. '

(2) Determine the travel time 7 to Venus.

- (3) Determine the speed vy of the spacecraft when it reaches Venus. Show
that v; > vy, where vy is the orbital speed of Venus in the heliocentric.

reference frame.
(4) Discuss the relative positions at launch of Earth and Venus necessary for

a Hohman transfer orbit to be realized.

EmEy v
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9.2 Solar system data

Solar data
equatorial radius Ro = 6960x10°m = 109.1Rg
mass My = 19891x10%kg = 3.32946 x 10° M,
polar moment of inertia Io = 57x10%kgm? = 7.09x10%¢
bolometric luminosity Lo = 3826x10%W
effective surface temperature To = 5770K
solar constant® 1.368 x 10°Wm™?2
absolute magnitude My = +4.83; Mg = +475
apparent magnitude my = —26.74; Mpo = —26.82

aBolometric flux at a distance of 1 astronomical unit (AU).

Earth data
equatorial radius Rg = 637814x10°m = 9.166x1073Rg
flattening® f = 0.00335364 = 1/298.183
mass Mg = 59742x10*kg = 3.0035x107°M,
polar moment of inertia Ig = 8037x107kgm? = 141x10~°I4
orbital semi-major axis’ 1AU = 1495979x10!'m = 2149R,
mean orbital velocity 2.979 x 10*ms™!
equatorial surface gravity 8e = 9.780327ms™? (includes rotation)
polar surface gravity 2 = 9.832186ms™2
rotational angular velocity  we = 7.292115x10 °rads™!

af equals (Rg — Rpotar)/Re- The mean radius of the Earth is 6.3710x 10 m.

b About the Sun.

Moon data
equatorial radius Ry, = 17374x10°m = 0.27240R,
mass M, = 73483x10%kg = 1230x10"2Me
mean orbital radius® A = 3.84400x10%m = 60.27Rg
mean orbital velocity 1.03x 10°ms™!
orbital period (sidereal) 27.32166d
equatorial surface gravity 1.62ms™ = 0.166g,

2About the Earth.

Planetary data®

M/Mg R/Rg T(d) P(yr) a(AU) M mass

Mercury 0.055274 038251 58.646 0.24085 038710 | R equatorial radius
Venus? 0.81500 094883 243018 0615228 0.72335 | T rotational period
Earth 1 1 099727 1.00004 1.00000 | P orbital period
Mars 0.10745 053260 1.02596 1.88093 1.52371 | a mean distance
Jupiter 317.85 11.209 041354 11.8613 520253 | Mg 59742x10%kg

Saturn 95.159 94491 044401 296282 9.57560 | Ry 6.37814x10°m
Uranus®  14.500 40073 071833 847466  19.2934 | 1d  86400s
Neptune 17.204 38826 0.67125 166.344 30.2459 | 1yr  3.15569x107s
Pluto? 0.00251 0.18736 63872  248.348 39.5090 | 1AU 1495979 %10 m

aUsing the osculating orbital elements for 1998. Note that P is the instantaneous orbital period, calculated from the
planet’s daily motion. The radii of gas giants are taken at 1 atmosphere pressure.
bRetrograde rotation.




about the other principal axis is often called the tennis racket theorem.
The conclusions of this theorem can be readily demonstrated by throwing
this book (with a rubber band around it) or other oblong object into the
air with a spin about one of the principal axes. The detailed nature of the
spin about the stable axes is similar to the free symmetric top discussed
in the next section.

7.8 The Earth as a Free Symmetric Top

Since the earth is nearly spherical in shape, the gravitational torques
exerted on the earth by the sun and the moon are quite small. To a
good approximation the rotational motion can therefore be described by
Euler’s equations with no external torques. Since the earth is nearly
axially symmetric, the principal moments of inertia for the two axes in
the equatorial plane are equal.

L=hL=1I (7.116)

The third principal axis with moment of inertia I3 is along the polar
symmetry axis. From (7.88) the differential equations for the earth’s
motion in an earth-based coordinate frame are

Is -1
I

L.U]_ -+ W3zlwy = 0

Ln')z - Wiz = 0

Lb3-—“”‘-0

Any rigid body which obeys‘ this set of torque-free equations is called

a free azially symmetric top. The exact solution to this coupled set of
equations is easily obtained. The last equation above implies that ws is
constant.

w3 (t) = W3 (O) = W3 (7118)

The equations (7.117) can be solved using the method of (7.97)—(7.101).
The solution is
wi (t) = acos(Q + «)
ws () = asin(Q + «)

Q=uws (IB ; I) (7.120)

(7.119)

where

I -1 (7.117)

The magnitude of the angular-velocity vector w is

w= \/w%-{—wg—i—wg:\/a?—l—wg (7.121)

Since the components w; and w; in (7.119) trace out a circle of radius a
while w3 and w remain constant, an observer on the earth sees the angular-
velocity vector precesses uniformly about the symmetry axis with angular
velocity €2, as shown in Fig. 7-16.

{Symmctry axis

|
I

FIGURE 7-16. Precession of the earth’s spin about the symmetry axis.

The period of precession of w about the earth’s symmetry axis is

2r I 2r y
T=q = <13 — I) o (7.122)

For the earth, since 27/w3; = 1 day, the period of precession in days
is determined by the moment-of-inertia ratio. For an earth of uniform
density and oblate spheroidal shape, the value of this ratio, calculated

“from the measured radii of the earth, is

I
Is -1

Although the earth becomes more dense toward its center, the moment-of-
inertia ratio is not appreciably changed from the uniform-density result.

~ 300 (7.123)
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tide

1 meter rise results in several meter rise in tide

High tide every 12 hours 25 minutes

Since the Earth rotates on its axis, the Moon appears to orbit the Earth and is
over head every 24 hours and 50 minutes. The extra 50 minutes is a result of
the Moon's 27 day actual orbit around the Earth.

Force
=g from
Moon

Force from Moon pulls ocean toward it

Although the Moon is overhead every 24 hours and 50 minutes, the high tide
comes every 12 hours and 25 minutes. One high tide corresponds to when the
Moon is overhead and the other high tide is when the Moon is on the opposite
side of the Earth.

Cause of tides on both sides

Since the tides are primarily caused by the gravitation of the Moon acting on
the oceans and pulling the surface of the water toward the Moon, you would
think the shape of the oceans would be pulled toward the Moon, as opposed to
having a high tide on both sides of the Earth. In fact, the configuration seems
counter-intuitive.

Simple explanation

A simple explanation for the double tides is that normally a fluid or liquid in
space will take on a spherical shape. When you pull or apply a force on one
side, the sphere elongates into an oval shape.

Thus, when the Moon pulls the water toward it, the action causes a high tide or
bulge on the side of the Earth facing the Moon. But also, the Moon is pulling on
the Earth and causes it to move slightly toward it and away from the ocean on
the opposite side. This results in the high tide on the side away from the Moon.

Although this explanation is somewhat correct, it really isn't very satisfying.
Theory of the tidal configuration

A more sophisticated explanation is the theory of the tidal configuration which
states that the various parts of the Earth's ocean are attracted toward the
Moon, according to their separation from the Moon, as well as the angle to the
Moon's center. This is also called a gravitational differential.

The force of attraction of the water on the side of the Earth that is closer to the
Moon is greater than that on the far side of the Earth. This is represented in the
illustration below by the force-line arrows or vectors.

Orbital motion

Derivation of Circular Orbits Around Cente
Mass

Orbital Motion Relative to Other Object
Direction Convention for Gravitational Mo
Circular Planetary Orbits

Length of Year for Planets in Gravitational
Effect of Velocity on Orbital Motion

Escape velocity

Qverview of Gravitational Escape Velocity
Gravitational Escape Velocity Derivation
Gravitational Escape Velocity with Saturn
Rocket

Effect of Sun on Escape Velocity from Eat
Gravitational Escape Velocity for a Black |

Gravity
Gravity topics
Overview of Force of Gravity

Let's make the world a bei
place

Be the best that you can be.

Use your knowledge and skills to help oth
succeed.

Don't be wasteful; protect our environme

You can influence the world.

Live Your Life as a Champion:
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Gravitation Causes Tides on Earth

by Ron Kurtus (7 September 2010)

Tides are periodic rise and fall of sea levels, as seen in a specific location on the
shore. They are caused by the gravitational forces from the Moon and Sun that
attract the ocean water toward them and away from other areas in the ocean.

The rotation of the Earth and the position of the Moon cause the level of the
tide to change in a given location. There are two high and low tides each day.

Although you would think the rise in water would only occur on the side toward
the Moon and Sun, high tides actually occur on opposite sides of the Earth,
caused by a gravitational differential.

The orientation of the Moon and Sun with respect to the Earth determine when
the highest and lowest tides occur, as well as when the moderate tides occur.
At the times of the month when the Moon and Sun are aligned, their combined
gravitational pull cause the highest tides. The lowest tides are seen at locations
on Earth at right angles to the alignment of the Moon and Sun.

Questions you may have include:

e What causes tides?
e Why are there high tides on both sides of the Earth?
e What role does the alignment of the Moon and Sun have on the tides?

This lesson will answer those questions.

Ads by Google Phvsics Physics 11.12 Tides Gravity

Useful tools: Metric-English Conversion | Scientific Calculator.

Gravitation and tides

If you live near the ocean, you have probably seen the rise and fall of the sea

level that happens twice a day. When the sea level is above normal, it is called

the high tide. Similarly, low tide is when the sea level on the shore is below
_normal.

Gravitation from Moon

The gravitational pull on the water from the Moon is the primary cause of the
rising tide. Gravitation from the Sun also can contribute to the height of the
tide. Centrifugal force on the water from the Earth's rotation also provides a
small contribution to the tides.

The gravitational attraction between the Earth and the Moon is F = 1.99%102°
N (See Gravitational Force Between Two Objects for the calculations). That
force is sufficient to slightly distort the solid surface of both objects toward each
other, .

Water level rises

Since shape of a body of water can easily be changed, the force from the Moon
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Attraction
from
Moon

Moon attracts ocean and Earth toward it

But also, the Moon is attracting the mass of the Earth toward it. This can be
approximated by considering the mass of the Earth concentrated at its center
of mass (CM). This approximation is explained in the Universal Gravitation
Equation lesson. The heavy vector represents the attraction of the Earth's mass
toward the Moon.

If you subtract the force of attraction on the Earth's center of mass from each
of the vectors or force lines to the Moon, the resulting forces on the ocean
water are toward and away from the Moon on the ends and moving inward on
the sides.

Attraction
from
Moon

Subtraction of vectors results in double buige

Tides and orientation of Moon and Sun

Although the gravitational pull from the Moon is the major factor in the creation
of the tides, gravitation from the Sun also affects the height of the tide.

When the Sun and the Moon are aligned on the same side of the Earth, itis
called a New Moon. With this configuration, the gravitational forces combine
and cause a very high tide known as a spring tide. The name has nothing to do
with the season and actually occurs slightly after the Moon is overhead, due to
the inertia of the ocean and the rotation of the Earth.

When the Sun and Moon are on opposite sides of the Earth, each contributes a
pull on the water, resulting in another spring tide. The two spring tides occur
two weeks apart.

Spring Tides

Full Moon

New Moon

Alignment of Sun and Moon for spring tides

When the Moon is located at a right angle to the Sun with respect to the Earth,
it is called the first quarter or third quarter Moon. In such a case, the difference
between the high tide and low tide is much smaller, since the gravitational
forces cancel each other. These low tides are called neap tides.

Since the orbit of the Moon around the Earth is elliptical, once every 1.5 years
the Moon is closest to the Earth. This situation results in an unusually high tide
called the proxigean spring tide.

Summary
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High tides occur on opposite sides of the Earth, as do low tides, according to
the theory of the tidal configuration. The orientation of the Moon and Sun with
respect to the Earth determine when the highest and lowest tides occur, as well
as when the moderate tides occur.

You have potential

Resources and references
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The following resources provide information on this subject:
Websites

Saltwater Tides - Predictions of tides in various U.S. states
Moon Tides - How the Moon affects ocean tides

Tides - Wikipedia

Ocean Tides - NASA - Ocean Motion

Gravitational Tides - Astronomy 221 - Case Western Reserve University

Forces Involved in Making Tides - The Lobsterman's Page
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Cavendish experiment

From Wikipedia, the free encyclopedia

The Cavendish experiment, performed in 1797-98 by British scientist Henry Cavendish was the first
experiment to measure the force of gravity between masses in the laboratory,[l] and the first to yield
accurate values for the gravitational constant.[213] Because of the unit conventions then in use, the
gravitational constant does not appear explicitly in Cavendish's work. Instead, the result was originally
expressed as the specific gravity of the Earth.!4] or equivalently the mass of the Earth; and were the
first accurate values for these geophysical constants. The experiment was devised sometime before

178305 by geologist John Michell,[%] who constructed a torsion balance apparatus for it. However,
Michell died in 1793 without completing the work, and after his death the apparatus passed to Francis
John Hyde Wollaston and then to Henry Cavendish, who rebuilt the apparatus but kept close to
Michell's original plan. Cavendish then carried out a series of measurements with the equipment, and

~ reported his results in the Philosophical Transactions of the Royal Society in 1798.L7]
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5 References
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The experiment

The apparatus constructed by Cavendish was a torsion balance made of a six-foot (1.8 m) wooden rod
suspended from a wire, with a 2-inch (51 mm) diameter 1.61-pound (0.73 kg) lead sphere attached to
each end. Two 12-inch (300 mm) 348-pound (158 kg) lead balls were located near the smaller balls,

about 9 inches (230 mm) away, and held in place with a separate suspension system.[g] The
experiment measured the faint gravitational attraction between the small balls and the larger ones.

The two large balls were positioned on alternate sides of the
horizontal wooden arm of the balance. Their mutual attraction
to the small balls caused the arm to rotate, twisting the wire
supporting the arm. The arm stopped rotating when it reached
an angle where the twisting force of the wire balanced the
combined gravitational force of attraction between the large
and small lead spheres. By measuring the angle of the rod, and
knowing the twisting force (torque) of the wire for a given
angle, Cavendish was able to determine the force between the
pairs of masses. Since the gravitational force of the Earth on

'Vert.icalsel"tion drawing of_Caler'ldistIis the small ball could be measured directly by weighing it, the
t 1 1t t1 1 !
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they could be rotated into position next | Cavendish found that the Earth's density was 5.448 £ 0.033

to the small balls by a pulley from times that of water (due to a simple arithmetic error, found in
outside. Figure 1 of Cavendish's paper. 1821 by F. Baily, the erroneous value 5.48 =+ 0.038 appears in
) ~ his paper).[9]

g To find the wire's torsion coefficient, the torque exerted by the
=71 wire for a given angle of twist, Cavendish timed the natural
=t oscillation period of the balance rod as it rotated slowly

clockwise and counterclockwise against the twisting of the
wire. The period was about 20 mimutes. The torsion coefficient
could be calculated from this and the mass and dimensions of
N__|  the balance. Actually, the rod was never at rest; Cavendish had

Detail showing torsion balance arm (m), | 1, meagure the deflection angle of the rod while it was
large ball (W), small ball (x), and oscillating [10]

isolating box (ABCDE).

Cavendish's equipment was remarkably sensitive for its
- time.[9] The force involved in twisting the torsion balance was very small, 1.74 x 1077 N,[U] about

1/50,000,000 of the weight of the small balls{!2] or roughly the weight of a large grain of sand.[13] To
prevent air currents and temperature changes from interfering with the measurements, Cavendish
placed the entire apparatus in a wooden box about 2 feet (0.61 m) thick, 10 feet (3.0 m) tall, and 10
feet (3.0 m) wide, all in a closed shed on his estate. Through two holes in the walls of the shed,
Cavendish used telescopes to observe the movement of the torsion balance's horizontal rod. The
motion of the rod was only about 0.16 inches (4.1 mm).[14] Cavendish was able to measure this small
deflection to an accuracy of better than one hundredth of an inch using vernier scales on the ends of

the rod.[1%]
Cavendish's experiment was repeated by Reich (1838), Baily (1843), Cornu & Baille (1878), and

many others. Its accuracy was not exceeded for 97 years, until C. V. Boys' 1895 experiment. In time,
Michell's torsion balance became the dominant technique for measuring the gravitational constant (G),
and most contemporary measurements still use variations of it. This is why Cavendish's experiment

became the Cavendish experiment.[m]

Did Cavendish determine G?

The formulation of Newtonian gravity in terms of a gravitational constant did not become standard
until long after Cavendish's time. Indeed, one of the first references to G is in 1873, 75 years after
Cavendish's work.[17] Cavendish expressed his result in terms of the density of the Earth, and he
referred to his experiment in correspondence as 'weighing the world'. Later authors reformulated his
results in modern terms.[181119120] thys:

2

earth
G =g eart —
M carth 47TR\3&1‘ th Pearth

39

After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm 3, gives
G=674x10" "1 m3 kg1 s72,

which differs by only 1% from the currently accepted value: 6.67428 x 10711 m? kg1 s72.

)
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Physicists, however, often use units where the gravitational constant takes a different form. The
Gaussian gravitational constant used in space dynamics is a defined constant, and the Cavendish
experiment can be considered as a measurement of the astronomical unit. In Cavendish's time,
physicists used the same units for mass and weight, in effect taking g as a standard acceleration.
Then, since Regi, Was known, Peqrth played the role of an inverse gravitational constant. The density
of the Earth was hence a much sought-afier quantity at the time, and there had been earlier attempts to
measure it, such as the Schiehallion experiment in 1774.

For these reasons, physicists generally do credit Cavendish with the first measurement of the
gravitational constant,[2311261127]128](29]

Derivation of G and the Earth's mass

For the definitions of terms, see the drawing below and the table at the end of this section.

The following is not the method Cavendish used, but shows how moderm physicists would use his
results.[30131132] From Hooke's law, the torque on the torsion wire is proportional to the deflection
angle 6 of the balance. The torque is 7O where K is the torsion coefficient of the wire. However, the
torque can also be written as a product of the attractive forces between the balls and the distance to
the suspension wire. Since there are two pairs of balls, each experiencing force F at a distance L /2
from the axis of the balance, the torque is LF. Equating the two formulas for torque gives the
following;

k@ =LF

For F, Newton's law of universal gravitation is used to express the attractive force between the large
and small balls:

e GmM
Substituting F into the first equation above gives | Torsion wire |
KO =L (1)
r2

To find the torsion coefficient (x) of the wire, Cavendish measured
the natural resonant oscillation period T of the torsion balance:

g

Diagram of torsion balance

T=2x \“-"'m

Assuming the mass of the torsion beam itself is negligible, the
moment of inertia of the balance is just due to the small balls:

I =m(L/2)%+m(L/2)* = 2m(L/2)* = mL*/2,
and so:

. |mlIL?
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Solving this for K, substituting into (1), and rearranging for G, the result is:
f 2 9
G’ 27 L=

Once G has been found, the attraction of an object at the Earth's surface to the Earth itself can be used
to calculate the Earth's mass and density:

7

B GmM . ih

[ =
e Rga:rth.
g Rgm'th
Megren = —~—
G
. ﬂf[ﬂ@rﬁh . 3Q

Pearth = R penl3  ATReartnG
Definition of terms
e radians Deflection of torsion balance beam from its rest position
F N Gravitational force between masses M and m
G m’kg's™?  Gravitational constant
m kg Mass of small lead ball
M kg Mass of large lead ball
- - Distance between centers of large and small balls when balance 18

deflected

L m Length of torsion balance beam between centers of small balls
I N m radian~! Torsion coefficient of suspending wire
I kg m* Moment of inertia of torsion balance beam
T 8 Period of oscillation of torsion balance
g s> Acceleration of gravity at the surface of the Earth
Megrin, kg Mass of the Earth
Regrin m Radius of the Earth
Pearth kg m™? Density of the Earth
See also

w Schiehallion experiment
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THE CAVENDISH EXPERIMENT
by
P. Signell and V. Ross

1. Introduction

Newton'’s law of gravitation is certainly one of the greatest laws of the
universe: the one that describes what holds together our earth, holds us
to the earth, and holds our earth in its orbit about our sun. Observations
indicate that it holds in the incredibly distant reaches of the universe
exactly as it holds here on earth. How exciting it is, then, to be able
to examine this great law in the laboratory with fairly simple apparatus!
We will first describe the background for Cavendish’s experiment and then
show how it can be used to examine the gravitation law.

2. Historical Overview

2a. Introduction. One of the greatest adventures in the history of
mankind has been the determination of the causes of night and day and
of the seasons, and the regularities of motion of “the wanderers,”! the
planets. Careful observations were recorded in many cultures, includ-
ing that of the American Indian. However, the first statements of the
simple mathematical characteristics of planetary motion were three laws
proposed by Johannes Kepler? who built on Tycho Brahe’s careful astro-
nomical measurements and Copernicus’s proposal that the sun is at the
center of the solar system.

2b. Newton’s Law of Gravitation. Then, in 1666, Isaac Newton
published his law of universal gravitation.® Kepler's three laws for the
motions of the planets in our solar system were now replaced by a single
law which covered, as well, the force of gravity here on the earth and
the motions of planetary moons, galaxies, binary stars, and our sun’s
constituents. Newton’s law said that the gravitational force between two
spherically symmetric objects is directly proportional to each of their

1So-called in ancient times because their positions moved against the background
of stars.

28ee “Derivation of Newton’s Law of Gravitation” (MISN-0-103) for a discussion of
Kepler’s laws and a simplified version of Newton’s derivation.

38ee “Newton’s Law of Gravitation” (MISN-0-101) for applications of the law to
people, mountains, satellites, and planets.
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Figure 1. A schematic diagram of the Cavendish apparatus:
(a) m’ far away; (b) m' up close.

masses and inversely proportional to the square of the distance between
their centers. That is,
mm’
iy ®
where G is some universal gravitational constant, m and m’ are the two
masses® and 7 is the distance between their centers. Here F is the force
with which each of the masses is attracted to the other.5

2c. Newton Could Not Determine G. Newton checked his law
mainly through ratios of forces® since he could not directly measure the
gravitational constant G. For example, he set the force on an object at
the earth’s surface equal to its weight, mg, and found:

F=G

GMg = gR%, 2)

where Rg and Mg are the radius and mass of the earth. The value of Ry
was known from the curvature of the horizon but Mgz was not accessible
to measurement. Thus Newton could only determine a numerical value
for the product GMEg.

2d. Cavendish Makes the First Measurement of G. Over a
century after Newton’s formulation of the law of gravitation, Henry

4Mass can be defined in several ways. One method is given in (MISN-0-14), while
the strange equivalence of gravitational and inertial mass is examined in (MISN-0-110).

5See (MISN-0-16) for a discussion of Newton’s third law and the equality of the two
forces.

5See (MISN-0-103) for a derivation of one of the ratios used by Newton to check
the law of gravitation.
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Figure 2. Hypothetical Cavendish data that would confirm
Newton’s law of gravitation.

Cavendish succeeded in directly measuring the gravitational force between .

two masses, thus enabling him to evaluate G and hence the masses of the
earth,” moon®and sun.

3. The Cavendish Experiment

3a. Description of the Cavendish Apparatus. A good description
of Cavendish’s apparatus is given by Freeman® : “ .. A light rod with a
small metal ball at each end [was] hung from a fixed point by means of
a thin wire. When two massive lead spheres [were] brought close to the
small balls, the gravitational forces of attraction [made] the suspended
system turn slightly to a new position of equilibrium. The torque!® with
which the suspending wire [opposed] twisting [was] measured in a separate
experiment...” Figure 1 shows a top view of the Cavendish apparatus
at two stages during a measurement of the gravitational force between
known masses. Figure la shows the position of the suspended light rod
and small masses m when the large lead masses m/ are far away (r = co).
The top end of the suspending wire, the end toward the viewer, is rigidly
clamped.

"The major motivation of finding Mp was that of determining the earth’s average
density so as to obtain information about the composition of its interior.

8See “Derivation of Newton’s Law of Gravitation” (MISN-0-103) for the equation
used.

%Ira M. Freeman, Physics — Principles and Insights, McGraw-Hill (1968). For
availability, see this module’s Local Guide.

10For a discussion of torque see “Torque and Angular Momentum in Gircular Mo-
tion,” MISN-0-34.
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Figure 3. A top-view diagram of the modern student-lab
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When the large masses m' are brought so close as to produce a sig-
nificant force of gravitational attraction on the small masses, the small
masses move toward the large masses, causing the rod to rotate. This
rotation twists the lower end of the wire (see Fig. 1b).

3b. Gravitational Attraction Balanced by Restoring Torque.
In the position shown in Fig.1b with m’ close to m, the gravitational
attraction between the m-m’ pairs is balanced by the restoring torque (or
force) produced by the twisting wire:

F gravitational = —{'restoring - (3)

The values of m, m’ and 7 are varied, producing various values for the
gravitational force and hence producing various equilibrium angles of twist
6 (see Fig.1b). At this point we could plot the measurements as m vs.
6, m' vs. 6, and =2 vs. §. However, it is force that occurs in Newton’s
Law, not 4.

3c. Determining the Restoring Force. Here we describe how one
obtains the factor for converting the measured equilibrium angles 8 to
force values F'. It involves measuring, in a separate experiment, the fre-
quency of free oscillations of the apparatus.

In practice experimenters make use of the fact that the suspension
receives such a small amount of twisting that the arc-like displacement
of each mass from its equilibrium position is linearly proportional to the
restoring force in the suspension!! :

Frestoring = ks = —kéf, (4)

'Here the “restoring force” is the force within the metal of the suspension that
resists the twisting. It grows linearly with twist angle, opposing the force causing the
twisting. When the twist angle is so large that the two opposing forces are equal,
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where £ is the length of either arm of the suspension and s is the dis-
placement of the mass along an arc. Because of this linearity, when the
suspended system is displaced from equilibrium and then released it will
exhibit a simple harmonic twisting motion about an equilibrium angle'?
with an angular frequency of oscillation given by'3

w=k/m. (5)

A simple measurement of the angular frequency of oscillation, along with
measurements of m and ¢, then gives the needed proportionality constant
for converting 0 values to F values:

Frestoring = —klf = —(w2m€)9 . (6)

3d. Examination of Cavendish Data. Data of the type shown in
Fig.2 would support the form of Newton’s law of gravitation. That is,
since the force is seen to be linearly proportional to m, m/, and r~2, the
form must be:

F = constant x mm//r?. )

the force on the suspension is zero. For more details see “Simple Harmonic Motion”
(MISN-0-25) and for further discussion of restoring-force linearity with displacement
see “Small Oscillation Technique” (MISN-0-28).

2“Simple harmonic motion” about an “equilibrium point” is an oscillating (“back
and forth”) motion where the position of the object is a sinusoidal function of time.
The “frequency” of the oscillation is the number of complete motion cycles per unit
time. See “Simple Harmonic Motion” (MISN-0-25).

13For a derivation of this relation see “Simple Harmonic Motion” (MISN-0-25) .
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Figure 5. Finding the equilibrium position.

Then the measured force for any one combination of m, m', and r gives
the proportionality constant G:

!

mm
F=@G = (8)

The current best measured value of G is:4
G = 6.6732(31) x 107! Nm?/kg?. 9)

3e. The Modern Student Cavendish Balance. In a modern stu-
dent lab apparatus (see Fig.3), the Cavendish balance is basically the
same as the original one, except that the thin wire is replaced by a thin
quartz fiber which produces a more consistent restoring torque. A mirror
is attached to the quartz fiber and a laser beam is reflected off the mirror
and onto a scale.'> As the small masses oscillate back and forth around
the axis, the fiber twists and the reflected laser beam moves back and
forth along the scale.

Note that the law of reflection'® requires the angular displacement
of the beam to be twice that of the mirror (see Fig.4). The scale is
sometimes curved to make easier the conversion from the scale reading
to the angle §. By measuring the points traveled farthest to the left and
right on the scale, the equilibrium point can be found (see Fig.5). The
large masses are moved near or away from the small masses by an arm
which is pivoted in the center so that the distance, r, between the large
and small mass will be the same on both ends of the balance beam.

4 Handbook of Chemistry and Physics, 54th Edition, Chemical Rubber Co., CRC
Press (1973).

15A laser beam is used because it is pencil-thin.
163ee “The Rules of Geometrical Optics” (MISN-0-220).
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LOCAL GUIDE

The book. listed in this module’s ID Sheet is on reserve for you in the
Physics-Astronomy Library, Room 230 in the Physics-Astronomy Build-
ing. Tell the person at the desk that you want a book that is on reserve
for CBI (a BOOK, not a reading). Then tell the person the name of the
book you want.
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