效应。

2.7 潮汐

潮汐是海水的周期性涨落现象。"昼涨称潮,夜涨称汐。"钱江大潮,高达数米,排山倒海,蔚为壮观(图 2.22)。这种现象由牛顿首先给出了正确的说明。它是月亮、太阳对海水的引力以及地球公转和自转的结果。它的解释是应用非惯性系分析物体受力的一个很好的例子。

图 2.22 人潮争睹钱江潮(农历八月十八日)(潮水向图右方涌进)

1. 引潮力的计算

为分析方便起见,设想地球是一个均匀球体,表面为一层海水全面覆盖。以 $M_{\rm E}$ 表示地球的质量, $R_{\rm E}$ 表示地球的半径。先考虑太阳对海水的引力效果。

在太阳参考系内观察,地球的运动是公转和自转的合成运动,公转可看成是平动。以 r_s 表示太阳到地心的距离,以 ω 表示公转的角速度。这种平动的圆周运动使地球上各处都有指向太阳的向心加速度 $a_n = \omega^2 r_s$ 。不失其一般性,分析地心正好通过太阳坐标系 x 轴时的情况。图 2.23 画出了在太阳坐标系中地球受力和运动情况。

图 2.23 太阳坐标系中地球的平动

下面转入地心参考系。由于对太阳参考系有加速度 a_n ,所以地心参考系是一个非惯性系,相对于此参考系,地球上任何物体除了受真实力外,都受到与 a_n 方向相反的惯性力 F_i 。选地心参考系的 x'和 y'轴分别与太阳参考系的 x 轴和 y 轴平行,在地心参考系内的情况如图 2.24 所示,其中各处惯性力均与 x'轴平行。

图 2.24 地心参考系内的太阳引力和惯性力

先考虑地心O'处一小块质量为 Δm 的物质。它受的惯性力为

$$F_{\rm i} = \Delta m \omega^2 r_{\rm S} \tag{2.32}$$

它受太阳的引力为

$$F_{O'} = \frac{GM_{\rm S}\Delta m}{r_{\rm S}^2} \tag{2.33}$$

其中 M_s 为太阳的质量。它还受到地球本身其他部分的力(引力和化学结合力,主要是引力),但由于球对称性,这些力的合力为零。这样,由于 Δm 在地心参考系中静止,所以 F_{σ} 相互平衡。因而有

$$F_{\rm i} = \Delta m \omega^2 r_{\rm S} = \frac{GM_{\rm S} \Delta m}{r_{\rm S}^2} \tag{2.34}$$

现在考虑地球表面离太阳最近的"1"处的质量为 Δm 的海水。它受的太阳的引力为

$$F_1 = \frac{GM_{\rm S}\Delta m}{(r_{\rm S} - R_{\rm E})^2}$$

由于 $R_{\rm E} \ll r_{\rm S}$,取一级近似,上式可写成

$$F_1 = \frac{GM_{\rm S}\Delta m}{r_{\rm S}^2} \left(1 + \frac{2R_{\rm E}}{r_{\rm S}}\right) \tag{2.35}$$

此处 Δm 海水所受惯性力仍由式(2.34)给出。将 F_1 和 F_1 相比可知 F_1 较大,视其差值为一力,其大小为

$$F_1' = F_1 - F_i = \frac{2GM_S \Delta m}{r_S^3} R_E$$
 (2.36)

方向背离地心。这就是在地球上观察到的"引潮力",它将使此处海水凸起形成涨潮,直到地球其他部分对 Δm 的指向地心的力和这一引潮力平衡为止。

再考虑地球表面离太阳最远的"2"处的质量为 Δm 的海水。它受太阳的引力为

$$F_2 = \frac{GM_{\rm S}\Delta m}{(r_{\rm S} + R_{\rm E})^2}$$

仍取一级近似,得

$$F_2 = \frac{GM_{\rm S}\Delta m}{r_{\rm S}^2} \left(1 - \frac{2R_{\rm E}}{r_{\rm S}}\right) \tag{2.37}$$

这力比式(2.34)给出的惯性力 F_i 为小,其差值代表一背离地心的力,大小为

$$F_2' = F_1 - F_2 = \frac{2GM_S \Delta m}{r_S^3} R_E$$
 (2.38)

这就是此处观察到的引潮力。它也将使此处的海水凸起形成涨潮,直到地球其他部分对 Am 的指向地心的力和这一引潮力平衡为止。

再考虑地球表面上"3","4"两处质量为 Δm 的海水。它们受太阳的引力为

$$F_3 = F_4 = \frac{GM_{\rm S}\Delta m}{r_{\rm S}^2 + R_{\rm E}^2}$$

此力平行于 x'轴的分量,取一级近似,为

$$F_{3x'} = F_{4x'} = \frac{GM_{S}\Delta m}{r_{S}^2}$$

此分力正好和式(2.34)给出的惯性力平衡。上述引力沿 y 轴的分量,取一级近似为

$$F_{3}' = F_{4}' = \frac{GM_{S}\Delta m}{r_{S}^{3}}R_{E}$$
 (2.39)

其方向指向地心。这一分力将压迫此处的海水向地心下降,我们可姑且称之为"压潮力"。 以上只分析了4处海水受力情况,更详细的分析给出的引潮力和压潮力的分布如图2.25 所示。由于这种力的分布,地球表面的海水也就呈现了凸起和压下的形状。

图 2.25 地球表面引潮力的分布

以上只考虑了地球公转的影响。实际上,地球还绕着地轴自转。在自转的任一时刻, 地球表面的海水均有如图 2.24 所示的形状。地球自转一周的时间是一天。地球上各点 每转一周,离太阳最远和最近各一次。图 2.25 所示的"静态"形状就转化为每天有两次涨潮,即朝夕各一次了。

这里顺便指出,如果引力源的质量(式(2.36)和式(2.38)中的 M_s)很大,当另一星体靠近它运行时,由于 r_s 很小,引潮力可能大到将该星体撕碎。1994年的天文奇观——苏梅克-列维 9号彗星撞击木星时,彗星是以 20 余块碎块撞到木星上的。这些碎块就是该彗星在靠近木星时被引潮力撕碎而形成的。

2. 潮高的计算

下面利用牛顿设计的一种方法来计算潮高。如图 2.26 所示,设想在地球内沿 x'和 y'方向分别挖一个竖井直达地心相通。二井深度分别为 h_1 和 h_3 ,截面积为 dS,井内充

满水。

图 2.26 潮高计算用图

先计算 h_1 井中的水在地心处产生的压强 p_1 。以 ρ 表示水的密度,视为常量。dr 一段内水的质量为 $dm = \rho dr dS$,它受地球的引力为 $dmg(r) = \rho g(r) dr dS$,其中 g(r) 是在 r 处的重力加速度。此处的引潮力可用式(2.36)表示,只是用 r 取代其中的 R_E 。由此可得 dr 一段水产生的压强

$$\begin{split} \mathrm{d}p_1 = & \left[\rho g\left(r\right) \mathrm{d}r \mathrm{d}S - \frac{2GM_\mathrm{S}r}{r_\mathrm{S}^3} \rho \mathrm{d}r \mathrm{d}S \right] \middle/ \mathrm{d}S \\ = & \rho \left[g\left(r\right) - \frac{2GM_\mathrm{S}}{r_\mathrm{S}^3} r \right] \mathrm{d}r \end{split}$$

将此式对整个井深 h₁ 积分,可得 h₁ 井底的压强

$$p_{1} = \rho \int_{0}^{h_{1}} \left[g(r) - \frac{2GM_{S}}{r_{S}^{3}} r \right] dr$$
 (2.40)

同样的道理得出 h3 井底的压强

$$p_{3} = \rho \int_{0}^{h_{3}} \left[g(r) + \frac{GM_{S}}{r_{S}^{3}} r \right] dr$$
 (2.41)

在稳定情况下, $p_1 = p_3$,即

$$\int_{0}^{h_{1}} \left[g(r) - \frac{2GM_{S}}{r_{S}^{3}} r \right] dr = \int_{0}^{h_{3}} \left[g(r) + \frac{GM_{S}}{r_{S}^{3}} r \right] dr$$

移项可得

$$\int_{0}^{h_{1}} g(r) dr - \int_{0}^{h_{3}} g(r) dr = \int_{0}^{h_{1}} \frac{2GM_{S}}{r_{S}^{3}} r dr + \int_{0}^{h_{3}} \frac{GM_{S}}{r_{S}^{3}} r dr$$
 (2.42)

此式左侧两积分可合并为 $\int_{h_3}^{h_1} g(r) dr$ 。由于 h_1 和 h_3 都和地球半径 R_E 相差不多,g(r)就可

取地球表面的重力加速度值 $g(R_E) = \frac{GM_E}{R_E^2}$ 。这样

$$\int_{h_3}^{h_1} g(r) dr = (h_1 - h_3) g(R_E) = \frac{GM_E}{R_E^2} \Delta h_S$$

其中 $\Delta h_s = h_1 - h_3$,可视为潮高。

式(2.42)右侧可取 $h_1 = h_3 = R_E$ 而合并为

$$\int_{0}^{R_{\rm E}} \frac{3GM_{\rm S}}{r_{\rm S}^3} r dr = \frac{3GM_{\rm S}}{2r_{\rm S}^3} R_{\rm E}^2$$

由此,式(2.42)给出

$$rac{GM_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}\Delta h_{\mathrm{S}} = rac{3GM_{\mathrm{S}}}{2r_{\mathrm{S}}^{3}}R_{\mathrm{E}}^{2}$$

而潮高

$$\Delta h_{\rm S} = \frac{3}{2} \frac{M_{\rm S}}{M_{\rm E}} \left(\frac{R_{\rm E}}{r_{\rm S}}\right)^3 R_{\rm E} \tag{2.43}$$

将 $M_{\rm S}$ =1.99×10³⁰ kg, $M_{\rm E}$ =5.98×10²⁴ kg, $R_{\rm E}$ =6.4×10³ km, $r_{\rm S}$ =1.5×10⁸ km 代人上 式,可得太阳引起的潮——太阳潮——之高

$$\Delta h_{\rm S} = 0.25 \text{ m}$$

上述分析同样可以用来分析月球在地球上引起的潮汐——太阴潮。与式(2.43)类似,太阴潮高为

$$\Delta h_{\rm M} = \frac{3}{2} \frac{M_{\rm M}}{M_{\rm E}} \left(\frac{R_{\rm E}}{r_{\rm M}}\right)^3 R_{\rm E} \tag{2.44}$$

将月球质量 $M_{
m M}$ =7.35imes10 22 kg,它到地心的距离 $r_{
m M}$ =3.8imes10 5 km 代人上式,可得

$$\Delta h_{\rm M}=0.56~{\rm m}$$

实际上,潮高为 Δh_s 和 Δh_M 的矢量叠加。在朔日(新月)和望日(满月),月球、太阳和

地球几乎在同一直线上,太阳潮和太阴潮相加形成大潮,潮高可达 0.81 m(图 2.27(a))。在上弦月或下弦月时,月球和太阳对地球的方位垂直,二者相消一部分,形成小潮,潮高为0.31 m(图 2.27(b))。一个月内大潮和小潮各出现两次。

和实际观测相比,以上潮高的计算值偏小,该计算值约适用于开阔的洋面。在海岸处的潮高和海岸的形状、海底的情况等有关。我国钱塘江口的排山倒海的大潮就和该处江口的喇叭形状有关。涨潮时由于水道越来越窄,致使海水越堆越高,遂形成特高潮的壮观。

图 2.27 大潮和小潮 (a) 满月大潮;(b) 上弦小潮

由于潮水和地球固体表层的相对移动,其间摩擦力要阻碍地球的转动而导致地球自转速度的减小^①。据计算,每过一个世纪,每一天要延长 28 秒。现代地学从珊瑚和牡蛎 化石的生长线数判断,三亿多年前地球的一年约有 400 天,而现在只约有 365 天了。

① 参看张三慧. 潮汐是怎样使地球自转速度变慢的? 物理与工程,2001,11(2):6.

FIGURE 8-1. Gravitational attraction of a point mass m and a differential ring element dM on a spherical shell of mass M, with (a) m outside the shell and (b) m inside the shell.

The potential due to the ring mass dM is

$$d\Phi(r) = -\frac{G \, dM}{r} = -\frac{GM}{2aR} dr \tag{8.9}$$

The contributions of all ring elements on the shell are obtained by integration over \boldsymbol{r}

$$\Phi(r) = \int_{r_{\min}}^{r_{\max}} d\Phi(r) = -\frac{GM}{2aR}(r_{\max} - r_{\min})$$
 (8.10)

We see from Fig. 8-1 that $r_{\rm max}=R+a$ and $r_{\rm min}=|R-a|$ and thus when

287

r is outside the shell

$$r_{\text{max}} - r_{\text{min}} = (R+a) - (R-a) = 2a$$
 (8.11)

whereas when m is inside the shell,

$$r_{\text{max}} - r_{\text{min}} = (R+a) - (a-R) = 2R$$
 (8.12)

Thus the potential is

$$\Phi(R) = \begin{cases}
-\frac{GM}{R} & R > a \\
-\frac{GM}{a} & R < a
\end{cases}$$
(8.13)

Since $\Phi(r)$ is constant inside the shell, \mathbf{g} vanishes there. When r is outside the shell, the potential in (8.13) is as if the mass M of the shell were concentrated at the center of the shell. Since a spherically symmetric solid body can be represented as a collection of concentric spherical shells, the gravitational force on m due to a spherical body is as if the total mass M were concentrated at the center of the sphere. Newton's theorem follows: the gravitational force of any spherically symmetric distribution of matter at a distance R from the center is the same as if all the mass within the sphere of radius R were concentrated at the center.

8.2 The Tides

When a body moves in a non-uniform gravitational field, it is subjected to tide-generating forces. These shearing forces may even tear the body apart—this is a possible origin of the rings of Saturn.

The acceleration of the body \mathbf{a}_B is the total gravitational force on its component masses divided by its total mass. (If the body is spherically symmetric, then the result of Newton's theorem and the "action equals reaction" principle is that \mathbf{a}_B is simply the value of $\mathbf{g}(\mathbf{r})$ at the center of the body.) If we use coordinates centered on the body (i.e., "falling with the body") the gravitational field becomes $\mathbf{g}(\mathbf{r}) - \mathbf{a}_B$. If we separate \mathbf{g} into the part due to the body itself \mathbf{g}_{self} (which vanishes at the center of the body) and to the part due to external masses \mathbf{g}_{ext} , then the gravitational field in the frame fixed on the body is $\mathbf{g}_{\text{self}} + (\mathbf{g}_{\text{ext}} - \mathbf{a}_B)$. The second term, $(\mathbf{g}_{\text{ext}} - \mathbf{a}_B)$, is the tidal field.

Tidal forces on a planet are maximum along a line to the external force center and give two high tides on opposite sides of the planet. For a planet in a circular orbit about the sun the origin of the double tide is easily explained by the following argument. The forces acting on a mass m are the attractive gravitational force GmM/r^2 and the repulsive centrifugal force $m\omega^2 r$ due to the revolution of the planet about the sun. At the CM of the planet the gravity force exactly balances the centrifugal force since there is no radial acceleration in a circular orbit. At the point closest to the sun, the sun's gravitational attraction is larger than at the CM and the centrifugal force is smaller, giving a net tidal force in the direction of the sun. At the farthest point on the planet from the sun the centrifugal force exceeds that of gravity and there is a tidal force directed away from the sun.

The ocean tides on earth are caused by the variation from place to place of the gravitational attraction due to the moon and the sun. The atmosphere, the ocean, and the solid earth all experience tidal forces, but only the effects on the ocean are commonly observed. To estimate the gross features of the midocean tides, we begin with a static theory in which the rotation of the earth about its axis is neglected. The daily rotation of the earth will be invoked later to explain the propagation of the tides.

To calculate the tide-generating force, we consider the acceleration of a small mass m on the ocean's surface under the combined influence of the gravitational attraction of the earth and a distant mass M, as shown in Fig. 8-2. The coordinates of the masses m, M_E , M in an inertial frame are represented by the vectors \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 , respectively. For convenience, we denote the relative coordinates of the masses by

$$\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$$

$$\mathbf{R} = \mathbf{r}_2 - \mathbf{r}_3$$

$$\mathbf{d} = \mathbf{r}_1 - \mathbf{r}_3 = \mathbf{R} + \mathbf{r}$$

$$(8.15)$$

With this notation, the motion of m and M_E due to gravitational forces is determined by

$$m\ddot{\mathbf{r}}_1 = -\frac{GmM_E\hat{\mathbf{r}}}{r^2} - \frac{GmM}{d^2}\hat{\mathbf{d}}$$
 (8.16)

$$M_E \ddot{\mathbf{r}}_2 = -\frac{GM_E M}{R^2} \hat{\mathbf{R}} \tag{8.17}$$

By dividing the first equation by m, the second equation by M_E , and then

FIGURE 8-2. Location of a point on the earth's surface and a distant mass M in an inertial frame and an earth-centered frame.

subtracting, we find the equation of motion for the relative coordinate ${f r}.$

$$\ddot{\mathbf{r}} = -\frac{GM_E\hat{\mathbf{r}}}{r^2} - GM\left(\frac{\hat{\mathbf{d}}}{d^2} - \frac{\hat{\mathbf{R}}}{R^2}\right) \tag{8.18}$$

This result could have been directly obtained from (6.22). The first term on the right-hand side of (8.18) is the central gravity force of the earth on a particle of unit mass. The second term is the tide-generating force per unit mass due to the presence of the distant mass M. The tide-generating force is the difference between the forces on the surface of the earth and at the center of the earth. The direction and relative magnitude of the tide-generating force due to M are plotted in Fig. 8-3 for points around

the earth's equator. The effect of this force is to produce the two tidal bulges which, as the earth rotates, are observed twice daily as high tides.

FIGURE 8-3. Tide-generating force on the surface of the earth at the equator due to a distant mass.

If the tidal forces are small compared to the gravitational force on the CM and the distance to the external force center is large compared to the planetary radius we can approximate (8.18) as follows. By (8.15) we can express the second factor of (8.18) as

$$\frac{\hat{\mathbf{d}}}{d^2} - \frac{\hat{\mathbf{R}}}{R^2} = \frac{\mathbf{d}}{d^3} - \frac{\mathbf{R}}{R^3} = \frac{\mathbf{R} + \mathbf{r}}{d^3} - \frac{\mathbf{R}}{R^3}
= \mathbf{R} \left(\frac{1}{d^3} - \frac{1}{R^3} \right) + \frac{\mathbf{r}}{d^3}$$
(8.19)

We form the square of d

$$d^{2} = R^{2} + r^{2} + 2\mathbf{R} \cdot \mathbf{r}$$

$$d = R \left(1 + \frac{2\mathbf{R} \cdot \mathbf{r}}{R^{2}} + \frac{r^{2}}{R^{2}} \right)^{1/2}$$
(8.20)

Then for $R \gg r$ we apply the binomial expansion $(1+\beta)^n \simeq 1+n\beta+\cdots$ with $\beta = \mathbf{R} \cdot \mathbf{r}/R^2$ and n = 1/2, and retain only leading terms

$$d \simeq R \left(1 + \frac{\mathbf{R} \cdot \mathbf{r}}{R^2} + \cdots \right)$$
 (8.21)

The quantity d^{-3} in (8.19) can be approximated by

$$\frac{1}{d^3} \simeq \frac{1}{R^3} \left(1 - \frac{3\mathbf{R} \cdot \mathbf{r}}{R^2} \right)$$

$$= \frac{1}{R^3} - \frac{3\hat{\mathbf{R}} \cdot \mathbf{r}}{R^4}$$
(8.22)

where the binomial expansion with n=-3 has been applied. To first order in ${\bf r}$ (8.19) becomes

$$\frac{\hat{\mathbf{d}}}{d^2} - \frac{\hat{\mathbf{R}}}{R^2} = \mathbf{R} \left(\frac{1}{d^3} - \frac{1}{R^3} \right) + \frac{\mathbf{r}}{R^3}$$

$$\simeq -\frac{3(\mathbf{R} \cdot \mathbf{r})}{R^4} + \frac{\mathbf{r}}{R^3}$$

$$\simeq \frac{1}{R^3} \left[-3\hat{\mathbf{R}} \left(\hat{\mathbf{R}} \cdot \mathbf{r} \right) + \mathbf{r} \right]$$
(8.23)

In our choice of coordinate system in Fig. 8-2, $\hat{\mathbf{R}} = -\hat{\mathbf{x}}$ and thus

$$\frac{\hat{\mathbf{d}}}{d^2} - \frac{\hat{\mathbf{R}}}{R^2} \simeq \frac{1}{R^3} \left(-3x\hat{\mathbf{x}} + \mathbf{r} \right) \tag{8.24}$$

In this approximation the tidal acceleration of (8.18) is

$$\ddot{\mathbf{r}} = -\frac{GM_E\hat{\mathbf{r}}}{r^2} + \frac{GM}{R^3}(3x\hat{\mathbf{x}} - \mathbf{r})$$
 (8.25)

Since gravitational forces are conservative this force per unit mass can be derived from a potential and we may write

$$\ddot{\mathbf{r}} \equiv -\nabla_{\mathbf{r}}\Phi \tag{8.26}$$

where $\nabla_{\mathbf{r}}$ means the gradient with respect to the vector $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ whose origin is at the center of the earth. It is easy to guess that the potential whose negative gradient is the right side of (8.25) is

$$\Phi = -\frac{GM_E}{r} - \frac{GM}{R^3} \left(\frac{3}{2} x^2 - \frac{1}{2} r^2 \right) \tag{8.27}$$

Since $x = r \sin \theta \cos \phi$, we have

$$\Phi = -\frac{GM_E}{r} - \frac{GM}{r} \left(\frac{r}{R}\right)^3 \left(\frac{3}{2}\sin^2\theta\cos^2\phi - \frac{1}{2}\right)$$
(8.28)

For equilibrium of the ocean surface, the net tangential force on m must vanish. Equivalently, the potential at any point on the ocean's surface must be constant. We choose the constant to be $\Phi(\mathbf{r}) = -GM_E/R_E$,

where R_E is the undistorted spherical radius of the earth (i.e., when the distant M is absent). Using this condition in (8.28) gives

$$r - R_E = \frac{M}{M_E} \frac{r^3 R_E}{R^3} \left(\frac{3}{2} \sin^2 \theta \cos^2 \phi - \frac{1}{2} \right)$$
 (8.29)

Since the height of the tidal displacement

$$h(\theta, \phi) \equiv r - R_E \tag{8.30}$$

is quite small compared with R_E , (8.29) gives

$$h(\theta,\phi) \simeq \frac{M}{M_E} \frac{R_e^4}{R^3} \left(\frac{3}{2} \sin^2 \theta \cos^2 \phi - \frac{1}{2} \right)$$
 (8.31)

For a given colatitude angle θ in (8.31), the high tides occur at $\phi = 0$ and $\phi = \pi$, and low tides occur at $\phi = \pi/2$ and $\phi = 3\pi/2$. The difference in height between high and low tide, known as the *tidal range*, is

$$\Delta h = \frac{3}{2} \, \frac{M}{M_E} \, \frac{R_e^4}{R^3} \sin^2 \theta \tag{8.32}$$

The tidal displacement h is largest at $\theta = 90^{\circ}$ (on the equator). The tidal distortion is illustrated in Fig. 8-4. The tide for an ocean devoid of continents has a prolate spheroid shape (football-like), with the major axis in the direction of the distant mass. The calculation of such an ideal tide was first made by Newton in 1687.

FIGURE 8-4. Tidal distortion at the earth's equator on an exaggerated scale

The preceding discussion applies to the tidal forces induced by a single astronomic body. If there are two tide-producing bodies the net tide is the superposition of the separate tides. (If the bodies are not collinear with the planet, the total tidal shape is not axially symmetric but a triaxial ellipsoid instead.) From (8.31) the ratio of the maximum heights of the lunar (L) and solar (\odot) tides on earth is

$$\frac{h_L}{h_{\odot}} = \left(\frac{M_L}{M_{\odot}}\right) \left(\frac{a_E}{a_L}\right)^3 \tag{8.33}$$

where a_L is the earth-moon distance and a_E is the earth-sun distance. The numerical value of this ratio is

$$\frac{h_L}{h_{\odot}} = \frac{(1/81.5)M_E}{\left(\frac{1}{3} \times 10^6\right)M_E} \left(\frac{1.5 \times 10^8 \text{ km}}{3.8 \times 10^5 \text{ km}}\right)^3 = 2.2$$
 (8.34)

Thus the sun's tidal effect is smaller than the moon's, but it is not negligible. When the sun and moon are lined up (new or full moon), an especially large tide results (spring tide), and when they are at right angles (first or last quarter moon), their tidal effects partially cancel (neap tide). The diagram in Fig. 8-5 illustrates these orientations of the moon relative to the earth and sun.

FIGURE 8-5. Relation of the phases of the moon to the tides on earth.

The tidal range due to the moon at a point on the earth-moon axis can be calculated from (8.32). We get

$$\Delta h\left(\theta = \frac{\pi}{2}\right) = \frac{3}{2} \left(\frac{1}{81.5}\right) \left(\frac{6,371}{384,000}\right)^3 (6,371 \times 10^3) = 0.56 \,\mathrm{m}$$

This figure agrees roughly with the measured tidal difference in midocean. As the earth rotates about its own axis, the tidal maxima, which lie on the earth-moon axis, will pass a given point on the earth's surface approximately two times a day. More precisely, since the orbital rotation of the moon about the earth (with period of $27\frac{1}{3}$ days) is in the same sense as the earth's own rotation (with period 24 h), two tidal maxima pass a given spot on earth every $(24 + 24/27\frac{1}{3})$ h. Thus high tide occurs every 12 h and 26.5 min, and high tide is observed about 53 min later each day.

The two high tides are not of the same height because of the inclination of the earth's axis to the normal of the moon's orbital plane about the earth. In the Northern Hemisphere the high tide which occurs closest to the moon is higher, as illustrated in Fig. 8-6.

FIGURE 8-6. Effect of the inclination angle β of the earth's axis to the moon's orbital plane on the heights of tides. β varies from 17° to 29° as the moon's elliptical orbit precesses slowly about the normal to the plane of the earth's heliocentric orbit.

The tides are in reality more complicated than described above. Along coastal regions the configuration of the land masses and the ocean bottom cause considerable amplification or suppression of the tidal range. Over the world, tidal ranges vary as much as twenty meters.

The friction of the moving tidal waves against ocean bottoms and the continental shorelines dissipates energy at a rate estimated at 7 billion horsepower. To supply this energy, the earth's rotation about its axis slows down at the rate of 4.4×10^{-8} s per day. The cumulative time over a century is about 28 s. This gradual lengthening of the day is confirmed by the observation that various astronomical events such as eclipses seem to run systematically ahead of calculations based on observations over preceding centuries.

8.3 Tidal Evolution of a Planet-Moon System

The earth-moon system has very little external torque acting upon it on the average. The total angular momentum of the system is thus nearly constant. The consequence of angular momentum conservation is that the moon spirals outward about a half a centimeter each month as the earth's rotation is slowed by tidal friction. Ultimately the moon's distance will increase by over forty percent of its present value and our day will lengthen by a factor of about 50. The moon will then remain stationary above one spot on the earth.

To see this, we make the following simplifications, which are sufficiently accurate to represent the physical situation.

- 1. The spin angular momentum $S = I\omega$ of the earth is parallel to the orbital angular momentum L of the moon about the earth. (The earth's spin precesses about the normal to the ecliptic plane with a period of 26,000 years and the plane of the moon's orbit about the earth precesses similarly with a period of about 19 years, so the average values of both S and L are perpendicular to the ecliptic plane—the plane of earth's orbit around the sun).
 - 2. The total angular momentum

$$\mathbf{J} = \mathbf{L} + \mathbf{S} = (L+S)\hat{\mathbf{L}} \tag{8.35}$$

is constant (we are neglecting the solar tidal drag).

3. The moon's orbit about the earth is circular and lies in the ecliptic plane (point 1 above).

Feynman's Lecture

Fig. 7–3. Apparatus for showing the independence of vertical and horizontal motions.

Fig. 7-4. Acceleration toward the center of a circular path. From plane geometry, $x/s = (2R - S)/x \approx 2R/x$, where R is the radius of the earth, 4000 miles; x is the distance "travelled horizontally" in one second; and S is the distance "fallen" in one second (16 feet).

explanation: the moon falls in the sense that it falls away from the straight line that it would pursue if there were no forces. Let us take an example on the surface of the earth. An object released near the earth's surface will fall 16 feet in the first second. An object shot out horizontally will also fall 16 feet; even though it is moving horizontally, it still falls the same 16 feet in the same time. Figure 7-3 shows an apparatus which demonstrates this. On the horizontal track is a ball which is going to be driven forward a little distance away. At the same height is a ball which is going to fall vertically, and there is an electrical switch arranged so that at the moment the first ball leaves the track, the second ball is released. That they come to the same depth at the same time is witnessed by the fact that they collide in midair. An object like a bullet, shot horizontally, might go a long way in one second—perhaps 2000 feet—but it will still fall 16 feet if it is aimed horizontally. What happens if we shoot a bullet faster and faster? Do not forget that the earth's surface is curved. If we shoot it fast enough, then when it falls 16 feet it may be at just the same height above the ground as it was before. How can that be? It still falls, but the earth curves away, so it falls "around" the earth. The question is, how far does it have to go in one second so that the earth is 16 feet below the horizon? In Fig. 7-4 we see the earth with its 4000-mile radius, and the tangential, straightline path that the bullet would take if there were no force. Now, if we use one of those wonderful theorems in geometry, which says that our tangent is the mean proportional between the two parts of the diameter cut by an equal chord, we see that the horizontal distance travelled is the mean proportional between the 16 feet fallen and the 8000-mile diameter of the earth. The square root of $(16/5280) \times 8000$ comes out very close to 5 miles. Thus we see that if the bullet moves at 5 miles a second, it then will continue to fall toward the earth at the same rate of 16 feet each second, but will never get any closer because the earth keeps curving away from it. Thus it was that Mr. Gagarin maintained himself in space while going 25,000 miles around the earth at approximately 5 miles per second. (He took a little longer because he was a little higher.)

Any great discovery of a new law is useful only if we can take more out than we put in. Now, Newton used the second and third of Kepler's laws to deduce his law of gravitation. What did he predict? First, his analysis of the moon's motion was a prediction because it connected the falling of objects on the earth's surface with that of the moon. Second, the question is, is the orbit an ellipse? We shall see in a later chapter how it is possible to calculate the motion exactly, and indeed one can prove that it should be an ellipse,* so no extra fact is needed to explain Kepler's first law. Thus Newton made his first powerful prediction.

The law of gravitation explains many phenomena not previously understood. For example, the pull of the moon on the earth causes the tides, hitherto mysterious. The moon pulls the water up under it and makes the tides—people had thought of that before, but they were not as clever as Newton, and so they thought there ought to be only one tide during the day. The reasoning was that the moon pulls the water up under it, making a high tide and a low tide, and since the earth spins underneath, that makes the tide at one station go up and down every 24 hours. Actually the tide goes up and down in 12 hours. Another school of thought claimed that the high tide should be on the other side of the earth because, so they argued, the moon pulls the earth away from the water! Both of these theories are wrong. It actually works like this: the pull of the moon for the earth and for the water is "balanced" at the center. But the water which is closer to the moon is pulled more than the average and the water which is farther away from it is pulled less than the average. Furthermore, the water can flow while the more rigid earth cannot. The true picture is a combination of these two things.

What do we mean by "balanced"? What balances? If the moon pulls the whole earth toward it, why doesn't the earth fall right "up" to the moon? Because the earth does the same trick as the moon, it goes in a circle around a point which is inside the earth but not at its center. The moon does not just go around the earth, the earth and the moon both go around a central position, each falling

^{*} The proof is not given in this course.

toward this common position, as shown in Fig. 7-5. This motion around the common center is what balances the fall of each. So the earth is not going in a straight line either; it travels in a circle. The water on the far side is thrown out more by the "centrifugal force" than the average for the center of the earth, which is just balanced by the moon's attraction. The moon's attraction on the far side is weaker and the "centrifugal force" is stronger. The net result is an imbalance of the water in a direction away from the center of the earth. On the near side, the attraction from the moon is stronger, and because the radius vector is shorter, the "centrifugal force" is also weaker and the imbalance is in the opposite direction in space, but again away from the center of the earth. The net result is that we get two tidal bulges.

7-5 Universal gravitation

What else can we understand when we understand gravity? Everyone knows the earth is round. Why is the earth round? That is easy; it is due to gravitation. The earth can be understood to be round merely because everything attracts everything else and so it has attracted itself together as far as it can! If we go even further, the earth is not exactly a sphere because it is rotating, and this brings in centrifugal effects which tend to oppose gravity near the equator. It turns out that the earth should be elliptical, and we even get the right shape for the ellipse. We can thus deduce that the sun, the moon, and the earth should be (nearly) spheres, just from the law of gravitation.

What else can you do with the law of gravitation? If we look at the moons of Jupiter we can understand everything about the way they move around that planet. Incidentally, there was once a certain difficulty with the moons of Jupiter that is worth remarking on. These satellites were studied very carefully by Roemer, who noticed that the moons sometimes seemed to be ahead of schedule, and sometimes behind. (One can find their schedules by waiting a very long time and finding out how long it takes on the average for the moons to go around.) Now they were ahead when Jupiter was particularly close to the earth and they were behind when Jupiter was farther from the earth. This would have been a very difficult thing to explain according to the law of gravitation—it would have been, in fact, the death of this wonderful theory if there were no other explanation. If a law does not work even in one place where it ought to, it is just wrong. But the reason for this discrepancy was very simple and beautiful: it takes a little while to see the moons of Jupiter because of the time it takes light to travel from Jupiter to the earth. When Jupiter is closer to the earth the time is a little less, and when it is farther from the earth, the time is more. This is why moons appear to be, on the average, a little ahead or a little behind, depending on whether they are closer to or farther from the earth. This phenomenon showed that light does not travel instantaneously, and furnished the first estimate of the speed of light. This was done in 1656.

If all of the planets push and pull on each other, the force which controls, let us say, Jupiter in going around the sun is not just the force from the sun; there is also a pull from, say, Saturn. This force is not really strong, since the sun is much more massive than Saturn, but there is some pull, so the orbit of Jupiter should not be a perfect ellipse, and it is not; it is slightly off, and "wobbles" around the correct elliptical orbit. Such a motion is a little more complicated. Attempts were made to analyze the motions of Jupiter, Saturn, and Uranus on the basis of the law of gravitation. The effects of each of these planets on each other were calculated to see whether or not the tiny deviations and irregularities in these motions could be completely understood from this one law. Lo and behold, for Jupiter and Saturn, all was well, but Uranus was "weird." It behaved in a very peculiar manner. It was not travelling in an exact ellipse, but that was understandable, because of the attractions of Jupiter and Saturn. But even if allowance were made for these attractions, Uranus still was not going right, so the laws of gravitation were in danger of being overturned, a possibility that could not be ruled out. Two men, Adams and Leverrier, in England and France, independently,

Fig. 7–5. The earth-moon system, with tides.

Fig. 7-6. A double-star system.

arrived at another possibility: perhaps there is another planet, dark and invisit which men had not seen. This planet, N, could pull on Uranus. They calcular where such a planet would have to be in order to cause the observed perturbations. They sent messages to the respective observatories, saying, "Gentlem point your telescope to such and such a place, and you will see a new plane It often depends on with whom you are working as to whether they pay any attation to you or not. They did pay attention to Leverrier; they looked, and the planet N was! The other observatory then also looked very quickly in the n few days and saw it too.

This discovery shows that Newton's laws are absolutely right in the sc system; but do they extend beyond the relatively small distances of the near planets? The first test lies in the question, do stars attract each other as well planets? We have definite evidence that they do in the double stars. Figure shows a double star-two stars very close together (there is also a third star the picture so that we will know that the photograph was not turned). The st are also shown as they appeared several years later. We see that, relative to "fixed" star, the axis of the pair has rotated, i.e., the two stars are going arou each other. Do they rotate according to Newton's laws? Careful measureme of the relative positions of one such double star system are shown in Fig. 7 There we see a beautiful ellipse, the measures starting in 1862 and going all way around to 1904 (by now it must have gone around once more). Everyth coincides with Newton's laws, except that the star Sirius A is not at the for Why should that be? Because the plane of the ellipse is not in the "plane of sky." We are not looking at right angles to the orbit plane, and when an ell is viewed at a tilt, it remains an ellipse but the focus is no longer at the same pl Thus we can analyze double stars, moving about each other, according to requirements of the gravitational law.

Fig. 7-7. Orbit of Sirius B with respect to Sirius A.

Myths about Gravity and Tides

Mikolaj Sawicki John A. Logan College Carterville, IL 62918, USA

website: http://www.jal.cc.il.us/~mikolajsawicki/ e-mail: mikolajsawicki@jalc.edu

<u>Abstract:</u> This is an extended and revised version of the paper "Myths about Gravity and Tides", originally published in "The Physics Teacher" **37**, October 1999, pp. 438 - 441.

Last revision: December 31, 2005

Introduction

The idea for this paper came as I was having a coffee in a beach-front cafe in North Miami Beach, watching the tide, and perusing a newspaper. Thanks to a small-time serendipity, I chanced upon the following piece of local news: "During a full moon, the moon has a higher gravitational pull, creating a higher tide. Miami Beach psychiatrist Arnold Lieber says that pull affects oceans and people in a similar way, since the human body is mostly water." [1]

Obviously, the above quoted text is another wonderful example of bad physics [2]. In reality, the Moon does not pull any harder during the full Moon, and a water content of a human body is entirely irrelevant to a question of tidal effect on humans. Yet a subject of tidal effects on small bodies of water comes up quite often, as evidenced by two additional examples.

"Are there ocean tides in fresh water or just the oceans?" is the question that I found in the "Ask Marilyn" column. "There are tides everywhere on Earth, including not just oceans and lakes but also ground we stand on (which is factor in earthquakes) and the atmosphere we breathe. If you stood still long enough, there would even be tides in your tummy", answered Marilyn vos Savant. [3]

In a similar spirit, an astronomy teacher asserted in my local newspaper: "Here in Southern Illinois as in much of the world, we experience two periods of high and low tides every day. (...) The tidal forces act on all bodies of water, not just oceans (...) At perigee (...) the moon's gravitational tug on Earth is at its maximum and so the waters of the world rise and fall to their maximum extent." [4]

While statements in both examples seem plausible, in reality tidal effect on small bodies of water of the size of reader's tummy or lakes in Southern Illinois is negligible and therefore impossible to observe.

One should realize that the tidal effect is caused not only by the Moon, but also by the Sun. If the Moon had not existed, there still would have been ocean tides, but not as high, since the Sun contributes only about 30% of the tidal effect. Furthermore, and more importantly, it is

not the magnitude of the gravitational tug per se that is responsible for a tidal mechanism, but rather a subtle difference in the gravitational tug on water at various parts of a basin.

Let us first discuss the magnitude of the gravitational tug. The center of Earth is at the average distance $d_s = 1.496 \times 10^{11}$ m from the center of the Sun. The gravitational pull of the Sun on 1 kg mass at the distance d_s is

$$a_s = \frac{GM_s}{d_s^2} = 6.04 \times 10^{-4} g \tag{1}$$

where g = 9.81 N/kg. Similar calculation for the Moon, an average distance $d_m = 3.84 \times 10^8$ m away, yields the following value for gravitational pull of the Moon on a unit mass at the center of Earth

$$a_m = \frac{GM_m}{d_m^2} = 3.39 \times 10^{-6} g \tag{2}$$

Comparing Eq.(1) and Eq.(2), we see that the Sun's gravitational pull per unit mass is about 178 times stronger than the Moon's gravitational pull, hardly a surprising result as Earth orbits the Sun, not the Moon. (Nevertheless, when I ask my students what pulls harder on Earth, the Moon or the Sun, they invariably choose the Moon...) Specifically, Earth's, Sun's and Moon's average gravitational pulls on a 80 kg person on the surface of Earth are about 785 N, 0.47 N, and 0.0027 N, respectively. Now, since Earth is in a free fall about Earth-Moon center of mass, which in turn is in a free fall about the Sun-Earth-Moon center of mass (located inside the Sun), no scale would register the last two pulls. To better see it, remember that if you were standing on a scale inside a freely-falling elevator or orbiting space shuttle, the reading on the scale would be zero, and you would experience apparent weightlessness.

The Source of Tides

Let us now discuss the difference in the gravitational tug on water at various parts of a basin. The gravitational pull of the Sun on 1 kg mass on the far side of Earth, a distance of $R = 6.37 \times 10^6$ m further away from Earth's center, is by the amount of Δa_s smaller than a_s , i.e.

$$\Delta a_s = \frac{GM_s}{d_s^2} - \frac{GM_s}{(d_s + R)^2} = \frac{2GM_sR}{d_s^3} = a_s \frac{2R}{d_s} = 0.515 \times 10^{-7} g$$
 (3)

This is known as a differential pull. Note that in the second step in Eq.(3) we neglected corrections from higher order R/d_s terms. A similar calculation shows that the gravitational pull of the Sun per 1 kg mass at the point on Earth closest to the Sun is in turn greater than a_s , also by the amount Δa_s . This result could be also obtained by taking the differential of the gravitational force equation. Note that Δa_s is inversely proportional to the *cube* of the distance.

To see how tides come about, let us first ignore the existence of the Moon, and suppose the whole Earth is covered with ocean of equal depth everywhere; there is no dry land. The Earth is simply in free fall towards the Sun.

Consider the point C on Earth closest to the Sun and the point F on a far side of Earth. The Sun pulls harder on a unit mass at the point C, not as hard on a unit mass at Earth center O, and weaker yet on a unit mass at point F. The acceleration a_s of Earth as a whole in free fall towards the Sun is determined by the gravitational pull of the Sun on Earth's center. Hence the unit mass at C has a tendency to accelerate towards the Sun with acceleration $a_s + \Delta a_s$, i.e. more than the center of Earth, while a mass at the far side F has a tendency to accelerate towards the Sun with acceleration $a_s - \Delta a_s$, i.e. to lag behind the center of Earth.

This difference in Solar gravitational pulls would have lead to a disintegration of Earth, had Earth's own gravity been to weak to hold Earth together. To an observer on Earth it would have looked like rocks at point C and F were lifted away from the surface of Earth. Fortunately, Earth's own gravity pulls the unit masses at C and F towards Earth center O with a gravitational pull per unit mass equal to g. The combined effect is that if you drop a rock at the point C or F, rock's acceleration towards the center of Earth is $g - \Delta a_s$.

Another important part of the tidal effect is due to the fact that the Sun is at a finite distance from the Earth, and therefore Sun's pull at the point L (halfway from C towards F along Earth's surface) is not exactly parallel to the Sun's pull at the center O, but has a $\sin \alpha$ component toward the center of the Earth, where α is the angle made between the line from the Sun to the center of the Earth O and the line from the Sun to the point L, i.e. $\tan \alpha = R/d_s$. As a result, a rock dropped at the point L accelerates towards the center of Earth at the rate of $g + \Delta a_s/2$.

From the point of view of a hypothetical observer located at the center of the Earth, it appears that Earth's gravitational pull on a rock at C and F is reduced by the amount of Δa_s , while the pull at the point L is increased by $\Delta a_s/2$. In other words, while Earth's own gravity pulls the mass m down with the force mg everywhere on Earth's surface, there appears to be another force, the tidal force, pulling the mass m at points C and F \underline{up} with magnitude $m\Delta a_s$, and \underline{down} at point L with magnitude $m\Delta a_s/2$, see Figure 1. This is the source of the tidal mechanism, and the origin of the water bulge at C and F. (The tidal mechanism is nicely illustrated in conceptual physics textbooks [5,6].)

Figure 1. The tidal mechanism, see text. The x-axis points toward the Sun. The Earth is in a free fall toward the Sun. The resulting tidal force causes high tides at the point C closest to the Sun and point F furthest from the Sun, and a low tide at the point L. Note that at the point A the tidal force is tangent to the surface of the Earth.

The lunar tidal effect is calculated in an analogous way. Again, one has to realize that Earth is in a free fall towards the Earth-Moon center of mass. The difference between the Moon's pull on a unit mass at the center of Earth and at the closest/farthest point on Earth is

$$\Delta a_m = a_m \frac{2R}{d_m} = 1.13 \times 10^{-7} g \tag{4}$$

While the solar gravitational pull is 178 times stronger than lunar gravitational pull, the tidal pull is proportional to the inverse <u>cube</u> of the distance, and the ratio of d_s/d_m is 390, thus making the solar tidal pull only 178/390 = 0.46 of the lunar tidal pull, $\Delta a_s = 0.46 \Delta a_m$. This could be also seen by a direct comparison of values in Eq.(2) and Eq.(4). Since $\Delta a_m/(\Delta a_m + \Delta a_s) = 69\%$, we see that it is the Moon that dominates the tidal mechanism. But if the Moon had been only twice as far from Earth as it is now, the Moon's tidal pull would have decreased 8 times and become 4 times weaker than the Sun's tidal pull.

When the Sun, Earth and the Moon all lie along a straight line, as at new and full Moon, the Sun's and the Moon's tidal forces pull in the same direction and cause high tides to be higher than average, and low tides to be lower than average. These stronger tides are called spring tides. With the Moon in first or last quarter, the tidal force of the Moon acts in a direction perpendicular to the Sun's tidal force. This makes the tides smaller than average, and they are called neap tides.

First Approximation

Let us first consider the tidal action of the Moon on a hypothetical ocean uniformly covering the whole Earth. For simplicity, I'll neglect effects related to Earth's rotation, as they do not affect our conclusions. The water bulge takes a shape of a football (spheroid or ellipsoid of revolution), and for a not rotating Earth the major axis of the football would point towards the Moon. All water on the surface of the water bulge has equal potential energy, i.e. the water surface is an equipotential. As the Earth is in a free fall, and the water bulge is shaped by the tidal force and Earth's gravity, the equipotential in question in addition to Earth's gravity involves a tidal potential, traditionally called W_2 in literature [7].

At a low-tide point L on the water bulge, the tidal force is directed into Earth, while at a high-tide points C and F, the lunar tidal force is directed up, c.f. Figure 1. If we choose the reference frame with the origin at the center of Earth, the x-axis toward the Moon, and y-axis toward the low-tide point L, c.f. Figure 1, then the Moon's tidal force per unit mass anywhere inside the Earth could be parametrized as

$$\Delta a_{m,x} = a_m \frac{2x}{d_m}$$

$$\Delta a_{m,y} = -a_m \frac{y}{d_m}$$
(5)

where a_m is given by Eq.(2). It is perhaps interesting to note that at the point labeled A in Figure 1, the tidal force is purely tangential to Earth's surface. A straightforward calculation shows that the point A is located at the angle $\theta = 54.7^{\circ}$ away from the x-axis.

Moving the unit mass of water from the low-tide point L to the point C requires a positive work by a tidal force. To calculate this work Newton considered two imaginary wells, one running from the low-tide point L to the center of Earth, and the other from the high-tide point C to the center O. When the unit mass is moved from a low tide point L to the center O to the high-tide point C, the average tidal force along the displacement in the tunnel LO is $\Delta a_{av} = 0.25 \Delta a_m$, and in the tunnel OC it is $\Delta a_{av} = 0.50 \Delta a_m$, where Δa_m is given by Eq.(4). Hence, the tidal force does a positive work equal to $0.25 \Delta a_m R + 0.50 \Delta a_m R = 0.75 \Delta a_m R$, and the tidal potential energy per unit mass decreases by the amount

$$\Delta W_2 = -0.75 \, \Delta a_m R \tag{6}$$

This decrease in the tidal gravitational potential must be compensated by the increase of the gravitational potential caused by a rise Δh_m of the water surface with respect to center of Earth, if the water surface is to remain an equipotential. Hence we have

$$g\Delta h_m - 0.75 \,\Delta a_m R = 0 \tag{7}$$

Solving for Δh_m , we obtain the value of 0.54 m for the rise of the water level in a homogenous ocean caused by the lunar tidal force. A similar calculation for the solar tidal force yields $\Delta h_s = 0.46 \times \Delta h_m = 0.25$ m. Thus during a spring tide one could expect the tidal rise of the water level by $\Delta h = \Delta h_m + \Delta h_s = 0.79$ m.

Mathematical Digression About the Tidal Potential

Results obtained above could be more formally arrived at beginning with a concept of the tidal potential. To this end we need to recognize that the tidal force per unit mass given by Eq.(5) could be written as a gradient of tidal potential energy per unit mass,

$$\Delta a_{m,x} = -\frac{\partial}{\partial x} W_2$$

$$\Delta a_{m,y} = -\frac{\partial}{\partial y} W_2$$
(8)

where the tidal potential is obviously

$$W_2(x,y) = -\frac{GM_m}{d_m^3} (x^2 - \frac{1}{2}y^2)$$
 (9)

It is convenient to use polar coordinates, $x = r \cos \theta$, $y = r \sin \theta$, and rewrite the tidal potential as

$$W_2(r,\theta) = -\frac{GM_m}{d_m^3} r^2 P_2(\cos\theta)$$
 (10)

where P_2 is the Legendre polynomial, $P_2(z) = \frac{1}{2}(3z^2 - 1)$. The main result given by Eq.(6) now simplifies to

$$\Delta W_2 = W_2(R,0^{\circ}) - W_2(R,90^{\circ}) = -0.75 \,\Delta a_m R \tag{11}$$

Real Tides

Since in reality Earth rotates and is not uniformly covered with an ocean of a constant depth, analysis of ocean tides is very difficult. Oceans have complicated shapes, varying depths and floor configurations. Shorelines are quite complex. All these factors contribute to unusual local variations of ocean tides [8]. In some places there is only one tide per day. Large basins open to ocean (sounds, gulfs, bays) may exhibit an enormous resonant behavior. There are places where there are no observable tides, and other, where the water rises as much as 51 ft (Minas Basin, Bay of Fundy). In other, there is little tide in a sense of a rise and fall, but strong currents flow periodically back and forth. The high water may not occur when the Moon is overhead, i.e. tides are not necessarily in sync with the differential forces, but may lag behind by several hours. Duration of a high and low water is also affected by local conditions. But for a given location the high water will always lag the passage of the Moon by a fixed amount of hours (this is known as "the establishment of the port" [9].)

What about the tides in smaller bodies of water? The symbol R in Eq.(4) is now replaced by Δd , the difference between a distance to the center of the Moon from the closest and furthest point of the water basin under consideration.

For Great Lakes, the difference in distance from the Moon to various points on a surface of the water is much smaller than radius of the Earth, but tides of amplitude of about two inches could be still observed. But local lakes are so small that all points on the surface of the water are practically at the same distance from the Moon, hence no observable tides exist. Likewise there are no tides in a swimming pool, a bathtub, cup of coffee, or a tummy. Indeed, for a shallow puddle of some 20 m in diameter, the value of Δd due to curvature of Earth is $\Delta d = 1.3 \times 10^{-3}$ m, and Eq.(4) yields $\Delta a_m = 10^{-17}$ g, an unimaginably small value. Hence, no tides in puddles.

As already mentioned above, not only water, but also atmosphere and land are subject to a tidal action and hence experience tidal effects. Because continents are much more rigid than oceans, the effect is much smaller. Nevertheless, parts of continent may rise and fall as much as 0.40m (16 inches) when the Moon passes overhead. So a swimming pool with the water in it may rise few inches, but because the entire land area moves up and down together, we don't readily observe this effect.

Negligible and Small Effects

It is perhaps interesting to estimate the tidal stretch of a human body. Assuming $\Delta d = H = 1.7$ m, one obtains $\Delta a_m = 3 \times 10^{-13}$ N/kg for the Moon's tidal contribution, and at a high tide the combined effect of the Moon and the Sun yields $\Delta a = \Delta a_m + \Delta a_s = 4 \times 10^{-13}$ N/kg. Note that a tidal effect of this magnitude could be alternatively created while holding a pea (mass 1.5 g) some 0.5 m above one's head. In any case, an average tidal tension on a 80 kg person is about 1.6×10^{-11} N. Assuming average cross section area of human skeleton to be 1 cm² =

Another factor that one might wish to consider here is that the weight of the atmosphere overhead, and hence the atmospheric pressure on a human body, is reduced too. Such gravitational reactions of the atmosphere to the tidal forces are rather small,

$$\Delta P = 1.7 \times 10^{-7} \times 1 \text{ atm} = 0.02 \text{ Pa},$$
 (16)

but there are larger tides in the atmosphere caused by a radiational energy input from the Sun. Analysis of tides in atmosphere is difficult due to contamination by broad-band noise of meteorological origin; nevertheless the tidal changes in the atmospheric pressure are found to be as high as \pm 3 Pa, and a human body would stretch by some 10^{-9} m. One should keep in mind that such a pressure change could be alternatively achieved climbing up 0.2 meters, and that purely meteorological pressure variations can be as high as \pm 3000 Pa.

Other Effects

What happens when the Moon is at the perigee, i.e. at the point closest to Earth? While it is true that the Moon's pull on Earth is at its maximum, this circumstance *per se* has no bearing on the tidal mechanism. It is the difference in the Moon's pulls, described by Eq.(4), that creates the tidal force. Since the eccentricity of the Moon's orbit is $\varepsilon = 0.0549$, the average distance d_m in Eq.(2) and Eq.(4) is replaced by the perigee distance of $d_p = d_m \times (1 - \varepsilon) = 363,000$ km. This increases the Moon's differential pull of Eq.(4) by a factor of about $1/(1-0.0549)^3 = 1.18$, i.e.

$$\Delta a_{\text{m,perigee}} = 1.34 \times 10^{-7} \text{ g}, \tag{17}$$

and the tidal action of the Moon is about 18 % stronger. If the Moon's passage through the perigee coincides with spring tides, the combined tidal effect of the Sun and the Moon is approximately 12% stronger than that described by Eq.(14). Such perigean spring tides happen approximately every 6.5 months. Also, because of a three-body effects in the Sun-Earth-Moon system, the lunar perigee distance can be actually as small as 356,4000 km, and the Moon's tidal effects can be up to 25% stronger than those at the average distance [11].

Earth's orbit around the Sun is also elliptical, and the Earth passes through the perihelion (point closest to the Sun) around January 3. The eccentricity of Earth's orbit is only $\varepsilon = 0.017$, and at the perihelion the Sun's differential pull of Eq.(2) increases by about $1/(1-0.017)^3 = 1.052$, i.e. by some 5%. Since the time of perigean spring tide is different every year, it will eventually coincide with Earth's passage through perihelion. This will produce the highest tides in the entire tidal cycle. If such unusually strong tides happen to coincide with meteorological tides caused by a winter storm with low atmospheric pressure and onshore winds, then coastal flooding is a definite possibility.

Length of a Day

As we pointed out above, for the Earth covered with an ideal, uniform ocean, the surface of the water would form a spheroid, whose long (major) axis would point in a direction determined by the position of the Moon (more about in the next Section). As the Earth and oceans rotate beneath the spheroid, continents crash into the water bulge during a high tide, piling water up. It is important to remember that the water of the ocean rotates together with the Earth – it is only the *shape* of the water that remains fixed in space. As seen from a

geocentric reference frame that rotates with the Earth, the tidal bulges appear as waves that circulate around the globe crashing into continents, thus imparting an impulse to the continents. (Keep in mind that a traveling wave transports both momentum and energy in the direction of motion). These inelastic collisions between the tidal bulges and continents cause a gradual decrease in the Earth's spinning rate. As a result, days are getting longer, by about 1.6 milliseconds per century. While it does not seem much, over a period of 1500 years the accumulated time difference equals 2 hours. In other words, over the period of 1500 years the Earth has rotated through 30 degrees more than it would if the angular velocity in the past had today's value. This is beautifully verified by the solar eclipse of January 14, 484 A.D., that would have been observed in southern Spain, if the Earth had spun at a today's rate, but was in fact observed in Greece, 30 degrees of longitude eastward. [12]

On a quite different time scale, an extrapolation back some 370 million years shows that a day then was about 22 hours long, and there were about 400 such short days in a year. This agrees with results of analysis of Devonian corals, that reveal a stunning periodicity in growth rings – there are about 400 daily growth rings in each annual set of rings.

Future of the Earth - Moon System

Since neither the Earth nor the water is perfectly elastic, the rotation of the Earth causes a delay in response of the ocean to the tidal force, and the spheroid is not exactly aligned with the direction toward the Moon, c.f. Figure 2. As a result, the high tide appears later than the time of highest moon.

Figure 2. As the spinning Earth carries the water spheroid away, the spheroid is not exactly aligned with the direction toward the Moon. The bulge closer to the Moon exerts the gravitational force with larger component along the Moon's path than the force exerted by the more distant bulge. This results in a non-zero net force in the direction of the Moon's orbital motion, that causes the Moon to move into a higher orbit and hence away from the Earth.

This misalignment of the water spheroid causes the net gravitational pull exerted by the water bulges to have a small forward component along the direction of the Moon motion. As a result, the Moon moves into a higher orbit and hence away from the Earth, at the rate of some 4 meters per 100 years, and the orbital period of the Moon increases. (*This is similar*

 1×10^{-4} m², the resulting tidal tensile stress is some 1.6×10^{-7} Pa. Further, taking the value of effective elastic modulus of human skeleton as $E=1\times10^9$ N/m², we conclude that the strain is $\Delta H/H=10^{-16}$, i.e. the expected change in person's height is million times smaller than a size of atom! So much for psychiatrist's "explanation" quoted in the introduction. On the other hand, a calculation of the strain due to a stress produced by the body's own weight yields a reasonable result $\Delta H/H=1\times10^{-2}$.

A related and interesting problem came up as another question in "Ask Marilyn" column. "We know that the rise and fall of the ocean tides are caused by the gravitational pull of the Moon as it revolves around Earth. Would this same gravitational pull affect the exact weight of a solid object?" [10]

"Yes", answered Marilyn vos Savant, and this is, in principle, a correct answer. But how big is this effect? How much weight would you lose during a full Moon?

During the full Moon (as during the new Moon), a rock dropped at the point A would fall with acceleration whose component towards the center of Earth is $g = 9.81 \text{ m/s}^2$. For a 80 kg person, the weight at point A is $W_A = mg = 785 \text{ N}$ or 176 lb. But at the points C and F, the person would fall towards the ground with acceleration

$$g'=g-\Delta g, \qquad (12)$$

while at point L this acceleration would be

$$g' = g + \Delta g/2, \tag{13}$$

where

$$\Delta g = \Delta a_m + \Delta a_s = 1.65 \times 10^{-7} \text{ g.}$$
 (14)

Therefore the difference between downward accelerations at points C and L is $3/2 \times \Delta g = 2.4 \times 10^{-7}$ g, and an apparent weight of a 80 kg person at points C and F would be by the amount $\Delta W = 2.0 \times 10^{-4}$ N = 0.4×10^{-4} lb smaller than at point L. If the scale were calibrated in kilograms, the reading would be 20 mg (milligram) less. Hence during the spring tide your weight oscillates with a period of 12.5 hours, and with the full Moon overhead (or during the lunch time) you weigh some 2.5×10^{-5} percent less than some 6 hours earlier or later.

Is it enough of a weight difference to be noticed, and even influence humans? Suppose one wishes to achieve a similar reduction in weight simply by climbing up a vertical distance H above Earth's surface to reduce Earth's gravitational field by 2.5×10^{-7} g. We have

$$\frac{GM_{e}}{R^{2}} - \frac{GM_{e}}{(R+H)^{2}} = \frac{2GM_{e}H}{R^{3}} = g\frac{2H}{R} = 2.5 \times 10^{-7} g$$
 (15)

Solving for H, we obtain H = 0.79 m, or about five steps up. (Note that this results is in fact identical to the value Δh obtained previously, c.f. discussion following Eq.(7)). Hence going to a bedroom upstairs results in a weight change that is about 5 times larger than that produced by the tidal mechanism during a spring tide.

to launching a satellite from a Newton's Mountain by firing it horizontally from a cannon with a speed slightly higher than one required for a perfectly circular orbit. As a result, the satellite begins to follow an elliptical orbit, initially rising above the surface of the Earth while slowing down. Likewise, the forward component of the tidal force keeps" relaunching" the Moon ever higher, resulting in the Moon's recession from the Earth along a tightly wound spiral orbit. See Ref. [13] for a discussion of forces along the spiral trajectory.) However, since the orbital period of the Moon increases at smaller rate than the length of the day does, both periods will eventually match. The Earth will be then tidally locked with the Moon, and the length of the day and the month will both be equal to some 50 present days, with the same side of Earth always facing the Moon. Note that the same side of the Moon already always faces the Earth, as the tidal action of the Earth on the Moon caused the Moon's original spin to slow down, and Moon became tidally locked with the Earth long time ago, in the sense that the Moon spins once on its axis for each revolution around the Earth.

Once the Earth becomes tidally locked with the Moon, the solar tides will tend to slow the Earth's rotation even more, so the day will be longer than the month and the Moon will rise in the West and set in the East. The water spheroid generated by the Sun will cause the high tide to appear earlier than the time of highest moon, a situation exactly opposite to that of Fig. 2. Then the tidal force of Earth on the Moon will pull the Moon into a lower orbit and eventually inside the Roche limit (18500 km), whereupon the Moon will disintegrate producing a ring around the Earth. [8]

Why is the water spheroid not aligned with the Moon?

A glance at Fig. 2 may suggest an explanation for the misalignment of the tidal spheroid and the Earth-Moon line and the resulting lag of a high tide with respect to the overhead position of the Moon. Due to the Earth's rotation, the speed of points on the Earth surface near the equator is about 1670 km/h. On the other hand, speed of very long waves on the surface of a relatively shallow water is determined by the Earth's gravity g and the depth of the ocean h, $v = \sqrt{gh}$. Assuming the average value for the oceans depth h = 4.0 km, one obtains v = 700 km/h. So a popular explanation claims that the traveling tidal wave simply can't move fast enough to remain directly under the Moon and ends up being carried away by Earth's rotation. Note that the speed of points along the Antarctic Circle at 66°33'39" S latitude is some 660 km/h, so the circulating tidal wave could actually keep up with the Earth-Moon line despite the rotation of the Earth.

Such an explanation ignores a crucial dynamic character of the periodic tide-rising forces that for a given location on the Earth has a period $T=12\ h\ 25min$. The observed tides are a steady-state response of the oscillating ocean to this external periodic driving force. For a simplest model for this response, imagine a hypothetical wide canal encircling the whole Earth along the equator. The surface of the water in the canal has its own period of natural oscillations T_0 , that could be estimated as a time required for a circulating tidal wave to travel along half of the globe, $T_0=(20000\ km)/(700\ km/h)=29\ h$. Clearly, the period of natural oscillations T_0 is much longer than the period of the driving force T, $T_0>>T$, and the theory of forced oscillations tells us that while the water surface will be forced to oscillate with the period T of the driving force, the response will lag behind the driving force by $\frac{1}{2}$ of the period T, i.e. by about 6 hours. This means that the resulting tidal bulges in the ocean will be perpendicular to the Earth-Moon line [13], certainly a counterintuitive result.

Interestingly, the southern ocean is the only place on Earth where a circulating wave can travel practically unimpeded by land. For a channel encircling the Earth along the 65th parallel whose length is only 0.42 of the equatorial one, the period of natural oscillations of the water surface is some 12 h, which is close to the period of driving tidal force. The system is nearly resonant, and while the resulting forced oscillations will always have the period T, the lag of the response is now ¼ of the period, or about 3 h. Moving further south towards the Antarctic Circle one encounters progressively shorter canals for which the period of natural oscillations T₀ may become shorter than T. Under such conditions, the forced oscillations of the ocean still have the period T of the driving tidal force, but there is no time lag, i.e. one has a direct tide. Since the actual periods of natural oscillations of ocean in these locations may differ from our simple estimates, the value of latitude for which one would have a resonant response is difficult to determine theoretically. It is therefore interesting to note that the tidal lag in southern ocean along 65th parallel is about 2 h, and further south one observes a direct tide.

Falling into a Black Hole

We have seen that the tidal force manifests itself as downward compressional force toward the center of the Earth at point L and a stretching force pulling upward away from the center of the Earth at points C and F. This results in a permanent tidal flattening of Earth's poles since compressional tidal forces of Moon and Sun always add at Earth's poles. This tidal flattening of the poles occurs independent of the rotation of the Earth. Likewise, tidal forces generated by all planets add to the flattening of the Sun's poles. Most of the stars in our galaxy contribute to the tidal force that helps to flatten the galaxy.

What would be a fate of a person who were to fall feet-first into a black hole? That person would not feel the force of gravity, because of being in a free fall (similar to a person in a freely falling elevator or astronaut in orbiting shuttle not feeling her own weight), but would do feel a devastating tidal forces pulling upwards on her head and downwards on her feet, and squeezing her waistline inward [14].

Acknowledgments

I would like to express my sincere thanks to Dr. Clifford E Swartz, the Editor of *The Physics Teacher*, and to my unknown referees, who offered generous comments and suggestions that greatly improved the manuscript prior to publication in *The Physics Teacher* in October of 1999. After the initial publication, I received many valuable comments and corrections, especially from Dr. Donald W. Olson, Dr. Thomas E. Lytle, and Dr. Edward Millet, to whom I am very thankful and whose input I have incorporated into this work. After the revised paper has been posted on the Web, I received numerous additional comments that not only helped me to further improve clarity and accuracy of this most recent version, but also to expand its scope. Special thanks to Dr. Eugene I. Butikov for his recent communication about the resonant nature of tides in a worldwide ocean.

References

- 1. Miami Herald, July 2, 1996.
- 2. I would like to use this opportunity and repeat my appeal to readers (c.f. *The Physics Teacher* 34, p. 525, November 1996), to send me any example of a bad physics they might come across in newspapers or magazines. At the same time I would like to thank all my to-date contributors for their valuable input.
- 3. "Ask Marilyn", Parade Magazine, December 8, 1996.
- 4. "The Sky This Week", Southern Illinoisan, March 27, 1998.
- 5. Jerry Schad, *Physical Science. A Unified Approach*, (Brooks/Cole Publishing Co., Pacific Grove, 1996), 1-st ed., pp. 224-229.
- 6. Larry D. Kirkpatrick and Gerald F. Wheeler, *Physics. A World View*, (Saunders College Publishing, Forth Worth, 1998), 3-rd ed., pp. 93-94.
- 7. Mitchell M. Whithers, "Why Do Tides Exist", The Physics Teacher 31, 394-398 (1993).
- 8. Edward P. Clancy, *The Tides. Pulse of Earth*, (Doubleday and Co, Garden City, New York, 1968).
- 9. Clifford E. Swartz, private communication.
- 10. "Ask Marilyn", Parade Magazine, January 8, 1995.
- 11. Donald W. Olson and Thomas E. Lytle, "High Tides?", *The Physics Teacher* **37**, 517 (1999).
- 12. Charles W. Misner, Kip S. Thorne, John A. Wheeler, *Gravitation*, (W. H. Freeman, San Francisco, 1973).
- 13. Eugene I. Butikov, "A Dynamical Picture of the Oceanic Tides", *American Journal of Physics*, **70** (10), 1001-1011 (2002).
- 14. Edward Millet, "Another Important Component of Tides", *The Physics Teacher* **38**, 4 (2000).

The Lagrange Points

There are five equilibrium points to be found in the vicinity of two orbiting masses. They are called *Lagrange Points* in honour of the French-Italian mathematician Joseph Lagrange, who discovered them while studing the restricted three-body problem. The term "restricted" refers to the condition that two of the masses are very much heavier than the third. Today we know that the full three-body problem is chaotic, and so cannot be solved in closed form. Therefore, Lagrange had good reason to make some approximations. Moreover, there are many examples in our solar system that can be accurately described by the restricted three-body problem.

Figure 1: The restricted three-body problem

The procedure for finding the Lagrange points is fairly straightforward: We seek solutions to the equations of motion which maintain a constant separation between the three bodies. If M_1 and M_2 are the two masses, and \vec{r}_1 and \vec{r}_2 are their respective positions, then the total force exerted on a third mass m, at a position \vec{r} , will be

$$\vec{F} = -\frac{GM_1m}{|\vec{r} - \vec{r_1}|^3}(\vec{r} - \vec{r_1}) - \frac{GM_2m}{|\vec{r} - \vec{r_2}|^3}(\vec{r} - \vec{r_2}). \tag{1}$$

The catch is that both \vec{r}_1 and \vec{r}_2 are functions of time since M_1 and M_2 are orbiting each other. Undaunted, one may proceed and insert the orbital

solution for $\vec{r}_1(t)$ and $\vec{r}_2(t)$ (obtained by solving the two-body problem for M_1 and M_2) and look solutions to the equation of motion

$$\vec{F}(t) = m \frac{d^2 \vec{r}(t)}{dt^2} \,, \tag{2}$$

that keep the relative positions of the three bodies fixed. It is these *stationary* solutions that are know as Lagrange points.

The easiest way to find the stationary solutions is to adopt a co-rotating frame of reference in which the two large masses hold fixed positions. The new frame of reference has its origin at the center of mass, and an angular frequency Ω given by Kepler's law:

$$\Omega^2 R^3 = G(M_1 + M_2). (3)$$

Here R is the distance between the two masses. The only drawback of using a non-inertial frame of reference is that we have to append various pseudoforces to the equation of motion. The effective force in a frame rotating with angular velocity $\vec{\Omega}$ is related to the inertial force \vec{F} according to the transformation

$$\vec{F}_{\Omega} = \vec{F} - 2m \left(\vec{\Omega} \times \frac{d\vec{r}}{dt} \right) - m \vec{\Omega} \times (\vec{\Omega} \times \vec{r}) . \tag{4}$$

The first correction is the coriolis force and the second is the centrifugal force. The effective force can be derived from the generalised potential

$$U_{\Omega} = U - \vec{v} \cdot (\vec{\Omega} \times \vec{r}) + \frac{1}{2} (\vec{\Omega} \times \vec{r}) \cdot (\vec{\Omega} \times \vec{r}), \qquad (5)$$

as the generalised gradient

$$\vec{F}_{\Omega} = -\nabla_{\vec{r}} U_{\Omega} + \frac{d}{dt} \left(\nabla_{\vec{v}} U_{\Omega} \right) . \tag{6}$$

The velocity dependent terms in the effective potential do not influence the positions of the equilibrium points, but the are crucial in determining the dynamical stability of motion about the equilibrium points. A plot of U_{Ω} with $\vec{v}=0,\ M_1=10M_2=1$ and R=10 is shown in Figure 2. The extrema of the generalised potential are labeled L1 through L5.

Figure 2: A countour plot of the generalised potential.

Choosing a set of cartesian coordinates originating from the center of mass with the z axis alined with the angular velocity, we have

$$\vec{\Omega} = \Omega \hat{k}$$

$$\vec{r} = x(t) \hat{i} + y(t) \hat{j}$$

$$\vec{r}_1 = -\alpha R \hat{i}$$

$$\vec{r}_2 = \beta R \hat{i}$$
(7)

where

$$\alpha = \frac{M_2}{M_1 + M_2}, \quad \beta = \frac{M_1}{M_1 + M_2}.$$
 (8)

To find the static equilibrium points we set the velocity $\vec{v} = d\vec{r}/dt$ to zero and seek solutions to the equation $\vec{F}_{\Omega} = \vec{0}$, where

$$\vec{F}_{\Omega} = \Omega^{2} \left(x - \frac{\beta(x + \alpha R)R^{3}}{((x + \alpha R)^{2} + y^{2})^{3/2}} - \frac{\alpha(x - \beta R)R^{3}}{((x - \beta R)^{2} + y^{2})^{3/2}} \right) \hat{\mathbf{1}}$$

$$\Omega^{2} \left(y - \frac{\beta y R^{3}}{((x + \alpha R)^{2} + y^{2})^{3/2}} - \frac{\alpha y R^{3}}{((x - \beta R)^{2} + y^{2})^{3/2}} \right) \hat{\mathbf{j}}.$$
(9)

Here the mass m has been set equal to unity without loss of generality. The brute-force approach for finding the equilibrium points would be to set the magnitude of each force component to zero, and solve the resulting set of coupled, fourteenth order equations for x and y. A more promising approach is to think about the problem physically, and use the symmetries of the system to guide us to the answer.

Since the system is reflection-symmetric about the x-axis, the y component of the force must vanish along this line. Setting y = 0 and writing $x = R(u + \beta)$ (so that u measures the distance from M_2 in units of R), the condition for the force to vanish along the x-axis reduces to finding solutions to the three fifth-order equations

$$u^{2}((1-s_{1})+3u+3u^{2}+u^{3}) = \alpha(s_{0}+2s_{0}u+(1+s_{0}-s_{1})u^{2}+2u^{3}+u^{4}), (10)$$

where $s_0 = \text{sign}(u)$ and $s_1 = \text{sign}(u+1)$. The three cases we need to solve have (s_0, s_1) equal to (-1, 1), (1, 1) and (-1, -1). The case (1, -1) cannot occur. In each case there is one real root to the quintic equation, giving us the positions of the first three Lagrange points. We are unable to find closed-form solutions to equation (10) for general values of α , so instead we seek approximate solutions valid in the limit $\alpha \ll 1$. To lowest order in α , we find the first three Lagrange points to be positioned at

$$L1: \qquad \left(R\left[1-\left(\frac{\alpha}{3}\right)^{1/3}\right], 0\right),$$

$$L2: \qquad \left(R\left[1+\left(\frac{\alpha}{3}\right)^{1/3}\right], 0\right),$$

$$L3: \qquad \left(-R\left[1+\frac{5}{12}\alpha\right], 0\right). \tag{11}$$

For the earth-sun system $\alpha \approx 3 \times 10^{-6}$, $R=1\,\mathrm{AU}\approx 1.5\times 10^8\,\mathrm{km}$, and the first and second Lagrange points are located approximately 1.5 million kilometers from the earth. The third Lagrange point - home of the mythical planet X - orbits the sun just a fraction further out than the earth.

Identifying the remaining two Lagrange points requires a little more thought. We need to balance the centrifugal force, which acts in a direction radially outward from the center of mass, with the gravitational force exerted by the two masses. Clearly, force balance in the direction perpendicular to centrifugal force will only involve gravitational forces. This suggests that we should resolve the force into directions parallel and perpendicular to \vec{r} . The appropriate projection vectors are $x\hat{\imath} + y\hat{\jmath}$ and $y\hat{\imath} - x\hat{\jmath}$. The perpendicular projection yields

$$F_{\Omega}^{\perp} = \alpha \beta y \Omega^2 R^3 \left(\frac{1}{((x - R\beta)^2 + y^2)^{3/2}} - \frac{1}{((x + R\alpha)^2 + y^2)^{3/2}} \right). \tag{12}$$

Setting $F_{\Omega}^{\perp}=0$ and $y\neq 0$ tells us that the equilibrium points must be equidistant from the two masses. Using this fact, the parallel projection simplifies to read

$$F_{\Omega}^{\parallel} = \Omega^2 \frac{x^2 + y^2}{R} \left(\frac{1}{R^3} - \frac{1}{((x - R\beta)^2 + y^2)^{3/2}} \right). \tag{13}$$

Demanding that the parallel component of the force vanish leads to the condition that the equilibrium points are at a distance R from each mass. In other words, L4 is situated at the vertex of an equilateral triangle, with the two masses forming the other vertices. L5 is obtained by a mirror reflection of L4 about the x-axis. Explicitly, the fourth and fifth Lagrange points have coordinates

$$L4: \qquad \left(\frac{R}{2} \left(\frac{M_1 - M_2}{M_1 + M_2}\right), \frac{\sqrt{3}}{2} R\right),$$

$$L5: \qquad \left(\frac{R}{2} \left(\frac{M_1 - M_2}{M_1 + M_2}\right), -\frac{\sqrt{3}}{2} R\right). \tag{14}$$

Stability Analysis

Having established that the restricted three-body problem admits equilibrium points, our next task is to determine if they are stable. Usually it is enough to look at the shape of the effective potential and see if the equilibrium points occur at hills, valleys or saddles. However, this simple criterion fails when we have a velocity dependent potential. Instead, we must perform a linear stability analysis about each Lagrange point. This entails linearising the equation of motion about each equilibrium solution and solving for small

departures from equilibrium. Writing

$$x = x_i + \delta x, \quad v_x = \delta v_x, x = y_i + \delta y, \quad v_y = \delta v_y,$$
 (15)

where (x_i, y_i) is the position of the *i*-th Lagrange point, the linearised equations of motion become

$$\frac{d}{dt} \begin{pmatrix} \delta x \\ \delta y \\ \delta v_x \\ \delta v_y \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{d^2 U_{\Omega}}{dx^2} & \frac{d^2 U_{\Omega}}{dx dy} & 0 & 2\Omega \\ \frac{d^2 U_{\Omega}}{dy dx} & \frac{d^2 U_{\Omega}}{dy^2} & -2\Omega & 0 \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta v_x \\ \delta v_y \end{pmatrix} .$$
(16)

Here the second derivatives of U_{Ω} are evaluated at $\vec{r} = (x_i, y_i)$.

Stability of L1 and L2

The stability of the first and second Lagrange points of the earth-sun system is an important consideration for some NASA missions. Currently the solar observatory SOHO is parked at L1, and NASA plans to send the Microwave Anisotropy Probe (MAP) out to L2. It has also be suggested that the Next Generation Space Telescope (NGST) should be positioned at L2.

The curvature of the effective potential near L1 and L2 reveals them to be saddle points:

$$\frac{d^2 U_{\Omega}}{dx^2} = \mp 9\Omega^2, \quad \frac{d^2 U_{\Omega}}{dy^2} = \pm 3\Omega^2, \quad \frac{d^2 U_{\Omega}}{dxdy} = \frac{d^2 U_{\Omega}}{dydx} = 0.$$
(17)

Solving for the eigenvalues of the linearised evolution matrix we find

$$\lambda_{\pm} = \pm \Omega \sqrt{1 + 2\sqrt{7}}$$
 and $\sigma_{\pm} = \pm i\Omega \sqrt{2\sqrt{7} - 1}$. (18)

The presence of a positive, real root tells us that L1 and L2 are dynamically unstable. Small departures from equilibrium will grow exponentially with a

e-folding time of

$$\tau = \frac{1}{\lambda_+} \approx \frac{2}{5\Omega} \,. \tag{19}$$

For the earth-sun system $\Omega=2\pi\,{\rm year^{-1}}$ and $\tau\approx23$ days. In other words, a satellite parked at L1 or L2 will wander off after a few months unless course corrections are made.

Stability of L3

A popular theme in early science fiction stories was invasion by creatures from Planet X. The requirement that Planet X remain hidden behind the sun places it at the L3 point of the earth-sun system. Unfortunately for our would-be invaders, the L3 point is a weak saddle point of the effective potential with curvature

$$\frac{d^2 U_{\Omega}}{dx^2} = -3\Omega^2 \,, \quad \frac{d^2 U_{\Omega}}{dy^2} = \frac{7M_2}{8M_1} \,\Omega^2 \,, \quad \frac{d^2 U_{\Omega}}{dxdy} = \frac{d^2 U_{\Omega}}{dydx} = 0 \,. \tag{20}$$

To leading order in M_2/M_1 , the eigenvalues of the linearised evolution matrix are

$$\lambda_{\pm} = \pm \Omega \sqrt{\frac{3M_1}{8M_2}}$$
 and $\sigma_{\pm} = \pm i\Omega \sqrt{7}$. (21)

The real, positive eigenvalue spells disaster for Planet X. Its orbit is exponentially unstable, with an e-folding time of roughly $\tau=150$ years. While there can be no Planet X, the long e-folding time makes L3 a good place to park your invasion force while final preparations are made...

Stability of L4 and L5

The stability analysis around L4 and L5 yields something of a suprise. While these points correspond to local maxima of the generalised potential - which usually implies a state of unstable equilibrium - they are in fact stable. Their stability is due to the coriolis force. Initially a mass situated near L4 or L5 will tend to slide down the potential, but as it does so it picks up speed and the coriolis force kicks in, sending it into an orbit around the Lagrange point. The effect is analogous to how a hurricane forms on the surface of the earth: as air rushes into a low pressure system it begins to rotate because of the

coriolis force and a stable vortex is formed. Explicitly, the curvature of the potential near L4 is given by

$$\frac{d^2 U_{\Omega}}{dx^2} = \frac{3}{4} \Omega^2, \quad \frac{d^2 U_{\Omega}}{dy^2} = \frac{9}{4} \Omega^2, \quad \frac{d^2 U_{\Omega}}{dx dy} = \frac{d^2 U_{\Omega}}{dy dx} = \frac{3\sqrt{3}}{4} \kappa \Omega^2, \tag{22}$$

where $\kappa = (M_1 - M_2)/(M_1 + M_2)$. The eigenvalues of the linearised evolution matrix are found to equal

$$\lambda_{\pm} = \pm i \, \frac{\Omega}{2} \sqrt{2 - \sqrt{27\kappa^2 - 23}}$$

$$\sigma_{\pm} = \pm i \, \frac{\Omega}{2} \sqrt{2 + \sqrt{27\kappa^2 - 23}}.$$
(23)

The L4 point will be stable if the eigenvalues are pure imaginary. This will be true if

$$\kappa^2 \ge \frac{23}{27} \quad \text{and} \quad \sqrt{27\kappa^2 - 23} \le 2.$$
(24)

The second condition is always satisfied, while the first requires

$$M_1 \ge 25M_2\left(\frac{1+\sqrt{1-4/625}}{2}\right)$$
 (25)

When the L4 and L5 points yield stable orbits they are refered to as Trojan points after the three Trojan asteroids, Agamemnon, Achilles and Hector, found at the L4 and L5 points of Jupiter's orbit. The mass ratios in the earth-sun and earth-moon system are easily large enough for their L4 and L5 points to be home to Trojan satellites, though none have been found.

Author

These notes were written by Neil J. Cornish with input from Jeremy Goodman.

Mathematics

- (a) Definition
- (b) Free Oscillation
- (c) Damped Oscillation
 - (i) Overdamping
 - (ii) Critical damping
 - (iii) Underdamping
- (d) Forced Oscillation. (i) Driven Oscillation of Pure Harmonic Oscillator

 - Real Harmonic Oscillator (ii) Driven Oscillation of
 - (iii) Average Power Dissipation
- 2. Simple Harmonic Oscillation
 - (a) Spring
 - (i) Equation of Motion.

$$a \frac{d^2x}{dt^2} + b \frac{dx}{dt} + cx = 0$$

a, b, c are constant

$$b=0$$
 free oscillation $F=-kx$

$$F = -kx$$

$$m \frac{d^2x}{dt^2} = -kx$$

$$(a = m; c = k, b = 0)$$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x \qquad \qquad \omega^2 = \frac{k}{m} > 0$$
$$= -\omega^2 x \qquad \qquad \omega^2 = \frac{k}{m} = \frac{C}{a}$$

$$\Rightarrow x(t) = A \sin \omega t + B \cos \omega t$$

On the other hand
$$a \frac{d^2x}{at} + cx = 0 \Rightarrow \frac{d^2x}{at} = -\frac{c}{a}x$$
If $\frac{c}{a} < 0$, then $\omega^2 = -\frac{c}{a} > 0$

$$\frac{d^2x}{dt^2} = +\omega^2x$$

$$\Rightarrow x(t) = Ae^{\omega t} + Be^{-\omega t}$$

A, B are determined by the initial conditions.

Damped Oscillation

$$a \frac{d^2x}{dt^2} + b \frac{dx}{dt} + cx = 0$$

$$Ansat_3 \qquad x(t) = e^{-bt/2a} f(t)$$

$$\frac{dx}{dt} = e^{-bt/2a} \frac{df}{dt} + e^{-bt/2a} \left(-\frac{b}{2a}\right) f$$

$$\frac{d^2x}{dt} = e^{-bt/2a} \frac{d^2f}{dt} + e^{-bt/2a} \left(-\frac{b}{2a}\right) \frac{df}{dt}$$

$$+ e^{-bt/2a} \left(-\frac{b}{2a}\right) \frac{df}{dt} + e^{-bt/2a} \left(-\frac{b}{2a}\right)^2 f$$

$$LHS = e^{-bt/2a} \times \left[a \frac{d^2f}{dt^2} - \frac{b}{2} \frac{df}{dt} - \frac{b}{2} \frac{df}{dt} + \frac{b^2}{4a^2} f\right]$$

$$+ b \frac{df}{dt} - \frac{b^2}{2a} f + cf d = 0$$

$$\Rightarrow a \frac{d^2f}{dt^2} = \frac{b^2 - 4ac}{4a} f$$

$$\Rightarrow \frac{d^2f}{dt^2} = \frac{b^2 - 4ac}{4a} f$$

$$F = -kx - bx'$$

$$mx' = -kx - b''x'$$

$$mx' + b''x' + kx = 0$$

$$a + b + c$$

$$a + c + c$$

$$b + c + c$$

$$a + c + c$$

$$b + c$$

$$b + c$$

$$c + c$$

$$c$$

$$\frac{b^{2}-4ac}{4a^{2}} > 0 \qquad \Rightarrow \qquad \omega < \frac{b}{2a}$$

$$\frac{d^{2}f}{dt^{2}} = \omega^{2}t \qquad \Rightarrow \qquad f = Ae^{\omega t} + Be^{-\omega t}$$

$$\Rightarrow \qquad \chi(t) = e^{-\frac{b}{2a}t} \left[Ae^{\omega t} + Be^{-\omega t}\right]$$

A, B are constants to be determined by initial condition

A, B are constants to be determined by initial condition

The motion of the displacement is always decreasing

Critical Damping
$$b^{2}-4ac = 0 \Rightarrow b^{2}=4ac$$

$$\Rightarrow \frac{d^{2}f}{dt^{2}} = 0$$

$$f(t) = A + Bt$$

$$\Rightarrow \chi(t) = e^{-bt/2a} (A + Bt)$$

Underdamping

$$\frac{b^{2}-4ac}{4a^{2}} < 0$$
Let $\omega^{2} = \frac{4ac-b^{2}}{4a^{2}} > 0$, then $\frac{d^{2}f}{dt^{2}} = -\omega^{2}f$

$$f(t) = A\sin\omega t + B\cos\omega t$$

$$\Rightarrow \chi(t) = e^{-bt/2a} \quad (A\sin\omega t + B\cos\omega t)$$

$$\Rightarrow be$$

$$A, B \text{ are constants to } determined by initial conditions}$$

Inhomogeneous D.E.

The inhomogeneous term F(t) represents an external driven force

$$a\ddot{x} + b\dot{x} + cx = F(t).$$

We are mainly interested in a periodically driven force $F_0\cos\omega t$ where ω is the external angular frequency which can varied over a range. The general solution is the homogeneous solution plus a particular solution

$$x(t) = Ae^{\alpha_1 t} + Be^{\alpha_2 t} + p(t),$$

so that

$$a\ddot{p} + b\dot{p} + cp = F(t).$$

Driven Oscillation of Pure Harmonic Oscillator

The inhomogeneous D.E. is

$$\ddot{x} + \omega_0^2 x = (F_0/m)\cos\omega t.$$

(i) For $\omega \neq \omega_0$ we can take $p(t) = D\cos \omega t$. Then

$$-\omega^2 D\cos\omega t + \omega_0^2 D\cos\omega t = (F_0/m)\cos\omega t,$$

giving

$$D = \frac{F_0}{m(\omega_0^2 - \omega^2)},$$

So the particular solution represents an "in phase motion" with the external driven periodic force.

external driven periodic force.

The general solutions for

$$\dot{x} + \omega_o^2 x = 0$$

$$\Rightarrow x_g = A \sin \omega t + B \cos \omega t$$

$$\Rightarrow x(t) = A \sin \omega t + B \cos \omega t + \frac{F_o}{m(\omega_o^2 - \omega^2)}$$

(ii) For $\omega = \omega_0$ we would take $p(t) = Dt \sin \omega t$,

$$(-\omega^2 Dt \sin \omega t + 2\omega D\cos \omega t) + \omega^2 Dt \sin \omega t = (F_0/m)\cos \omega t,$$

giving

$$D = \frac{F_0}{2m\omega} \,.$$

So the particular solution at resonance ($\omega=\omega_0$) gives a displacement growing with time, absorbing energy from the driven force. In order to attain this, part of the velocity must be in phase with the external force. So there is an abrupt phase change at resonance.

、ロ・ 4 暦 × 4 暦 × 3 声 1 - 1 著 - 20 Q CP

(ii) For $\omega = \omega_0$ we would take $p(t) = Dt \sin \omega t$,

 $(-\omega^2 Dt \sin \omega t + 2\omega D\cos \omega t) + \omega^2 Dt \sin \omega t = (F_0/m)\cos \omega t,$

giving

$$D = \frac{F_0}{2m\omega} \,.$$

So the particular solution at resonance ($\omega=\omega_0$) gives a displacement growing with time, absorbing energy from the driven force. In order to attain this, part of the velocity must be in phase with the external force. So there is an abrupt phase change at resonance.

スロスス間とス装とえまと 著 夕久の

$$p(t) = Dt sin \omega t$$

$$\frac{dP}{dt} = Dt w \cos \omega t + D \sin \omega t$$

$$\frac{dP}{dt} = Dt \omega \cos \omega t + D \sin \omega t$$

$$\frac{d^2P}{dt^2} = Dt(-\omega^2)\sin \omega t + D \omega \cos \omega t + D \omega \cos \omega t$$

$$\frac{d^2P}{dt^2} = Dt(-\omega^2)\sin \omega t + D \omega \cos \omega t + D \omega \cos \omega t$$

$$\frac{d^2P}{dt^2} = Dt(-\omega^2)\sin\omega t + D\omega\cos\omega t$$

$$\Rightarrow (-\omega^2 Dt\sin\omega t + 2\omega D\cos\omega t) + \omega^2 Dt\sin\omega t$$

$$\Rightarrow -F_0\cos\omega t$$

$$=\frac{F_o}{m}\cos\omega t$$

$$\Rightarrow D = \frac{F_o}{2m\omega}$$

$$\Rightarrow x(t) = A \sin \omega t + B \cos \omega t + \frac{F_0}{2m\omega} t \sin \omega t$$

Driven Oscillation of a Real Oscillator $F = -kx - bv + F_0 \cos \omega t$ $m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = F_0 \cos \omega t$ solution of the homogeneous equation $m\frac{d^2p}{dt^2} + \lambda \frac{dP}{dt} + kp = F_0 \cos \omega t$

$$m\ddot{p} + \lambda \ddot{p} + kp - F_{o}\cos\omega t = 0 \implies m\ddot{p} + \lambda \ddot{p} + \frac{k}{m}mp - F_{o}\cos\omega t$$

$$p(t) = C \sin(\omega t + \delta)$$

$$p(t) = C (-\omega^{2})\sin(\omega t + \delta)$$

$$p(t) = C(-\omega^{2})\sin(\omega t + \delta)$$

$$p(t) = C(-\omega^{2})\sin(\omega t + \delta) + \lambda \omega c \cos(\omega t + \beta) - F_{o}\cos\omega t = 0 \qquad (A)$$

$$(\omega_{o}^{2} - \omega^{2}) mc \sin(\omega t + \delta) + \lambda \omega c \cos(\omega t + \beta) - F_{o}\cos\omega t = 0 \qquad (A)$$

$$\cos(\alpha - \omega^{2}) mc \sin(\omega t + \delta) + \sin\delta \sin(\omega t + \delta)$$

$$\cos(\alpha t + \delta) = \cos\delta \cos(\omega t + \delta) + \sin\delta \sin(\omega t + \delta)$$

$$\cos(\alpha t + \delta) = \cos\delta \cos(\omega t + \delta) + \cos\delta \sin(\omega t + \delta) + (\lambda \omega c - F_{o}\cos\delta) \cos(\omega t + \delta) = 0$$

$$\sin(\omega_{o}^{2} - \omega^{2}) c = F_{o}\sin\delta \qquad (B)$$

$$\Rightarrow \lambda \omega c = F_{o}\cos\delta$$

$$(\omega_{o}^{2} - \omega^{2}) c = F_{o}^{2}\sin\delta$$

$$(\omega_{o}^{2} - \omega^{2}) c = F_{o}^{2}\sin\delta$$

$$c^{2} \left[(\omega_{o}^{2} - \omega^{2}) m^{2} + \lambda^{2}\omega^{2} \right] = F_{o}^{2}$$

$$c^{2} \left[(\omega_{o}^{2} - \omega^{2}) m^{2} + \lambda^{2}\omega^{2} \right] = F_{o}^{2}$$

$$c^{2} \left[(\omega_{o}^{2} - \omega^{2}) m^{2} + \lambda^{2}\omega^{2} \right]$$

$$\tan\delta = \frac{\sin\delta}{\cos\delta}$$

$$= \frac{\sin\delta}{\lambda \omega}$$
The mathematical problem has been solved
$$x(t) = e^{-bt/2a} f(t) + p(t)$$

Time Average Steady - State Power Transferred into the Oscillator from the Deriving Force $\langle P \rangle = \frac{1}{T} \int_{0}^{T} P(t) dt = \frac{1}{T} \int_{0}^{T} f_{DR}(t) v(t) dt$ $\int_{0}^{\infty} \frac{dx}{dt} \qquad \int_{0}^{\infty} T = period$ $\int_{0}^{\infty} WT = 2\pi$ $\int_{0}^{\infty} P = \frac{dW}{dt}$ $= \frac{1}{T} \int_{0}^{T} F_{o} \cos \omega t \ P(t) \ dt$ Cw cos (wt+8) cos(A+B) = cosA cosB - sinA sinBA= wt, B=S $cos(\omega t + \delta) = cos\omega t cos\delta - sin\omega t sin\delta$ Fo cos & = C \lambda W $F_o \sin \delta = (\omega_o^2 - \omega^2) Cm$ = + ST Fo coswt [cw coswt coso - cwsinwt sins] dt = IFo cw coss St cos wt at - IF Fo sind St cos wt sinwt at = Focwcoss

$$\int_{0}^{T} \frac{1}{2} (sin z\omega t) dt = 0$$

$$sin \omega t \cos \omega t$$

$$\cos^{2} \omega t - sin^{2} \omega t = 2 \cos^{2} \omega t - 1$$

$$\cos z \omega t$$

$$\int_{0}^{T} \cos^{2} \omega t dt = \int_{0}^{T} \int_{0}^{T} \left[\frac{1}{2} (1 + 2 \cos 2\omega t) \right] dt$$

$$\int_{0}^{T} \sin 2\omega t dt \qquad \omega T = 2\pi$$

$$\omega t = x \qquad t = 0 \qquad x = 0$$

$$t = T \qquad x = \omega T = 2\pi$$

$$\omega t = dx$$

$$dt = dx$$

$$dt = dx$$

$$dt = \frac{1}{\omega} \int_{0}^{2\pi} \sin x dx$$

$$= \frac{1}{\omega} \int_{0}^{2\pi} \sin x dx = 0$$

$$\int_{0}^{T} \cos^{2} \omega t dt = 0 \quad using the same argument$$

$$\Rightarrow \int_{0}^{T} \cos^{2} \omega t dt = \frac{1}{2} \qquad (See Figure in MISN-0-31)$$

$$\int_{0}^{T} \cos \omega t \sin \omega t dt = 0$$

Elimating the Phase Angle
$$tan\delta = \frac{\omega_o^2 - \omega^2}{\lambda \omega}$$

>

=

$$m(\omega_o^2 - \omega^2)$$

$$= \frac{\lambda \omega}{\sqrt{\lambda^2 \omega^2 + m^2 (\omega^2 - \omega_o^2)^2}}$$

$$= \frac{F_o \omega \otimes \cos \delta}{2} \qquad c = \frac{F_o}{\sqrt{\lambda^2 \omega^2 + m^2 (\omega_o^2 - \omega^2)}}$$

$$= \frac{F_o \omega c \lambda \omega}{2\sqrt{\lambda^2 \omega^2 + m^2 (\omega_o^2 - \omega^2)}}$$

 $\frac{f_o^2 \omega^2 \lambda}{2 \left[m^2 (\omega_o^2 - \omega^2)^2 + \lambda^2 \omega^2 \right]}$

Real Oscillator Forced Harmonic Oscillation of a

$$F = -kx - \lambda v + F_0 \cos \omega t$$

$$\int_{mq}^{\infty} dt$$

 $m\ddot{x} + \lambda \dot{x} + kx = f_o \cos \omega t$

Solution: $x(t) = x_g(t) + p(t)$ $\begin{cases} & & \\$

Overdamping $f(t) = Ae^{\omega t} + Be^{-\omega t}$ f(t) = A + BtCritical Underdamping f(t) = A sinwt + B coswt

t increase, the p(t) dominates As

 $\chi(t) \rightarrow p(t) = C \sin(\omega t + \delta)$ steady state solution

 $\omega_o^2 = \frac{R}{m}$

 $tan\delta = \frac{\omega_o^2 - \omega^2}{\sqrt{\omega_o^2 + \omega^2}}$

 $m(\omega_o^2-m^2)$

大 \rightarrow distribution wide

Maximum occur at $\omega = \omega_0$

 $\omega_{1/2}$

Definition

$$\langle P \rangle_{\omega_{y_2}} = \frac{1}{2} \langle P \rangle_{\omega_0}$$

$$F^2 \omega_{ij}^2 X$$

$$\frac{F_0^2 \omega_{1/2}^2 \chi}{m^2 (\omega_0^2 - \omega_{1/2}^2)^2 + \lambda^2 \omega_{1/2}^2} = \frac{1}{2} \frac{F_0^2 \omega_0^2 \chi}{\lambda^2 \omega_0^2}$$

$$\Rightarrow \qquad \omega_0^2 - \omega_{y_2}^2 = \pm \lambda \, \omega_{y_2} / m$$

$$(\omega_0 + \omega_{V_2})(\omega_0 - \omega_{V_2}) = \pm \lambda \omega_{V_2}/m$$

$$\omega_0 \sim \omega_{V_2}$$
 (narrow width approximation)

$$\omega_o + \omega_{y_2} \approx 2\omega_o$$

$$\Rightarrow (\omega_o - \omega_{y_2}) 2\omega_o = \pm \lambda \omega_o$$

$$\omega_{1/2} = \omega_0 \pm \frac{\lambda/m}{r}$$

$$\langle P \rangle_{\omega} = \frac{F_o^2 \Gamma / 8m}{(\omega - \omega_o)^2 + (\Gamma/2)^2}$$

$$\langle p \rangle_{\omega_o} = \frac{F_o^2}{2\Gamma m}$$

Examples of Simple Harmonic Motion

- Particle Moving on a circle with radius A and constant angular velocity W.
- A Single Pendulum $m \ell \frac{d^2\theta}{dt^2} = -mg \sin\theta$

$$\frac{d^2\theta}{dt^2} = -(g/g) \sin\theta$$

$$\frac{d^2\theta}{dt^2} \cong -\left(\frac{9}{\ell}\right) \theta$$

$$\sin \theta \simeq \theta - \frac{1}{3!} \theta^3 \Rightarrow aharmonic$$

can be solved by perturbation

Coupled oscillation

Parall
$$k = k_{1} + k_{2}$$

$$k_{1} + k_{2}$$

$$k_{2} + k_{3}$$

$$k_{4} + k_{2}$$

$$k_{5} + k_{2}$$

$$k_{6} + k_{2}$$

$$k_{1} + k_{2}$$

$$k_{1} + k_{2}$$

$$k_{2} + k_{3}$$

$$k_{2} + k_{3}$$

$$k_{1} + k_{2}$$

$$k_{2} + k_{3}$$

$$k_{3} + k_{2}$$

$$k_{4} + k_{2}$$

$$k_{4} + k_{2}$$

$$k_{5} + k_{2}$$

$$k_{6} + k_{7} + k_{1}$$

$$k_{7} + k_{1} + k_{2}$$

$$k_{8} +$$

decoupled
normal mode

r wide

Two, Three dimensional problem

RLC Circuits (P. 926)

Vo sin
$$\omega t - 4 \frac{d^2Q}{dt^2} - R \frac{dQ}{dt} - \frac{Q}{C} = 0$$

is sin $\omega t = 0$

Fo sin $\omega t - m \frac{d^2X}{dt^2} - b \frac{dX}{dt} - kx = 0$

$$\frac{1}{C} \qquad k$$

R

Vo sin $\omega t = 0$

Vo sin $\omega t = 0$

Vo sin $\omega t = 0$

Vo sin $\omega t = 0$
 $\omega t =$

			Ą.	

分類	:		
編號	:		•
總號	:	200	

7		上	上厅	-15 1
÷.	$/ \setminus$	12/		重か
•••••			and a right to separate	·

第一節 預踏運動 (I)

在抄理中、簡諧連動活着一極重要的地位、我們在此節中特份的地討論此種運動。

到門並將解釋一個質點在其穩定平衡其之附近大多作簡詩運動,我們討論一定立間的情形

某觀念 若一質點之x(t)可寫式

 $x(t) = A \sin(\omega t + \lambda)$

([].

時則稱此質點在作簡詩草南 1.2,3

曲数 え(t+ 部) = x(t)、田北元是一週期運動,其週期為 T= 部、其頻率ン= 部

在第11)式中 A是該質點之最大位移,又稱為振幅。 Wt+又 則稱為相角,而在

11=0 之相角又則稱為初相角

對第(1)式微分,則可得

 $V(t) = A \omega \cos(\omega t + \lambda)$

(2)

再對第(2)式微分,則可得

 $\dot{a}(t) = -A\omega^2 \sin(\omega t + \lambda)$

(3)

比較第11)式及第(3)式,我們得到

 $a(t) = -\omega^2 x$

(4)

因此,加速度之大小与任移成正比,但方向却相反。

引入斗頓第二定律,我們得知質點所受之力為

 $F = ma = -m\omega^2 x = -kx$

(5)

此處 九= mw 梅高力常數

-(6)

我侧可以從另外一個角度來討論此一問題、假設一質點所受之外力為

	分類: 編號: 總號:
F = -kx	(7)
則由斗頓第二定律得知	
$m \frac{d^2x}{dt^2} = -kx$	(8)
此為一位分方程式。其普遍能為	
$x(t) = A'\cos wt + B'\cos wt$	(9)
Let $k = \sqrt{\frac{k}{m}}$	(10)
是取决於所能證友及其質量。	
由簡單的代數計算,我們可以證明第(9)式	可寫成第111式而 A, 又为 A', B'
間之関係是	
$A^2 = A'^2 + B'^2$	(11 a)
$tand = \frac{B'}{A'}$	(114)
A, d (或是 A', B') 是由該質點之初位移及	初速所决定、若在t=0時x=x
υ= υ。则我們可以很容易的求得	
$A = \left[x_0^2 + \left(\frac{V_0}{\omega}\right)^2\right]^{\frac{1}{2}}$	(12 a)
$\lambda = tan^{-1} \left(\frac{\omega x_o}{v_o} \right)$	(/2 b)
由上章之結果,我們得知該粒子之位能	是
$E_p = -\int (-kx) dx = \pm kx^2 + C$	(13)
此處 c 為一積分。 我們将取 x=0 之	住能為 0, 則 c = 0. 因此
$E_p = \pm kx^2$	(14)
質點之動能為	
$E_{k} = \frac{1}{2} m v^{2}$	(15)

	編號: 3 總號:
利用第(1),(2),(6),(14) 反(15)式,我們得到該系統之總額	造為
$E = E_p + E_k = \frac{1}{2} m \omega^2 A^2 = \frac{1}{2} k A^{2.5}$	(16)
因此是一常数。此即是能量守恒定律。	
討論.	
(1) 簡諧運動中之簡是指此一運動為單類率, "諧是指其位移	是一正弦曲战。
(2) 簡諧運動是週期運動之最簡單的例子	
(3) 我們對簡諧運動特別重視之理由 (4) 物理方面之理由	7. 在物理中, 簡諧運動
時常發生。我們特在下節少說明在住移夠小時其運動均可	丁以簡諧逆的表示。
(=) ১ 整型上之理由是源自 Fourier 定理, 他在 1827年;	證明任何週期為丁
之運動可由一組週期為 T. 王, 王, 之簡諧運動所	祖成(富然各個振
幅均需適當地選擇)。	
(4) 簡讚運動是局限於 (-A, A) 之間。	
(5) Ep. Ex 及 E 之間的関係可由下周中看出。	***
\(\frac{\x}{2} \frac{\x}{2} \frac{\x}{2} \frac{\x}{2}	
$ \begin{array}{c c} & \downarrow \\ E = \frac{1}{2} \pi A^2 & \downarrow \\ \end{array} $	
FP X	
應用.	
我們現在将至製两個簡諧運動的例子	
$F_{t} = -mg \sin \theta = ma_{t}$ T	
$a_t = \ell \alpha = \ell \frac{a^{20}}{at^2}$ $f_{\mu} = \frac{a^{20}}{h} \frac{a^{20}}{at^2}$ $f_{\mu} = \frac{a^{20}}{at^2}$ $f_{\mu} = \frac{a^{20}}{at^2}$	
$- mg sin 0 = L \frac{ab}{att^2}$	

分類:

	编號:一十
A ² 9 , 9	NE 93. •
$\frac{d^2\theta}{dt^2} + \frac{9}{\ell} \sin \theta = 0$	
雷····································	
用 □ 世小时,5m6 ≃ 0 、上九即可局成	
$\frac{d^2\theta}{dt^2} + \frac{q}{t}\theta = 0$	
at ! (5 -)	Company and the same pass of the same and th
为 m dix + 2x = 0 相比較可得 2 → A 图此此一閱讀。	器点, 1. 含. 去 庄 · 「何
The state of the s	上的之用之反ω=14
电即是其週期為 $T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{2}{9}}$	
3	則正向上も治力
	i .
此其在平衡信(新爱之外力高零)時日	, SA9 4
	,
5 為此液体之密度, A 是表上部之截,	可讀 因此水压力
芝一篇 SAgy 大小向下之沪九 由牛	随定律得
d^2y	
$m \frac{d^2 y}{dt^2} = - f A g y$	
国此該物体作簡諧運動,其角速度 ω = √ 25A ,週期 T =	0 - 1 m
以上,以上,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	= 2N V grA
	
	•
1物体之質量為 1 kg. 在作簡 諧運動其振幅為 (a.01 m) 其影	至年 2 2 4 *
	8 7 MW 2 SEC
在t=0時該質點位於x=0處	
(a) x x(t) [D]	
(b) 求在 t= 萝丁 時之位核速度,動能及位能。 [B]	
(c) 署 位移及位能力時間之関係簡單地輸出 [G]	
(1) 4里 油井 五点的与水型、石层、苔、铅、山、丛、	
(3) 籽速度及動能与時間之関係簡單地繪出。 [1]	
2 物体從事簡諧運動、其質量為 50 kg , 力常設為 2 N/m . i	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	生 t=0 時
鼓物体位於離平衡炎 0.5 m處 而甚速度為寒	
THE RESTRICTION OF THE PROPERTY OF THE PROPERT	
(a) 求該物体 於 $t = 2.5\pi$ sec 時之速度 [c]	

分類:

國立清華大學研究室紀錄

₹ 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	分類: 編號: 5 總號:
D 求該物体之運動週期 [E]	
ω 求該物体於 t= 5π sec 新党之力、 EII	
3. 在一關遊運動中(a)宣信於高二振幅二一半時,面能及住莊各位	總能量之直分比為何么
(b) 當住台為根備之百分之時時 動態及注能指記 [F]	AND
<u> </u>	
[A] 剪肥 75%, 住龍 25% [8] -2.0071 m, -0.599 m/s	ec. 2,0039 J. 90040 J
$[c] -o.1 \text{ m/sec} \qquad [D] x(t) = (0.01 \text{ m}) \sin(4\pi \text{ sec}^{-1} \cdot t)$	
[E] 10 π sec [F] 70.7 %.	1
[G] (XII)	
CHI IN	
$\tau_{v} \rightarrow t$	

顯分料

Mg = Ad

於理舌之正的點之距離

子彈碰撞時,因不受外力故動量守恒

m v. = (m+M) V。 入射彈之速度

牛頓 第二定律 可寫成

 $(m+M)\frac{d^2y}{dt^2} = (m+M)g - ky$

第以上公式, t=0 時 $V_o = -\frac{m U}{M+m}$, $y_o = d$.

 $(m+M)\frac{d^2y}{dt^2} = -k(y - \frac{m+M}{k}g)$

 $y' = y - \frac{m+M}{\hbar} g$, 則上式可寫成

 $(m+M) \frac{d'y'}{dt^2} = -ky'$

 $y' = A \sin(\omega t + \Delta)$

 $y = \frac{m+M}{k}g + A \sin(\omega t + \omega)$

t=0 R $\frac{dy}{dt} = A \omega \cos \omega = -$

 $\frac{m^2g^2}{k^2} + \frac{m^2V^2}{k(m+M)}$

			分類:	
	•		編號。	7
•			總號:	

 $\cos \mathcal{L} = -\frac{m V}{(m+M)} \cdot \frac{1}{A \omega}$

另外一種解 A 之方法是利用能量守恒定律

在迷撞投,此条施受之力均高保守力故能量守恒定律成立.

在剛碰撞後 Ep + Ek = - (m+M)g d + ± kd² + ± (m+M) V3²

在轉向點Y $E_p + E_k = -(m+M)gY + \pm \chi Y^2$

 $-(m+M)gd + \frac{1}{2}kd^2 + \frac{1}{2}(m+M)v^2 = -(m+M)\gamma + \frac{1}{2}k\gamma^2$

由上式中可求出两個轉向點 Y+, Y

振幅 = ½ (Y*-Y*)

分频:
編 <u>號: /</u> 總號:
第二節 簡諧進動(正)
简介。在此節中我們好討論一當實點在其平衡點附近作小振動時,它通常自作
簡讚運動(=) 主商該運動中心物理量之平均值(三)以轉動向量周來描述簡諧運
動之方法(四)關證運動之相重音
基本觀念
(·) 若一外力 F(x) 作用於一質點上、當該質點位於平衡點,則其所受之外力和為
老我們取一坐標模 x=0美台於早衡美則 F(x)可能如圖一中寶縣一下!
题然地, F(x) ±- xx。
-2 -1 1 2 $x \rightarrow$
殿 -
常我們将原點附近放大十倍,則情形就如圖二所示
f(x)
根明顯地,在-0.1 <x<0.1之間, f="-Ax</th"></x<0.1之間,>
国此在此區中,包從事前背運動,而力常數
$-0.2 -0.1 \qquad 0.1 \qquad 0.2 \qquad k = -\frac{dF}{dx}\Big _{x=0} $ (1)
圖 -
此一結果可由另一個方法來解釋。任一在 z。 桌 附近分析函数 f(x) 可利用
泰勒展開法寫成
$f(x) = f(x_0) + \frac{1}{1!} \frac{df}{dx}\Big _{x=x_0} (x-x_0) + \frac{1}{2!} \frac{df}{dx^2}\Big _{x=x_0} (x-x_0)^2 + \cdots $ (2)
$f(x) = f(x_0) + \vec{1} \cdot \frac{dx}{dx}\Big _{x=x_0} (x-x_0) + \vec{2} \cdot \frac{dx^2}{dx^2}\Big _{x=x_0} (x-x_0) + \cdots $ (2)
将 F(x) 用土式在其平衡點 x。=0附近展開.
dF , $J^{2}L$
$F(x) = F(0) + \frac{dF}{dx}\Big _{x=x} x + \frac{1}{2!} \frac{d^2F}{dx^2} x^2 + \cdots$
當 x 夠 v 時, $F(x) \simeq \frac{dF}{dx}/_{x-x} x = -kx$ (3)

分類: 編號: 2	
總號:	_l
同樣的我們將位能函数 Ep(x) 在平衡點(x。=0) 附近用泰勒方法展開	- ·
$E_{p}(x) = E_{p}(0) + \frac{dE_{p}(x)}{dx} \Big _{x=0} x + \frac{1}{2!} \frac{d^{2}E_{p}(x)}{dx^{2}} \Big _{x=0} x^{2} + \frac{1}{3!} \frac{d^{2}E_{p}}{dx^{3}} \Big _{x=0} x^{3} + \cdots$	(4)
在平衡美 $\frac{dE}{dx} = 0$, $\frac{d^2E_p(x)}{dx^2}\Big _{x=0} = \frac{1}{2} > 0$. 图此 當 x 夠小時.	
$E_{p}(x) - E_{p}(0) = \frac{1}{2} Ax^{2}$	(5)
因此質點作簡諧運動	
(=) 若 $f(t) = f(t+T)$ 是一週期函數,則 $f(t)$ 之平均值	
$\langle f(t) \rangle = \frac{1}{T} \int_{0}^{T} f(t) dt$	(6)
在簡諧運動中,	
$x(t) = A \sin(\omega t + \lambda) \qquad v(t) = A \omega \cos(\omega t + \lambda)$	(7)
$E_{p}(x) = \frac{1}{2} kx^{2} \implies E_{p}(t) = \frac{1}{2} kA^{2} sin^{2} (\omega t + \lambda)$	(8)
$E_{k}(x) = \frac{1}{2} m v^{2} \implies E_{k}(t) = \frac{1}{2} m A^{2} \omega^{2} \cos^{2}(\omega t + \lambda)$	(9)
$E = \frac{1}{2} k A^2 , T = \frac{2\pi}{\omega}$	(10)
代入 (6) 式,可得 ⁴	
$\langle x(t) \rangle = \langle v(t) \rangle = 0$	(11)
$\langle E_p \rangle = \langle E_A \rangle = \frac{1}{2} \langle E \rangle$	(/2)
(三) 若一質點在一半徑為 A 之圓周上作等速圆周運動。其自速度為 W,其	於 t=c
時有 x 軸之交角為 月其於 x 軸之投影 $x(t) = A \cos(\omega t + \beta)$	
$\frac{-\left(\begin{array}{c} \sqrt{\omega t^{\perp} \beta} \end{array}\right)}{-\left(\begin{array}{c} \sqrt{\omega t^{\perp} \beta} \end{array}\right)} \times X$	-
周 =	
簡諧運動之運動才程式為 x(t) = A sin(wt+~) = A cos(wt+~)	(/3)

			•			分類:	
						編號: 3	
<i></i>						總號:	
差差	我們会 月=又	一些则此版	与公式和完全	人相同。			
- 五	我們對一切動沒	交時鐘方向-	最上高高 2	11世数:	r 南山之方角豆	: : - · - · · · · · · · · · · · · · · ·	
						·	•
	· 我們若以一里						
1	· 軸之技影即為		$x(t) = A_{50}$	in (wt + d).	我們經濟	当以這樣的)一個
轉車	的量來描述簡言	影里動 TY	THE COLUMN TWO IS A STATE OF THE COLUMN TWO I				
			1				***************************************
		/ ×		ユ゠ /	A sin(wt+ d))	
			AIT	•			
	Proc 1 to 1	wtt	<u> </u>				-
							+
			圖四			· 持治:	
ඩ	\tilde{a} $V(t) = A\omega a$	os(wt+2), fif v	· (代表宁的)輕重	·····································	大方音 by Y	美 轉動向量	ことおして
		arani = 1, 200 july 1.	U. MAZATA N	OF SECTION	A CXIV OB .	2 19 1 1 1 10	· 文文内入 7
Į	·長度也變成 Au).					
	. 17						
E	$\delta = a(t) = -A$	w'sin (wt+ d	$) = -A\omega^2 c$	s(wt + <+ 쯫),所以代	表它的轉車	为向量与
	勒之支角比代表	走上 鹼点。	二县 5 7. 站	· · · · · · · · · · · · · · · · · · ·	44 . 25	· · · · · · · · · · · · · · · · · · ·	
6	AN LY IN CLOVAL	(文之特别)	<u>同里均 9 年版</u>	之文用大 90	。县大小变	TRI AW	
			1				
						•	
		1/2=				ÿ	
	1	16	A A P				
		a d	Ĭ,				-
p=1		, 0	JME 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		AW		•			
	A						
		,	- 圖五				
			r ,				
<u> </u>	5上圆, z, v, 及.	a 文関係可	一月了然。			· · ·	
	四) 簡 證運動之相	奋 虱					• •
(业) 附 商 是 動 之相	里宜		•			
	(1) 方向 - 類 感 担 后	1 3 苏 韶 38 38 5	6亩, 十口。				•

			分類:
			編號: 4
	•		總號:
<u></u>	$x_1 = A'_1 \sin(\omega t + \omega_1)$		7.45
<u> </u>	$x_1 = A_1 \sin(\omega t + \alpha_1)$		(14)
	$x_2 = A_2 \sin(\omega t + \lambda_2)$		(15)
-			
	$x = x_1 + x_2$		(76)
	代設法		,
			described with the constitution of described to be adjust to the description of the constitution of the co
	$x = x_1 + x_2 = A_1 \sin(\omega t + d_1) + A_2 \sin(\omega t + d_2)$		
	,	and a second	
	$= A_1 \sin \omega t \cos \lambda_1 + A_2 \cos \omega t \sin \lambda_1 + A_3 \sin \omega t \cos \lambda_2$		
	$= (A_1 \sin \lambda_1 + A_2 \sin \lambda_2) \cos \omega t + (A_1 \cos \lambda_1)$	+ A2 COS d2) S.	in wt
77 V	A sind A c	05 d	
941 51			
	$= A \sin(\omega t + \omega)$		(77)
	A 石 之 是 由 A sind = A, sind, +A, sind,	A A cosa	= A cosd + A cosd-
	$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2} \cos(\alpha_{2} - \alpha_{3})$		
	局解法 /	· · · · · · · · ·	$A_1 \cos d_1 + A_2 \cos d_2$
		and the same of the same	
	$\frac{1}{\sqrt{2}}$ 1		
		•	
27		, , , , , , , , , , , , , , , , , , , 	
100 mm	A./	•	
Life Person			•
	B. A		
944	0) X c		· ·
	wt & P		
	F		
	· · · · · · · · · · · · · · · · · · ·		
	OP, 是代表 x, 簡 谐運動之轉動向量		
	OP. 是代表工簡諧運動之轉動向量	• .	
	$\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{OP_2}$		

	か園中三差 h 1 コラー 12, 12		
	由厦中可看出 10Pl = A,2+ A2+ 2A,A2 cos(d,-	<u> </u>	
	$PD = A_1 \sin \alpha_1 + A_2 \sin \alpha_2$	•	
	$OD = A_1 \cos \lambda_1 + A_2 \cos \lambda_2$		
<u> </u>	因此 OP 与一y 鞠之交角篇 Wt+L。		
	· · · · · · · · · · · · · · · · · · ·		
<u> </u>	結論 OP 是代表 2 之轉動 向量也即是 OP 在沿 x	軸之投影即	高 x(t).
1200 E			

今期: 編號: 4A 總號:

		¥7		40	點		
	' ~			42.11	13.7	44	7.5
7:27	TUI	T.	D:	-13.71 J		. ~	/B
. مندا	1		♥.			• -	

 $\overrightarrow{OP}_{i} = \overrightarrow{OA} \cdot \widehat{i} + \overrightarrow{AP}_{i} \cdot \widehat{j}$

OA = X

 $\vec{OP}_2 = OB\hat{i} + BP_2\hat{j}$

 $OB = x_2$

 $\overrightarrow{OP} = \overrightarrow{OP}_1 + \overrightarrow{OP}_2 = (OA + OB) \overrightarrow{i} + (AP_1 + BP_2) \overrightarrow{j}$

因此 op在 z 軸之投影顯然的即是 x = x,+ x,

.:

	分類:編號:参数:
(2) 方向相同, 頻率不同之兩簡 諧運動相同	
$x_{i}(t) = A_{i} \sin \omega_{i} t$	(18)
$x_2(t) = A_2 \sin \omega_2 t$	(19)
$\chi(t) = \chi_1(t) + \chi_2(t)$	(20)
找們現在利用圖解法來研究在時間to	寺的情形
1 18	現在 8 = w,t-w,t 是時間的函数
A ₂ /	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos(\omega_1 - \omega_2)t} $ (
A A A A A A A A A A	所以振幅也是時間之函數、稱為拍
W,t) Ai Zi S	$t_{an} \beta = \frac{A_2 \sin \delta}{A_1 + A_2 \cos \delta} \qquad (21)$
因此代表七之轉動向量为-4軸之定角	$\dot{\beta} = \omega_1 \dot{t} + \beta = \omega_1 \dot{t} + t_{an}' \frac{A_2 \sin(\omega_2 \omega_1) \dot{t}}{A_1 + A_2 \sin(\omega_2 - \omega_1) \dot{t}}$
$x(t) = A(t) \sin(\omega_1 + \beta(t))$	4,772,327,602,=60,77
因為 A(t) 及 β(t) 均為 時間之函量	曼,所以完並非簡諧運動
若 A, = A2, 则 (20) 式 憂成 A	$A = 2A_1 \cos[\frac{1}{2}(\omega_1 - \omega_2)t]$ (22)
(21) 式簡化為 tanβ = tan[±(ω,-	$-\omega_2)t$] (23)
眉此 $x(t) = 2A_1 \cos(\frac{1}{2}(w_1 - w_2))$	$)t_{sin}^{\frac{1}{2}}(\omega_{1}+\omega_{2})t_{sin}^{\frac{1}{2}}(\omega_{2}+\omega_{2})t_{sin}^{\frac{1}{2}}(\omega_{1}+\omega_{2})t_{$
(3) 互相垂直,頻率不同之两簡諧運動之村	目 か2
$x = A_1 \sin(w_1 t + \lambda_1), y = A_2 \sin(w_1 t + \lambda_2)$	(25)
代數法,若 ω, /ω。是簡單分數, δ是	2π之簡單分數 (26)
由上两式中将t消去,则得到 x-y	1 之関係 也即是在两度空間中的
軌跡 ,	

分類:編號:總號:

圖解的方法如下 (-) 光書兩圓,其半徑分別為 A, 及 A, (=) 可, 在 x軸之技影為 x(t)= A, sin(W,t+以,) (=) 可, 在 y軸之技影為 y(t), (四) 在以口為原點之 x-y平面上 P 點即是該質點在 t 時之位置 (五) 以此法求在各時間的位置, 則可得該質點在 x-y平面上之軌跡, 根顯然地, P 美之運動均局限以 2A, 及 2A, 為邊長的長方形中, 若 W, 及 W, 不可共約, 則質點 P 永不重複, 若是經過約長的時間後,其所經之途徑由物理的觀點而言, 遍佈此一長方形, 若 W, /W, 是 一簡單分數, 同時 6 是 2π之簡單之分數時, 則它的途徑在两度 空間中為一封閉曲綫。其週期為 T= 器,及 T= 器, 之最小公信數。這個問題 以個別討論為直。我們將在應用一節中分別討論。

		·類: -
<u>(1)</u> .	我們所指的平衡其是穩定平衡點,因此在 x=0 附近 x>0 時 F(x) < 0	, 生 x=0 附近
·-	x < 0 時 $F(x) > 0$	
(2	1 来看任何做精分書.	
 _(3)) $x = x$ 。為 $E_p(x)$ 近較之極小美 同此 起 $ x = x = 0$, $ x = x > 0$	
(<u>4</u>	的 這些結果可利用以下的公式很容易的得到。	
	(a) $\int_{0}^{T} \cos(\omega t + \lambda) dt = 0$; $\int_{0}^{T} \sin(\omega t + \lambda) dt = 0$	(27)
	證明	$t = T \Rightarrow y = \omega T + \alpha$ $= 2\pi + \alpha$
	$\int_{0}^{T} \cos(\omega t + \lambda) dt = \int_{\alpha}^{2\pi^{2}\lambda} \frac{1}{\omega} \cos y dy$	1
	$= \frac{1}{\omega} \sin y \Big _{\alpha}^{2\pi + 2} = 0$	
	利用同樣的方法可證明 $\int_{0}^{T} \sin(\omega t + \lambda) dt = 0$	(28)
	(b) $\frac{1}{T} \int_{0}^{T} \cos^{2}(\omega t + \lambda) dt = \frac{1}{2} \int_{0}^{T} \sin^{2}(\omega t + \lambda) dt = \frac{1}{2}$	1/2
	證明. \diamondsuit $\omega t + \lambda = y$, $dt = \dot{\omega} dy$, $t = 0 \Rightarrow y = \lambda$, $t = T \Rightarrow 0$	y = ωT+2 = 2π+2
	$\frac{1}{T} \int_{0}^{T} \cos^{2}(\omega t + \alpha) dt = \frac{1}{\omega T} \int_{\alpha}^{2\pi + \alpha} \cos^{2} y dy$	
	$=\frac{1}{2\pi}\int_{\alpha}^{2\pi+\alpha}\frac{1}{2}\left(1-\cos 2y\right)dy = \frac{1}{2}-\frac{1}{2\pi}\int_{\alpha}^{2\pi+\alpha}\frac{2\pi+\alpha}{\cos 2y}dy$	
	$\int_{2}^{2\pi+\alpha} \cos zy dy = 0$	(29)
	$\frac{1}{2} j = 2y \qquad dy = \frac{1}{2} dj, \qquad y = \alpha \implies j = 2\alpha \; ; \; y = 2\pi + \alpha$	
	$\int_{2\pi}^{2\pi+d} \cos 2y dy = \frac{1}{2} \int_{2d}^{4\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dy = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \cos 3 d3 = \frac{1}{2} \left(\sin (4\pi+2d) - \frac{1}{2} \right) dx = \frac{1}{2} \int_{2d}^{2\pi+2d} \sin 3 d3 = \frac{1}{2} \int_{2d}^{2\pi+2d} \sin 3 d3 = \frac{1}{2} \int_{2d}^{2\pi+2d} \sin 3 d3 = \frac{1}{2} \int_{2d}^{2\pi$	sin 22) = 0
	且此 $+\int_{a}^{T} \cos^{2}(\omega t + \lambda) dt = \frac{1}{2}$	(30)
	利用同樣的方法可證明	
	$\langle E_{p} \rangle = \frac{1}{2} k A^{2} + \int_{0}^{T} \sin^{2}(\omega t + \lambda) dt = \frac{1}{4} k A^{2}$ $\langle E_{k} \rangle = \frac{1}{2} m A^{2} \omega^{2} + \int_{0}^{T} \cos^{2}(\omega t + \lambda) dt = \frac{1}{4} k A^{2}$	(31)
	5)此一結果為均功是理之一特例 占補充材料找例好證明均功	

分類: 編號: 8

	高层 加。
應用	
	The state of the s
(a) \hat{z} $F(x) = \frac{Ax}{x-a}$ $\hat{z} < a$, $\hat{z} < a$, $\hat{z} = 0$, 用此 $\hat{z} = 0$ 是平衡點.	
在 x=0 附近, 5(x) 可创用表勤公式采用高	
$F(x) = -\frac{A}{a}x - \frac{A}{a^2}x^2 - \frac{A}{a^3}x^3 + \dots$	(33.
第25	•
常又《日時	
$F(x) \simeq -\frac{A}{4}x$	(34)
	The second secon
受此力質量為加之物体作簡諧運動、其類率高 2= 五 小品	(35)
(b) 若 $x = A \sin \omega_i t$	
A = A = A = A = A = A = A = A = A = A =	(36)
$y = A \cdot \sin(2\omega t + \frac{\pi}{2})$	(37)
消去七後可得到薩如圖形。	
$y = A \cos 2\omega, t = A \left[1 - 2 \sin^2 \omega, t \right] = A \left[1 - 2 \frac{x^2}{A^2} \right]$	(38)
* * * * * * * * * * * * * * * * * * *	A
在 x-y 平面上它描述抛物解的一段 (/x/< A, 及 /z/< A, 之	部分)
2,4 x	
4,8 -A (6,8	
3,7	
$T = \frac{2\pi}{60}$	
$t = \frac{t}{R}T$ $\omega t = \omega_1 \frac{t}{R} \frac{2\pi}{\omega_1} = \frac{\pi}{4}$	
$\omega_{z}t+\omega_{z}^{T}=2\omega_{z}+\frac{\pi}{\delta}\omega_{z}+\frac{\pi}{2}=\pi$	
$t = \frac{1}{4}T$ $\omega_1 t = \omega_1 + \frac{2\pi}{\omega_1} = \frac{\pi}{2}$	
$\omega_2 t + \frac{\pi}{2} = 2\omega, \frac{1}{4} \frac{2\pi}{\omega}, + \frac{\pi}{2} = \frac{3}{2}\pi$	
/	
8	
	•

分類: 編號: 9

 $\frac{\pi}{L}$ $x = A\cos\omega_i t = A\sin(\omega_i t + \frac{\pi}{2})$

 $y = A \cos(2\omega, t + \frac{\pi}{2}) = -A \sin 2\omega, t = A \sin(2\omega, t + \pi)$

代数法.

 $\dot{g} = -A \sin 2\omega_i t = 2A \sin \omega_i t \cos \omega_i t$

 $y^2 = 4A^2 \sin^2 \omega_1 t \cos^2 \omega_1 t = 4 x^2 (1 - \frac{x^2}{A})$

圖解法

這些圖形稱為利薩如圖形

羽題

(1) 两原子分子中原子閱之作用力可用以下之公式來約略描述

 $f(r) = A(r_0^6 - r_0^6) /_{r_0^{13}}$

此處 r 是两個原子間之距離。 A, r。是常數, 因不同的分子而異

(a) 求静力平衡點

 $\Gamma.cJ$

(6) 草出作簡諧運動的條件

 ΓJJ

300 M	分類:
順紀 .	編號: /O 總號:
	NS 11/10
(c) 求在平衡點附近小振造之類率 [D]	
13一高質點之質量於加,住於一千潤之抛物設形之表面 y= xx2.	
A THE STATE OF THE	
雷球戏開後, (a)試證常 x 小時, 它在 x 方向之運動為一簡 謂運動	[E]
(6) 求此一振遏之频率 [1]	
(6) 永此一振遊之頻率 [I]	The state of the s
(3) 繪出 x(t) = A sin (W t + 型) 在 t = 豆 時	
	and the second s
(a) 代表 住移之轉動向量 [A]	,
(b) 代表速度之轉動向量 [F]	
(c) 代表加速度之轉動向量 [K]	
(c) 代本加速及之特動向型 [K]	• • • • • • • • • • • • • • • • • • • •
(4) χ, ω = A sin ω t.	
$x_2(t) = A \sin(2\omega t + \frac{\pi}{4})$	
(a) 利用代熨法. x(t) = x,(t)+x2(t) 在 t = 显 時 之值 [R	3]
(b) 利用圖辭法 求 $x(t) = x_1(t) + x_2 t$ 在 $t = \overline{x}$ 時之值 [6]	^ 7
(b) 利用國解法 $\sqrt{x(t)} = x_1(t) + x_2 t$ 在 $t = \omega$ 時之值 [6]	7
(5) 利用圖解法求 x = A sin W, t 及 y = A sin (2W, t + 平) 所構成:	利益加圖形 [1]
	C47 13 K- 18 11 - 111
答案	
[A]	
$\langle A \rangle \rightarrow \chi$	
$IBI \qquad x = -\frac{1}{2}A$	
[c] r = r.	
$[D] \qquad y = \frac{1}{2\pi r_{+}^{4}} \sqrt{\frac{6A}{m}}$	
2710 m	
$[E] \frac{dy}{dx} = 2dx = tan0. \simeq 0.$	

國立清華大學研究室紀錄

	•			•
				分類:
* 8 × 1				編號: //
	N 22 N 55	- د د د		總號:
	上級才同汉	有運動 /八二	Mgccs51 ≈ Mg	**************************************
· · · · · · · · · · · · · · · · · · ·	$F_x = -Ns$	in0 = - Mq0	• •	• • • • • • • • • • • • • • • • • • • •
	તે યું	< x = 2011 € × 6	,	
V-Mig "	āx	~ - <i>tail</i> = 0		
	$F_{\chi} \simeq -2$	Mgdx		
因此是一節	学堂的			
181	<u> </u>			
<u>[F]</u>				
	-			
	n n			
				-
	1 1075			
66.7 66.7 7.7 8.7				
[G]				
ESTATE LA COMPANIA DE	1			
(4.7) (2.7) (3.7) (3.7) (4.7) (4.7)	A	-		
	→ x 即是	此段之長度,顯言	然如, x= 4	
	A. J		γ2	
[H]		The state of the s		
	1′,5	5		
2,6	1,5	6	1,5	
2', b'	4'8'		4'	
	1	/ /8'		
3,7	4.8	1 8	3	
-	3',7'		3'	
		5)	5 4'	
14.		,	.3′	
		7		
		1		
		8	2	國立清華大學研究室紀

	分類	:	
	編號	:	/2
i	160 PL.S.	•	

1

	i nt
	編號: /2
	編號: /2 總號:
$[I] \qquad \gamma = \frac{1}{27} \sqrt{2}g\chi$	
$[J] \qquad 63 \qquad \frac{r-r_0}{r_0} \ll 6A \qquad \qquad .$	
[K]	
$ \sqrt{\frac{\pi}{2}} $ $A\omega^2$	•
1525°. 	
NSS. 	
8-217	The state of the second st
AND	
SCIENCE Construction of the Construction of th	
	<u> </u>
	_
	· ·
	•

. -

	V				:	•
200		1			ĺ	ż
	"		V	j.	į.	
\geq	12		٠.			

分類	:			_	 		
編號	:	1					
總號	: .		•	٠	•	• •	-

第	<u>=</u>	١١٦	耦	分报	遊	非	游	振	動
---	----------	-----	---	----	---	---	---	---	---

前个 在此前中找附將討論()當一些成邊 器連接在一起的運動情况() 博立葉 被設 的性質(三)在上前中我們曾說明當一實 點在其穩定平衡其附近作運動時亡的運動力簡 謂運動非常接近,當然實際上它的運動仍非真正的簡 計運動,別此需要將 簡 置 動 方程式作少許的修正才能真正描述該質點的運動,我們將舉例來說明修正的方法。

基本觀念

(一) 在很多情况下,我們會遇到一些耦合提過,其運動狀況當然因連接的方法而異

但處理這些問題的才法却大致相同。我們將在此處討論西個最簡單的例子來說

明基本的方法,在應用一節中再舉一個比較複雜的例子

一質量加之物体力力常数高点及交之之

丙彈簧如圖所示(串联)

X, X, 是两彈簧之平衡長度

 $x = x_1 + x_2$

_ (I)

我們現在分别將在 m, 彈簧, 液 c 點 所受的力寫出

		 		• • • • • • • • • • • • • • • • • • • •	_
m:	• , • • •		 F		,
	,			m	

F 是 为 作用於物体 m 之力

F = A, x2 (1)

及反作用力。 F"是 c 作用於 处之力, 由於我們假設彈簧之質量可,

略去不計,所以F,F"之大小相等

分類: 編號: 二 總號:	
F''	
F"之太小与 F"之大小相同, 因為它們是作用力与反作用力揭。白於c的	質量假
設高 0 . 計以 F'' 之大小为 F'' 相等。 F'' 是 点 對 C 融之起力。	•
$F'' = F = - \cancel{k}, \cancel{\infty},$	(3)
籽 (1), (2), (3) 式連在一起即可得	, a , a , a , a , a , a , a , a , a , a
$x = x_1 + x_2 = -f(\frac{1}{k_1} + \frac{1}{k_2}) = -\frac{F}{k_1}$	(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(5)
因此其振動週期 $T = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$	(6)
(2) k	
$ \begin{array}{ccc} X & & & \\ & & \downarrow_{1} & F_{1} = -k_{1}x \\ & & & \downarrow_{1} & & \\ & & & \downarrow_{2} & & \\ & & & \downarrow_{1} & & \\ & & & \downarrow_{2} & & \\ & & & \downarrow_$	
$F_1 = -k_1 x , F_2 = -k_2 x$	(7)
$F = F_1 + F_2 = -(k_1 + k_2)x = -kx$ $k = k_1 + k_2^4$	(8)
其來動週期為 $T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$	(9)
(=) 傅列葉定理 ⁵ 任-週期為 T= 祭 之週期承襲 f(t) 可展開高	
$f(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + \cdots + a_n \cos n\omega t + \cdots$	
	(10)
以上的級數叫做傳列葉級數。 火稱為基類率, 22,32, 則為背	類
	-

國立清華大學研究室紀錄

分類:

編號:

總號:

 $a_{o} = \frac{1}{T} \int_{-T}^{T} f(t) \tag{11a}$

 $a_n = \frac{2}{f} \int f(t) \cos n\omega t \, dt$ (11b)

 $b_n = \frac{2}{T} \int_s^T f(t) \sin n\omega t \, dt \tag{11C}$

我們將在討論小節中證明以上的結果5

(三) 非谐振動.

我們首先将 E, (x) 在其穩定平衡點附近以泰勒故證展開。

 $E_{p}(x) = E_{p}(x_{o}) + \frac{1}{2} k(x - x_{o})^{2} + \frac{1}{6} k'(x - x_{o})^{3} + \frac{1}{24} k''(x - x_{o})^{4} + \cdots$ (12)

 $k = \frac{d^2 E_p}{dx^2} \Big|_{x=x_o}, \quad k' = \frac{d^4 E_p}{dx^3} \Big|_{x=x_o}, \quad k'' = \frac{d^4 E_p}{dx^4} \Big|_{x=x_o}, \quad (13)^{\frac{1}{2}}$

若 x-x。豹小時。 (12) 式第二項以後 约可思略時, 则其運動是葡萄運動

若 2-2。 慶太時則找們不可略去第二項以後之各項則其運動是非謂運動。

此時問題非常複雜、但是,若是 z-z。仍是不太時,在第二項以後只存極

少的幾項需要改慮,而且後面這些項比第一,二項之貢獻小很多時,則我們可

用微擾法來計算後面這些項所引起之修正. 我們将在應用一節中舉一例來

加以説明。

討論

1. c點是接頭臭,我們可以將它看成一質點,其質量趨近於 o

2 人,成分别是第一條及第二條彈簧之力常數、為了才便起見,我們也用它來代表第一

及第二條彈簧

3 當 丸=丸 時 丸= ±丸, 此为我們的平常的想法相符。當我們將m離 x時 z, xz 均B需為 를, 因此它對物体之起为B有原來的一半。

4. 當 九 = 九 時 九 = 2九 , 此为我侧的平常的想法相符。我侧需字两倍的

力才能使質量相同之物体作同樣長度之位移

編號: 1 5 要某以上的公式我們需要首先證明以下發閱公式 (a) n, m是整蒙時, ST cas nwt cas mut dt = 生Ténin 證明 J. cos nwt cas myst at $=\frac{1}{2}\int_0^T \left[\cos \frac{2\pi(n-m)}{T} \pm + \cot \frac{2\pi(n-m)}{T} t\right] dt$ (14) $=\begin{cases} \frac{1}{2} & \frac{1}{2\pi(n+m)} \int \sin \frac{2\pi(n+m)}{T} t^{\frac{1}{2}} + \frac{1}{2} & \frac{1}{2\pi(n+m)} \int \sin \frac{2\pi(n-m)}{T} t^{\frac{1}{2}} \\ T & T & T & T & T & T & T \end{cases}$ $\frac{1}{2} \frac{1}{4\pi n!} \left[\sin \frac{4\pi n}{T} \right]_{0}^{T} + \frac{1}{2} \int_{a}^{1} dt = \frac{1}{2} T \qquad n = m.$ (b) n, m 是整數時, IT cas niwt sin mwt dt = 0, I sin nwt sin wt dt = ±Ti 其證洁为(a) 式相同。 $\int_{-T}^{T} f(t) dt = \int_{-T}^{T} f(t) \cos(o\omega t) dt$ 界 (10) 式代入上式 $\int_{S}^{T} f(t) \cos(0\omega t) dt = \int_{S}^{T} \left[a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega t + \sum_{n=1}^{\infty} b_n \sin n t \right]$ · cas (owt) dt 利用公式 (a) 为 (b) 則上或變成 $\int_{-T}^{T} f(t) dt = a \cdot T$ 也 即是 (1 a) $\int_0^T f(t) \cos n\omega t \, dt = \frac{T}{2} a_n \quad \text{with} \quad (11b)$ $\int_0^T f(t) \sin m\omega t dt = \frac{1}{2} b_n \quad \text{with} \ \frac{1}{2} (11c)$ 6. 在平衡點附近,非諧運動的位能函數大約如下圖所示 若能量較低時(zn E=E,), 則該賞點的運動局限於工及工 之間,此時其位能函数相當接近 立 友(x- ℃。)产,所以其是動也接近 平衡點 簡諧運動。若能量較高時(如 E=E 则其運動可在 不3 到 x, 之間進行。 顯然地,在區域中其位能函数方 士友(x-x。)

國立演華大學研究室紀錄

	今類: 編號: 5 總號:
祖是也较多,所以其運動也方顧諧運動相差較多。同時也可上周中	
$(\langle x \rangle \rangle x_{o}$	
度 復	-
一我們現在用一個例子來解釋耦合核邊中的一些觀念	
k_1 k_2 k_3 k_4 k_4 k_5 k_5 k_5	
有力常數為 反之彈簧之長度 增長了 x2-x1	
m, 所受之力。 A. 向左拉太小是 A.z. A. 向右拉太小是 在(x,-x,)	
m_2 所受之力 友向左拉大小是 友 (x_2-x_1) 人。 为左拉大小是 友 x_2	
半頓定律可寫成	
$m_1 \frac{d^2 x_1}{dt^2} = k(x_2 - x_1) - k_1 x_1$	(/8)
$m_2 \frac{d^2 x_2}{dt^2} = -k_2 x_2 - k(x_2 - x_1)$	(19)
我們將討論 加=加及 从= 起的簡單的情形,則以上內內可	
$m \frac{d^2x_1}{dt^2} = k(x_2 - x_1) - k_1 x_1$	(20)
$m \frac{d^2 x_2}{dt^2} = -k_1 x_2 - k(x_2 - x_1)$	(21)
$(20) + (21) \qquad m \frac{d^{2}}{dt^{2}} (x_{1} + x_{2}) = -k_{1}(x_{1} + x_{2})$ $x_{1}(t) + x_{2}(t) = A \sin(\omega t + \lambda) \qquad \omega = \sqrt{\frac{k_{1}}{m}}$	(23)
A, d是取决於初位移及初速。	
$ \gamma (20) - (21) \qquad m \frac{d^2}{dt^2} (x_1 - x_2) = 2 k(x_2 - x_1) + k_1(x_2 - x_1) $	
$= -(2k + k_1)(x_1 - x_2)$	(24)

A. sin (w't + 2')

 $x_1(t) - x_2(t) =$

分類	
總 据	6
A, x, 也是取决外的注放及初速。	
因此 $x_i(t)+x_i(t)$ 及 $x_i(t)-x_i(t)$ 近行獨立之簡諧運動。它們稱為	易前主/友重5。
· (24) 及 (25) 式 拷們 可得	
$x_{i}(t) = \frac{1}{2} \left[A \sin(\omega t + \omega) + A' \sin(\omega t + \omega') \right]$	(26)
$x_2(t) = \frac{1}{2} \left[A \sin(\omega t + \alpha) - A' \sin(\omega' t + \alpha') \right]$	(27)
x,(t), x,(t) 分别是两個不同類率的簡諧運動的和。這也是我們	四在第二节中讨論
簡諧運動的主要理 由。	
我們現在由能量的觀念來討論此一問題。為了才便起見我們有	\ x ₁ = x ₂ = 0 時之
住能為 0.	
$E_{p} = \frac{1}{2} \frac{1}{k_{1}} x_{1}^{2} + \frac{1}{2} \frac{1}{k_{1}} (x_{2} - x_{1})^{2} + \frac{1}{2} \frac{1}{k_{2}} x_{2}^{2}$	(28)
m, 質點所受的力 $F_1 = -\frac{\partial E_P}{\partial x_1} = -\beta_1 x_1 + \ell(x_2 - x_1)$	(29)
m_2 質點所受的力 $F_2 = -\frac{\partial E_2}{\partial x_2} = - \lambda(x_2 - x_1) - \lambda_2 x_2$	(30)
以上两公式为 (18),(19) 完全一致。	
此一条說之總能量 $E = E_K + E_P$	
$= \frac{1}{2} m v_1^2 + \frac{1}{2} m v_2^2 + E_p$	
$= \frac{1}{2} m V_1^2 + \frac{1}{2} (k_1 + k_1) x_1^2 \Theta$	
$ + \pm m V_2^2 + \pm (k_2 + k) X_2^2 $	(31)
第①項代表加之能量第②項代表加之能量而第三項則代表	支耦合或作用能。
(m) 我們現在用一個簡單的例子來說明用微捷法來解非諧運動	
	(20)
$E_{p}(x) = \frac{1}{2} kx^{2} - \frac{1}{2} ax^{4}$	(32)
此處我們假設第二項比第一項小得多	

	分類:
	編號: 7
$m \frac{d^2x}{d^2x} = -kx + ax^3$	(33)
即是其運動才程式。	
若是 $a=0$ 则 $x=A\sin(\omega_0 t+\lambda)$ 即是 (33) 成之解。 $\omega_0^2=$ 及初述决定	A,从金融造艺
富 a ± 0 時, 我們 將 假 設	
$z = A'\sin(\omega t + \alpha) + B\sin[3(\omega t + \alpha)]$	(34)
是整好的解。 顯然地 B《A,而當 a=0 時 B 未高 o	
我們寫下 134) 式之理由如下	
(1) 若 B=0 時 左 遵之結果 - k sin(wt + x) + a (sin(wt + x)) ³	由於
$[Sin(\omega t + \lambda)]^3 = \frac{3}{4} sin(\omega t + \lambda) - \frac{1}{4} sin[3(\omega t + \lambda)]. 国此右邊之$	- 函数形式是
sin(wt+x) fo sin [3(wt+x)] 的機性組合	
(2) (34) 式對 t之二度微分也具有以下之形式。	·
籽 (3+) 式 代 入 (33) 式	
左邊 = $-mA\omega^2 \sin(\omega t + \alpha) - 9mB\omega^2 \sin[3(\omega t + \alpha)]$	
右邊 = $-k $ { $A \sin (\omega t + \alpha) + B \sin [3(\omega t + \alpha)]$ }	
+ a [A sin(ωt+d)+8 sin [3(ωt+d)]] ³	(35)
由於 a, B 比 d, A 小 , 所以在第二項中我們只	書保留aA3sin(wt+d)
右邊 ≈ - kí Asin (wt+d) + Bsin [3(wt+d)] + aA [sin	$(\omega t + \alpha)$ ³
$= -k \{ A \sin(\omega t + \alpha) + B \sin[3(\omega t + \alpha)] + aA^{2} \} $	$Sin(\omega t + \alpha)$
- 4 Sin [3 (wt+ d)]}	(36)
"报左,在两边。乘以 sin(wt+x) 後對 t由 o至下積分得	
$- mA'w^2 = - kA + aA^3 \frac{3}{4}$	
	•

	分類:編號:總號:
$\mathbb{A}^{1/2} = \omega^{2} - \frac{3}{4} \frac{A}{m} A^{2}$	(37)
野左右向是集以 sin[3(wit+ d)] 複對 t 由 6 至 T 積分得	
$-9m \omega^2 \beta = - k \beta - \pm a A^3$	
$B \left[q \omega^2 - \omega_o^2 \right] = \frac{1}{4} \frac{\alpha}{m} A^3$	
$\mathbb{A} \times \mathbb{B} \stackrel{?}{=} \frac{1}{4} \frac{a}{m} \frac{1}{A^2} \frac{1}{(q\omega^2 - \omega_s^2)}$	(38)
提由(37)式計得之 ω 及 (38)式阶型之 Β 代入(34)式, 我們	即得一對(33)立比
$x = A \sin(\omega i + \alpha)$ 製作之解	
型類 king kan the state of the s	R ₃
(1) 物体住於一平滑之桌面上,方證黃这样的情形心圖所示。求物	1
(2) 两個單擺之擺長均高人, 質量分别為 M, M。 它侧之間以为	常穀為火之運黃柑
· · · · · · · · · · · · · · · · · · ·	
Z _b M _B Z _a M _A	
(a) 證明當此單擺作小幅度振動時之運動才程式為	
$M_a \frac{d^2 x_a}{dx^2} = -M_a \frac{q}{\ell} x_a + K(x_b - x_a)$	
$M_b \frac{d^2x_b}{dt^2} = -M_b \frac{1}{\ell} x_b - K(x_b - x_a)$	
(b) 證明 x, = (Maxa+ Mbxb) /(Ma+ Mb) 及 x, = xa-x	6是正坐標。 [A]
(c) 求 x, 及 z2 之振動頻率	[1]
(d) 若在t=0 時 $V_a = V_b = 0$, $x_a = A$, $x_b = 0$ 求 x_c	(t) & x _b (t) [K]
(3) F(t) 如圆所示	為
$F(t) = -a_o + \sum_{n=1}^{\infty} a_n \cos(n \omega t)$	
(a) 求 a。	r 81

國立清華大學研究室紀錄

	分類:
	編號: 9 總號:
(b) $\frac{1}{2^n} a_n$	
(c) \downarrow b_n	
(4) 一質點加在住態函数 与(d)= 主 在x2- jax3 之影响下運動	
(a) 寫出該質點之運動才程式 [D]	
(b) 读 a << 枚, x = A cos wt + B eos zwt + z, 技的;	
以微擾法求 (i) ω [E], (ii) x, [H],	& (iii) <u>Б</u> [c]
茶 案	
[A] 籽 F 结果的应式相加 除以 Ma+M8	
$\frac{d^{2}}{dt^{2}}\left(M_{a}x_{a}+M_{b}x_{b}\right) = -\left(M_{a}x_{a}+M_{b}x_{b}\right)\frac{g}{t}$	1
$ (M_a + M_b) \frac{d^2}{dt^2} \frac{M_a x_a + M_b x_b}{M_a + M_b} = -\left(\frac{q}{\ell}\right) \left(M_a + M_b\right) \frac{M_a x_a + M_b x_b}{M_a + M_b} $	
$(M_a + M_b) \frac{d^2}{dt^3} x_1 = -\frac{9}{c} (M_a + M_b) x_1$	
F 結果的分别除以 Ma, Mb 後相減	
$\frac{d^{2}}{dt^{2}}(x_{a}-x_{b}) = -\frac{9}{\ell}(x_{a}-x_{b}) + (\frac{k}{M_{a}} + \frac{k}{M_{b}})(x_{b}-x_{b})$	
	ξ _α)
$= -\left(\frac{g}{L} - \frac{K}{M_a} - \frac{K}{M_b}\right)(x_a - x_b)$	
因此 x, , x2 分别是正坐標。	
	<u>k</u> m
[D] $m \frac{d^2x}{dt^2} = -kx + ax^2$ [E] $w = w_0 = \sqrt{\frac{k}{m}}$	-
[F] Marian: Fx Mg sino coso	
D Ma ~ -Mag O ≈ -Ma-	$\frac{g}{\ell}$ x_a
*Mg (x ~ lo)	
3單簧壓縮了" x, - x。 ⇒ 在 A 关 存 - 向 在 之 力	
22-11 N 19 19/12 Z N	

國立清華大學研究室紀錄

•	
i	

 分類:

 編號: / 0

 總號:

w,= √3

 $\omega_2 = \sqrt{\frac{9}{8} - \frac{K}{M_0} - \frac{K}{M_0}}$

外以

 $M_a \frac{d^2x_a}{dt^2} = -M_a \frac{g}{k} x_a - K(x_b - x_a)$

同理可得多一式。

[G] $a_n = 0$ [H] $x_1 = \frac{\alpha A^2}{2m\omega_s^2}$ $\omega_s^2 = \frac{R}{m}$

 $[I] \quad z_1 \ge 振動角速度 \quad \omega_1 = 2\pi\nu_1 = \sqrt{\frac{2}{3}}$ $x_2 \quad " \quad " \quad \omega_2 = 2\pi\nu_2 = \sqrt{\frac{2}{3}} - \frac{K}{M} - \frac{K}{M}$

 $[J] b_n = F_0 \frac{4}{\pi} \cdot \frac{1}{\rho}$

 $[K] \quad x_1 = \frac{M_0 A}{M_0 + M_0}, \quad x_2 = A, \quad V_1 = 0, \quad V_2 = 0$

 $x_1 = B \sin(\omega t + \alpha)$ $\dot{v}_1 = B \omega \cos(\omega_1 t + \alpha)$

 $V_1 = 0 \Rightarrow \lambda_1 = \frac{1}{2}$

 $-x_1 = -B \cdot \cos \omega_1 t \qquad \frac{M_a A'}{M_a + M_b} = B$

 $x_1 = \frac{M_a A}{M_a + M_o} \cos \omega_1 t$

 $x_2 = B' \sin(\omega_2 t + \alpha_1)$ $V_2 = B' \omega_2 \cos(\omega_1 t + \alpha_1)$

 $x_2 = A \cos \omega_2 t$

 $X_a = X_1 + \frac{N_b}{M_a + N_b} X_2 = \frac{M_a}{M_a + M_b} A \cos \omega_1 t + \frac{M_b}{M_a + M_b} A \cos \omega_2 t$

 $x_b = x_l + \frac{M_a}{M_a + M_b} x_2 = \frac{M_a A}{M_a + M_b} \cos \omega_l t + \frac{M_a}{M_a + M_b} A \cos \omega_2 t$

[L] $V = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2 + k_2 k_1 + k_2 k_2}{m(k_1 + k_2)}}$

Oscillation

◇類:編號:組修:

浦克村料

解下列 联立微分方程式的方法。

$$\frac{d^{2}x_{1}}{dt^{2}} + \omega_{1}^{2} x_{1} = -k_{1}(x_{1} - x_{2})$$

$$\frac{d^2 x_1}{dt^2} + \omega_2^2 x_2 = -k_2 (x_2 - x_1) \tag{1}$$

$$x_1 = A e^{i\lambda t} , x_2 = B e^{i\lambda t}$$
 (2)

代入(1)式得

$$A(\omega_1^2 - \lambda^2 + k_1) = k_1 B$$

$$B \left(\omega_z^2 - \lambda^2 + k_2\right) = k_2 A \tag{3}$$

$$\frac{\beta}{A} = \frac{\omega_1^2 - \lambda^2 + k_1}{k_1} = \frac{k_2}{\omega_2^2 - \lambda^2 + k_2} \tag{4}$$

所以
$$x_1 = a \cos \omega t + b \sin \omega t + a' \cos \omega' t + b' \sin \omega' t$$

$$x_2 = \beta a \cos \omega t + \beta b \sin \omega t + \delta' a' \cos \omega' t + \delta' b' \sin \omega' t \qquad (5)$$

$$\gamma = \frac{\omega_i^2 - \omega^2 + k_i}{k_i} \qquad , \quad \gamma' = \frac{\omega_i^2 - \omega'^2 + k_i}{k_i} \qquad (6)$$

是第(1)式之解, a, b, a', b' 是取决於在 t=0 時之 x_1 , x_2 及 dx_1 及 dx_2

例如在
$$t=0$$
 時 $x_1=c$, $x_2=o$, $\frac{dx_1}{dt}=o$, $\frac{dx_2}{dt}=o$ 則得

$$a + a' = C \qquad \gamma a + \gamma a' = 0$$

$$\omega b + \omega' b' = 0 \qquad \gamma \omega b + \gamma' \omega' b' = 0 \qquad (7)$$

顯然以上公式之解為 6=b'=0

$$a = \frac{\delta'}{\delta' - \delta} C , \quad a' = \frac{\delta}{\gamma - \delta'} C$$
 (8)

国此
$$x_1 = \frac{C}{y'-x} (y'\cos \omega t - y\cos \omega' t)$$

$$x_{z} = \frac{c}{\gamma' - \delta} \gamma' \delta \left(\cos \omega t - \cos \omega' t \right) \tag{9}$$

分類:	·	
編號:	1	
總號:		

第	四	节中	減	陷	挟	
-1		:				

	N.									
H	1	いり が	一面造	有明力的	存出 而	型力的方向	力運動的方:	可相反,使待理	遺振邊常之振	•
ļū	V1	117 71.	· · · · · · · · · · · · · · · · · · ·	···N 1 - 22 98		1	and the second s	The same Sale and the same	A CONTRACTOR OF THE CONTRACTOR	
	<u> </u>	رد	وطور	د الا و ملا	المن عزد (120 ء	15 15 16	_			
	悩ぶる	而 作	灭	巴那人 艺	1. 侧作满	暫扶選				

基本觀念

通常阻力來自摩擦力,其方向力運動方向相交而大小力速度的大小成正比。因此阻力可寫

$$F = -\lambda v \tag{1}$$

一個受阻力之振邊器新受之外力為

$$F = -kx - \lambda v$$

(2) '

牛頓是律 可寫成

$$m\frac{d^2x}{dt^2} + \lambda\frac{dx}{dt} + kx = 0 (3)$$

$$\frac{dx}{dt} + 2y\frac{dx}{dt} + \frac{x}{m}x = 0 \qquad (y = \frac{\lambda}{2m}) \tag{4}$$

$$\frac{dx}{dt} = e^{-\gamma t} \frac{du}{dt} - \gamma e^{-\gamma t} u \tag{9}$$

$$\frac{dx}{dt^2} = e^{-\lambda t} \frac{d^2u}{dt^2} - \lambda e^{-\lambda t} \frac{du}{dt} + \lambda^2 e^{-\lambda t} u - \lambda e^{-\lambda t} \frac{du}{dx}$$
 (8)

将 (7),(8) 3(4) 式得

$$e^{-\gamma t} \left(\frac{d^2 u}{dt^2} + \left(\frac{R}{m} - \gamma^2 \right) u \right) = 0 \tag{9}$$

要解的方程式變成

$$\frac{d^{2}u}{dt^{2}} + t\left(\frac{k}{m} - \delta^{2}\right)u = 0 \tag{10}$$

(1)當 春- 12>0 時

	分類:
	編號: 2 總號:
$\frac{d^2ll}{dt^2} = -\left(\frac{-k}{m} - \gamma^2\right) 2l$	(11)
即是煎皆運動之微分程式。其許多	
$u(t) = A \sin(\omega t + \lambda)$	(12)
世即是 說	
$x(t) = Ae^{-\delta t} \sin(\omega t + \alpha) = Ae^{-t/2\tau} \sin(\omega t + \alpha) \tau \not= \frac{4\pi}{3}$	世界 $T = \frac{1}{28}$ (13)
$V = 3m$, $\omega = \sqrt{\frac{2}{16}} - V^2$ 是第(3)式之解。 此處 A ,又是丙草	蒙 由知住移及初起
决 是 。	
(2) 當 為- 22 < 0 時, 第 (10) 刘夔成	
$\frac{d^2 \mathcal{U}}{dt^2} = (\gamma^2 - \frac{R}{m}) \mathcal{U}$	(14)
其解為	
$u(t) = A e^{\omega' t} + B e^{-\omega' t}$	(15)
$\omega' = \sqrt{\lambda^2 - \frac{\dot{A}}{A}}$ 。 电即是此時	
$x(t) = e^{-\lambda t} \left(A e^{+\sqrt{\lambda^2 - \frac{k}{m}} t} + B e^{-\sqrt{\lambda^2 - \frac{k}{m}} t} \right)$) (16)
為革(3)式之解。此處 A, B是两常戴, 由初位移及初速度	[决定,在此時,我們
稱之為超阻尼振盪。	
(3) 當 為一 > 2 = 0 時, 第 (10) 式愛成	
$\frac{d^2\mathcal{U}}{dt^2} = 0$	(17)
其解為	
u(t) = A + Bt	(18)
以(t) ー A 7 D C	(16)

 $e^{-\lambda t}(A+Bt)$

X(t)

4

	分類: 編號: 3 總號:
茜草(3)式之解,此题 A, S 也是常数,由初性拉及初速度决定	此時我們稱之高
臨界阻尼核设	
討論	
1. 這個公式品在速度較小時成立	
2. 我們做此轉換的理由為 (2) 由日常兰活的經驗中得知,當有阻	6時,其採問隨時間
急遽減小, 這是物理的理由, (6) 經此轉換炭, 沒滿足之公式?	九 2 满足的公式剂
單此其可由第(10)式中無一度微分可看出。這是數學的理由。	
· · · · · · · · · · · · · · · · · · ·	
我們在此將討論低阻尼時,能量耗損的情形。低阻尼即是 無ω°» γ°= = 元 ,因此低阻尼的降件又可寫成 ω。τ>>1.	>> y² ない
少七 時·	
$x(t) \approx A e^{-t/2\tau} sin(\omega, t + \lambda)$	(19)
動能是 K.E = ± m z²	(20)
将 (19) 式 微分後平方 带 × (20) 得	
$K.E. = \frac{1}{2} m \left[\left(\frac{1}{2\tau} \right)^2 A^2 e^{-t/T} \sin^2 \omega_o t + \omega_o^2 A^2 e^{-t/\tau} \cos^2 \omega_o t \right]$	$-(\frac{\omega}{\xi})A^2e^{-t/\xi}\sin\omega_{\delta}t$
cos w.t]	(21)
我们现在零算在 t 到 t + T = 200 之間, 動能之平均值	
$\langle K.E. \rangle_{t} = -\frac{1}{T} \int_{t}^{t+T} (K.E) dt$	(22)
因為 WoT>>1, 所以在 t 到 t+T之間 e-t/2T 之變化	1很小,因此可以
當完是常設而在積分時抽出來	
$\langle K.E.\rangle_{t} = \frac{1}{2} m \left[\left(\frac{1}{2\tau} \right)^{2} A^{2} e^{-\frac{t}{2\tau}} \langle \sin^{2} \omega_{o} t \rangle + \omega_{o}^{2} A^{2} e^{-\frac{t}{2\tau}} \langle \cos^{2} \omega_{o} t \rangle \right]$	os ² wot>
(ω_0) $(12)^{-t/T}$ $(interpretation)$	

	編號: 4 總號:
$= \frac{1}{4} \ln \left[\left(\frac{1}{2\Gamma} \right)^2 + \omega_s^2 \right] A^2 e^{-i\sqrt{\tau}}$	(23)
(音) "以心",辨以上或可能成	
$\langle x, E \rangle_{t} \approx \pm m \omega_{s}^{2} A^{2} e^{-t/\tau}$	(24)
同理 $\langle p.E. \rangle_{c} = \frac{1}{2} m \omega_{o}^{2} A^{2} \langle e^{-t/L} \sin^{2} \omega_{o} t \rangle$	
$\simeq \frac{1}{4} m \omega^2 A^2 e^{-t/\tau}$	(25)
动率的消耗等於能量的減少率	
$\langle P \rangle_{i} = -\frac{d}{dt} \langle E \rangle_{i} \approx +\frac{1}{c} (\frac{1}{c} m w_{o}^{2} A^{2} e^{-\frac{1}{c} T}) = + \frac{\sqrt{E}}{c}$	(26)
另外一種算法是	
$P = -\langle F, V \rangle = \langle -\frac{m}{T} \frac{dx}{dt} \frac{dx}{dt} \rangle \simeq \frac{\langle F \rangle_t}{T}$	/ 27)
因为對振邊器所使功率 另外一個常用的量叫做性質係製。 Q 其定義為	
$Q = 2\pi - $	(28)
由 (26), (28) 两式可得當 ω. τ >> 時	
$Q \simeq \frac{E}{E/\omega T} \simeq \omega_o T$	(29)
Q 越大则阻尼越小。	
智題	
1.一物体之質量為加置於一桌面	
上五一彈簧相連 同時我們也	
知道有阻力存在,我們觀察到 2000000000000 m	
以下的結果,(i) 當加以mg的为彈簧之靜壓縮長度為 允	•
(ii) 阻力在物体以以之速度進行時方 mg 相等	
(a). 將運動才程式寫. 出来	[6] .

國立清華大學研究室紀錄

N 5.	(BALL)	2550		P.C.	
分對	15				
4= v.t.	TO THE	100	Y. co	(3.7	. Turk
編號	250.254	1.5	5	214	15,5
總號		440		0.457	
1000 Mg					

岩 4=3√gh

- (b) 此一減關根的之前随至高向之 [C]
- (c) 超多文時間後其能量是原表的方? [F]
- (d) 此一提造器之《值篇何! [D]
- (e) 若此振過器原交是在静止位置。一了避在t=0時打入賞量而使提過器開始

運動。子彈之質量可略去不計,但其動量却不能忽略。求 x=Ae-theos cout=50

中分之值。 [A]

若一人跳水後,跳板之振幅在0.8 秒間由14 cm 愛成 8 cm 求跳板的 8 之值[E

茶案

 $\mathcal{L}A$ $S = \frac{\mathcal{J}}{2}$

 $[B] F = -\lambda v - kz$

 $kh = mg \Rightarrow k = mg/h$

 $\lambda u = mg \Rightarrow \lambda = \frac{mg}{u}$

 $m\frac{d^2x}{dt^2} = -\frac{mq}{u}\frac{dx}{dt} - \frac{mq}{\hbar}x$

 $\Rightarrow \frac{d^2x}{dt^2} + \frac{g}{u}\frac{dx}{dt} + \frac{g}{h}x = 0$

 $[C] \quad \left(\frac{359}{364}\right)^{\nu_2} \qquad [D] \quad Q = 3 \qquad [E] \quad \gamma = 0.7 \quad s^{-1}$

[F] $3\sqrt{\frac{h}{g}}$

- 其] -

tan2'

	分類	:		
	編號	:	7	_
-	组胺	•		 -

	總號:	
第五前 海边提過		
		•
前介在此一節中我們如一振邊的外力於此節中所計論的提過器強	迎见提盟。	戏們
<u>計論此一系統的性質</u>		
03 900 20 M3 24 20 14 Rs		
基本觀念		
$= 5$ 外力 $F = F_o \cos \omega_s t$,則該實點的運動才程式高		
$m \frac{d^2x}{dt^2} + \lambda \frac{dx}{dt} + kx = F_0 \cos w_t t$		(1)
<u> </u>		
利用上節所用之定義 と= 益, い。= 点 上式可寫成		
d ² x dx E	*	
$\frac{d^2x}{dt^2} + 2x \frac{dx}{dt} + \omega_s^2 x = \frac{F_0}{m} \cos \omega_c t$		(2)
找們假設2,3		
7 VII. 118 78		
$x(t) = A' \sin(\omega_t t - \lambda')$		(3)
		· · · · · · ·
将第(3)式代入第(2) 式得。		
$-A\omega_{x}^{2}\sin(\omega_{x}t-\lambda) + 2\chi A\omega\cos(\omega_{y}t-\lambda) + \omega_{o}^{2}A'\sin(\omega_{y}t-\lambda) = \frac{F_{o}}{n_{1}}\cos(\omega_{y}t-\lambda)$	$\omega_{f}t$	(4)
A(w= wg2) [sin wgt cosd - cos wgt sind) + 2Axwg [cas wgt cosd + sin	wit sind]	
$= \frac{F_o}{m} \cos \omega_c t$		•
m cos wet		(5)
. 此式在 Wt = (n+ 主) 正		
$A'(\omega_o^2 - \omega_f^2) \cos \lambda + 2A \gamma \omega_f \sin \lambda = 0$		(6)
$\omega_{f}^{2} - \omega_{o}^{2}$		
$tand = \frac{218 w_g}{2}$		• •
$m\omega_{z}-\frac{\hbar}{\omega_{z}}$	$y_f - \frac{\partial}{\partial y_f} = X$	
	<u> </u>	(7)
定義 $m\omega_s - \frac{k}{\omega_s} = X(力抗)$ $\lambda = R(力阻)$	¥ -	
$Z = \sqrt{R^2 + X^2} = \sqrt{\lambda^2 + (m\omega_g - \frac{\lambda}{\omega_g})^2}$ 榕楠姐村		(8)
The Arm (A 27)		

(9)

分類: 第分式在 Wt=NT 特心應成立,用北 $-A(w_s^2 - w_s^2) \sin x + 2A \partial w_f \cos x = \frac{F_0}{m}$ $Aw_{\epsilon}(m\omega_{\epsilon} - \frac{1}{10\epsilon})$ sind $+ Aw_{\epsilon} A \cos d = E_{\epsilon}$ 由圖一、可靠当 $(m\omega_{\ell} - \frac{k}{\omega_{\ell}}) = = \sin \omega$, $\lambda = = \cos \omega$ 代入(11)式可得 (9), (13) 两九完到决定了 籽第(3)式對 t 微分则得5 $\frac{f_o}{z} \cos(\omega_c t - \alpha) = v_o \cos(\omega_c t - \alpha)$ (/4)(15) P = FV =由外力轉移主張還器之功率 Fo cos wit Vo cos (wet - 2) Fo (cos² wet cosd - coswet sin wet sind) (16) $\langle P \rangle = \frac{F_o^2}{2\pi} \cos \lambda = \frac{F_o}{2\pi} \frac{R}{Z} = \frac{F_o^2 R}{2Z^2}$ 由上式顯然地可看出 (p)max 對應於己為最小時。由圖一中可看出這對應於 $\lambda = 0$ 時,也即是 Z = R ($m\omega_f = \frac{1}{\omega_f} \Leftrightarrow \omega_f = \omega_o$)時, 此時 (18) 討論 ω。 是該張邊 器 的自然頻率。 這個鮮在微分才程式中稱為特殊解。此一問題之完整解在 $A' \sin(\omega_t t - a')$

	分類:
	編號: 3 總體:
在第(19)或中 A', d' 是定值, 由第(9)式及第(13)式新兴定。	4. 又是两常截
是取决於韌住移及初達。	
3. 在第四式中第一项的旅幅透特圈的增加而減少,而第二项之极	婚則为時間共民。因
此當時間詢大時,則只剩第二項。第一項稱為暫時性的,以後打	代們將討論以刻第二
項的情形。	
土 這些是義 百在電磁學中之及義相似。	
5. 以轉動向量來代表 F及 V之関係周如下	
這些轉動向量在不軸之	.投影即代表 F 及 V.
F ₀	6
Jut Jut -d	
Z	
應用.	
(一) 首先我們先將符號及公內祭理一下 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	(20)
$\omega_s^2 = \frac{k}{m}$	(21)
$R = 2\lambda = 2m\lambda = \frac{m}{\tau} \qquad \qquad m\omega_{\tau}(-1)$	· · · · · · · · · · · · · · · · · · ·
$X = m\omega_f - \frac{k}{\omega_f} = m\omega_f \left[1 - \frac{k}{m\omega_g^2}\right] = m\omega_f \left(1 - \frac{\omega_o^2}{\omega_g^2}\right)$	(23)
$Z^{2} = \lambda^{2} t_{s} - m^{2} (\omega_{f}^{2} - \frac{\omega_{o}^{2}}{\omega_{f}})^{2} = \frac{m^{2}}{\tau^{2}} + m^{2} (\omega_{f}^{2} - \frac{\omega_{o}^{2}}{\omega_{f}})^{2}$	(24)
(=) 我們現在來討論共振問題	
(a) 由第 (13) 式	
$A' = \frac{F_o}{w_j z} =$	

分频:
A CONTRACTOR OF THE PARTY OF TH
編號: 4
總號:
JE .

因此當 Wz 為極小時, A' 為極大。

$$\omega_{f} Z = m \left[\left(\frac{\omega_{f}}{t} \right)^{2} + \left(\omega_{f} - \omega_{s}^{2} \right)^{2} \right]^{\frac{1}{2}}$$

 $\frac{\partial}{\partial \omega_g} \omega_g = 0$ 時,也即是 $\omega_g^2 = \omega_o^2 - \frac{1}{2\tau^2}$ 時, A' 总极大,稱為提倡共振 意 $\omega_g \tau \gg 1$

時, 共振在 W ~ W。 處發生。

可以看出當三、為極小值時,由外力傳送至表邊器上之功率為最大,稱為能量無限

du Z = 0, 也即是 ω = ω。 時產生能量共振

(c)由第 (17) 式及 第 (24) 式可得

$$\langle F \rangle |_{W_{\mathcal{L}}} = \frac{F_{\circ} T}{2m [1 + \frac{(\omega_{\mathcal{L}} - \omega_{\circ})^{2}}{(\dot{\omega}_{\mathcal{L}}/T)^{2}}]}$$

(25)

$$\langle p \rangle_{max} = \frac{F_0 T}{2m}$$

定義 ω_{\pm} 為當 $\omega_{f} = \omega_{\pm}$ 時 < P> 為 \pm < P>, max , ω_{+} > ω_{o} , ω_{-} < ω_{o}

由 (25) 式中很容易的可以看出發生於 $\frac{(\omega_{4}^{2}-\omega_{0})^{2}}{(\omega_{4}/\epsilon)^{2}}=1$

$$\frac{(\omega_{\ell}^2 - \omega_{o})^2}{(\omega_{\ell} \wedge \tau)^2} = 1 \implies \frac{\omega_{\ell}^2 - \omega_{o}^2}{\omega_{\ell} / \tau} = \pm 1 \qquad (26)$$

富 ω, ≃ω。, 第(26)式可寫成

$$2\omega_o(\omega_{\pm}-\omega_o)=\pm\omega/T$$

$$\omega_{\pm} = \omega_{o} \pm \frac{2}{\pi}$$

_(27)

ω, 及ω. 之距離稱為此共振的半最高共之宽度 (4ω),

$$(\Delta w)_{\pm} = \overline{t} = 28$$

(28

由上節中我們發現當 Wo E >>1 時

$$Q \simeq \omega_{o} T = \frac{\omega_{o}}{(4\omega)^{3}}$$

因此 Q 与調 諮的銳度有密切的関係

(三) 在能量共振時、由外加力傳遞至振盪、器的能量為、最大、凡常生活中最熟悉的例子

	分類: 編號: 5 總號:
是收音號的選出。所有的電台都在交換手機造生殖造技物。但當時	•
便放弃的思想過另有一周之的自然頻率。沿此頻率也是自己頻率一	找時, 無量到成
收意大国此我們就只聽到此一電白的信號。	
报多系统在是一周期性之外口转,即进行强迫振荡,这些系统通常	
外加力之類率为此系統之及為領率相符時、該立能及收之能量是可以變化外力之類率來觀察何時該多端及收之能量最大,由此來	•
频率	兴义或品起之自然 ————————————————————————————————————
· · · · · · · · · · · · · · · · · · ·	进 更
(1) 分子中原子可以在其平衡模附近报勤 電場 力 通常形成一耦合振温系统,英有其自	·
然頻率	
(2) 原文中之智子可看成具有自然頻率 電 場 的振邊器	
(3) 晶体如 Na Cl 是由正负踪子所 寓 場 組成的。 當外加一週期之電場. 正,負離子間座生振動	找出離子間提動之 自然頻率~ 5×1012 好
共振觀念之推廣,在某種情况下由一系統石另一系統間之能量傳遞最	
在並不要求此係統可以用強迫振盪器來描述)。此一觀念在物理	中有秘重要之地位。
	*
(1) -物体之質量是 2Kg 掛在-質量可略去不計的彈簧上。當物体掛。	
長了2.5 cm。彈簧的頂端在作簡諧運動其振幅為 1 mm. 此一名	能統之Q植為 15
(a) 求此系統之 ω。 [H] (b) 求強迫振盪在 ω= ω。 時之振幅 [B]	
	()
(2) 下圆中所示乃是某一系统受一 Fo sinut (Fo = 常教, 山是夔莹	D之功华 なw 之関係

sin(kx-wt)

= sinkx coswt + coskx sinwt Linear Combination.

趙凱華 孝怡嚴

Mathematics

Wave Equation

u(x,t)

Wave Equation

$$\frac{\partial^{2} u}{\partial t^{2}}(x,t) = v^{2} \frac{\partial^{2} u}{\partial x^{2}}(x,t) \qquad u(x,0) = u(x) \text{ initial condition}$$

$$\frac{\partial u}{\partial x}\Big|_{t=0} = v(x) \text{ initial condition}$$

$$Ansatz \qquad u(x,t) = \phi(t) \psi(x)$$

$$\psi(x) \frac{d^2\phi}{dt^2} = \phi(t) \frac{d^2\psi}{dx^2} \cdot \psi^2$$

$$\frac{d^2\phi}{dt^2} = \frac{1}{\psi} \frac{d^2\psi}{dx^2} \cdot v^2 = -\omega^2$$

function of

$$\frac{d^{2}\phi}{dt^{2}} = -\omega^{2}\phi \implies \phi = A \quad C \quad sin \omega t + D \quad cos \omega t$$

$$\frac{d^{2}\phi}{dt^{2}} = -\omega^{2}\phi \implies \psi = E \quad sin \quad \frac{\omega}{v}x + F \quad cos \quad \frac{\omega}{v}x$$

$$\frac{d^{2}\psi}{dx^{2}} = -\frac{\omega^{2}}{v^{2}}\psi \implies \psi = E \quad sin \quad \frac{\omega}{v}x + F \quad cos \quad \frac{\omega}{v}x$$

known

The method is known as seperation of variable $u(x,t) = [c sin \omega t + D cos \omega t]$. ["E"sin $\frac{\omega}{v} \times + F'' \cos \frac{\omega}{v} \times$]

```
The coefficients (constants) are to be dertermined by 2
      the initial condition and boundary conditions
  \psi(0,t)=0
   u(0, t)=0 \Rightarrow F''=0
           u = (A \sin \omega t + B \cos \omega t) \sin \frac{\omega}{v} x
c \cdot "E" \qquad DE
        0 = U(L,t) = (A sin \omega t + B cos \omega t) sin \frac{\omega}{v} L
                                                      n=0,1,2,3, ...
            \Rightarrow (\omega h ) L = n\pi
              \omega_n^* = \nu \frac{\dot{n}\pi}{1}
     \psi_n(x,t) = U_n(x,t) = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin(\omega_n/v) x
        u_n(x,t)
        n=1 \rightarrow first harmonic
        n=2 \rightarrow second harmonic
                                             satisfies the wave equation
                                                      the boundary condition
      If \{U_n(x,t)\} are solutions
              the general solution
               can be written
      u(x,t) = \int_{n}^{\infty} A_{n}^{n} u_{n}(x,t)
             = \sum_{n} A'_{n} (A_{n} \sin \omega_{n} t + B_{n} \sin \omega_{n} t) \sin \frac{n\pi}{L} x
             = \sum (K_n' \cos \omega_n t + K_n'' \sin \omega_n t) \sin \frac{n\pi}{L} x
             K_{n}', K_{n}'' are constants to be determined
                by initial conditions
```

```
U(x,0) = W(x)
                                                       initial conditions
\left(\frac{\partial u(x,t)}{\partial t}\right)_{t=0} = v(x)
   u(x,o) = k(x) = \sum_{n=1}^{\infty} K_n' \sin \frac{n\pi}{L} x.
    \int_{0}^{L} \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = 0 \quad \text{if } m \neq n
                                                                       =\frac{L}{2} if m=n.
                              sin A sin B = \frac{1}{2} \left[ cos (A-B) - cos (A+B) \right]
                                    A = \frac{n\pi}{L}, \quad B = \frac{m\pi}{I}
    \frac{1}{2} \int_{0}^{L} \left[ \cos \frac{(n-m)\pi x}{L} \cos \frac{(n+m)\pi}{L} \right] dx
                                        y = \frac{\pi x}{L}
                                        dy = \frac{T}{L} dx
            = \frac{1}{2\pi} \int_{0}^{\pi} \cos \left( \frac{1}{n-m} \right) y \, dy + \int_{0}^{\pi} \cos \left( \frac{n+m}{m} \right) dy
                                  \frac{n+m}{n+m} \quad \begin{array}{c} n-m, \ n+m \quad \text{are} \\ \text{all non-zero integrals} \\ \Rightarrow \text{ the integrals are all zero} \end{array}
                if n=m n-m=0, the first integral = \pi
        \int_{0}^{L} u(x,0) \sin \frac{m\pi}{L} dx = \sum_{n=1}^{\infty} K_{n} \int_{0}^{L} \sin \frac{n\pi}{L} x \sin \frac{m\pi}{L} x dx
           have been found Use the same technique to find K_m''
               \overline{V}(x) = \left(\frac{\partial U}{\partial t}\right)_{t=0} = \sum_{n=0}^{\infty} K_n^{(n)} \omega_n \sin \frac{n\pi}{L} x
           \int_{0}^{L} \overline{V}(x) \sin \frac{m\pi}{L} x = \int_{0}^{L} \left[ \sum_{n} K_{n}^{"} \omega_{n} \sin \frac{n\pi x}{L} \sin \frac{m\pi}{L} x \right] dx
                        = \frac{1}{2} K_m'' \omega_n \frac{L}{2}
```

$$\Rightarrow K_m''^4 = \frac{2}{\omega_m L} \int_0^L \overline{M}(x) \sin(\frac{m\pi x}{L}) dx$$
known

The solution of the problem is

 $U(x,t) = \int_{n=1}^{\infty} \left\{ \left[\sin \frac{n\pi}{L} x \int_{0}^{L_{2}} w(x) \sin \frac{n\pi}{L} dx \right] \cos \omega_{n} t + \left[\sin \frac{n\pi}{L} x \int_{0}^{L_{2}} w(x) \sin \frac{n\pi}{L} dx \right] \sin \omega_{n} t \right\}$

 $u_n = v \frac{n\pi}{L}$

 $\sin \frac{n\pi}{L} x \cdot \cos \frac{n\pi}{L} t$ $\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \sin(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+b) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A+B)\right]$ $\sin A \cos B = \frac{1}$

See P. 745 - P. 750

すり すり すり な "大學物理學 $u(x) = \frac{2b}{L} x$ $o(x) \leq \frac{b}{L} (L-x) \leq (x < L)$ $= \frac{2b}{L} (L-x) = \frac{b}{L} (x < L)$

$$\overline{V}(x) = \frac{\partial u(x,t)}{\partial t}\Big|_{t=0} = 0$$

```
5
Wave Equation
\frac{\partial^{2} u}{\partial t^{2}}(x,t) = v^{2} \frac{\partial^{2} u}{\partial x^{2}}(x,t)
constant
Seperation of variable
                                                                  Linear
     Ansatz: u(x,t) = F(t)G(x)
         \frac{1}{\phi} \frac{d^2 \phi}{dt^2} = \frac{1}{\psi} \frac{d^2 \psi}{dx^2} \quad v^2 = -\omega^2
              \frac{d^2\phi}{dt^2} = -\omega^2\phi
                                             \Rightarrow \phi = c \sin \omega t + D \cos \omega t
              \frac{d^2\psi}{dt^2} = -\frac{\omega^2}{2r^2}\psi \implies \psi = C'\sin\frac{\omega}{v}x + D'\cos\frac{\omega}{2r}x
         u(x,t) = [C \sin \omega t + D \cos \omega t][C' \sin \frac{\omega}{v} x + D' \cos \frac{\omega}{v} x]
                                    any w can satisfy the wave equation
                      Linear => any linear combination of
                                        above equation are solution
                                         of the wave equation
                                      fixed end point
                 D'=0, \sin \omega t = 0 \left[\frac{\omega L = n\pi}{v}\right]
                           \omega_n = \frac{v(n\pi)}{L}
```

only discrete values can satisfy the boundary condition $U_n(x,t) = (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin (\omega_n/v) x$

a solution of the wave equation and the boundary condition

The general solution

$$U(x,t) = \sum_{n} (K_{n}' \cos \omega_{n} t + K_{n}'' \sin \omega t) \sin \frac{n\pi}{L} x$$
to be determined
by the initial
condition.

Initial Condition u(x,o) = w(x) $\frac{\partial u(x,t)}{\partial t}\Big|_{x=0} = \overline{w}(x)$ the solution of the problem

Comment

- Linear
- . Boundary condition
- . Initial condition
- Method of Seperation of Variable
- Fourier Series

Small

$$F_y = T \sin(\theta + \Delta \theta) - T \sin \theta$$

$$F_x = T \cos(\theta + \Delta \theta) - T \cos \theta$$

Transverse displacement y is small

$$F_y \simeq T \triangle 0$$
 0
 $F_x \simeq 0$

The reason for partial derivatives

$$tan 0 = \frac{\partial y}{\partial x}$$

$$sec^{2} 0 \triangle 0 = \frac{\partial^{2} y}{\partial x^{2}} \triangle x \quad (2)$$

$$for small 0$$

$$a_{y} = \frac{\partial^{2} y}{\partial t^{2}} \quad (3)$$

$$\Rightarrow T \frac{\partial^{2}y}{\partial x^{2}} \Delta x = \mu \Delta x \frac{\partial^{2}y}{\partial t^{2}}$$

$$\downarrow combine \ \mathcal{O}, \textcircled{2}$$

$$\boxed{T \frac{\partial^{2}y}{\partial x^{2}} = \mu \frac{\partial^{2}y}{\partial t^{2}}}$$

$$U = \sqrt{\frac{1}{\mu}}$$

$$V = \sqrt{\frac{1}{\mu}}$$

$$Violen \quad E \quad string$$

$$f = 640 \quad H_{3}$$

$$W''' = 2\pi$$

$$W'' = 2\pi$$

$$W'' = 2\pi$$

$$\Delta u = 2\pi \cdot 640 \quad H_{3}$$

$$\Delta u =$$

Streeted String

$$\Rightarrow \sum_{\text{small oscillation in transverse direction}} \sum_{\text{in transverse direction}} \sum_{\text{transverse direction}} \sum_{\text{transverse direction}} \sum_{\text{transverse direction}} \sum_{\text{transverse direction}} \sum_{\text{transverse function}} \sum_{\text{transverse function}} \sum_{\text{transverse function}} \sum_{\text{transverse direction}} \sum_{\text{transverse function}} \sum_{\text{transverse functio$$

The Energy in a Mechanical Wave

The mass of the small segment is Judz The transverse velocity is 34 ⇒ for this segment the kinetic energy is $\frac{1}{2}\mu dx \left(\frac{\partial y}{\partial t}\right)^2$ kinetic energy per unit length. $= \begin{array}{c} kinetic \\ kinetic \\ energy \end{array} density$ $\frac{d(K.E)}{dx} = \frac{1}{2} \mu \left(\frac{\partial y}{\partial t}\right)^{2}$ The potential energy can be calculated by finding the amount by which the string, when deformed, is longer than when it is straight The extension . constant tension > work done in the deformation ⇒ for this segment potential energy = T(ds-dx) $dS = ((dx)^{2} + (dy)^{2})^{1/2}$ /y ↔ u/ $= dx \left[\left(+ \left(\frac{\partial y}{\partial x} \right)^2 \right]^{\frac{1}{2}}$ $ds - dx = \frac{1}{2} \left(\frac{\partial y}{\partial x}\right)^2 dx$ 24 <<1 potential energy $\simeq \frac{1}{2}T(\frac{\partial y}{\partial x})^2 dx$ potential energy density = $\frac{dE_p}{dx} \simeq \frac{1}{2}T(\frac{\partial y}{\partial x})^2$ \Rightarrow energy density $\cong \frac{1}{2}\mu\left(\frac{\partial y}{\partial t}\right)^2 + \frac{1}{2}T\left(\frac{\partial y}{\partial x}\right)^2$

```
Summary of Vibration String [1]

1. Derivation of the Wave Equation

2. Find the wave function with the boundary condition + initial condition

linear Combination

(sinkx, coskx) · (sinkx, coswt)

or

sinkx coswt = \frac{1}{2} \left[ sin(kx + wt) + sin(kx - wt) \right]

3. Given the wave function

calculate the physical interesting quantities
```

Need to calculate the energy of a segement

 $\frac{K. E. = \frac{1}{2} \ln \left[\frac{3y}{3t} \right]^{2}}{\text{clearly a function of } x, t.}$

 $\frac{P.E.}{dx} = \frac{1}{2} T \left(\frac{\partial y}{\partial x}\right)^{2}$ $tan \theta$

clearly a function of x,t

 \Rightarrow describe the energy distribution of the string vibration as a function of x, t.

Key of the wave phenomenon

. Distribuance

y(x,t) Elastic wave (Mechanical wave)
water wave
Sound wave y(x,t) Elastic wave (Mechanical wave)

"Matter" wave

"Matter" wave

. Derivation of the wave equation Wave equation type. Oscillations in space and time u(x,t)strected string Transverse sound wave Longitude

Wave equation $\frac{\partial^2 \mathcal{U}}{\partial t^2} = \mathcal{V}^2 \frac{\partial^2 \mathcal{U}}{\partial x^2}$ Note linear

Pulses of arbitrary shape $g(x,t) = f(x \pm vt)$ $\frac{\partial u}{\partial t} = \frac{\partial f}{\partial 3}(tv)$ $\frac{\partial^2 U}{\partial t^2} = (\pm V) \frac{\partial^2 f}{\partial z^2}$ $\frac{\partial^2 \mathcal{U}}{\partial x^2} = \frac{\partial^2 f}{\partial \vec{J}^2}$

Acsin(kx-wt) = 2sin (NRX) cos (wt)

sin A cos B tsin(kx+wt)

> the wave equation is satisfied.

The same

 $x_2 - vt_2 = x_1 - vt_1 = 3$ f(3) the same

t=t1

 $x_2 = x_1 + v(t_2 - t_1)$ moving with velocity

f(x-vt) going to the right with velocity v

pulse

harmonie pulses $J(x,t) = J_0 \cos(k(x \pm vt) + \phi)$

 $A sin(kx-\omega t)$

standing wave

= A sinkx cos wt - A coskx sinwt

 $p = \vec{F} \cdot (\vec{v}_{tm}) = -7 \frac{\partial \hat{x}}{\partial x} \frac{\partial \hat{x}}{\partial t}$ = www A cos (kx-wt)

notice the difference

A Sin (kx-wt) +A sin (kx+wt)

Psino-Tsino V=VII. tand now of TOO = F

	+ useful definition	14
wave tation	xample of the Mechanical Wave	
	N moiomal	
Line	ear	
		~
	General Discussion Oscillation in space, time 1 What to describe	
origin	Mechanical Wave String Cean Wave Elastic rod Sound	
transverse y(x,t)	EM Wave Matter Wave longitudinal $\xi(x,t)$ Wave equation	sound ware

All partial addition differential equation involved distrib

disturbance in space - time

$$P = \int atm$$

$$\gamma = \frac{C_P}{C_V} = 1.41$$

$$f = \frac{28}{22.4} \frac{kg}{m^3}$$

$$\Rightarrow V \sim 331 \text{ m/sec}$$

longitudinal wave

```
Doppler effect
```

observer

```
Vo = velocity of the observer observer relative to
                          the medium
                   Vs = velocity of the source relative to the medium.
AB=l
Emit a ware
           reach the observer at t
    Vt = \underbrace{1 + v_o t}
the first signal arrive at the observer
       source is at A'
```

$$v' = \frac{\tau}{\Gamma'} \underbrace{v} = \frac{\tau}{\Gamma'$$

$$T' = t' - t = \frac{\int f(v - v_s)T}{v - v_o} - \frac{\int f(v - v_s)T}{v - v_o}$$
$$= \frac{(v - v_s)T}{(v - v_o)}$$

$$\begin{array}{c|cccc}
\hline
 & y' = & T & y \\
\hline
 & bserved & emitted & lay \\
\hline
 & ew the & the source \\
\hline
 & observer. & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

$$=\frac{\frac{1}{V-V_s}}{\frac{V-V_s}{V-V_o}} \qquad = \frac{V-V_o}{V-V_s}$$

This is equation

The other

pitch] moving

Ve

Use of the Doppler effect

sonic bome

$$V = V_s$$

shock waves

radiation. Cerenkov

Light in vacuum
$$C$$

Light in medium $C = C$

if charged particle moving through a medium

differential counter - vary the threshold counter 10 ___ coso. =

could be the velocity of the electron meds

Wave function and Wave Equation $\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$

Linear ξ_1 , ξ_2 are solution $a\xi$, $+b\xi_2$ is also a solution

$$\frac{\partial^2 \xi_1}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi_1}{\partial t^2}$$
$$\frac{\partial^2 \xi_2}{\partial x^2} = \frac{1}{v} \frac{\partial^2 \xi_2}{\partial t^2}$$

 $\frac{\partial^{2}}{\partial x^{2}} \left(a\xi_{1} + b\xi_{2} \right) = \frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}} \left(a\xi_{1} + b\xi_{2} \right)$ $a \left[\frac{\partial^{2}\xi_{1}}{\partial x^{2}} \right] + b \frac{\partial^{2}\xi_{2}}{\partial x^{2}} = a \frac{1}{v^{2}} \frac{\partial^{2}\xi_{1}}{\partial t} \xi_{1} + b \frac{1}{v^{2}} \frac{\partial^{2}\xi_{2}}{\partial t^{2}} \xi_{2}$ This wave equation is <u>linear</u>

See Problem 15-59

$$\frac{\partial \psi_{i}}{\partial t} = 2\psi_{i} \frac{\partial \psi_{i}}{\partial t} + 3\psi_{i}$$

$$\frac{\partial \psi_{2}}{\partial t} = 2\psi_{2} \frac{\partial \psi_{2}}{\partial t} + 3\psi_{2}$$

$$\frac{\partial}{\partial t} (a\psi_{i} + b\psi_{2}) \stackrel{?}{=} 2(a\psi_{i} + b\psi_{2}) \frac{\partial}{\partial t} (a\psi_{i} + b\psi_{2})$$

$$\frac{\partial}{\partial t} (a\psi_{i} + b\psi_{2}) \stackrel{?}{=} 2(a\psi_{i} + b\psi_{2}) \frac{\partial}{\partial t} (a\psi_{i} + b\psi_{2})$$

$$+3(a\psi_{i} + b\psi_{2})$$

We shall only discuss the wave equation $\frac{\partial^{2} \hat{\xi}}{\partial x^{2}} = \frac{1}{V^{2}} \frac{\partial^{2} \hat{\xi}}{\partial t^{2}}$

y(x-vt) is a travelling wave moving toward right y(x+vt) " " " | left

```
Chapter 14

harmonic waves

idealization

Superposition and
```

Superposition. and interference

understand more complex waves
in terms of simple
harmonic waves

Different ways waves can be combined

Superposition Principle

Wave equations

Cohence

An interference pattern occurs only when the waves have a definite, stable relation between their frequencies and phase

 $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$

 $y(x,t) = A \sin(kx - \omega t) = A \sin k(x - \frac{\omega}{k} t)$ = $A \sin k(x - vt)$

 $V = \frac{\omega}{R}$

$$y(x,t) = A sin(kx - \omega t) = A sin k(x - \frac{\omega}{k}t)$$

A cos(kx-wt)

Sinugodial wave

amplitude

$$y_1 = A_1 \cos(0 + \phi_1)$$
, $y_2 = A_2 \cos(0 + \phi_2)$

Addition of similar Sinusodial Waves

Addition of Similar Sinusodial Waves
$$y = A \cos(\omega t - kx + \phi)$$

$$\downarrow \qquad \qquad \uparrow$$

$$amplitude \qquad phase$$

$$y(x,t) = y_1 + y_2 = A_1 \cos(0 + \phi_1) + A_2 \cos(0 + \phi_2)$$

 $0 = \omega t - kt$

 $\cos(\theta \pm \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi$

 $y = (A_1 \cos \phi_1 + A_2 \cos \phi_2) \cos \theta - (A_1 \sin \phi_1 + A_2 \sin \phi_2) \sin \theta$

$$y = C \cos(\omega t - kx + \delta)$$

= C cos d cos 0 - C sind sin 0

$$C \cos \delta = A_1 \cos \phi_1 + A_2 \cos \phi_2$$

 $C \sin \delta = A_1 \sin \phi_1 + A_2 \sin \phi_2$

$$\Rightarrow c^2 = (A_1 \cos \phi_1 + A_2 \cos \phi_2)^2 + (A_1 \sin \phi_1 + A_2 \sin \phi_2)^2$$

$$tan\delta = \frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2}$$

Any two sinusoidal function superimpose into yet another sinusoidal function, different from the original components, only in amplitude and

$$C^{2} = A_{1}^{2} (\sin \phi_{1} + \cos^{2} \phi_{1}) + A_{2}^{2} (\sin^{2} \phi_{2} + \cos^{2} \phi_{2})$$

$$+ 2A_{1}A_{2} (\cos \phi_{1} \cos \phi_{2} + \sin \phi_{1} \sin \phi_{2})$$

$$= A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2} \cos (\phi_{1} - \phi_{2})$$
interference

note the $p = p_2 \implies c^2 = A_1^2 + A_2^2 \qquad phase difference$

$$\phi_{1} - \phi_{2} = \pi$$
 $c^{2} = A_{1}^{2} + A_{2}^{2} - 2A_{1}A_{2} \rightarrow minimum.$

Generalize to any number of components $y = \sum_{i} y_{i} = \sum_{i} A_{i} \cos(\omega t - kx + \phi_{i})$ $y = C \cos(\omega t - kx + \delta)$ $C^{2} = (\sum_{i} A_{i} \cos \phi_{i})^{2} + (\sum_{i=1}^{n} A_{i} \sin \phi_{i})^{2}$ $tan \delta = \sum_{i} A_{i} \sin \phi_{i}$ $\sum_{i} A_{i} \cos \phi_{i}$

Any number of sinusoidal waves in superposition constitute still another sinusoidal wave

The Energy of Two Waves

The intensity of any sinusoidal wave is proportional to the square of the amplitude

Two such wave (different only in amplitude and phase

 $C^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos(\phi_1 - \phi_2)$

Average intensity over any number of complete eycles

 $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\phi_1 - \phi_2)$

interference

 $\phi_1 - \phi_2 = \frac{\pi}{2}$ waves appear independent of one another

 $I = I_1 + I_2$

If $A_1 = A_2$

 $I = 2I, \left[1 + \cos(\phi_1 - \phi_2)\right]$

 $\phi_1 - \phi_2 = 0$

 $\phi_1 - \phi_2 = \pi$

or disapparence of the wave energy appearance

Young's interference

coherence

```
Interference of two oppositely travelling waves
               y = y, + y2 = A cos (wt - kx) + A cos (wt + kx)
                          = 2A coskx cos wt
                                fixed points
of
zero distance
                            kx_n = (2n+1)\frac{\pi}{2} , n=0,1,2,...
                                                               21
                        f_n(x) = A_n \cos(k_n x + \phi_n)
                         f_n(x) = f_n(x+2L) periodic.
                         k_n(2L) = 2n\pi
                              \Rightarrow k_n = \frac{n\pi}{\prime}
                    F(x) = \sum_{n=0}^{\infty} A_n \cos(k_n x + p_n)
Fourier
                           = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)
Fourier's theorem
                                 \frac{n\pi x}{l} = n\theta
                                                                  So sinno sin mo do
                                                                      = \pi \delta_{n,m}
                     a_n = \frac{1}{L} \int_{x}^{x+2L} F(x) \cos \frac{n\pi x}{L} dx
= \int_{x}^{x+2L} f(x) \cos \frac{n\pi x}{L} dx
                     a_o = \frac{1}{2L} \int_X^{X+2L} F(x) dx
                     b_n = \frac{1}{L} \int_{x}^{x+} F(x) \sin \frac{n\pi x}{L} dx
                                                                                     = Tr Sm.n
```

$$F(x) = a_o + \int_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L})$$

$$Define \qquad k_i = \frac{\pi}{L}$$

$$\cos nk_i x = \frac{1}{2} (e^{-ink_i x} + e^{-ink_i x})$$

$$\sin nk_i x = \frac{1}{2} (e^{-ink_i x} - e^{-ink_i x})$$

$$F(x) = \int_{n=-\infty}^{\infty} C_n e^{-ink_i x}$$

$$C_o = a_o$$

$$C_n = \frac{a_n - ib_n}{2}$$

$$C_n = \frac{a_n - ib_n}{2}$$

$$C_n = \frac{1}{2L} \int_{x}^{x+2L} F(x) e^{-ink_i x} dx$$

$$\Rightarrow F(x) = \frac{1}{2L} \int_{n=-\infty}^{\infty} e^{-ink_i x} dx$$

$$k_i \to \frac{\pi}{L}$$

$$F(x) = \lim_{L \to \infty} \frac{1}{2\pi} \int_{n=-\infty}^{\infty} k_i \int_{-L}^{L} F(x') e^{-ink_i (x'-x)} dx'$$

$$\Delta k = k_{n+1} - k_n = \frac{\pi}{L} = k_i$$

$$k_n = nk_i$$

$$k_n = nk_i$$

$$k_m = nk_i = \lim_{L \to \infty} k_i \int_{-L}^{L} F(x') e^{-ik_n (x'-x)} dx'$$

$$= \lim_{L \to \infty} nk_i = \lim_{L \to \infty} k_i \int_{-L}^{L} F(x') e^{-ik_n (x'-x)} dx'$$

$$= \lim_{L \to \infty} ak \int_{-\infty}^{L} F(x') e^{-ik_n (x'-x)} dx'$$

$$= \lim_{L \to \infty} \lim_{L \to \infty} ak \int_{-\infty}^{L} F(x') e^{-ik_n (x'-x)} dx'$$

$$= \lim_{L \to \infty} \lim_{L \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} ak \int_{-\infty}^{L} F(x') e^{-ik_n (x'-x)} dx'$$

$$= \lim_{L \to \infty} \lim_{L \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} G(k) e^{-ikx} dk \quad \text{fourier integral}$$

$$G(k) = \lim_{L \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{-ikx} dx$$

$$\int_{-\infty}^{\infty} e^{ikx} e^{-dx^{2}} dx = \sqrt{\frac{\pi}{d}} e^{-k^{2}/4d}$$

$$\int_{-\infty}^{\infty} coskx e^{-dx^{2}} dx + i \int_{-\infty}^{\infty} sinkx e^{-dx^{2}} dx$$

$$\int_{-\infty}^{\infty} coskx e^{-dx^{2}} dx + i \int_{-\infty}^{\infty} sinkx e^{-dx^{2}} dx$$

$$even - odd$$

$$argument$$

$$I_{1} = \int_{-\infty}^{\infty} e^{-dx^{2}} dx$$

$$I_{2}^{2} = \int_{-\infty}^{\infty} e^{-dx^{2}} dx \int_{-\infty}^{\infty} e^{-dy^{2}} dy$$

$$= \int_{-\infty}^{+\infty} e^{-d(x^{2}+y^{2})} dx dy$$

$$= \int_{0}^{\infty} r dr \int_{0}^{2\pi} d\theta e^{-dr^{2}} r dr$$

$$= 2\pi \int_{0}^{\infty} e^{-dr^{2}} r dr$$

$$J = dr^{2}$$

$$dJ = 2rdr \cdot d$$

$$= 2\pi \int_{0}^{\infty} \frac{1}{2} e^{-J} \frac{dJ}{d}$$

$$= \frac{\pi}{d} \left[-e^{-J} \right]_{0}^{\infty} = \frac{\pi}{d}$$

$$I_{1}^{2} = \frac{\pi}{d}$$

$$\int_{0}^{\infty} e^{-dx^{2}} dx = \sqrt{\pi}$$

$$I_2 = \int_{-\infty}^{\infty} \cos kx \ e^{-dx^2} \ dx$$

$$coskx = 1 - \frac{(kx)^2}{2!} + \frac{(kx)^4}{4!} - \dots$$

$$\int_{-\infty}^{\infty} x^2 e^{-dx^2} = \frac{1}{2d} \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$$

$$\frac{d}{dx} \int_{-\infty}^{\infty} e^{-dx^{2}} dx = \int_{\pi}^{\pi} \frac{d}{dx} dx^{-\frac{1}{2}}$$

$$- \int_{-\infty}^{\infty} e^{-dx^{2}} x^{2} dx = \sqrt{\pi} (-\frac{1}{2}) dx^{-\frac{3}{2}}$$

$$= \int_{-\infty}^{\infty} e^{-dx^{2}} x^{2} dx = \frac{1}{2d} \sqrt{\pi}$$

Take derivative with
$$\alpha$$
 again
$$\int_{-\infty}^{\infty} e^{-dx^2} x^4 dx = \frac{3}{2^2 \alpha} \sqrt{\frac{\pi}{\alpha}}$$

$$I_{2} = \sqrt{\frac{\pi}{4}} \left[1 - \frac{k^{2}}{4\alpha} + \frac{3k^{4}}{\alpha^{2}4!2^{2}} - \frac{3.5k^{6}}{\alpha^{3}6!2^{3}} + \dots \right]$$

$$= \sqrt{\frac{\pi}{4}} \left[1 - \frac{k^{2}}{4\alpha} + \left(\frac{k^{2}}{4\alpha}\right)^{2}/2! - \left(\frac{k^{2}}{4\alpha}\right)^{3}/3! + \dots \right]$$

$$= -\frac{k^{2}}{4\alpha} \left[-\frac{k^{2}}{4\alpha} + \left(\frac{k^{2}}{4\alpha}\right)^{2}/2! - \left(\frac{k^{2}}{4\alpha}\right)^{3}/3! + \dots \right]$$

$$F(x) = e^{-\lambda x^2} \qquad \sqrt{\pi} e^{-k^2/4\lambda}$$

$$e^{-\lambda \hat{x}^{2}} = e^{-1}$$

$$\hat{x}^{2} = \frac{1}{\lambda}$$

$$\Delta x = \frac{2}{\lambda}$$

$$e^{-\widetilde{k}_{1}^{2}/4d} = e^{-1}$$

$$\widetilde{k}_{1/4d}^{2} = 1$$

$$\widetilde{k}_{2} = 2\sqrt{d}$$

$$\Delta k = 4\sqrt{\lambda}$$

AKAX ~ O(1)

uncertainty principle

x > _X

want the wave to "vanish" or small

Sinuodinal wave with k, outside Sinuoidal must be destructively interfered by a wave with ware $f_1 \Delta X - f_2 \Delta X \sim T$ humber k, T(ak) (ax) ~ TT Such that the phase difference uncertainty priniple OX Smaller ak must prow | p v h k | in matter wave [apax 2 h] Heisenberg's uncertainty principle.

The solution of the problems for Chapter 14-16 is on line

Final Jan 10 7:00 pm

Chapter 11-16

Thursday

$$F(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) e^{i(kx-\omega t)} dk$$

$$F(x,o) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) e^{ikx} dk$$

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x,o) e^{-ikx} dx.$$

$$\int_{\chi}^{\chi+2L} \left[F(\chi) \right]^{2} d\chi$$

$$= \int_{\chi}^{\chi+2L} \left[\left(a_{o} + \sum_{n=1}^{\infty} \left(a_{n} \cos \frac{n\pi\chi}{L} + b_{n} \sin \frac{n\pi\chi}{L} \right) \right] \right]$$

$$\left[a_{o} + \sum_{n=1}^{\infty} a_{n} \cos \frac{n\pi\chi}{L} + b_{n} \sin \frac{n\pi\chi}{L} \right] d\chi$$

$$\sim a_{o}^{2} (2L) + \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right) L$$

Fourier Energy theorem.

Advantages of use Fourier Series Expansion.

Problem 46 of Chapter 15

Applicatible to any periodic function.

(even with finite discontinunity)

Similar to Taylor expansion

Addition of two different k values $v = \frac{\omega}{b}$

So far we have consider the case

v = constant

 $y_i = A e^{i [(k+dk)x - (\omega+d\omega)t]}$

 $y_2 = A e^{i[(k-dk)x-(\omega-d\omega)t]}$

 $y_1 = y_1 + y_2 = A e^{i(kx - \omega t)}$ [$e^{i(dkx - d\omega t)} + e^{-i(dkx - d\omega t)}$

2 cos (dkx - dwt

Real of y

y = 2A cos (dkx - dwt) cos(kx-wt)

waves propagating moving with

with group phase velocity With group velocity

dispersive medium

 $\Rightarrow \omega = cR$

The group velocity

is the same as

the phase velocity

Dispersive medium

 $V_g = \frac{d\omega}{dk} = \frac{d(vk)}{dk}$

 $= v + k \frac{dv}{dR}$

v is a function of $k = \frac{2\pi}{\lambda}$

Example different color light propagating with

different velocity

vg < vp

The energy carried by the wave would propagate at

the group velocity

Figure 3.18. The sum of two waves of slightly differing angular frequency and wave number.

e packet
$$A(k) = \sigma e^{-(k-k_o)^2 \sigma^2/2}$$

$$f(x,t) = \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(k-k)^2 \sigma^2/2} e^{i(kx-\omega t)} dk$$

$$\omega(k) \simeq \omega_o + \left(\frac{d\omega}{ak}\right)_{k_o} (k-k_o) + \frac{1}{2} \frac{d^2\omega}{dk^2} (k-k_o)^2 + \cdots$$

$$keep$$

$$F(x,t) = \frac{\sigma}{\sqrt{2\pi}} e^{i(k_o x - \omega t)} \int_{-\infty}^{\infty} e^{-(k-k_o^2)\sigma^2 - (k_o - k)(x - \omega t)} dk$$

Let
$$a^2 = \sigma^2/2$$
 $U = \left(\frac{d\omega}{dR}\right)_{R_0}$
 $b = -i(x - \omega t)$

$$F(x,t) = \frac{\sigma}{\sqrt{2\pi}} e^{i(k_0 x - w_0 t)} \frac{e^{b^2/4a^2}}{a} \int_{-\infty}^{\infty} e^{-u^2} du$$

$$= e^{i(k_0 x - w_0 t)} e^{-(x - v_0 t)^2/2\sigma^2}$$

center of the Gaussian is moving with second group velocity decided are