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(®

FIGURE 8-1. Gravitational attraction of a point mass m and a differential ring
clement dM on a spherical shell of mass M, with (a) m outside the shell and (b) m
inside the shell.

The potentiai due to the ring mass dM is

GdM GM
Cl@(’)") = ~'~—-—7:'-— = —%—R-dr (89)

The contributions of all ring elements on the shell are obtained by inte-
gration over r

Tmax GM
@(7‘) = / d@(r) = —m(rmax - Tmin) (810)

We see from Fig. 8-1 that rmax = R+a and rmin = |R —a| and thus when
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r is outside the shell

"max = min = (R + a) — (R-a)=2q (8.11)
whereas when m is inside the shell,

"max ~ Tmin = (R+a) — (q — R)=2R (8.12)

Thus the potential is

_GM
R
_GM

a

R>a (8.13)
®(R) =
R<a (8.14)

Since @(r) is constant inside the shell, g vanishes there. When r is outside
the shell, the potential in (8.13) is as if the mass M of the shell were
concentrated at the center of the shel]. Since a spherically symmetric solid

8.2 The Tides

When a body moves in a non-uniform gravitational field, it is subjected
to tide-generating forces. These shearing forces may even tear the body
apart—this is a possible origin of the rings of Saturn.

The acceleration of the body ag is the total gravitational force on its
tomponent masses divided by its total mass. (If the body is spherically
Symmetric, then the result of Newton’s theorem and the “action equals
reaction” principle is that ap is simply the value of g(r) at the center of
the body.) If we use coordinates centered on the body (i.e., “falling with
the body”) the gravitational field becomes g(r) —ag. If we separate g
into the part due to the body itself 8selr (Which vanishes at the center of
the body) and to the part due to external masses 8ext, then the gravi-
tational field in the frame fixed on the body is g + (8exi — ag). The
Second term, (goy — a 8)» is the tidal field.




-in Fig. 8-2. The coordinates of the masses m, Mg, M in an inertial frame
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Tidal forces on a planet are maximum along a line to the exte
force center and give two high tides on opposite sides of the Planet,
a planet in a circular orbit about the sun the origin of the doyble ti
is easily explained by the following argument. The forces acting op
mass m are the attractive gravitational force GmM /r* and the repulsy:
centrifugal force mw?r due to the revolution of the planet aboyt the sy;
At the CM of the planet the gravity force exactly balances the centrifyg
force since there is no radial acceleration in a circular orbit. At the point
closest to the sun, the sun’s gravitational attraction is larger than at,
CM and the centrifugal force is smaller, giving a net tidal force inuth
direction of the sun. At the farthest point on the planet from the sup t},

centrifugal force exceeds that of gravity and there is a tidal force directe
away from the sun. '

The ocean tides on earth are caused by the variation from place t
place of the gravitational attraction due to the moon and the sun. T},
atmosphere, the ocean, and the solid earth all experience tidal fored.
but only the effects on the ocean are commonly observed. To estimat;
the gross features of the midocean tides, we begin with a static thed
in which the rotation of the earth about its axis is neglected. The dé

rotation of the earth will be invoked later to explain the propagation'’s
the tides. a

To calculate the tide-generating force, we consider the acceleratiqz{
a small mass m on the ocean’s surface under the combined influence o
the gravitational attraction of the earth and a distant mass M, as shdv&p

are represented by the vectors ry, ry, r3, respectively. For convenience,

we denote the relative coordinates of the masses by :
r=rT;—1r9
R= ro —r3 (815
d= ry —rg= R +r

With this notation, the motion of m and Mz due to gravitational foréés
is determined by g

i _GmﬁJEr 3 GmMEl (816
r d?

By dividing the first equation by m, the second equation by Mg, and then
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Zr

X

FIGURE 8-2. Location of a point on the earth’s surface and a distant mass M in an
inertial frame and an earth-centered frame.

subtracting, we find the equation of motion for the relative coordinate r.

-~ ~

i“:——GMEr——GM d R

ks S (8.18)

his result could have been directly obtained from (6.22). The first term
n the right-hand side of (8.18) is the central gravity force of the earth on
a particle of unit mass. The second term is the tide-generating force per
unit mass due to the presence of the distant mass M. The tide-generating
force is the difference between the forces on the surface of the earth and
at the center of the earth. The direction and relative magnitude of the

tide-generating force due to M are plotted in Fig. 8-3 for points around
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the earth’s equator. The effect of this force is to produce the two
bulges which, as the earth rotates, are observed twice daily as hig

._..._.—:——->
. To distant
P attracting mass M

FIGURE 8-3. Tide-generating force on the surface of the earth at the equato
a distant mass. Lo

If the tidal forces are small compared to the gravitationalifor«c
the CM and the distance to the external force center is large com
to the planetary radius we can approximate (8.18) as follows. By
we can express the second factor of (8.18) as
i R d R_R+4r R

| 2 R & R FE R3
i 1 1 T
=R(z§‘ﬁ%‘)+a§

! We form the square of d

P2=R+r*+2R-T
IR T r2>1/2

d:R(1+~—R-T~+—RE

Then for B > r we apply the binomial expansion (1+ )™ = 1m
with f=R-r/R*and n=1 /2, and retain only leading terms .

R-r
d:‘:’.R(1+—~R§"+"‘)
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‘e

Zh‘e quantity d~2 in (8.19) can be approximated by
1
a

L1 ( 1 3R - r)
— w3\t P
BA (8.22)
1 3R-r
"R RY _
'here the binomial expansion with n = —3 has been applied. To first
der in r (8.19) becomes
d R_,/1 1 r
z e R w)te
3(R-x)  r 8.23
R R ( | )
1 n [
o~ —R-g' [~3R (R'l‘) +1‘:!
our choice of coordinate system in Fig. 8-2, R = —% and thus
d R 1 . :
7 S (TlR4r) (8.24)
'this approximation the tidal acceleration of (8.18) is
GMgt GM . . ‘
=Tz + -RT(&BX —r) . (8.25)

Since gravitational forces are conservative® this force per unit mass
0 be derived from a potential and we may write

i=-V,0 . (8.26)

here V; means the gradient with respect to the vector r = zX +y$ + 22
hose origin is at the center of the earth. It is easy to guess that the
otential whose negative gradient is the right side of (8.25) is

&= = (232 5 (8.27)
@ce_m = rsin  cos ¢, we have
_ GMg GM rr\3(3 ., 9 1
== — - = (R) (23111 fcos® ¢ — ) (8.28)

For equilibrium of the ocean surface, the ngt tangential force on m
ust vanish. Equivalently, the potential at any point on the ocean’s sur-
‘must be constant. We choose the constantto be ®(r) = ~GMg/Rg,
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where Rg is the undistorted spherical radius of the earth (i.e!
distant M is absent). Using this condition in (8.28) gives

M rRg (3 . ,, . 1
T'—RE‘~——M~E-*—]%—3‘<'2—SID f cos ¢~§)
Since the height of the tidal displacement ,
h(6,¢)=r - Rg _

is quite small compared with' RE, (8.29) gives

h(f, ¢) ~ 13;[ g:( sin 0cos qﬁ—%)

: For a given colatitude angle 6 in (8.31), the high tides occur a
“ and ¢ = 7, and low tides occur at ¢ = m/2 and ¢ = 37/2. The diff
‘ in height between high and low tide, known as the tidal range, i
3 M R:

Ah = 29

5 My B sin
The tidal displacement h is largest at § = 90° (on the equat
: tidal distortion is illustrated in Fig. 8-4. The tide for an ocea
of continents has a prolate spheroid shape (football-like), with th
axis in the direction of the distant mass. The calculatlon of such an id
‘tide was first made by Newton in 1687.

Spherical
shape

Tidal £
distortion ’
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he preceding discussion applies to the tidal forces induced by a single
tronomic body. If there are two tide-producing bodies the net tide is the
uperposition of the separate tides. (If the bodies are not collinear with
“planet, the total tidal shape is not axially symmetric but a triaxial
ipsoid instead.) From (8.31) the ratio of the maximum heights of the
ar (L) and solar (®) tides on earth is

ie - (i) () e

hére ar is the earth-moon distance and ag is the earth-sun distance.
je-numerical value of this ratio is

hy _ (1/81.5) Mg (1.5 % 108 km)3 ~
ho (X 10°) Mz \38x 105km ) — 22 (8.34)

us the sun’s tidal effect is smaller than the moon’s, but it is not neg-
igible. When the sun and moon are lined up. (new or full moon), an
ecially large tide results (spring tide), and when they are at right an-
s (first or last quarter moon), their tidal effects partially cancel (neap
e); The diagram in Fig. 8-5 illustrates these orientations of the moon
elative to the earth and sun.

N
(=
o
D e

New moon

First L““,
quarter quarter
Neap Neap |
tide tide

O Spring
tide

Full moon
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" As the earth rotates about its own axis, the tidal maxima,
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The tidal range due to the moon at a point on the éarth
can be calculated from (8.32). We get e

my_3( 1 6,371 \° 5 i
A (0= 5) =3 <§i_5> (384,000) (6,371 x 10

This figure agrees roughly with the measured tidal diﬁ’erencé int

on the earth-moon axis, will pass a given point on the ear
approximately two times a day. More precisely, since the orbit al
of the moon about the earth (with period of 271 days) is in:
sense as the earth’s own rotation (with period 24 h), two tidal
pass a given spot on earth every (24 +24/27%) h. Thus high tide
every 12 h and 26.5 min, and high tide is observed about 53

each day.

The two high tides are not of the same height because of the in
tion of the earth’s axis to the normal of the moon’s orbital plan
the earth. In the Northern Hemisphere the high tide which occurs'cle
to the moon is higher, as illustrated in Fig. 8-6. o

Normal to
moon’s orbit

\ ;

Small high _coseeee,

Large higﬁ tide

—3 Moon

FIGURE 8-6. Effect of the inclination angle B of the earth’s axis to the moon’s
plane on the heights of tides. S varies from 17° to 29° as the moon’s ellipt!
precesses slowly about the normal to the plane of the earth’s heliocentri
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he tides are in reality more complicated than described above. Along
~stal regions the configuration of the land masses and the ocean bot-
use considerable amplification or suppression of the tidal range.
he world, tidal ranges vary as much as twenty meters.

he friction of the moving tidal waves against ocean bottoms and the
ental shorelines dissipates energy at a rate estimated at 7 billion
power. To supply this energy, the earth’s rotation about its axis
down at the rate of 4.4 x 1078 s per day. The cumulative time over
ury is about 28 s. This gradual lengthening of the day is confirmed
he observation that various astronomical events such as eclipses seem
un systematically ahead of calculations based on observations over
ding centuries. :

Tidal Evolution of a Planet-Moon System .

arth-moon system has very little external torque acting upon it on
average. The total angular momentum of the system is thus nearly
stant. The consequence of angular momentum conservation is that
moon spirals outward about a half a centimeter each month as the
h’s rotation is slowed by tidal friction. Ultimately the moon’s distance
increase by over forty percent of its present value and our day will
then by a factor of about 50. The moon will then remain stationary
ve one spot on the earth.

Tb see this, we make the following simplifications, which are suffi-
ntly accurate to represent the physical situation.

. The spin angular momentum S = Jw of the earth is parallel to the
orbital angular momentum L of the moon about the earth. (The
-earth’s spin precesses about the normal to the ecliptic plane with
- period of 26,000 years and the plane of the moon’s orbit about
. the earth precesses similarly with a period of about 19 years, so the
average values of both S and L are perpendicular to the ecliptic
plane—the plane of earth’s orbit around the sun).

. The total angular momentum
J=L+S=(L+9L (8.35)

is constant (we are neglecting the solar tidal drag).

The moon’s orbit about the earth is circular and lies in the ecliptic
plane (point 1 above).
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explénation: the moon falls in the sense that it falls away from the straight line .
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_Fig. 7-3. ‘Apparatus for showing the
independence of vertical and horizontal
motions.

From
Plane Geometry
T S &
[ X 3

*R* = redius of
earth 4000 miles

*x'zdistance
“trovelled hori-
zontally" in one
gsecond

5" distence
“fallen” in one
second (16 feet)

Fig. 7-4. Acceleration toward the
center of a circular path, From plane
geometry, x[s'= (2R — S}/x = 2R/x,
where R is the radius of the earth, 4000
miles; x is the distance “travelled hori-
zontally” in one second; and S is the
distance “fallen” in one second (16 feet).

that it would pursue if there were no forces. Let us take an example on the surface
of the earth. An object released near the earth’s surface will fall 16 feet in the first

second. An object shot out korizontally will also fall 16 feet; even though it is

moving horizontally, it still falls the same 16 feet in the same time. Figure 7-3
shows an apparatus which demonstrates this. On the horizontal track is a ball
which is going to be driven forward a little distance away. At the same height
is a ball which is going to fall vertically, and there is an electrical switch arranged
so that at the moment the first ball leaves the track, the second ball is released:
That they come to the same depth at the same time is witnessed by the fact that
they collide in midair. An object like a bullet, shot horizontally, might go a long
way in one second—perhaps 2000 feet—but it will still fall 16 feet if it is aimed
horizontally. What happens if we shoot a bullet faster and faster? Do not forget
that the eartlt’s surface is curved. If we shoot it fast enough, then when it falls
16 feet it may be at just the same height above the ground as it was before.- How
can that be? It still falls, but the earth curves away, so it falls “around” the earth.
The question is, how far does it have to go in one second so that the earth is
16 feet below the horizon? In Fig. 7-4 we see the earth with its 4000-mile radius,
and the tangential, straightline path that the bullet would take if there were no
force. Now, if we use one of those wonderful theorems in geometry, which says
that our tangent is the mean proportional between the two parts of the diameter
cut by an equal chord, we see that the horizontal distance travelled is the mean
proportional between the 16 feet fallen and the 8000-mile diameter of the earth.
The square root of (16/5280) X 8000 comes out very close to 5 miles. Thus
we see that if the bullet moves at 5 miles a second, it then will continue to fall
toward the earth at the same rate of 16 feet each second, but will never get any
closer because the earth keeps curving away from it. Thus it was that Mr. Gagarin
maintained himself in space while going 25,000 miles around the earth at approxi-
mately 5 miles per second. (He took a little longer because he was a little higher.)
Any great discovery of a pew law is useful only if we can take more out than
we put in. Now, Newton used the second and third of Kepler’s laws to deduce
his law of gravitation. What did he predict? First, his” analysis of the moon’s
motion was a prediction because it connected the falling of objects on the earth’s
surface with that of the moon. Second, the question is, is the orbit an ellipse?
We shall see in a later chapter how it is possible to calculate the motion exactly,
and indeed one can prove that it should be an ellipse,* so no extra fact is needed
to explain Kepler’s first law. Thus Newton made his first powerful prediction.
The law of gravitation explains many phenomena not previously understood.

‘For example, the pull of the moon on the earth causes the tides, hitherto mysterious.
The moon pulls the water up under it and makes the tides—people had thought .

of that before, but they were not as clever as Newton, and so they thought there
ought to be only one tide during the day. The'reasoning was that the moon pulls
the water up under it, making a high tide and a low tide, and since the earth spins
underneath, that makes the tide at one station go up and down every 24 hours.
Actually the tide goes up and down in 12 hours. Another school of thought
claimed that the high tide should be gn the other side of the earth because, so they
argued, the moon pulls the earth away from the water! Both of these theories
are wrong. It actually works like this: the pull of the moon for the earth and for
the water is “balanced” at the center. But the water which is closer to the moon is
pulled more than the average and the water which is farther away from it is pulled
Jess than the average. Furthermore, the water can flow while the more rigid earth
cannot. The true picture is a combination of these two things.

What do we mean by “balanced”? What balances? If the moon pulls the
whole earth toward it, why doesn’t the earth fall right “up” to the moon? Because
the earth does the same trick as the moon, it goes in a circle around a point which
is inside the earth but not at its center. The moon does not just go around the
earth, the earth and the moon both go around a central position, each falling

* The proof is not given in this course.
7-4




toward this common _position, as shown in Fig. 7-5. This motion around the
common center is what balances the fall of each. So the'earth is not going in a
straight line either; it travels in a circle. The water on the far side'is thrown out
more by the “centrifugil force” than the average for the center of the earth,
which is just balanced by the moon’s attraction. The moon’s attractlon on the far
side is weaker and the “centrlfugal force” is stronger The net result is an im-
balance of the water in a direction away from the center of the earth. On the near
side, the attraction from the moon is stronger, and because the radius vector is
shorter, the “centrifugal force” is also weaker and the imbalarice is in the opposite
direction in space, but-again away from the center of the earth. The net result is
that we get two tidal bulges.

7-5 Universal gravitation

What else can we understand when we understand gravity? Everyone knows
the earth is round. Why is the earth round? That is easy; it is due to gravitation.
The earth can be understood to be round merely because everything attracts
everythlng else and so it has attracted itself together as far as it can! If we go even
further, the earth is not exactly a sphere because it is rotating, and this brings in
centrifugal effects which tend to oppose gravity near the equator. It turns out that
the earth should be elliptical, and we even get the right shape for the ellipse.
We can thus deduce that the sun, the moon, and the earth should be (nearly)
spheres, just from the law of gravitation.

 What else can you do with the law of gravitation? If we look at the moons
of Jupiter we can understand everything about the way they move around that
planet. Incidentally, there was once a certain difficulty with the moons of Jupiter
that is worth remarking on. These satellites were studied very carefully by Roemer,
who noticed that the moons sometimes seemed to be ahead of schedule, and some-

times behind. (One can find their schedules by waiting a very long time and finding

out how long it takes on the average for the moons to go around.) Now they were
ahead when Jupiter was particularly close to the earth and they were behind when
Jupiter was farther from the earth. This would have been a very difficult thing to
explain according to the law of gravitation—it would have been, in fact, the death
of this wonderful theory if there were no other explanation. If a law does not work
even in one place where it ought to, it is just wrong. But the reason for this dis-
crepancy was very simple and beautiful: it takes a little while to see the moons of
Jupiter because of the time it takes light to travel from Jupiter to the earth. When
Jupiter is closer to the earth the time is a little less, and when it is farther from the
earth, the time is more. This is why moons appear to be, on the average, a little
ahead or a little behind, depending on whether they are closer to or farther from
the earth. This phenomenon showed that light does not travel instantaneously,
and furnished the first estimate of the speed of light. This was done in 1656.

If all of the planets push and pull 6n each other, the force which controls,
let us say, Jupiter in going around the sun is not just the force from the sun;
there is also a pull from, say, Saturn. This force is not really strong, since the sun
is much more massive than Saturn, but there is some pull, so the orbit of Jupiter
should not be a perfect ellipse, and it is not; it is slightly off, and “wobbles” around
the correct elliptical orbit. Such a motion is a little more complicated. Attempts
were made to analyze the motions of Jupiter, Saturn, and Uranus on the basis
of the law of gravitation. The effects of each of these planets on each other were
calculated to see whether or not the tiny deviations and irregularities in these
motions could be completely understood from this one law. Lo and behold, for
Jupiter and Saturn, all was well, but Uranus was “weird.”” - It behaved in'a very
peculiar manner. It was not travelling in an exact ellipse, but that was under-
standable, because of the attractions of Jupiter and Saturn. But even if allowance
were fnade for these attractions, Uranus still was not going right, so the laws of
gravitation were in danger of being overturned, a possibility that could not be
ruled out. Two men, Adams and Leverrier, in England and France, independently,
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Fig. 7-6. A double-star system.

arrived at another possibility: perhaps there is another planet, dark and invisit
which men had not seen. This planet, N, could pull on Uranus. They calculal
where such a planet would have to be in order to cause the observed perturl
tions. They sent messages to the respective observatories, saying, “Gentlem
point your telescope to such-and such a place, and you will see a new plane
It often depends on with whom you are working as to whether they pay any att
tion to you or not. They did pay attention to Leverrier; they looked, and th
planet N was! The other observatory then also looked very quickly in the n
few days and saw it too.

This discovery shows that Newton’s laws are absolutely right in the sc
system; but do they extend beyond the relatively small distances of the neai
planets? The first test lies in the question, do stars attract each other as well
planets? We have definite evidence that they do in the double stars. Figure ’
shows a double star—two stars very close together (there is also a third star
the picture so that we will know that the photograph was not turned). The s
are also shown as they appeared several years later. We see that, relative to
“fixed” star, the axis of the pair has rotated, i.e., the two stars are going arot
each other. Do they rotate according to Newton’s laws? Careful measureme
of the relative positions of one such double star system are shown in Fig. 7
There we see a beautiful ellipse, the measures starting in 1862 and going all
way around to 1904 (by now it must have gone around once more). Everytt
coincides with Newton’s laws, except that the star Sirius A is not at the fo
Why should that be? Because the plane of the ellipse is not in the “plane of
sky.” We are not looking at right angles to the orbit plane, and when an ell
is viewed at a tilt, it remains an ellipse but the focus is no longer at the same pl
Thus we can analyze double stars, moving about each other, according to
requirements of the gravitational law.
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Fig. 7-7. Orbit of Sirius B with respect to Sirius A.
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Introduction

The idea for this paper came as I was having a coffee in a beach-front cafe in North Miami
Beach, watching the tide, and perusing a newspaper. Thanks to a small-time serendipity, I
chanced upon the following piece of local news. “During a full moon, the moon has a higher
gravitational pull, creating a higher tide. Miami Beach psychiatrist Arnold Lieber says that
pull affects oceans and people in a similar way, since the human body is mostly water.” [1]

Obviously, the above quoted text is another wonderful example of bad physics [2]. In reality,
the Moon does not pull any harder during the full Moon, and a water content of a human
body is entirely irrelevant to a question of tidal effect on humans. Yet a subject of tidal effects
on small bodies of water comes up quite often, as evidenced by two additional examples.

“Are there ocean tides in fresh water or just the oceans?” is the question that I found in the
“Ask Marilyn” column. “There are tides everywhere on Earth, including not just oceans and
lakes but also ground we stand on (which is factor in earthquakes) and the atmosphere we
breathe. If you stood still long enough, there would even be tides in your tummy ", answered
Marilyn vos Savant. [3]

In a similar spirit, an astronomy teacher asserted in my local newspaper: “Here in Southern
Illinois as in much of the world, we experience two periods of high and low tides every day.
(...) The tidal forces act on all bodies of water, not just oceans (...) At perigee (...) the
moon’s gravitational tug on Earth is at its maximum and so the waters of the world rise and
fall to their maximum extent.” [4]

While statements in both examples seem plausible, in reality tidal effect on small bodies of
water of the size of reader’s tummy or lakes in Southern Illinois is negligible and therefore
impossible to observe.

One should realize that the tidal effect is caused not only by the Moon, but also by the Sun. If
the Moon had not existed, there still would have been ocean tides, but not as high, since the
Sun contributes only about 30% of the tidal effect. Furthermore, and more importantly, it is



not the magnitude of the gravitational tug per se that is responsible for a tidal mechanism, but
rather a subtle difference in the gravitational tug on water at various parts of a basin.

Let us first discuss the magnitude of the gravitational tug. The center of Earth is at the
average distance d; = 1.496x 10" m from the center of the Sun. The gravitational pull of the
Sun on 1 kg mass at the distance d; is

a _GM, =6.04x10" g (1)

s 2
s

where g = 9.81 N/kg. Similar calculation for the Moon, an average distance d,= 3.84x10° m
away, yields the following value for gravitational pull of the Moon on a unit mass at the
center of Earth

g =Mn _ 339x107°g )

] 2
m

Comparing Eq.(1) and Eq.(2), we see that the Sun’s gravitational pull per unit mass is about
178 times stronger than the Moon’s gravitational pull, hardly a surprising result as Earth
orbits the Sun, not the Moon. (Nevertheless, when I ask my students what pulls harder on
Earth, the Moon or the Sun, they invariably choose the Moon...) Specifically, Earth’s, Sun’s
and Moon’s average gravitational pulls on a 80 kg person on the surface of Earth are about
785N, 0.47 N, and 0.0027 N, respectively. Now, since Earth is in a free fall about Earth-
Moon center of mass, which in turn is in a free fall about the Sun-Earth-Moon center of mass
(located inside the Sun), no scale would register the last two pulls. To better see it, remember
that if you were standing on a scale inside a freely-falling elevator or orbiting space shuttle,
the reading on the scale would be zero, and you would experience apparent weightlessness.

The Source of Tides

Let us now discuss the difference in the gravitational tug on water at various parts of a basin.
The gravitational pull of the Sun on 1 kg mass on the far side of Earth, a distance of R =
6.37x10° m further away from Earth’s center, is by the amount of Aa, smaller than a,, i.e.

pay=Me_OM,  20MLR_, 2K_os15x107g )
) d; (d,+R) d; d,

This is known as a differential pull. Note that in the second step in Eq.(3) we neglected
corrections from higher order R/d, terms. A similar calculation shows that the gravitational
pull of the Sun per 1 kg mass at the point on Earth closest to the Sun is in turn greater than
a,, also by the amount Aa;. This result could be also obtained by taking the differential of the
gravitational force equation. Note that Ag; is inversely proportional to the cube of the
distance.

To see how tides come about, let us first ignore the existence of the Moon, and suppose the
whole Earth is covered with ocean of equal depth everywhere; there is no dry land. The
Earth is simply in free fall towards the Sun.




Consider the point C on Earth closest to the Sun and the point F on a far side of Earth. The

Sun pulls harder on a unit mass at the point C, not as hard on a unit mass at Earth center O,
and weaker yet on a unit mass at point F. The acceleration g, of Earth as a whole in free fall
towards the Sun is determined by the gravitational pull of the Sun on Earth’s center. Hence

the unit mass at C has a tendency to accelerate towards the Sun with acceleration a; + Aa;,

i.e. more than the center of Earth, while a mass at the far side F has a tendency to accelerate
towards the Sun with acceleration g, - Aas, i.e. to lag behind the center of Earth.

This difference in Solar gravitational pulls would have lead to a disintegration of Earth, had
Earth’s own gravity been to weak to hold Earth together. To an observer on Earth it would
have looked like rocks at point C and F were lifted away from the surface of Earth.
Fortunately, Earth’s own gravity pulls the unit masses at C and F towards Earth center O
with a gravitational pull per unit mass equal to g. The combined effect is that if you drop a
rock at the point C or F, rock’s acceleration towards the center of Earth is g - Aas.

Another important part of the tidal effect is due to the fact that the Sun is at a finite distance
from the Earth, and therefore Sun’s pull at the point L (halfway from C towards F along
Earth’s surface) is not exactly parallel to the Sun’s pull at the center O, but has a sin o
component toward the center of the Earth, where o is the angle made between the line from
the Sun to the center of the Earth O and the line from the Sun to the point L, i.e. fan o =
R/d.. As a result, a rock dropped at the point L accelerates towards the center of Earth at the
rate of g + Aa,/2.

From the point of view of a hypothetical observer located at the center of the Earth, it
appears that Earth’s gravitational pull on a rock at C and F is reduced by the amount of Aas,
while the pull at the point L is increased by Aay/2. In other words, while Earth’s own gravity
pulls the mass m down with the force mg everywhere on Earth’s surface, there appears to be
another force, the tidal force, pulling the mass m at points C and F up with magnitude mAa,
and down at point L with magnitude mAa,/2, see Figure 1. This is the source of the tidal
mechanism, and the origin of the water bulge at C and F. (The tidal mechanism is nicely

~ illustrated in conceptual physics textbooks [5,6].)

P(\a

Figure 1. The tidal mechanism, see text. The x-axis points toward the Sun. The Earth is
in a free fall toward the Sun. The resulting tidal force causes high tides at the point C
closest to the Sun and point F furthest from the Sun, and a low tide at the point L.
Note that at the point A the tidal force is tangent to the surface of the Earth.




The lunar tidal effect is calculated in an analogous way. Again, one has to realize that Earth is
in a free fall towards the Barth-Moon center of mass. The difference between the Moon’s pull
on a unit mass at the center of Earth and at the closest/farthest point on Earth is

ra —a 2R _113x107g (4)
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While the solar gravitational pull is 178 times stronger than lunar gravitational pull, the tidal
pull is proportional to the inverse cube of the distance, and the ratio of dy/d,, is 390, thus
‘making the solar tidal pull only 178/390 = 0.46 of the lunar tidal pull, Aa,= 0.46 Aa,,. This
could be also seen by a direct comparison of values in Eq.(2) and Eq.(4). Since Aa,/(Aan +
Aa,) = 69%, we see that it is the Moon that dominates the tidal mechanism. But if the Moon
had been only twice as far from Earth as it is now, the Moon’s tidal pull would have
decreased 8 times and become 4 times weaker than the Sun’s tidal pull.

When the Sun, Earth and the Moon all lie along a straight line, as at new and full Moon, the
Sun’s and the Moon’s tidal forces pull in the same direction and cause high tides to be higher
than average, and low tides to be lower than average. These stronger tides are called spring
tides. With the Moon in first or last quarter, the tidal force of the Moon acts in a direction
perpendicular to the Sun’s tidal force. This makes the tides smaller than average, and they are
called neap tides.

First Approximation

Let us first consider the tidal action of the Moon on a hypothetical ocean uniformly covering
the whole Earth. For simplicity, I’ll neglect effects related to Earth’s rotation, as they do not
affect our conclusions. The water bulge takes a shape of a football (spheroid or ellipsoid of
revolution), and for a not rotating Earth the major axis of the football would point towards
the Moon. All water on the surface of the water bulge has equal potential energy, i.e. the
water surface is an equipotential. As the Earth is in a free fall, and the water bulge is shaped
by the tidal force and Earth’s gravity, the equpotential in question in addition to Earth’s
gravity involves a tidal potential, traditionally called W, in literature [7].

At a low-tide point L on the water bulge, the tidal force is directed into Earth, while at a
high-tide points C and F, the lunar tidal force is directed up, c.f. Figure 1. If we choose the
reference frame with the origin at the center of Earth, the x-axis toward the Moon, and y-axis
toward the low-tide point L, c.f. Figure 1, then the Moon’s tidal force per unit mass
anywhere inside the Earth could be parametrized as

n (5)
Aa,  =—a 2
m,y m d



where a,, is given by Eq.(2). It is perhaps interesting to note that at the point labeled A in
Figure 1, the tidal force is purely tangential to Earth’s surface. A straightforward calculation
shows that the point A is located at the angle 8 = 54.7° away from the X-axis.

Moving the unit mass of water from the low-tide point L to the point C requires a positive
work by a tidal force. To calculate this work Newton considered two imaginary wells, one
running from the low-tide point L to the center of Earth, and the other from the high-tide
point C to the center O. When the unit mass is moved from a low tide point L to the center
O to the high-tide point C, the average tidal force along the displacement in the tunnel LO is
Ady, = 0.25Aa,,, and in the tunnel OC it is Aday = 0.50Aa,,, Where Aa,, is given by Eq.(4).
Hence, the tidal force does a positive work equal to 0.25Aa,R + 0.50 Aa,R = 0.75Aa,R, and
the tidal potential energy per unit mass decreases by the amount

AW, =-0.75 Aa,,R (6)

This decrease in the tidal gravitational potential must be compensated by the increase of the
gravitational potential caused by a rise Ak, of the water surface with respect to center of
Earth, if the water surface is to remain an equipotential. Hence we have

gAh —0.75Aa,R =0 7

Solving for Ak,,, we obtain the value of 0.54 m for the rise of the water levelin a
homogenous ocean caused by the lunar tidal force. A similar calculation for the solar tidal
force yields A= 0.46xAh,, = 0.25 m. Thus during a spring tide one could expect the tidal
rise of the water level by Ah= Ah,, + Ah;=0.79 m.

Mathematical Digression About the Tidal Potential

Results obtained above could be more formally arrived at beginning with a concept of the
tidal potential. To this end we need to recognize that the tidal force per unit mass given by
Eq.(5) could be written as a gradient of tidal potential energy per unit mass,

Aa ai w,
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where the tidal potential is obviously
GM
W,(x,y)= “—‘;,?"L(xz -

m

1,
57 ) 9

It is convenient to use polar coordinates, x = r cos 0, y = r sin 0, and rewrite the tidal
potential as

3
m

Wi(r, 0) =— Gf n 42 Py(cos 6) (10)




where P; is the Legendre polynomial, P,(z) = —:1):(322 —1). The main result given by Eq.(6)

now simplifies to
AW, =W,(R,0°)—W,(R,90°) = -0.75Aa,, R (1D

Real Tides

Since in reality Earth rotates and is not uniformly covered with an ocean of a constant depth,
analysis of ocean tides is very difficult. Oceans have complicated shapes, varying depths and
floor configurations. Shorelines are quite complex. All these factors contribute to unusual
local variations of ocean tides [8]. In some places there is only one tide per day. Large basins
open to ocean (sounds, gulfs, bays) may exhibit an enormous resonant behavior. There are
places where there are no observable tides, and other, where the water rises as much as 51 f
(Minas Basin, Bay of Fundy). In other, there is little tide in a sense of a rise and fall, but
strong currents flow periodically back and forth. The high water may not occur when the
Moon is overhead, i.e. tides are not necessarily in sync with the differential forces, but may
lag behind by several hours. Duration of a high and low water is also affected by local
conditions. But for a given location the high water will always lag the passage of the Moon
by a fixed amount of hours (this is known as “the establishment of the port” [9].)

What about the tides in smaller bodies of water? The symbol R in Eq.(4) is now replaced by
Ad, the difference between a distance to the center of the Moon from the closest and furthest
point of the water basin under consideration.

For Great Lakes, the difference in distance from the Moon to various points on a surface of
the water is much smaller than radius of the Earth, but tides of amplitude of about two inches
could be still observed. But local lakes are so small that all points on the surface of the water
are practically at the same distance from the Moon, hence no observable tides exist. Likewise
there are no tides in a swimming pool, a bathtub, cup of coffee, or a tummy. Indeed, for a
shallow puddle of some 20 m in diameter, the value of Ad due to curvature of Earthis Ad =
1.3x10° m, and Eq.(4) yields Aa,, = 10"" g, an unimaginably small value. Hence, no tides in
puddles.

As already mentioned above, not only water, but also atmosphere and land are subject to a
tidal action and hence experience tidal effects. Because continents are much more rigid than
oceans, the effect is much smaller. Nevertheless, parts of continent may rise and fall as much
as 0.40m (16 inches) when the Moon passes overhead. So a swimming pool with the water in
it may rise few inches, but because the entire land area moves up and down together, we
don't readily observe this effect.

Negligible and Small Effects

It is perhaps interesting to estimate the tidal stretch of a human body. Assuming Ad=H=1.7
m, one obtains Aa,, = 3x10"* N/kg for the Moon’s tidal contribution, and at a high tide the
combined effect of the Moon and the Sun yields Ag = Aa,, + Aa, = 4x10"* N/kg. Note that a
tidal effect of this magnitude could be alternatively created while holding a pea (mass 1.5 g)
some 0.5 m above one’s head. In any case, an average tidal tension on a 80 kg person is
about 1.6x10™"' N. Assuming average cross section area of human skeleton to be 1 cm’ =




Another factor that one might wish to consider here is that the weight of the atmosphere
overhead, and hence the atmospheric pressure on a human body, is reduced too. Such
gravitational reactions of the atmosphere to the tidal forces are rather small,

AP = 1.7x107x1 atm = 0.02 Pa, (16)

but there are larger tides in the atmosphere caused by a radiational energy mput from the Sun.
Analysis of tides in atmosphere is difficult due to contamination by broad-band noise of
meteorological origin; nevertheless the tidal changes in the atmospheric pressure are found to
be as high as + 3 Pa, and a human body would stretch by some 10® m. One should keep in
mind that such a pressure change could be alternatively achieved climbing up 0.2 meters, and
that purely meteorological pressure variations can be as high as + 3000 Pa.

Other Effects

What happens when the Moon is at the perigee, i.e. at the point closest to Earth? While it is
true that the Moon’s pull on Earth is at its maximum, this circumstance per se has no bearing
on the tidal mechanism. It is the difference in the Moon’s pulls, described by Eq.(4), that
creates the tidal force. Since the eccentricity of the Moon’s orbit is € = 0.0549, the average
distance d,, in Eq.(2) and Eq.(4) is replaced by the perigee distance of d, = dyx(1 - g€) =
363,000 km. This increases the Moon’s differential pull of Eq.(4) by a factor of about
1/(1-0.0549)’ = 1.18, i.e.

Ad perigee = 1.34x107 g, (17)

and the tidal action of the Moon is about 18 % stronger. If the Moon’s passage through the
perigee coincides with spring tides, the combined tidal effect of the Sun and the Moon is
approximately 12% stronger than that described by Eq.(14). Such perigean spring tides
happen approximately every 6.5 months. Also, because of a three-body effects in the Sun-
Earth-Moon system, the lunar perigee distance can be actually as small as 356,4000 km, and
the Moon’s tidal effects can be up to 25% stronger than those at the average distance [11].

Earth’s orbit around the Sun is also elliptical, and the Earth passes through the perihelion
(point closest to the Sun) around January 3. The eccentricity of Earth’s orbit is only € =
0.017, and at the perihelion the Sun’s differential pull of Eq.(2) increases by about 1/(1-
0.017)* = 1.052, i.e. by some 5%. Since the time of perigean spring tide is different every
year, it will eventually coincide with Earth’s passage through perihelion. This will produce
the highest tides in the entire tidal cycle. If such unusually strong tides happen to coincide
with meteorological tides caused by a winter storm with low atmospheric pressure and
onshore winds, then coastal flooding is a definite possibility.

Length of a Day

As we pointed out above, for the Earth covered with an ideal, uniform ocean, the surface of
the water would form a spheroid, whose long (major) axis would point in a direction
determined by the position of the Moon (more about in the next Section). As the Earth and
oceans rotate beneath the spheroid, continents crash into the water bulge during a high tide,
piling water up. It is important to remember that the water of the ocean rotates to gether with
the Earth — it is only the shape of the water that remains fixed in space. As seen froma



geocentric reference frame that rotates with the Earth, the tidal bulges appear as waves that
circulate around the globe crashing into continents, thus imparting an impulse to the
continents. (Keep in mind that a traveling wave transports both momentum and energy in the
direction of motion). These inelastic collisions between the tidal bulges and continents cause
a gradual decrease in the Earth’s spinning rate. As a result, days are getting longer, by about
1.6 milliseconds per century. While it does not seem much, over a period of 1500 years the
accumulated time difference equals 2 hours. In other words, over the period of 1500 years
the Barth has rotated through 30 degrees more than it would if the angular velocity in the
past had today’s value. This is beautifully verified by the solar eclipse of January 14, 484
A.D., that would have been observed in southern Spain, if the Earth had spun at a today’s
rate, but was in fact observed in Greece, 30 degrees of longitude eastward. [12]

On a quite different time scale, an extrapolation back some 370 million years shows that a
day then was about 22 hours long, and there were about 400 such short days in a year. This
agrees with results of analysis of Devonian corals, that reveal a stunning periodicity in growth
rings — there are about 400 daily growth rings in each annual set of rings.

Future of the Earth - Moon System

Since neither the Earth nor the water is perfectly elastic, the rotation of the Earth causes a
delay in response of the ocean to the tidal force, and the spheroid is not exactly aligned with
the direction toward the Moon, c.f. Figure 2. As a result, the high tide appears later than the
time of highest moon.

- v

Figure 2. As the spinning Earth carries the water spheroid away, the spheroid is not
exactly aligned with the direction toward the Moon. The bulge closer to the Moon
exerts the gravitational force with larger component along the Moon’s path than the
force exerted by the more distant bulge. This results in a non-zero net force in the
direction of the Moon’s orbital motion, that causes the Moon to move into a higher
orbit and hence away from the Earth.

This misalignment of the water spheroid causes the net gravitational pull exerted by the water
bulges to have a small forward component along the direction of the Moon motion. As a
result, the Moon moves into a higher orbit and hence away from the Earth, at the rate of
some 4 meters per 100 years, and the orbital period of the Moon increases. (This is similar



1x10™* m?, the resulting tidal tensile stress is some 1.6x107 Pa. Further, taking the value of
effective elastic modulus of human skeleton as £ = 1x10° N/m?, we conclude that the strain is
AH/H = 10", i.e. the expected change in person’s height is million times smaller than a size
of atom! So much for psychiatrist’s “explanation” quoted in the introduction. On the other
hand, a calculation of the strain due to a stress produced by the body’s own weight yields a
reasonable result AH/H = 1x107.

A related and interesting problem came up as another question in “Ask Marilyn” column.

“We know that the rise and fall of the ocean tides are caused by the gravitational pull of the
Moon as it revolves around Earth. Would this same gravitational pull affect the exact weight
of a solid object?” [10]

“Yes”, answered Marilyn vos Savant, and this is, in principle, a correct answer. But how big
is this effect? How much weight would you lose during a full Moon?

During the full Moon (as during the new Moon), a rock dropped at the point A would fall
with acceleration whose component towards the center of Earth is g =9.81 mv/s’. For a 80 kg
person, the weight at point A is W, = mg =785 N or 176 1b. But at the points C and F, the
person would fall towards the ground with acceleration

g=g-Ag (12)
while at point L this acceleration would be

g'=g+Ag/2, (13)
where

Ag = Aap+ Aa,= 1.65x107 g. (14)

Therefore the difference between downward accelerations at points C and L is 3/2 x Ag =
2.4x107 g, and an apparent weight of a 80 kg person at points C and F would be by the
amount AW = 2.0x10™* N = 0.4x10™* Ib smaller than at point L. If the scale were calibrated in
kilograms, the reading would be 20 mg (milligram) less. Hence during the spring tide your
weight oscillates with a period of 12.5 hours, and with the full Moon overhead (or during the
lunch time) you weigh some 2.5% 10” percent less than some 6 hours earlier or later.

Is it enough of a weight difference to be noticed, and even influence humans? Suppose one
wishes to achieve a similar reduction in weight simply by climbing up a vertical distance H
above Earth’s surface to reduce Earth’s gravitational field by 2.5x 107 g. We have

GM. __GM. _ 2G‘V£eH —g2H _a5x107 (15)
R*> (R+H)’ R R

Solving for H, we obtain H = 0.79 m, or about five steps up. (Note that this results is in fact
identical to the value Ak obtained previously, c.f. discussion following Eq.(7)). Hence going
to a bedroom upstairs results in a weight change that is about 5 times larger than that
produced by the tidal mechanism during a spring tide.



to launching a satellite from a Newton's Mountain by firing it horizontally from a cannon
with a speed slightly higher than one required for a perfectly circular orbit. As a result, the
satellite begins to follow an elliptical orbit, initially rising above the surface of the Earth
while slowing down. Likewise, the forward component of the tidal force keeps” re-
launching” the Moon ever higher, resulting in the Moon’s recession from the Earth along a
tightly wound spiral orbit. See Ref. [13] for a discussion of forces along the spiral
trajectory.) However, since the orbital period of the Moon increases at smaller rate than the
length of the day does, both periods will eventually match. The Earth will be then tidally
locked with the Moon, and the length of the day and the month will both be equal to some 50
present days, with the same side of Earth always facing the Moon. Note that the same side of
the Moon already always faces the Earth, as the tidal action of the Earth on the Moon caused
the Moon’s original spin to slow down, and Moon became tidally locked with the Earth long
time ago, in the sense that the Moon spins once on its axis for each revolution around the
Earth.

Once the Earth becomes tidally locked with the Moon, the solar tides will tend to slow the
Earth’s rotation even more, so the day will be longer than the month and the Moon will rise
in the West and set in the East. The water spheroid generated by the Sun will cause the high
tide to appear earlier than the time of highest moon, a situation exactly opposite to that of
Fig. 2. Then the tidal force of Earth on the Moon will pull the Moon into a lower orbit and
eventually inside the Roche limit (18500 km), whereupon the Moon will disintegrate
producing a ring around the Earth. [8]

Why is the water spheroid not aligned with the Moon?

A glance at Fig. 2 may suggest an explanation for the misalignment of the tidal spheroid and
the Earth-Moon line and the resulting lag of a high tide with respect to the overhead position
of the-Moon. Due to the Earth’s rotation, the speed of points on the Earth surface near the
equator is about 1670 km/h. On the other hand, speed of very long waves on the surface of a
relatively shallow water is determined by the Earth’s gravity g and the depth of the ocean h,

v =gk . Assuming the average value for the oceans depth h = 4.0 km, one obtains v = 700

km/h. So a popular explanation claims that the traveling tidal wave simply can’t move fast
enough to remain directly under the Moon and ends up being carried away by Earth’s
rotation. Note that the speed of points along the Antarctic Circle at 66°33°39” S latitude is
some 660 km/h, so the circulating tidal wave could actually keep up with the Earth-Moon
line despite the rotation of the Earth.

Such an explanation ignores a crucial dynamic character of the periodic tide-rising forces that
for a given location on the Earth has a period T =12 h 25min. The observed tides are a
steady-state response of the oscillating ocean to this external periodic driving force. For a
simplest model for this response, imagine a hypothetical wide canal encircling the whole
Earth along the equator. The surface of the water in the canal has its own period of natural
oscillations T, that could be estimated as a time required for a circulating tidal wave to travel
along half of the globe, To = (20000 km)/(700 km/h) = 29 h. Clearly, the period of natural
oscillations Tg is much longer than the period of the driving force T, To >> T, and the theory
of forced oscillations tells us that while the water surface will be forced to oscillate with the
period T of the driving force, the response will lag behind the driving force by %; of the
period T, i.e. by about 6 hours. This means that the resulting tidal bulges in the ocean will be
perpendicular to the Earth-Moon line [13], certainly a counterintuitive result.



Interestingly, the southern ocean is the only place on Earth where a circulating wave can
travel practically unimpeded by land. For a channel encircling the Earth along the 65™ parallel
whose length is only 0.42 of the equatorial one, the period of natural oscillations of the water
surface is some 12 h, which is close to the period of driving tidal force. The system is nearly
resonant, and while the resulting forced oscillations will always have the period T, the lag of
the response is now ¥ of the period, or about 3 h. Moving further south towards the
Antarctic Circle one encounters progressively shorter canals for which the period of natural
oscillations Ty may become shorter than T. Under such conditions, the forced oscillations of
the ocean still have the period T of the driving tidal force, but there is no time lag, i.e. one has
a direct tide. Since the actual periods of natural oscillations of ocean in these locations may
differ from our simple estimates, the value of latitude for which one would have a resonant
response is difficult to determine theoretically. It is therefore interesting to note that the tidal
lag in southern ocean along 65" parallel is about 2 h, and further south one observes a direct
tide.

Falling into a Black Hole

We have seen that the tidal force manifests itself as downward compressional force toward
the center of the Earth at point L and a stretching force pulling upward away from the center
of the Earth at points C and F. This results in a permanent tidal flattening of Earth’s poles
since compressional tidal forces of Moon and Sun always add at Earth’s poles. This tidal
flattening of the poles occurs independent of the rotation of the Earth. Likewise, tidal forces
generated by all planets add to the flattening of the Sun’s poles. Most of the stars in our
galaxy contribute to the tidal force that helps to flatten the galaxy.

What would be a fate of a person who were to fall feet-first into a black hole? That person
would not feel the force of gravity, because of being in a free fall (similar to a person ina
freely falling elevator or astronaut in orbiting shuttle not feeling her own weight), but would
do feel a devastating tidal forces pulling upwards on her head and downwards on her feet,
and squeezing her waistline inward [14].
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The Lagrange Points

There are five equilibrium points to be found in the vicinity of two orbiting
masses. They are called Lagrange Points in honour of the French-Italian
mathematician Joseph Lagrange, who discovered them while studing the re-
stricted three-body problem. The term “restricted” refers to the condition
that two of the masses are very much heavier than the third. Today we
know that the full three-body problem is chaotic, and so cannot be solved
in closed form. Therefore, Lagrange had good reason to make some approx-
imations. Moreover, there are many examples in our solar system that can
be accurately described by the restricted three-body problem.

m

Figure 1: The restricted three-body problem

The procedure for finding the Lagrange points is fairly straightforward:
We seek solutions to the equations of motion which maintain a constant
separation between the three bodies. If M; and M, are the two masses, and
71 and 73 are their respective positions, then the total force exerted on a
third mass m, at a position 7, will be

_ GMlm
|7 =73

GMzm - -

F= (F—71) T3) . (1)

“-ap

The catch is that both 7 and 73 are functions of time since M; and M,
are orbiting each other. Undaunted, one may proceed and insert the orbital



solution for (¢) and 75(¢) (obtained by solving the two-body problem for
M; and M,) and look solutions to the equation of motion

P ()
az @

that keep the relative positions of the three bodies fixed. It is these stationary
solutions that are know as Lagrange points.

The easiest way to find the stationary solutions is to adopt a co-rotating
frame of reference in which the two large masses hold fixed positions. The
new frame of reference has its origin at the center of mass, and an angular
frequency §2 given by Kepler’s law:

Fit)=m

QZR3 - G(Ml -+ MQ) . (3)

Here R is the distance between the two masses. The only drawback of using
a non-inertial frame of reference is that we have to append various pseudo-
forces to the equation of motion. The effective force in a frame rotating
with angular velocity §} is related to the inertial force F according to the
transformation

ﬁg=ﬁ~—2m<ﬁx%)—mﬁx(ﬁxﬂ. @)

The first correction is the coriolis force and the second is the centrifugal force.
The effective force can be derived from the generalised potential

UQ=U—6-(Qxﬁ+—é(ﬁxf)-(ﬁxf’), (5)

as the generalised gradient

Fb=~x@mr+%(V#h). (6)
The velocity dependent terms in the effective potential do not influence the
positions of the equilibrium points, but the are crucial in determining the
dynamical stability of motion about the equilibrium points. A plot of Ug
with ¥ = 0, M; = 10M; =1 and R = 10 is shown in Figure 2. The extrema
of the generalised potential are labeled L1 through L5.



Figure 2: A countour plot of the generalised potential.

Choosing a set of cartesian coordinates originating from the center of
mass with the z axis alined with the angular velocity, we have

G=0k
F=z(t)1+y(t)]
’Fl = —aR1i
ry = BRI (7)
where
M M (5)

To find the static equilibrium points we set the velocity ¥ = di/dt to zero
and seek solutions to the equation Fy = 6, where

Y S B(z + aR)R® ___a(z—BR)R? .
Fo = Q ( (@+aR? + 232~ ((z — BR)2 + y2)3/2>
o ByE ayR A
Q <y (e + R+ 22~ ((z— BR)2 + yz)3/2> - (9)
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Here the mass m has been set equal to unity without loss of generality. The
brute-force approach for finding the equilibrium points would be to set the
magnitude of each force component to zero, and solve the resulting set of
coupled, fourteenth order equations for z and y. A more promising approach
is to think about the problem physically, and use the symmetries of the
system to guide us to the answer.

Since the system is reflection-symmetric about the z-axis, the y compo-
nent of the force must vanish along this line. Setting y = 0 and writing
T = R(u+ @) (so that u measures the distance from M, in units of R), the
condition for the force to vanish along the x-axis reduces to finding solutions
to the three fifth-order equations

u?((1=51)+3u+3u+u®) = aso+2spu+ (1 +89 — s1)u® + 203 +u?), (10)

where so = sign(u) and s; = sign(u + 1). The three cases we need to solve
have (so, s1) equal to (~1,1), (1,1) and (—1,—1). The case (1,~1) cannot
occur. In each case there is one real root to the quintic equation, giving
us the positions of the first three Lagrange points. We are unable to find
closed-form solutions to equation (10) for general values of a, so instead we
seek approximate solutions valid in the limit o < 1. To lowest order in o,
we find the first three Lagrange points to be positioned at

1 (R [1 - (%) 1/3} ,0) ,
L2: (R {1 + (-‘5})1/3} ,0) ,
I3: (—-—R {1 + 1—52-a] ,o) . (11)

For the earth-sun system o ~ 3 x 10™%, R = 1AU ~ 1.5 x 108km, and
the first and second Lagrange points are located approximately 1.5 million
kilometers from the earth. The third Lagrange point - home of the mythical
planet X - orbits the sun just a fraction further out than the earth.
Identifying the remaining two Lagrange points requires a little more
thought. We need to balance the centrifugal force, which acts in a direction
radially outward from the center of mass, with the gravitational force exerted
by the two masses. Clearly, force balance in the direction perpendicular to

4



centrifugal force will only involve gravitational forces. This suggests that we
should resolve the force into directions parallel and perpendicular to 7. The
appropriate projection vectors are zi -+ yj and yi — zj. The perpendicular
projection yields

213 1 : !
Fy = ofyQ’R (((:E —“RA? + 22 (& + Ra) +y2)3/2> -0

Setting Fy = 0 and y # 0 tells us that the equilibrium points must be
equidistant from the two masses. Using this fact, the parallel projection
simplifies to read

| a2t +y? 1 1

Demanding that the parallel component of the force vanish leads to the
condition that the equilibrium points are at a distance R from each mass. In
other words, L4 is situated at the vertex of an equilateral triangle, with the
two masses forming the other vertices. L5 is obtained by a mirror reflection
of L4 about the z-axis. Explicitly, the fourth and fifth Lagrange points have
coordinates

" <R(M1-M2> x/§R)7

2\ M, + M)’ 2
. (R(Mi-M\ 3

Stability Analysis

Having established that the restricted three-body problem admits equilib-
rium points, our next task is to determine if they are stable. Usually it is
enough to look at the shape of the effective potential and see if the equilib-
rium points occur at hills, valleys or saddles. However, this simple criterion
fails when we have a velocity dependent potential. Instead, we must perform
a linear stability analysis about each Lagrange point. This entails linearising
the equation of motion about each equilibrium solution and solving for small



departures from equilibrium. Writing

T=3; + 0%, Up=0vg,
T=y+0y, vy =0y, (15)

where (z;,y;) is the position of the i-th Lagrange point, the linearised equa-
tions of motion become

0 0 1 0
ox oz
0 0 0 1
d oy ) ) dy )
— =| d*°Uqy d*Uy (16
dt 0z dz?  dzdy 0 20 vy
vy U, d?Ug 90 0 vy
dydx  dy?

Here the second derivatives of Uy, are evaluated at ¥ = (T3, Ys)-

Stability of L1 and L2

The stability of the first and second Lagrange points of the earth-sun system
is an important consideration for some NASA missions. Currently the solar
observatory SOHO is parked at L1, and NASA plans to send the Microwave
Anisotropy Probe (MAP) out to L2. It has also be suggested that the Next
Generation Space Telescope (NGST) should be positioned at L2.

The curvature of the effective potential near L1 and L2 reveals them to
be saddle points:

PU;

PUy  d?U
dz? =T, y = T =

dedy ~ dydz

dzUn:

e +30°,

0. (an

Solving for the eigenvalues of the linearised evolution matrix we find

Ar =+QV1I+2vV7 and op = QY27 - 1. (18)

The presence of a positive, real root tells us that L1 and L2 are dynamically
unstable. Small departures from equilibrium will grow exponentially with a

6




-e-folding time of
1 2

T = ‘;\: ~ gﬁ .
For the earth-sun system Q = 27 year™! and 7 = 23 days. In other words, a

satellite parked at L1 or L2 will wander off after a few months unless course
corrections are made.

(19)

Stability of L3

A popular theme in early science fiction stories was invasion by creatures
from Planet X. The requirement that Planet X remain hidden behind the
sun places it at the L3 point of the earth-sun system. Unfortunately for
our would-be invaders, the L3 point is a weak saddle point of the effective
potential with curvature

LU,

PUp _ M, PUs _ Ug _
dz?

— 2 ——— T e frnd freed
3, dy? 8My ' dzdy  dydz

0. (20

To leading order in My /M, the eigenvélues of the linearised evolution matrix

are
Ao =20 Mg or = V7. (21)
M,
The real, positive eigenvalue spells disaster for Planet X. Its orbit is expo-
nentially unstable, with an e-folding time of roughly = 150 years. While
there can be no Planet X, the long e-folding time makes L3 a good place to
park your invasion force while final preparations are made...

Stability of L4 and L5

The stability analysis around L4 and L5 yields something of a suprise. While
these points correspond to local maxima of the generalised potential - which
usually implies a state of unstable equilibrium - they are in fact stable. Their
stability is due to the coriolis force. Initially a mass situated near L4 or L5
will tend to slide down the potential, but as it does so it picks up speed and
the coriolis force kicks in, sending it into an orbit around the Lagrange point.
The effect is analogous to how a hurricane forms on the surface of the earth:
as air rushes into a low pressure system it begins to rotate because of the

7



coriolis force and a stable vortex is formed. Explicitly, the curvature of the
potential near L4 is given by

LU, 3

PUp 9., dUs Uy 33
o - = = = IiQ
dz? 4

0?2 = = =
Tody? 47 dedy  dyds 4 ’

(22)

where & = (M) — Ma)/(M;+ M,). The eigenvalues of the linearised evolution
* matrix are found to equal

Ay = ki £;-\/2 — V27K — 23
Q
s = +i ~2—\/ 2+ \/27kZ — 3. (23)
The L4 point will be stable if the eigenvalues are pure imaginary. This will

be true if 03
K® > 57 and V272 - 23 < 2. (24)

The second condition is always satisfied, while the first requires

My > 25M2 (1 Y- 4/625> . (25)

2

When the L4 and L5 points yield stable orbits they are refered to as Trojan
points after the three Trojan asteroids, Agamemnon, Achilles and Hector,
found at the L4 and L5 points of Jupiter’s orbit. The mass ratios in the
earth-sun and earth-moon system are easily large enough for their L4 and
L5 points to be home to Trojan satellites, though none have been found.
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The inhomogeneous term F'(t) represents an external driven force
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where w is the external angular frequency which can varied over a

range. The general solution is the homogeneous solution plus a
particular solution

z(t) = Ae®™? + Be®?t 4 p(t),

so that
ap +bp+cp=F(t).

0
G
t
i




The inhomogeneous D.E. is

&+ wiz = (Fy/m) coswt .
giving

(i) For w # wp we can take p(t) = D coswt. Then

—w?D coswt + wiD coswt = (Fy/m) cos wt,
Fy

T om(wg —w?)’
external driven periodic force.

=

Z,

)
=

So the particular solution represents an “in phase motion” with the
s 2 =0
x 1+t W, X

The jcneral solutions /{0" )

A sinwt * Bcajwz'
x(t) =

Asinwt * Beaswt *




(i) For w = wp we would take p(t) = Disinwt,

(—w?Dtsinwt + 2wDcos wt) + w?Dtsinwt = (Fy/m)cos wt,

giving

2mw

So the particular solution at resonance (w = wp) gives a
displacement growing with time, absorbing energy from the driven
force. In order to attain this, part of the velocity must be in phase
with the external force. So there is an abrupt phase change at
resonance.
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(ii) For w = wp we would take p(t) = Dtsinwt,
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