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THE WAVE EQUATION AND ITS SOLUTIONS
by

William C. Lane
Michigan State University

1. Overview

Waves and vibrations in mechanical systems constitute one of the
most important areas of study in all of physics. Evidence of the existence
of these phenomena can be observed for almost any kind of physical sys-
tem. The propagation of sound and light, ocean waves, earthquakes, the
transmission of signals from the brain are a few examples. In this unit we
introduce the descriptors of waves and their motions: periodicity, ampli-
tude, propagation speed, etc. We relate these to symbols in the differential
form of the wave equation and in its formal solutions. We also relate these
descriptors to the properties of some simple physical systems.

2. The Wave Function

2a. Graphical and Mathematical Representation. Waves are rep-
resented mathematically by a wave function that may be expressed as a
graph or a formal function. This function describes the disturbance made
by the wave at various times as it propagates in space. Because the wave
function depends on both position and time, when we wish to draw a
graph of the wave we usually keep one variable fixed. For example, Fig. 1

£

Lt

Figure 1. A “snapshot” of a water wave showing the wave
profile at a given instant of time. The vertical axis indicates
the displacement of water from its average level.
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£

Y

t Figure 2. Vertical displacement of a
floating object as a water wave passes.

shows the profile of a series of water waves at a, given instant of time. You
can think of this as a “snapshot” of the wave. Alternatively we can ex-
amine the time variation of the wave at a specific point z. If we look at a
piece of driftwood as the waves pass, it will bob up and down, executing a
periodic motion. The vertical displacement of the driftwood may also be
represented graphically, as illustrated in Fig.2. The exact mathematical
form of the wave function, € = f(z,t), depends on the type of wave that
is being considered.

2b. Traveling Waves. One particular form of wave function, ¢ =
f(z — vt), corresponds to the “traveling wave,” the most common type
of wave we encounter. A traveling wave consists of a periodic series of
oscillations of some quantity that travel, or “propagate,” through space
with a speed characteristic of the wave and the medium through which
it travels. The expression € = f(z — vt) represents a one-dimensional
traveling wave propagating in the positive z-direction with speed v. If the
oscillations in the medium are simple harmonic oscillations, the functional
form of the wave function is also harmonic. It is important to convince
yourself that when f(z) is a function representing some curve then the
same function f, but with (z) replaced by (z — a), represents a curve
with the same shape but shifted along the positive z-axis by an amount
“a”-(see Fig.3). Similarly f(z + a) represents that curve shifted in the
negative z-direction by an amount “g.”

Try it with some simple, easy to compute function.! Understand-
ing this is fundamental to understanding the mathematical description of
wave motion. Replacing “a” by something linear in time, a = vt, gives
you a curve that propagates either to the right or the left depending on
the sign of v.

1For example, f = az or f = Csin bz.
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Figure 3. Three different functions shifted to the right by
an amount “g¢”: the accompanying replacement of (z) by
(z — a) is a general property of all functions.

3. Description of the Wave Motion

3a. The Harmonic Wave Function. A harmonic wave function
is sinusoidal in functional form and for a one-dimensional wave may be
expressed as either:

¢ = Asin [?Aﬁ(xivt)wo] , (1)

or

€= Acos B—”(xivt) +¢o} . (2)

This means that the profile of the wave at a particular time is a sine
or cosine function, as shown in Fig. 4, and that at a particular point in
space, the wave produces a simple harmonic oscillation in some quantity

» @s indicated in Fig.5. The symbols in Egs. (1) and (2) are explained in
the remaining paragraphs of this section. The parameters A and ¢q are

MISN-0-201 4

EA t=constant EA X=constant

//\ \ /\
/ \

\/ X \/ t

Figure 4. Snapshot of a har- Figure 5. Plot of the same wave

monic wave function at some as in Fig. 4, but at a specified
specified time . point z.

constants determined by the initial displacement and initial velocity of £
at some point in space.

3b. Phase and Phase Constant. The argument of a harmonic func-
tion is called the “phase” of the wave, ¢. For a one-dimensional traveling
wave:

#(z,8) = -z £ 0t) + do. 3

The phase describes the part of a complete wave oscillation that is oc-
curring at a given place and time. The constant ¢o is called the “phase
constant” and is the value of ¢ at z = 0, t = 0. The units of the phase
are radians when 27 occurs in Eq. (3). To express ¢ in degrees, replace
2w radians with its equivalent, 360°.

3c. Amplitude, Wavelength, and Wave Number. The maximum
value that sin ¢ or cos ¢ may take is +1, so the maximum wave disturbance
£ is:

max = TA. 4)

This maximum value of € is called the “amplitude” of the wave. The point
where £ = +A is typically called the “crest” of the wave and the point
where £ = —A is called the “trough” of the wave.?2 The distance from
crest to crest (or trough to trough) is called the “wavelength,” the distance
between points on the wave which have the same phase at the same instant
of time. Figure 6 illustrates these wave dimensions for a sinusoidal wave.
A useful expression involving the wavelength is the definition of a quantity

2Notice that the designation of a wave maximum as a crest or a trough is somewhat
arbitrary since the maxima, at § = +A are identical to the maxima at E=-—A.
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EA
+A L

Figure 6. Amplitude and wave-
length of a harmonic wave.

called the wave number, &, of a wave,

k:i—”. (5)

Since wavelength has units of length and 27 radians is a dimensionless
quantity, k has units of inverse length, usually m~! or cm=!. Using the
wave number symbol, a one-dimensional sinusoidal wave function may be
expressed as

€ = Asin [k(z & vt) + ¢q] . (6)

3d. Phase: Period, Frequency, Angular Frequency. There are
a number of ways of writing the phase of a wave, depending on whether
one uses period, frequency, or angular frequency. For a particle at a fixed
point, undergoing simple harmonic motion, we can write the phase of its
motion as

¢=<2717I)t+¢01 ()

where T is the period of the motion, and %o is the initial phase. Compar-
ing Eqs. (7) and (3), we see that the phase of a one-dimensional harmonic
wave may be written as

z 1
¢-—27T</\:i:T>+¢o. (8)
Using Eq. (8), the phase of a wave is easy to interpret: a change in position
by one wavelength or a change in time by one period results in a change
in phase of 27 radians (360°). The phase of a harmonic wave may also be
expressed in terms of frequency or angular frequency. Using the relation
between period and frequency

(9)

N =

MISN-0-201 6

the phase may be written as
z
¢~2W(Xiut)+¢o, (10)
or using the relation between frequency and angular frequency
w=2nv (11)
and the definition of wave number, Eq. (5), the phase becomes

d=kxtwi+dp. (12)

3e. Relations Among Traveling-Wave Descriptors. By compar-
ing Eq. (3) and (8), a relation between the wave speed v, the wavelength
A, and the period T, may be determined to be:

A
=, 13
v=3 (13)
This expression may be transformed into several equivalent forms by using
the definition of frequency and angular frequency:

U= Ay, (14)

and
U=

(15)

= &

Using these relations between wave descriptors and their definitions, you
should be able to transform between the several forms of the wave function
we have encountered so far. These relations and the various forms of
the harmonic wave function are summarized in Table 1. The variables
used in Table 1 are listed in Table 2, although you should note that:
(1) any part of a wave could be used in place of the word ”"crests”; and
(2) the descriptions are only meant as reminders of the more complete
descriptions given throughout the text.

10
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Table 1. Useful wave relations and various one-dimensional

harmonic wave functions. Remember that cosine functions

may also be used as harmonic wave functions.

Wave Relations | One-Dimensional Wave Functions

2
U= % £ = Asin [Tﬂ-(mﬂ:vt)+¢o}
v= v €= Asin [k (z £ vt) + ¢y]
w T t
= — =Asin |27 [ Z + —
v - £ sm[w(/\:!:T>+¢o]
2 1
k= —;,I/z T &= Asin [277(%\{:&1/73) +¢o]
w =27y § = Asin [kz + wt + ¢g)
Table 2. Variables used in Table 1.
Variable | Brief Description

A wavelength: distance between successive crests at one time
T period: time between successive crests at one place
I3 wave function: the size of the wave at any time and place
A amplitude: maximum value of the wave function
v speed of each crest
t the time at which the wave function is being described
o phase constant: the wave’s phase at time zero, place zero
k wave number: number of waves per unit length at one time
T the place at which the wave function is being described
w angular frequency: 27 times the frequency
v frequency: rate at which crests go by at one place

4. The Equation of Wave Motion

4a. One-Dimensional Equation of Wave Motion . By applying
Newton’s second law and some forms of Hooke’s law to the deformation
¢ in an elastic medium, a differential equation of motion for £ may be

i1
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derived.? If ¢ is a one-dimensional traveling wave in the elastic medium,
the differential equation of motion is found to be:

0% _ 0%

otz 9z’
This partial differential equation? is called the “characteristic equation”
of wave motion in one dimension. If, by using Newton’s second law, you
find for a physical system that the equation of motion is of this form, then

you know that wave motion can result. From this differential equation
you can read the propagation speed of any wave that obeys it.

(16)

4b. Forms of the General Solution. Since the wave equation is a
second order linear partial differential equation, the general solution of the
wave equation consists of a linear combination of two linearly independent
harmonic functions:

&(z,t) = fi(z £ vt) + fo(z £ vt). (17)

You should be able to verify Eq. (17) as a solution to Eq. (16), the wave
equation, by direct substitution.

If the signs of the “vt” terms are the same in f1 asin fo, Eq. (17)
represents a superposition of two waves traveling in the same direction.

If the signs of “vt” terms are opposite for the two functions in
Eq.(17), we have the superposition of two waves traveling in opposite
directions. With appropriate choices for boundary conditions, this par-
ticular solution to the wave equation is called a “standing wave” and it is
a very important phenomenon in physics. It is treated elsewhere.5

4c. Restriction to Harmonic Waves. We can restrict Eq.(17) to
a description of single-frequency harmonic waves by making one term a
sine function and the other a cosine function (these functions are linearly
independent):

§(z,t) = A sinlk(z — vt)] + B cos[k(z — vt)]. (18)

The two amplitudes 4 and B complete the description of particular waves.
That is, specifying values for them picks out a specific case from all pos-
sible waves with the specified frequency and velocity already specified in

3For several examples of this derivation, see “Sound Waves and Small Transverse
Waves on a String” (MISN-0-202).

4For the meaning of “partial differential equation” and “partial derivative,” as used
in this module, see this module’s Appendix.

5See “Standing Waves” (MISN-0-232) and “Standing Waves in Sheets of Materials”
(MISN-0-233).

12
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Eq. (18). For example, if the values of € and its first derivative with re-
spect to time are known at some point in space and at some instant of
time for the process at hand (usually at z = 0 and ¢ = 0), then those
values can be used to set A and B. As an alternative to Eq. (18), we
can express § as a single sine or cosine function (more useful in certain
situations):

€(z,¢) = &osinfk(z — vt) + ¢, (19)

where Egs. (18) and (19) are connected by:
g0 = (4% + B*)"? and ¢y = tan (g) . (20)

Either way we have two constants that must be established for any par-
ticular application.6
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Glossary

e amplitude: the maximum value of a wave function.

® boundary conditions: the values of the wave function and its first
time-derivative, at some point in space, at some instant of time.

e field: a quantity that has a value at each point in space.

e harmonic function: a sinuscidal function; for example, sin(kz + wt)
or cos(kz + wt).

e partial derivative: a derivative of an expression where only one
quantity in the expression can vary.

SThe requirement of two constants may not surprise you since the solution of a
second order differential equation requires two sequential integrations, thus introducing
two constants of integration. These two constants are called “boundary conditions”
or “initial conditions,” but both of those terms are misleading since the values used
are not necessarily on any physical periphery nor are they necessarily values for the
boundaries of the time interval being studied.

i3
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e phase: the argument of a harmonic wave function. The phase of a
wave specifies what part of a complete oscillation or cycle the wave is
producing at a given point in space and at a given time.

e phase constant: the value of the phase of a wave at time t = 0 at
the origin of the relevant coordinate system.

e sinusoidal wave: a wave whose spatial profile at any given time is
a sine function and which produces simple harmonic oscillations of the
wave quantity £ at any given point through which the wave passes.

e traveling wave: a periodic series of oscillations that propagate
through space with a speed characteristic of the wave and the medium
through which it travels.

¢ wave equation: a differential equation of motion whose solutions are
mathematical representations of waves.

e wave function: a mathematical representation of a wave, and the
solution to the wave equation.

® wave number: a quantity inversely proportional to the wavelength
of a wave; symbolized by k. Note: k = 2/

® wave speed: the speed with which a wave propagates through space.

e wavelength: the distance in space between successive points of equal
phase on a wave; symbolized by A

Partial Derivatives

a. Particles and Ordinary Derivatives. A “particle” is usually
specified in part by its position, say <. The position of the particle usually
changes with time so we write z(t). Then the rate of change of the
particle’s position with respect to time is written dz(t)/dt, and that is
its z-component of velocity. It is an example of the use of the ordinary
derivative.

b. Fields: Temperature as an Example. A “feld” is specified by
its value at each space point (z) at each time (t). For example, the tem-
perature of the air in this room can be written as T(z,t): at a particular
time ¢ it has a value (in degrees) at each space point  as one moves along
some straight line across the room. As time changes, the value at each

14
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T=2x10"3s
v = 500 Hz M
A=0.66m
c. {(z,t) at t =0: y(x+A)
Xg~2A Xg—A Xg
5.196
¢. y(z — 24) has its maximum value when z — 24 — Zg:
- M ;
t=0 y(x=2A)

3. A wave described at two times: Xo+A Xo+2A Xg+3A

a. A=13m Help: [5-5]
- A=524m Help: [5-6]

5. k=w/v; kv = w; (w/v) = @m/A); w=27v; v = 1/T.
b
¢. v=0.50Hz Help: [S-4]
d
e

6. Determining the functional form.

- v=2.62ms™! Help: [S-7] a. £ = (0.5m)sin [(”m—l) z— (4775—1) t+¢o],
- —& direction Help: [S-8] or
§=(0.5m)cos [(mm™1) z — (4ms™t)t + o).

b. ¢o = 156.4° if the sine function is used;
a. y(z) has its maximum value when z — Zo: $o = 66.4° if the cosine function is used. Help: [S-9]

4. y(zo) is the maximum value of y(z).

" 7. A wave specified at two times:

a. A=0.02cm; v=1.5/5; A = 8.0cm Help: [5-10]

y(x) b. The wave moves in the negative z direction with speed v = 12 cm/s.

8. Only (c) satisfies this equation.

Xg—-A Xg Xg+A 9. F(z,t) =z + (10Hz)\t
10. Displacements at two points:

b. y(z + A) has its maximum value when z + A=z
» a. 1.5x1074m

19 20
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space point along the line changes. Note that there are an uncountable
infinity of points along the line, at each of which the temperature can be
specified at any one time. This is in contrast to a “particle,” for which
there is only one position at any one time.

¢. A Mental Exercise. In your mind, go through the process of
plotting an ordinary two-dimensional graph showing the temperature at
all points = for a fixed time ¢. That is, plot T'(z) for a single time t,
a “snapshot” of the temperature field. Now imagine plotting a separate
graph showing the temperature at a single point (that is, at a single z
value), as a function of time. Think about how the measurements would
be made in each case.

d. Fields and Partial Derivatives: an Example. If we want to
know the rate of change of temperature, T', with position along a line, z,
at a fized time t, we must take the derivative of T with respect to = while
holding ¢ fixed. This process of holding one variable fixed while taking
the derivative with respect to another variable is called “taking a partial
derivative.” It is written with & symbols replacing the usual d symbols in
the derivative. Here are some examples of taking first and second partial
derivatives of a particular function Flz,t):

. f=(z+vt)?
0f 0z = 2(z + vt) Of /0t = 2u(z + vt)
0%f/0z% =2 82 f /012 = 202

15
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PROBLEM SUPPLEMENT
Note: Problems 8, 9, and 10 also occur in this module’s Model Ezam.

1. Given the function:
€(z,t) = A1 cos ki (z + vt) — Ay sin ko(z — vt).

Determine whether this a solution to the wave equation, Help: [S-1]

0%
oz% G2

2. Let {(z,t) = Asin(wt+kz + o) where ¢ is the phase constant. This
wave is traveling in the negative z-direction at the speed of sound in
air, 330 m/s.

a. Determine whether £(z,t) satisfies the wave equation quoted in

Problem 1.
b. If A =6.0cm, £(0,0) = 5.196 cm and
) ¢
£(0,0) = 5 z =8 =+94.2m/s,

find ¢, w, k, T, v, and \.
c. Sketch £(z) at t = 0.

3. A certain one-dimensional wave is observed at a certain instant of
time to be described by:

&(z,t1) = (1.3m) sin[(1.2 m™)z + 167]
and 12 seconds later by:
¢(z,t1 +125) = (1.3m) sin[(1.2m ™)z + 28x].

Determine this wave’s: (a) amplitude; (b) wavelength; (c) frequency
(in hertz); (d) speed; and (e) direction of travel.

16
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4. A function y(z) consists of: (1) a straight line that increases from

its value of zero at position (zq — A) to its maximum value of M at
position zg; then (2) another straight line from this maximum value
of M to be the value zero at position (zo + A). Everywhere else, y(z)
is zero. Thus the function is a triangle in the z-y plane Jjoining points
(Zo — 4,0), (w0, M) and (zq + A, 0).

a. Sketch the function y(z).

b. Sketch the function y(z + A).

c. Sketch the function y(z — 24).

. Show that £ = & sin(kz —wt) may be written in the alternative forms:
a. & = ¢osinfk(z — vt)]

b. ¢ = £ysin [w (-:- - t)]

c..£ = &ysin [Zvr (; - yt)}

d. € = &sin [271‘ (i)\v— - —;—,)J

. A one-dimensional sinusoidal wave, of wavelength 2m, travels along

the z-axis (in the positive z-direction). If its amplitude is 0.5m and

it has a period of T = 0.5s:

a. Write down an appropriate wave function to represent this wave.

b. If the displacement of the wave is 0.2m at z=20,t=0, and
€(0,0) = +5.76 m/s, find the phase constant.

- A one-dimensional sinusoidal wave moves along the z-axis. The dis-
placement at two points, z; = 0 and Zz = 2.0 cm, is observed as a
function of time:

&(z1,1t) (0.02 cm) sin[(37 571 )¢
(z2,t) = (0.02cm)sin[(8rs™1)t + -g—]

Il

a. What are the amplitude, frequency, and wavelength of this wave?
Help: [S-10]

b. In which direction and with what speed does the wave travel?

. Verify whether or not each of the following functions is a solution to
the one-dimensional wave equation:

MISN-0-201 PS-3

10.

a. & = & cos(mt)
b. £ = & sin M(z + 4ut) where M is a constant
c. {=Y(z— vt)

- A one-dimensional sinusoidal wave is traveling along the z-axis in the

negative z-direction. It can be represented by:
2
&z, t) = ACOS[TWF(:B, £)].

The wave’s frequency is 10Hz and its wavelength is . Write down
an appropriate function F(z,t) which gives this wave the properties
listed above.

"The displacements at two points in space are observed as a wave {(z,t)
passes by. At the points z; = 0.5m and Zg = 2.5m the displacement
from equilibrium is observed as a function of time. These are found
to be: £(0.5m,¢) = (1.5 x 10~*m) sin[(67s~1)¢]

§(2.5m,1) = (1.5 x 10~* m) sin[(6ws~1)¢ + 2 /3]

What is the amplitude of this wave?

- What is the frequency of this wave in hertz?

- What is the wavelength?

. What is the speed with which this wave travels?

What way is the wave traveling?

R

What is the time rate of displacement at the point z; at times
t=0and ¢{=0.25s7

Brief Answers:

1.
2.

Yes Help: [5-1]
A traveling wave:

a. Yes, if w? = v2k? (see Problem 1).

b. ¢o = m/3radians= 60° Help: [5-3]
w=314x 10351 Help: [$-g]
k=95m™!

18
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b. 3Hz

c. 6m

d. 18m/s.

e. Toward the negative z-direction

f. 97 x 107*m/s and zero respectively.

PS-6
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SPECIAL ASSISTANCE SUPPLEMENT

(from. PS-Problem 1)

Taking the appropriate partial derivatives,

% = —kwArsinlki(z + vt)] + kyvAs cos [ka(z — vt)]
= %ig = —k{v?4; cos [k (z + vt)] + k22 Ay sin [ky(z — vt)]
S—i = —kiAisin [k (z + vt)] - ky Az cos ke (z — vi)]

= % = —ki A cos[ky(z + vt)] + k3 Ag sin [ka (z — vi)]

Comparing the two equations marked =, it is clear that v2 times the
lower one equals the upper one. Thus € is a solution to the wave equa-
tion. However, if the velocity v in the two terms had not been the same,
€ would not have been a solution. Note that the first term represents a
wave of amplitude A; and wavelength 2m/k; traveling to the left, while
the second term represents a wave of amplitude A; and wavelength
2 /ks traveling to the right. These two waves are traveling through the
Same space points at the same time.

S-2 (from PS-Problem 2b)

_ £(0,00  942m/s
¥~ Acosgy ~ (6.0em)(1/3)
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S-3 (from PS-Problem 2b)

£(0,0) = Asin(0+ 0 + ¢o) = Asin ¢y = 5.196 cm

_ £(0,0) _ 5.196

sin ¢g 1= 60 = ().866,

so: ¢o = sin"1(0.866) = 60° (m/3radians) or 120° (27 /3 radians)

To choose the correct value of %o, information from £ (0,0) must be used:
E(z,t) = 0¢/0t = wA cos(kz + wt + @o)

£(0,0) = wAcos o = +94.2m /s

cosm/3 = +1/2, cos(27/3) = -1/2.

Since f (0,0), w, and A are all positive, cos ¢y must be positive as well,
so 27/3 is rejected as a possible value for $o, i.e. g =m/3.

MISN-0-201 AS-3

S-8 (from PS-Problem 3e)
Read and understand this module’s text.

! s9] (from PS-Problem 6b)

Note 1: —203.6° is just as good an answer as 156.4°.

Note 2: Electronic calculators face an ambiguity in giving an answer
for an inverse trigonometric function. For example, sin(5.74°) =
sin(174.26°) = 0.1. Therefore sin™(0.1) could be either 5.74° or
174.26°: both are valid mathematical answers to the inverse sine prob-
lem, taken in isolation. You must decide which is the right answer by
examining other aspects of the problem at hand.

S-4 (from PS-Problem 3c)

Rule: A(phase) = 27 [%;E + %] .

For this case,

phase #1= (1.2m~ Yz + 167
phase #2= (1.2m~ )z + 287
A(phase) = 127

but Az = 0, hence: 27 (%) = 127, and At = 12s.

5-10 (from PS-Problem 7)

Compare to the general form of the wave equation to get:
@2r/MN)Az = Ap = ) = 2m(2.0cm)/(/2)

S-5 (from PS-Problem 3a)
Just look at either &(z, 1) or &(z, t2).

5-6 (from PS-Problem 3b)
See Problem 1. A = 27/(1.2m™1).

(from PS-Problem 3d)

Compare to the general form of the wave equation to get:
koAt = Ad = v =12n/(1.2m™! 125)

23
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Brief Answers:

MODEL EXAM 1. See this module’s text.

1. See Output Skills K1-K3 in this module’s ID Sheet. 2. See this module’s Problem Supplement, problem 8.

2. Verify whether or not each of the following functions is a solution to 3. See this module’s Problem Supplement, problem 9.

th di ional e tion:
¢ one-dimensional wave equation 4. See this module’s Problem Supplement, problem 10.

a. &= &g cos(mt)
b. & = o sin M(z + 4vt) where M is a constant
c. £=Y(z—vt)

3. A one-dimensional sinusoidal wave is traveling along the z-axis in the
negative z-direction. It can be represented by:

£(z,1) = A cos {27" F(a, t)] :

The wave’s frequency is 10 Hz and its wavelength is A\. Write down an
appropriate function F(z,t) which gives this wave the properties listed
above.

4. The displacements £(z, t) at points in space are observed as a wave
passes by. At the points z; = 0.5m and T2 = 2.5 m the displacements
from equilibrium, ¢, are found to be (as functions of time):

€(0-5m, %) = (1.5 x 10~ m) sin[(6m s~1)¢]
£(2-5m,%) = (1.5 x 10~ m) sin[(6ws~1)t + 27/3]

. What is the amplitude of this wave?

What is the frequency of this wave in hertz?

- What is the wavelength?

What is the speed with which this wave travels?
What direction is the wave traveling?

o0 o oo

What is the time-rate of displacement at the point z; at times £ =
and ¢ = 0.25s?
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Derivation of the Wave Equation

In these notes we apply Newton’s law to an elastic string, concluding that small
amplitude transverse vibrations of the string obey the wave equation. Consider a tiny element
of the string.

« T(z + Az, 1)
- 6(z + A, 1)

Au

\0(x,1)

T(z,t) 4 u(z,t)

The basic notation is

u(z, t) = vertical displacement of the string from the z axis at position = and time ¢
f(z,t) = angle between the string and a horizontal line at position z and time ¢
T(z,t) = tension in the string at position = and time ¢

p(x) = mass density of the string at position
The forces acting on the tiny element of string are

(a) tension pulling to the right, which has magnitude T'(z + Az, t) and acts at an angle
6(x + Az,t) above horizontal

(b) tension pulling to the left, which has magnitude T(z,t) and acts at an angle 0(x,t)
below horizontal and, possibly,

(c) various external forces, like gravity. We shall assume that all of the external forces
act vertically and we shall denote by F(z,t)Az the net magnitude of the external
force acting on the element of string.

The mass of the element of string is essentially p(m)m so the vertical component

of Newton’s law says that

p(z)V Az + Au2dH at2 Y (3,t) = T(x + Az, t)sin(z + Az, ) — T(z, t)sinf(z,t) + F(z,t)Az

1



Dividing by Az and taking the limit as Az — 0 gives

p(z)y/1 + (%)2%2—’;%(33,3 =& [T(=,t)sinf(z, t)] + F(o:,t)
= 9L (z,t)sin0(z,t) + T(z,t) cosO(x,t) 99 (z,t) + F(z,1)

1)

We can dispose of all the 8’s by observing from the figure that
tan 0(z,t) = hm —A—"‘ﬁ = 3" U (x,1)

which implies, using the figure on the right below, that

sin0(z,t) = 5(.) cos0(z,t) = L : ! tan@
V1+ (&) J1+(2(e,1)
t

0(z,t) = tan™"* 2% (z, 1) 2 (x,t) = oz

Substituting these formulae into (1) give a horrendous mess. However, we can get
considerable simplification by looking only at small vibrations. By a small vibration, we mean
that |0(z,t)| < 1 for all z and ¢. This implies that | tan 6(z, t)| < 1, hence that |%(w, )| <1
and hence that

14 (&) ~1  sinb(z,t)~ L(@t) cosbat)ml T Pu(z,t) (2)
Substituting these into equation (1) give
p(m)%é%(m,t) = 2L (z, t)g (z,t) + T(=, t) 2 6:52 Y(z,t) + F(z,1) (3)

which is indeed relatively simple, but still exhibits a problem. This is one equation in the
two unknowns u and T'.

Fortunately there is a second equation lurking in the background, that we haven’t
used. Namely, the horizontal component of Newton’s law of motion. As a second simplifi-
cation, we assume that there are only transverse vibrations. Our tiny string element moves

only vertically. Then the net horizontal force on it must be zero. That is,

T(z + Az, t) cosO(z + Az, t) — T(z,t) cosb(z,t) =0

2



Dividing by Az and taking the limit as Az tends to zero gives
9 |T(z,t)cosO(z, )] =0

For small amplitude vibrations, cos @ is very close to one and %E(m,t) is very close to zero.
In other words T is a function of ¢ only, which is determined by how hard you are pulling on

the ends of the string at time ¢. So for small, transverse vibrations, (3) simplifies further to
2 2
p(x) &% (2, 1) = T(¢) G (z,2) + Fz, 1) (4)

In the event that the string density p is a constant, independent of z, the string tension T(t)
is a constant independent of ¢ (in other words you are not continually playing with the tuning

pegs) and there are no external forces F' we end up with

where
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SOUND WAVES AND
SMALL TRANSVERSE WAVES ON A STRING

by
J.S.Kovacs and O. McHarris

1. Overview

Many physical systems are described by the wave equation and its
solutions. By applying Newton’s second law, the wave equations are found
for transverse waves on a string, and longitudinal waves on a rod or in a
gas. The speed of each type of wave is then found by inspection of the
wave equation.

2. Introduction

2a. The Wave Equation and its Solutions. The solutions of the

equation: )
¢ _ 0%
a2 =Y 5z @

are waves of displacement ¢ traveling at speed v in the positive and neg-
ative z-direction.!

2b. Finding the Wave Equation for a Physical System. Let us
look at appropriate physical systems, apply Newton’s second law, and see
that a wave equation results. For a physical displacement ¢ we will use
Newton’s second law in the form:

8%¢

F=mag= mw .
Then whenever the net force F on the system under study is proportional
to the displacement’s spatial “bending function,” §%¢/0x2, we will have
the wave equation, Eq. (1). The solution of this equation is the equation of
motion of the system. The resulting motion should be that of a traveling
wave and the velocity of this wave can be determined just by inspecting
the differential equation. As examples of this procedure we will examine
a transverse wave on a stretched string, a longitudinal wave in a rod of
solid material, and a longitudinal wave in a gas. In each of these cases
we will derive the correct differential equation for the system and then
determine the wave velocity by comparison to Eq. (1).

1See “T'he Wave Equation and Its Solutions” (MISN-0-201).
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Figure 1. Geometrical descriptors for the displacement y
of a small segment Az of a stretched string.

3. Small Transverse Waves on a String

3a. Geometrical Descriptions. Above is shown a very short length
Ax of a string that is vibrating transversely (in the figure, up and down).
The string is stretched along the z-axis and the wave propagates along it
in the z direction. However, the individual particles of the string move,
parallel to the y-axis, at right angles to the direction of the wave’s motion.
The equilibrium position of the string is at y = 0, and the displacement
Y is assumed to be small, as are the angles 6 and A4.2

3b. Net Force on a Segment. Neglecting the force of gravity, the
two forces on the segment Az are the tension T in the string on the right
hand end (the tangent at that point) pulling the segment up and to the
right and the tension T in the string on the left hand end pulling it down
and to the left. Due to the shape of the wave, the tangents to the two
ends of the segment are at different angles to the z-axis. At the right
hand end of the segment:

Fy=Tsin(0+Af) and F,= Tcos(0+ AG),
while at the left hand end:

F,=-Tsind  and F] = ~Tcosé.

?For small displacements the restoring force on the string varies linearly with dis-
placement and hence produces simple harmonic motion. This makes the motion of the
string easily soluble mathematically.
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Since both 6 and A# are small, cos§ and cos(d + A0) are both essentially
equal to 1 and there is negligible net force in the z-direction.? For small
8, sinf on the other hand is essentially equal to 6, and the net force in
the y-direction is:*

F,=TAS.

3c. Applying Newton’s Second Law. If the linear density (mass
per unit length) of a stretched string is y, a segment with length Az has a
mass Am = puAz and a transverse acceleration g = d%y/6t? (see Fig. 1).
Notice that for “a” we must use partial derivatives of y with respect to
t since the displacement y is a function of both z and . Application of
Newton’s second law then gives us (with F' from the previous section):

T A = pAzd?y/0t*.

This implies: \
Af 9%y
The =t @)

We can now let Az and A shrink until A§/Az becomes 06/0z so
Eq. (2) becomes:
96 9%

Tos = Fae @)

3d. Getting the Wave Equation. For a wave equation, Eq. (1), we
need 0%y/8z? rather than the 80/0z of Eq. (8). Let us therefore rewrite
00/0z in terms of y and z. These quantities are related by:

tanf = slope of curve = 8y/0z .

Differentiating with respect to z gives us:

2tan9= 2 (92) ,

oz Oz \ Oz
1 96 8%
cos2f 0z~ Hz2’
92 94 .
3cosf =1~ 5 + _——— For small 6, the 62 and higher terms can be neglected.
. #g 8
sinf =6 — T + 5

MISN-0-202 4

where we now have the second derivative we need. Remembering that
cosf ~ 1 for small §, we have finally:

62 T 6%
9y _-9v (4)
02 u oz :
This is the wave equation for any small traveling wave on a stretched
string. Comparing to Eq. (1) we see that the speed of the wave is:

v=+/T/u. (5)

3e. Physical Solutions. The wave equation contains symbols whose
values must come from the physical problem at hand. The wave's speed
comes from the properties of the medium in which the wave propagates,
as illustrated in Eq. (5) with tension and mass-per-unit-length for a string.
‘The wave’s shape, whether sinusoidal or something else, and its frequency,
depend as well on the driving force (on the manner in which the string
is made to keep vibrating) and on the damping properties of the string.

4. Longitudinal Waves on a Rod

4a. Overview. Applying Hooke’s law and Newton’s second law to
longitudinal compression in a solid rod, we can derive the equation for
acoustic waves in the rod. Such a compression occurs when, for example,
a rod is struck on one end, displacing the individual particles of the rod
in the direction of the rod’s length and causing a displacement wave to
travel down the rod in the same direction as the motion of the particles.

4b. Stress, Strain, Young’s Modulus. In general, when a rod is
subjected to a force in the direction of its length and acting over its
cross section—when, for example, it is vertical and holds up the roadbed
of a bridge or some other weight suspended from its end—Hooke’s Law
applies. This law states, in general, that in an elastic medium:5

stress
strain

= constant, (6)

where stress is the applied force per unit cross sectional area and strain
is the rod’s fractional deformation due to the stress.

stress = F/A.

50ur rod will remain “clastic” as long as it is not stretched too much in proportion
to its length.



MISN-0-202 5

7

A
X X+AXx bj
E f i —» | Figure 2. Geometrical descrip-
! ! 1 F tions for a rod undergoing longitu-
L AL dinal compression and/or exten-
sion.

In the case of a rod, the stress causes a change in the length of the rod.
The strain is thus the fractional change in length. Writing L as the
original length of the rod and AL is its elongation due to the stress on it,
the strain is AL/L. For a rod, the “constant” of Eq. (6) is called Young’s
modulus and is designated by the letter Y; it is a property of the material
of which the rod is made. Thus for elastic longitudinal deformations of
our rod:

Y = (F/A)/(AL/L),

and hence:
F=YAAL/L.

4c. Force on a Segment: Static Case. In order to derive a wave
equation for a rod, let us analyze what happens to a small segment of the
rod. Consider a segment with unstretched length Az and cross section
A, where A is also the cross section for the rod as a whole (see Fig. 2).
In a static situation, such as that of a spring pulling on the end of the
rod, the force is constant along the rod, and the segment of length Az
is stretched by its proportionate amount A& such that the A¢’s summed
over all the Az’s of the rod equals the total elongation AL. In this case,
Hooke’s law for the segment gives us:

F=YANA¢/Az.

We now let Az shrink until that expression becomes:

d
F= YA% . (7)

4d. Force on a Segment: Dynamic Case. When a wave is traveling
along the rod, the situation is not static and the forces at the two ends
of any particular segment are not equal. The acceleration of the segment

MISN-0-202 ‘ 6
at any particular time ¢ is due to the net force on it at that time:
dFyet = F(z + dz) — F(z)

"L

=YA @ dz (fixed time)

T g2 T '
We must remember what £(z, t) is, though. It is the displacement, from
equilibrium, of the individual particles in the rod as the wave travels along
the rod. As such, it is a function of both z and ¢. Thus to get rid of the
“fixed time” label in Eq. (8) we can use partial derivatives:

dF = YA—Qé dx.
Oz

4e. Applying Newton’s Second Law. We apply Newton’s Second
Law to a small segment of a rod that has volume density p and cross-
sectional area A. The small segment has mass dm and length dz:

dm = pdV = pAdz.
The acceleration of the rod particles at z and ¢ is:
8%¢
o2’

Then Newton’s second law, for the segment of length dz at z and ¢, gives
us:

a(z,t) =

5%¢ 8%¢
YA&L'2 dz = pA dm—c’;t? ,

which can be written:

8% Y 9%

52T A )

ot p Oz
"This is the wave equation so by comparison to Eq. (1) speed for a longi-
tudinal wave on a rod is:

v=(¥/p)"/?. ©)

10
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5. Longitudinal Waves In a Gas

5a. Stress, Strain, Bulk Modulus of Elasticity. Longitudinal
waves in a gas, such as sound waves through the air, obey Hooke’s law:

stress

— = constant . (10)
strain

This equation also applies to a long thin rod where a stress causes a
one-dimensional strain (a change in length). Actually, a more thorough
analysis of that case shows that the rod’s cross section decreases slightly
as the length increases: the rod’s volume stays approximately constant.
A gas does not act the same way at all since it is compressible and its
volume changes with pressure. Here the appropriate constant in Eq. (10)
is the gas’s bulk modulus of elasticity, K, usually defined by:®

dP

K=-—WV

5b. The Wave Equation. The equation of motion for a volume ele-
ment of a gas is mathematically more complicated than that for a segment
of a rod. However, in advanced texts it is shown that the wave equation
for a longitudinal wave in a gas is like that for a longitudinal wave in a rod,
except that K replaces Y and the mass density is specifically designated
as that at equilibrium:
2 K 2

A sy (1)
0t pg Oz
For a gas, then, the wave speed is

v=vK/p (12)

5c. Pressure, Density, and Heat Capacity Ratio. Using the def-
inition of K, we can write the wave velocity in terms of gas properties
that we have seen before. The first gas-related equation you are likely
to recall is the equation of state for an ideal gas,” PV = nRT. This

SSome authors write K in terms of density rather than volume.

7“For an ideal gas, the simplest model of intermolecular forces is assumed: there
are no interactions between the molecules unless their centers happen to coincide,
in which case they bounce off one another like hard spheres, and the molecules are
assumed to be point masses. For such a model, the equation of state, that is, the
relation between the measurable quantities (pressure, volume, temperature), can be
derived in a straightforward way once temperature and average pressure are defined.”
(Quoted from Temperature And Pressure of an Ideal Gas: The Equation Of State,
MISN-0-157.)

11
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makes it look as if we could solve for P, differentiate with respect to V,
and end up with a value for K. Historically, this was the first approach.
However, it gives the wrong value for the wave speed and the reason is
this: it implicitly assumes that the temperature T is constant. That is, it
assumes that as the wave travels through the gas, heating it in the wave-
peak compressions and cooling it in the wave-trough rarefactions, the gas
is able to instantaneously exchange heat with its surroundings and stay
at the same temperature. Actually, a wave usually travels through a gas
so rapidly that there is no time for heat transfer. Thus the appropriate
relationship is the one for adiabatic conditions,

PV7 = constant,

where 7 is the ratio of heat capacities:

"Y:

AR

Differentiating this equation gives us:

dPVT 4+ 4PV lqv =0,

Then: P
Vav =P,
and hence:
K=4P.
Thus the wave speed in a gas becomes
v = (7P/po)*/?. (13)

5d. Dependence on Temperature. Starting from the expression for
wave speed as a function of pressure, Eq. (13), we can use the equation of
state of an ideal gas to find the speed as a function of temperature. That
is, we can substitute

PV =nRT

into Eq. (13) and get:

v <'ynRT> 1/2 _ (fynRT) 1/2

Vpo m

12
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We can put this in a form useful for determining sound speeds in different
gases by writing it in terms of M = m/n, the mass of one mole of the

gas: ,
1/2 :
V= <7—]\R;z> . (14)
Acknowledgments
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Glossary

e bulk modulus (of elasticity): the ratio of the increase in pressure
to the decrease in the fractional volume of a fluid.

® compressions: the portions of the phase of a longitudinal acoustical
wave when the pressure of the medium is higher than the equilibrium
pressure.

e longitudinal wave: a wave in which the wave displacement from
equilibrium is parallel to the wave velocity (example: sound waves).

e rarefactions: the portions of the phase of a longitudinal acoustical
wave when the pressure of the medium is lower than the equilibrium
pressure.

e sound wave: a longitudinal acoustical wave traveling through an
elastic medium.

e strain: the fractional deformation of the dimension or dimensions of
a material subjected to a stress. If only one dimension is relevant, the
strain is given by the ratio of the change in length to the undeformed
length. If the entire material volume is altered, the strain is given by
the ratio of the change in volume to the undeformed volume.

e stress: applied force per unit cross-sectional area. For a fluid this is
the same as pressure.

13
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e transverse wave: a wave in which the wave displacement from equi-
librium is perpendicular to the wave velocity (example: water waves).

® Young’s modulus: the ratio of stress to strain for a deformation of
length.

14
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PROBLEM SUPPLEMENT

To% 0% Y ¢ 0% ¥P 0% 0%

uwoz? ~ 92 p 02~ B2 oo 0% 082

Note 1. Work the following problems in order, completely finishing each
one successfully before going on to the next.

Note 2: Get appropriate velocity formulas by simply looking at the wave
equations shown above.

Note 3: Some of the Answers have references to help sequences in this
module’s Special Assistance Supplement.

1. A guitar string of length 2.00ft has a mass of 0.700 grams. When
mounted on a guitar the string is placed under a tension of 20.0N.
Determine the speed of transverse waves traveling in the string when
plucked.

2. A stretched steel wire under a tension of 1.50 x 104N is attached at
one end to an oscillator with a period of 4.00 x 10~%4sec. Given that
the diameter of the wire is 0.3572cm and that the density of steel is
7.850 x 10% kg/m3, determine the speed of propagation, frequency, and
wavelength of transverse waves traveling along the wire. Write the
equation for the waveform of the wave.

3. In Westerns, the “Indians” frequently detected an approaching train by
placing their ears to the railroad track and listening to the transmitted
sound of the train wheels in contact with the track. Calculate the speed
of sound in the steel track, treating the problem as compressional waves
in a simple rod. Determine the speed of sound in air at 75 °F (23.9°C).
How do the two speeds compare?

Steel: Air:

Y =195 x 10" N/m? ~=14

p="7.850 x 10°kg/m® M = 29.8 grams/mole
R = 8.31J/(K mole)

4. A copper and an aluminum rod, each of cross section 0.75cm?, are

welded together end-on-end to form one continuous length of metal rod.
Longitudinal waves are excited in the copper rod by a vibrating source

15
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with a frequency of 675 Hz. If the wavelength of longitudinal waves in
the copper portion of the rod is 5.25m, determine the wavelength of
the waves in the aluminum.

Copper: Aluminum:
Y'=112x10"N/m? Y = 6.9 x 101 N/m?
p = 8.93 grams/cm? p = 2.7 grams/cm?

. Scuba divers must use exotic mixtures of gases instead of air when

diving to great depths in order to avoid nitrogen narcossis and oxygen
poisoning. Such breathing mixtures typically consist mainly of helium
as an “inert” gas, and a small amount of oxygen. However, when com-
municating with the surface, the divers’ voices sound high-pitched and
squeaky because sound travels faster in helium than in air (which is
mostly nitrogen). Calculate the frequency of “middle C” in an envi-
ronment of pure helium assuming the note is 256 Hz in air. Note that
the wavelength is the same in both media since it depends only on the
geometry of the voice box producing the sound. Also, the temperature
is assumed to be the same in both environments.

Helium: Aijr:
v=5/4 v=T/5
M = 4.00 grams/mole M = 29.8 grams/mole

. A stereo speaker cone is attached to a long tube in such a way as to

generate longitudinal waves traveling down the air-filled tube. The
speaker cone is made to oscillate harmonically as described by the
equation:

y = (0.010 cm) sin [(8.0 x 10 wsec™1) ]

where y is the horizontal displacement of the speaker surface as
a function of time. Assuming the equilibrium pressure of the ajr
is atmospheric pressure, determine the speed of waves travelling in
the tube and write the equation for the waveform (for air, y=1.4,
po = 1.33 x 1073 grams/cm?®, 1 atmosphere = 1.01 x 10° N/m?).

- The density of Aluminum is 2.7 x 10%kg/m?® and Yy = 0.70 x

10 N/m?. A thinly-drawn aluminum wire of length 10.00 m and cross-
sectional area of 5.0 mm? is held under a tension of 2.0 x 102 N.

a. Compare the velociﬁy of propagation of transverse mechanical waves
and longitudinal sound waves in this wire.

b. Which propagates faster?

18
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c. Can both velocities be made the same?

The molecular mass of oxygen is 16 times the molecular mass of hy-
drogen, while the molecular mass of krypton (a noble gaseous ele-
ment) is 42 times the molecular mass of hydrogen. Compare the
speed of sound in oxygen and krypton at a given temperature. Oxy-
gen is diatomic while krypton is monatomic so the relevant v’s are:
Yo, = 1.4, vk, = 1.6.

Brief Answers:

1.
2.

v=132m/s. Help: [S-2] Help: [S-6]

v =437m/s; Help: [S-1] Help: [S-2] Help: [S-5] Help: [S-6]
v = 2.5 x 103 Hz;

A=0.175m;

Yy=yo sin[(35.9m™  z & (1.57 x 10%s71) ¢t + 4]

Usteal = 4.98 x 108 m/s; Help: [S-2] Help: [S-6]
Vair = 3.40 X 10°m/s Help: [S-4] Help: [S-6]
The speed of sound is 14.4 times larger in steel than in air.

A=T75m Help: [S-8] Help: [S-7]
Vhelium = 662 Hz; nearly 2 octaves higher. Help: [S-2]

. v=232Tm/s; Help: [5-2] Help: [S-6]

§=0010cm sin [(7.7m™ & — (8.00 x 102 w57 1) ¢ + 6y
8. Umechanical = 121 Il’l/S, Vsound = 5.09 x 103 m/s.

b. sound.

c. A tension of 3.5 x 10°N would equalize the speeds. The tensile
strength of aluminum is less than that so the aluminum would pull
apart.

vo = 1.52 vk [NOT 1.07, NOT 1.62] Help: [S-8]
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS-Problem 2)

The problem statement says transverse waves in a wire, not longitu-
dinal waves in a rod or a gas. Use the right wave equation.

S-2 (from PS-Problems 1, 2, 8, 4, 5, 6)

Non-MKS units (e.g., “feet,” “grams,” “cm,”) must be converted to
MKS units.

S-3 (from PS-Problem 8)
Mo /Mxgr = (Mo/My)/(Mgr/Me) which is given to you as 16/42.

(from PS-Problem 3)

p=1.148 x 10~3kg/m.

S-5|  (from PS-Problem 2)

p = 0.0787kg/m. If I buy 1m of the wire I get 0.0787kg of wire. If I
buy 2m of the wire I get 0.1574 kg of wire. That is what “linear density”
p is all about.

S-6 (from PS-Problem 3)

Kindly read Note 2 at the head of the Problem Supplement and do what
it says to do.

S-7 (from PS-Problem 4)

Yot = 5.06 X 103m/s. Think about what happens physically at the
interface between the two metals. What quantity is preserved across
the interface? Wavelength? Velocity? Frequency?
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MODEL EXAM

To% _ 9% Yo _o% TP O% 0%
wox2 92 p 8z2 92 po Oz2  Ot2

L. See Output Skills K1-K3 in this module’s ID Sheet. One or more of
these skills, or none, may be on the actual exam.

2. The density of Aluminum is 2.7 x 103kg/m® and Yu = 0.70 x
101 N/m?. A thinly-drawn aluminum wire of length 10.00 m and cross-
sectional area of 5.0mm? is held under a tension of 2.0 x 102 N.

a. Compare the velocity of propagation of transverse mechanical waves
and longitudinal sound waves in this wire.

b. Which propagates faster?

c. Can both velocities be made the same?

3. The molecular mass of oxygen is 16 times the molecular mass of hydro-
gen, while the molecular mass of krypton (a noble gaseous element) is
42 times the molecular mass of hydrogen. Compare the speed of sound
in oxygen and krypton at a given temperature. [Note that oxygen is
diatomic while krypton is monatomic and Y0, = 1.4, vk, = 1.6.]

Brief Answers:

1. See this module’s ezt
2. See this module’s Problem Supplement, problem 7.
3. See this module’s Problem Supplement, problem 8.
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INTENSITY AND ENERGY IN SOUND WAVES
by

William C. Lane, J. Kovacs and O. McHarris,
Michigan State University and Lansing Community
College

1. Introduction

In a previous module we have seen that sound (acoustic) waves are
the result of periodic disturbances of an elastic medium.® These distur-
bances may be represented by variations in the local pressure of a region
in the medium (compressions and rarefactions) or by the displacement of
portions of the medium from their equilibrium position. However, this
displacement is in the form of a simple harmonic oscillation, whether it
be a transverse displacement as with waves on a stretched string or a
longitudinal displacement as with sound waves in a gas. Either way there
is no net movement of matter. It would seem appropriate then to ask
what it is that is “traveling” when a traveling wave passes through a
medium.

2. One-Dimensional Elastic Waves

2a. Energy is What is Propagated. When a one-dimensional travel-
ing wave propagates through an elastic medium, the wave carries energy
in the direction that the wave travels. This energy is the kinetic and
potential energy of the deformation of the elastic medium. The total me-
chanical energy of an infinitesimal mass element dm in the elastic medium
is

4E = € dm, (1)

where w is the angular frequency of the wave and &o is the displacement
amplitude of the wave.? Depending on the geometry of the medium this
energy may be expressed as one of several energy densities. For a stretched

wire of linear mass density u, the mass element dm may be expressed as:

dm = udz. (2)

!See “Sound Waves and Small Transverse Waves on a String” (MISN-0-202).
2For a detailed derivation of this relation, see the Appendix.
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Substituting this expression for dm into Eq. (1) and dividing by dz,® we
may define a linear energy density E,:

Be=——=gmrg. 3)
Similarly, for energy propagating through a three-dimensional elastic
medium of constant cross-sectional area, such as a solid rod or a column

of gas, a volume energy density E, may be defined as

_dE 1 4.,
v—dV~2,0w 605 (4)

where p is the volume density of the elastic medium.

2b. Power is Required to Maintain a Train of Waves. For a
continuous series of sinusoidal pulses, called a “wave train,” to be main-
tained in an elastic medium, the energy that propagates in the medium
must be supplied by some external agent. The rate at which this energy
is supplied is the “power” of the wave source, defined as

dE

P=—. 5

I (5)
For a transverse wavetrain propagating on a stretched wire, we may use
the chain-rule of differential calculus to express Eq. (5) as

dE  dEdz
P——d—t--——-»d—z-‘d—t-—EgU, (6)

or 1
P julel, )

where v = (T/u)'/? is the speed with which energy propagates along the
wire, the wave speed. A similar expression may be derived for a wave

3See “Sound Waves and Small Transverse Waves on a String” (MISN-0-202).
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traveling through a three-dimensional medium of constant cross-sectional
area. If an infinitesimal volume element dV is chosen with cross-sectional
area A and thickness dz, where the z-direction is chosen parallel to the
direction of wave propagation, then dV = A dz. Thus

_dE_dEdz _dEdz

Tdt dedt davdt
so :
P=F,Av, (8)

or 1
P = Epwzng’Uv (9)

where v = (Y/p)*/2 for longitudinal waves on a solid rod or v = (K/po)'/?
for longitudinal waves in a column of gas.

2c. Definition of Wave Intensity. For cases of a one-dimensional
wave traveling in a three-dimensional medium of constant cross-sectional
area, an important quantity called the “wave intensity” may be defined
as the power per unit cross-sectional area, I:
P
=, 10
- (10)
Substituting Eq. (9) into Eq. (10), the intensity of a one-dimensional wave
propagating in an elastic medium of constant cross-sectional area, may be
written as: 1
I= é'pwzfgvv (11)
which is constant for waves of given amplitude and frequency. Intensity
is the physical quantity which, for a sound wave, roughly corresponds to
the “loudness” or “softness” of the sound. Since the MKS unit power is
the watt (W), the MKS unit of intensity is the watt per square meter
(W/m2).

2d. The Intensity Level of Sound. Because the range of intensities
of audible sounds is so wide, sound intensities are often expressed using a
logarithmic scale, referred to as the “intensity level.” Intensity levels are
determined using the following equation:

I(db) = 101og ( II ) , (12)

ref

where I is the intensity of interest, I, 7 is a reference intensity, and I( db)
is the intensity level of the intensity I in units of “decibels,” abbreviated
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“db.”  For sound waves in air, I has arbitrarily been chosen to be
1072 W/m?. A list of typical sounds and their corresponding intensities
and intensity levels are shown in Table 1.

L Table 1. The Intensities of Some Sounds. !

RELATIVE

SOUND INTENSITY INTENSITY
(W/m?) (db)
Threshold of hearing 1012 0
Rustling leaves 10-10 20
Talking (at 3 ft.) 108 40
Noisy Office or Store 10— 60
Elevated train 104 80
Subway car 102 100
Threshold of pain 1 120

3. Plane Waves

3a. Definition of a Plane Wave. A one-dimensional wave for which
the wave disturbance is distributed uniformly over a planar surface (either
finite or infinite), is called a “plane wave.” If the surface is of finite
extent, the plane wave is said to be “collimated.” The wave is still one-
dimensional as long as it travels in a single direction. Figure2a is an
illustration of how we visualize a plane wave as a series of parallel plane
surfaces, called “wave fronts” moving in the direction indicated. A wave

! N"%\\ ’
7
//

Figure 2. An illustration of a plane wave: a) oblique view;
b) cross-sectional view.
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front is a surface over which the wave disturbance has the same phase,
i.e. for a plane wave traveling in the z-direction:

¢ = kz —wt+ ¢g = constant. (13)

Figure 2b shows a cross-sectional view of the wave fronts of a plane wave.
We typically draw such a sketch with the wavefronts one wavelength apart,
so that they are all crests, or all troughs, or any other given wave distur-
bance.

3b. The Wave Vector. In order to describe a plane wave propagating
in any direction, we will define a quantity called the “wave vector.” The
wave vector, symbolized by IZ, is a quantity whose magnitude is the wave
number, k, of the wave, and whose direction is the direction of propagation
of the wave.* Using the wave vector we may define the phase of a plane
wave as: .

o=k -7—wit+d¢g, (14)

where 7 is the position vector of a point on a particular wave front with
respect to a specified coordinate system. Thus the wave function for a
plane wave may be written as:

¢ = &sin(k - 7 — wt + ¢y) . (15)

3c. The Intensity of a Plane Wave. The intensity of a plane wave
is defined as the power propagated per unit area of wave front. Since
the power is distributed uniformly over the wave front, the intensity is
constant for plane waves of given amplitude, frequency, and wave speed.
Thus one-dimensional waves travelling in an elastic medium of constant
cross-sectional area are examples of collimated plane waves, and the rela-
tions derived for the energy density and the intensity of these waves are
applicable to plane waves in general. Note that if the wave front of the
plane wave is of infinite extent, the total power propagating across its
surface is also infinite, although the energy density and intensity are not.
However, for systems of physical interest, only a finite portion of the wave
front impinges on a system capable of detecting the power propagated,
so the power detected is finite. Furthermore, the concept of a plane wave
front of infinite area is usually an idealized approximation.
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a) b)

trzm\

Figure 3. (a) A spherical wave propagating outward; (b) a
spherical wave propagating inward.

4. Spherical Waves

4a. Wave Front of a Spherical Wave. Another type of wave fre-
quently encountered is the “spherical wave.” In contrast to a plane wave,
the wave fronts of a spherical wave are concentric spherical surfaces. The
surfaces travel radially outward or inward, depending on the sign of the
frequency term in the phase of the wave function (see Fig. 3).

4b. Intensity of a Spherical Wave. The intensity of a spherical
wave is defined as the power propagated per unit area of wave front, just
as for a plane wave. However, the power and energy are distributed over
a spherical wave front of area 47r2. Since each wave front is expanding
radially outward (or contracting inward) as the wave propagates, the in-
tensity varies as 2 for a spherical wave. Assuming the power output of
the wave source, Py, is a constant, the intensity of the spherical wave is
given by
Py

4rr?
If the intensity is known at a specific radial distance To, then since Py =
Ipdnrg, the intensity at any other radial distance r may be expressed as:

(16)

I=1 (’-;9)2 . (17)

4c. The Wave Function of a Spherical Wave. By solving the wave
equation for a wave source of spherical symmetry, the wave function for

“Note: k= w/v.

10
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a spherical wave can be shown to be:
£(r,t) = &o (22 sin(lr — wt + o), (18)

where & and ¢p are determined from the boundary conditions.? If we
consider the entire coefficient of the sine function to be the “amplitude,”
then we see that the amplitude of a spherical wave decays as r~!. Since
the wave intensity is proportional to the square of the wave amplitude,
for a spherical wave the intensity is:

1=p8 (2)". (19)

This expression is equivalent to Eq. (17) if Iy = BE2. The constant of
proportionality, 3, depends on the specific medium through which the
wave travels and the physical nature of &;.
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Glossary

e decibel: a unit of intensity on a logarithmic scale of “intensity level,”
abbreviated as “db.” An additive increase in the intensity level of 10db
implies a multiplicative increase in the actual intensity by a factor of
10.

o plane wave: a one-dimensional wave traveling in a direction defined
by the wave vector k, whose surfaces of equal phase are parallel planes
of finite or infinite extent.

e spherical wave: a three-dimensional wave emanating from a wave
source of spherical symmetry, whose surfaces of equal phase are con-
centric spheres.

5Note that the actual value of ¢o will depend on whether a sine or a cosine function
is used. ’

11
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e wave intensity: the power propagated by the wave per unit area
perpendicular to the propagation direction; the units of intensity are
W/m?2.

e wave front: a continuous surface of wave disturbances of the same
phase, such as a crest or a trough.

e wave vector: a vector whose magnitude is the wave number % and
whose direction is the direction of wave propagation.

Energy Density of a 1D Elastic Wave

Only For Those Interested. To derive the energy density of a one-
dimensional elastic wave traveling in an elastic medium of constant cross-
sectional area, consider an infinitesimal volume element of the medium.
The total energy in this element is:

dE = dEg + dEp (20)

where dEg is the kinetic energy due to the motion of the infinitesimal
volume element and dEp is the potential energy of the element’s displace-
ment from equilibrium. If the infinitesimal volume element has mass dm,
the kinetic energy may be represented as

dEg = %g’z dm (21)

where 5 = 0§/0t, the speed of the medium’s deformation. For a one-
dimensional sinusoidal wave, £ may be represented as:

€(z,t) = &o sin(kz — wt + ¢y) (22)
S0 )

€ = Fwéo cos(kx — wt + ¢y). (23)
"The potential energy of the mass element may be represented as:

dEp = %gz dk (24)

where dk is the elastic constant of the restoring force acting on the in-
finitesimal mass element. This force constant may be identified by ap-
plying Newton’s second law to the mass element. The force on the mass
element is given by:

2

dF = dmg? = ~w’dméosin(kz — wt + do) = —w?dme.  (25)

12
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1 energy

\ /"

time

Figure 4. The energy of a mass element dm in an elastic
medium, as a function of time, as a one-dimensional wave
passes by.

This result is a form of Hooke’s law, so the force constant must be
dk = widm. (26)
Therefore the potential energy of the mass element is:
1
dEp = %§2w2 dm = §dmw2§§ sin®(kz — wt + ¢y), 27)
and the kinetic energy of the mass element is:
1 22 2
Bk = 5dmw’¢s cos® (kz — wt + ¢o). (28)
Since sin? @ + cos? § = 1, the total energy of the mass element is:

dE = %wzggdm. (29)
The results of Eqgs. (27) - (29) are illustrated in Fig.4. You can see that
at a given point in the medium the energy oscillates between kinetic and
potential energy; yet the total energy remains constant, dependent only
on the mass of the infinitesimal element, the angular frequency of the
harmonic oscillation, and the amplitude of the wave displacement.

i3
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PROBLEM SUPPLEMENT

Y (iron) = 2.06 x 10! N/m?
p(iron) = 7.86 x 10% kg/m?

Problems 4 and 5 also occur on this module’s Model Ezam.

wave propagates
—————— ——

/N

X

Consider a string of length L, mass M (mass per unit length = M /L)
under tension 7. Suppose the left end of the string is being moved
up and down (transversely) such that a sinusoidal wave, of angular
frequency w and wave number k, travels away from this end along the
string.

a. What is the component of the applied force in the transverse di-
rection at any particular time, written in terms of the tension T in
the string and the angle ¢ the string makes with the string axis at
that time? The energy of motion of the particles on the string is
all transverse so that’s the direction of the component of the force
which provides this energy.

b. For small displacements ¢ the angle 8 will always be small such that
sinf ~ tanf = 6 is a good approximation. Therefore, express your
answer to (a) in terms of the slope of the curve traced by the string
at the point where the driving force acts.

c. Write down the functional form of £(z,t) for a sinusoidal wave prop-
agating to the right.

d. Substitute this into your answer to (b). This tells you the time
dependence of the transverse force required to generate a traveling
sine wave to the right along the string.

14
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e. If this force displaces the point at the end of the string (at z = 0)
by an amount d¢, how much work is done by the agent exerting this
force?

f. Determine the amount of work done by this driving force during
one complete period of motion.

g. Find the average rate at which this work is done using the fact that,
for transverse waves on a stretched string, v = 1/T/is. Express this
rate in terms of the mass density of the string,.

. Longitudinal sound waves propagate down a length of iron rod of cross-
sectional area 30cm?2. The average sound energy density distributed
throughout the volume of this iron rod is 4 J /m3.

a. How is this energy density distributed between kinetic energy of
oscillation (of the atoms of the rod) and potential energy?

b. What is the speed of sound along this rod?

c. What is the wave intensity along the rod?

d. What power must be supplied to one end of this rod to maintain
this energy density in the rod?

. The intensity of a spherical sound wave emanating from a point source
is observed to be 4 x 1078 W/m? at a distance of one meter from the
source.

a. Find the intensity in decibels of the sound that reaches a point 10
meters from the source.
b. Find the total power supplied by the source.

c. What is the total energy per second crossing the sphere of radius 1
meter with the source at the center?

d. Repeat (c) for the sphere of 10 meters.
e. What is the intensity in decibels 100 meters from the source?
. The differential equation satisfied by transverse waves along a stretched
string of mass M, length I, under tension T is, when the string is
aligned parallel to the z-direction:

0%(z,t) _ TL 0%(a,¢)

o2 M 8z

The string’s length is 10 meters, it has a mass of 5 grams, and it is
under a tension of 30 newtons. A sinusoidal source at one end of the

15
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string sends sinusoidal waves of wavelength 2 meters down the length
of the string. The power supplied by the driving oscillator is 3 watts.
a. What is the speed with which waves propagate along this string?

b. What is the amplitude of the transverse waves propagating along
the string?

- A point source of sound emits 50,000 joules of sound energy every

20 seconds. At a distance 100 meters from the source, what is the in-
tensity of the sound (in decibels), if no energy is lost in the intervening
space?

Brief Answers:

1.

Fy=-Tsinf Help: [S-3]

- Fy = -T(0¢/0z) at z =0

£(z,t) = &osin(kz — wt + o)

Fy = —kT& cos(wt — ¢)

. dW = F,d¢

W = wTén /v Help: [S-1]
P =w?TE&/(2v) Help: [S-2]
Evenly distributed between kinetic and potential.
v =5119m/s

- I =2.05x 10*W/m?

61.4 watts

26db

. 5.03 x 1077 watts

. 5.03 x 10~7 watts

5.03 x 10~7 watts

6db

v =245m/s.

&o = Ymillimeters.

103 db.
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MISN-0-203

SPECIAL ASSISTANCE SUPPLEMENT

AS-1

5]

(from PS-problem 1f)

Wone cycle = f F, Y df

= kT& § coswtd(£psinwt)

= kwT€? 027r/ “ cos?(wt) dt

= kT fo'%r cos?(wt) d(wt)
kTEEn

= Yo
= vT§01r

S-2

(from PS-problem 1g)

Atone cycle = 27"/ w

S-3

(from PS-problem 1a)

See Module 202, Sect. 3b.

MISN-0-203 ME-1

MODEL EXAM

Les = 10712 W/m?

1. See Output Skills K1-K2 in this module’s ID Sheet. One or more of

these skills may be on the actual exam.

. The differential equation satisfied by transverse waves along a stretched

string of mass M, length L, under tension 7' is, when the string is
aligned parallel to the z-direction:

%(z,t) TL 8*¢(x, t)
o2 T M 9z

" The string’s length is 10 meters, it has a mass of 5 grams, and it is

under a tension of 30 newtons. A sinusoidal source at one end of the
string sends sinusoidal waves of wavelength 2 meters down the length
of the string. The power supplied by the driving oscillator is 3 watts.

a. What is the speed with which waves propagate along this string?

b. What is the amplitude of the transverse waves propagating along
the string?

- A point source of sound emits 50,000 joules of sound energy every

20 seconds. At a distance 100 meters from the source, what is the in-
tensity of the sound (in decibels), if no energy is lost in the intervening
space?

Brief Answers:

1. See this module’s tezt.
2. See Problem 4 in this module’s Problem Supplement.

3. See Problem 5 in this module’s Problem Supplement.
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FOURIER SERIES AND INTEGRALS
by
E. H. Carlson, Michigan State University

1. Introduction
Suppose you have a function f(z) defined in an interval
~L/2<z<L/2
on the z-axis, as in Fig. 1.

You are probably familiar with the notion that, if f(z) is sufficiently
well behaved, you can expand it in a power series:

fl@)=ao+arz+agz+...,

a Taylor Series. It is also possible to expand it in a series of sine and
cosine functions:

f(z) = ap + a1 cos (27r%) -+ ag cos (27r-2-§> At

2
by sin (271’%) + as sin <27rfx> +...,
a Fourier Series. Here are the advantages of using a Fourier expansion:

1. Many problems, such as those involving waves and oscillations, are
particularly simple when expressed this way. That is because they

AN

Figure 1. Some
function which we
wish to represent
with an appropriate
series.

< §
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-« Y
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// : Figure 2. A

— | function f(z) hav-
ing three discon-
tinuities, counting
the two at (+L/2)
as one (they are the
same).

mllr— .

.+.
N -
<Y

generally have some periodicity, some interval of = over which f(z)
repeats.

2. The criteria that f(z) must satisfy, in order that the series converge,
are not very stringent. It is sufficient that, in the interval —L/2 <
z < L/2, f(z) is finite and has a finite number of maxima and
minima. It may even have a finite number of discontinuities. These
are called Dirichlet’s conditions.

3. If f(z) is not periodic in x, we can still use the general idea by letting
L — oo, thereby obtaining the Fourier Integral representation:

@) = / ” [A(k) cos(kz) + B(k) sin(kz)) dk (1)

—00

2. The Fourier Series

2a. The Coefficient Equations. We will discuss the relationship
between f(z) and the coeflicients ag, by, leaving derivations and proofs
to a mathematics text. The coefficients are defined by the integrals:

=1 /_ o () dz
9 [L/2
ST — kx /L) d: 2
o =2 /_ , (@ cosemha/ D) do ®)

9 L2
b = ——/ f(z)sin(2rkz/L) dz.
LJ_rp
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@~ FILTER

/g\\//\\// N /g\ -
1 \\/ 1o

Figure 3. A voltage wave that is input to a filter.

2b. An Example. Fourier Series are useful not only as a computa-
tional tool, for which use Eqns. (2) must be evaluated, but even more so
as a conceptual tool which simplifies the description of f(z) for many
applications. An example is shown in Fig. 3. Here the generator pro-
duces a repetitive time-varying wave form whose voltage across points A,
B is V(t). The voltage across points C, D will be most clearly expressed
when the Fourier Series for V(t) is known. Write:

oC
V)=V Z(ak cos wokt + by, sinwpkt).
k=1

If the filter passes only frequencies above some frequency wy then only
voltage Fourier components for which & > w; /wo0 will appear at points
C, D. One will usually begin the analysis of such a physical problem by
inspecting f(z) and seeing which coefficients ay, by, are large and which are
small or zero. This gives insight into the solution, guidance in calculating
the series coefficients, and a check on possible gross errors in the solution.

MISN-0-50 4

2c. Partial Sum and Formal Definition. Suppose we keep only the
first 2n + 1 terms in the Fourier Series, as we certainly would do in any
numerical calculation of the coefficients. This defines the “partial sum”

¢:

k13
on(z) =ag + Z[an cos(2wkz/L) + by, sin(2rkz/L)]. (3)
k=1
The series obtained as n — oo defines the Fourier Series if a and by, are
calculated using the Fourier coefficient equations given below.

3d. Non-Periodic but Localized Functions. For many physical
situations f(z) will be “localized,” i.e., f(z) — 0 as z — foo. For
example, f(z) may represent a pulse or a wave train of finite dimensions.
Then one can simply pick an interval L so large that it contains essentially
all of f(z), i.e., so that f(z) = 0 for |z| > L/2. Then f(z) can be
represented by a Fourier Series inside the interval but not outside the
interval. QOutside the interval we abandon the Fourier Series and simply
set f(z) equal to zero.

> Show that the resulting Fourier Series will not correctly represent f(z)
outside the interval.

2e. Estimating the Coefficients. Here is how professionals estimate
the coefficients to see which are important, which are marginal, and which
are negligible:

1. ag is just the average value of f(x) over the interval.

2. Bach ag, by, is proportional to the “overlap” of the corresponding co-
sine or sine function with f(z). That is, when f(z) and cos 2nkz/L
are large and positive in the same places, negative or zero in the
same places etc., then a; will be large and positive. (What shape
must f(z) have for a; to be large and negative?) The “overlap”
idea is central to our method for roughly evaluating the integrals of
Eqns. (2), and some particular cases will be discussed in the next
few numbered remarks.

3. Low values of k contribute (through ay and b;) to the overall, broad
outline of f(z), while smaller scale structures (wiggles, peaks, etc.)
that occupy a length ¢ < L on the z-axis require contributions
from sine and cosine functions whose wavelength ) is near £ in size

(A= L/k).
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Figure 4. The overlap is large between f(z) and
cos(2rz/L).  What about the overlap of f(z) with
sin{2nz/L)?

4. If the size of the smallest structure in f(z) is £, then ag, by fall off
in size rapidly as k becomes much larger than L/k. The reason can
be seen from Fig. 6.

5. The polynomials ¢, are periodic in z, so @,(z £ mL) = ¢.(z),
where m is an integer. Thus f(z) (which we did not necessarily
define outside of —L/2 < z < L/2) is treated as being periodic.
This may introduce a discontinuity or cusp at the points z = +L/2.

| |

N " \'7
_>|£|<_

Figure 5. Coeflicients ay, by, with k£ = L/{ will be relatively
large.

MISN-0-50 6

f(x)cos(2mkx/L)

WAL
LA

e UUU

oo~/

Figure 6. The integral defining aj has many positive lobes
that are nearly cancelled by the adjacent negative one of
nearly the same size; so the whole integral is small.

6. Discontinuities in f(z) are “structure” whose characteristic dimen-
sion £ is zero. They introduce the requirement that ar o« 1/k,
b < 1/k as k — o0, and likewise, “cusps” (where df /dz is discon-
tinuous) give ag, by o< 1/k2.

7. The symmetry of f(z) may simplify the series. A function f(z) is
called “even” if f(z) = f(—=z) and “odd” if f(z) = —f(—=z). (What
are the symmetries of sinz, of cosz?) If f(z) is even, only az’s will
be non zero, if f(z) is odd, only bg’s will be non zero. (Why?)

8. The partial sum ¢,(z) is a least squares fit to f(z). The error in
representing f(z) by ¢n(z) is en(z) = f(z) — dn(z). Of all the
possible methods of choosing the coefficients ay, by, that given by

f(x) =x f(x) =x2

Figure 7.

10
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+1

-1

Figure 8. Fourier transform of a step function. f (z) =
—4/7 3 135, (1/k)sin(2rkz/L). Can you explain why
the k-even terms are missing? Hint: sketch-in sin(4wz/L).
Explain why there is a minus sign in front.

Eqns. (2) minimizes the integral I = [ |e,(z)|? dz.

9. From the fact that Eqgns. (2) do not contain n, we see that when
we approximate f(z) by ¢n(z) and determine the coefficients ay,
br, k < n, and then decide to make a better approximation op(z),
P > n, the coefficients ay, by for k < n already determined will not

change.

10. A single wave at wavelength \ = L/?¢ cannot, of course, form the
peak. There must be many other waves of wave lengths near \ =

-~
AR TN

-
-
-~

Figure 9. Which of r, s, £ is even, odd, neither? Can one

function be both even and odd?

11
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f(x)

/

e gt

£0S(2mkx/L)

A

/N

Figure 10. The
cosine functions
are plotted with
4-fold vertical
exaggeration for
clarity.

-L/€ which add to each other at the position of the peak and cancel
each other elsewhere.

12
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yA Tenterms —
Sixterms —>
Fourterms —

2
3 Figure 11. Repre-
4 sentation of y(z) =
5 (3 z, —T S T, by (ﬁn(w)
i : = x | for n=4, 6, 10 (only

the region where z >
0 is shown). Here
b = (2/k) - (-1)*,
ar = 0.

3. The Fourier Integral

3a. Series vs. Integral. If a function f(z) is not periodic or is not
restricted to a finite interval of z, the function cannot be expanded in a
Fourier Series and one must turn to the Fourier Integral. This is equivalent
to letting the period or the localization interval go to infinity so the sum
in the Fourier Series becomes an integral.

3b. Trapsition: Series to Integral. Here we will make the transition
from the Fourier Series to the Fourier Integral.

For simplicity of derivation, let f(z) be an even function. Assume a
periodicity or locality of length L and suppose we have already obtained
a set of Fourier Series coefficients a; where k =0, 1, 2, .... We can write
the arguments of the sine and cosine functions as:

kx T z

27I'T = 27l"m = 27T)\—k

i3
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f(x)
X
g
I
]I
I
i i i i { i
1 2 3 4 5 &
a
I
ll+
Lo
i PR NS R T AN B R TR R
1 2 3 4 5 U

Figure 12. Fourier coefficients added by going to the larger
interval are marked with crosses.

where A, = L/k is obviously the wavelength of the k*" wave in the series.
Note that exactly k complete waves fit into the periodicity distance L.

Now suppose we need to make the the interval twice as large, so the
interval is —L < ¢ < L, and we recalculate the az’s. We will be using the
wavelengths A\, = 2L/k = 2L, L, 2L/3, L/2, ... so all the coefficients we
calculated before will still be here but with different k& subscripts. That
means we can use the original graph and not have to rename anything if
we label things by their wavelength, instead of by the k integer. Writing
the abscissa as A = L/k instead of k, we have Fig. 11.

As we let the interval L grow larger and larger, the scale of the graph
will change and the points labeled by integer values of k will get ever more
closely spaced. As I — oo the points go toward becoming a continuum.

14
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3c. The Continuum Case. In the continuum case we want to describe
the continuum by some parameter that looks like our series-case k£ = L/A
but which does not involve L. It is traditional to use the quantity called
the “wave number” k& defined by:

k=2m/A

The Fourier coefficients ag, by, with integer k&, now become the “Fourier
amplitudes” A(k), B(k), with a continuous dimensional k.

> What are k’s dimensions?

Skipping further details on the transition from a sum to an integral,
we write the equations equivalent to Eq. (3) and Eq. (2).

If f(z) obeys Dirichlet’s conditions in every finite interval, no matter
how large, and if, in addition,

oo
G
o
is finite, then

f(z) = / ” LA(k) cos(kz) + B(k) sin(kz)] dk @)

00

A(E) = / " () cos(kz) dz
oo (5)
B(k) = /_ f(z) sin(kz) dz.

Note that k can take on negative values. This feature will be important
when traveling waves, rather than standing waves, are used. However,
for our purposes, A(k) is even and B(k) is odd and we will only plot the
portion of each that has k positive.

3d. Eyeballing the Amplitudes. Just as for Fourier Series, the
Fourier analysis of a function f{z) into waves of various amplitudes and
wavelengths can clarify its physical properties, and it is often sufficient
to get a rough idea of the shape of A(k) and B(k) by “eyeballing” the
function f(z). Most of the ideas presented in the discussion of Fourier
Series are still valid, including symmetry, overlap, structure size verses
wavelength, etc.

Let us consider the examples in Fig. 13. For small k (long wavelength)
cos(kz) = 1 and so near the origin, A(k) is constant and equal to the area

15
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cos(kx)

ke Figure 13.

under f(z) divided by 2n. For k large [R smaller than any structure in
f(z)], A(k) approaches zero from cancellation of the 4 and — lobes of the
integral (see Fig.6). The region in which A(k) drops off rapidly is near
A = 2w /kf =~ ¢, the size of the major structure in f(z).

> For the examples in Figs. 14-16, see if you can justify exactly the form
of A(k) and B(k).

The most elegant and useful form of the Fourier integral comes when
we use the notation of complex numbers. Then

e*® = cos(kz) + isin(kz), i=+v-1,

and we write for the real (or complex) valued function f(z) of the real
variable z:

(@) = /_ ke di (6)
where

6t =5 [ " fa)ee dk (7)

is the Fourier transform of f(z) and is generally a complex valued func-
tion. If f(x) is real, then G(k) is related to the Fourier amplitudes of
Eq. (5) by:

A(k) = ReG(k)

16
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f(x)

i
Sipe X

<———————L—>}

[=2m/L

kp=27/

B(k) = —ImG(k).

Figure 14.

13
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f(x)

! | X
Ak)

: '— k| Figure 15.
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A. Some Indefinite Integrals

. 1. T
[ zsinazdz = — sinaz — = cosaz
a? a

5 . 2r . z%a® — 2
[2?sinazdz = = sinax — —5— cosax
a a
2 9
3 . 3z%a% 6 a’z® — 6z
[#¥sinazdz = ————sinaz — ——5— cosax
a a3
1 T .
J zcosazdz = = cosaz + = sinaz
a? a
o 2z a’z? -2 |
J2? cosazdz = = cosax + ——5—sinaz
a a
3 3z%a? — 6 a’z?® -6z
J2® cosazdz = ——— cosaz + ————sinaz
a a

18
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\//;—* 7 Tm— NAn
\J

kg ——

Figure 16.

[ e* sinpz dz = e (asmpx "pc"sm)

a2 + p?

J e*® cospz dz = e*® (aCOpr+pSinpx>

a? + p?
B. A Definite Integral

% g=a*/3” cog b dz = ﬁe(“b2/4‘12) , ab#0
0 2a

19
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PROBLEM SUPPLEMENT

1. For each function listed below, sketch the function, apply symmetry
conditions to see if any set of coeflicients are zero, consider structure
and overall shape to predict which coefficients may be large, consider
the rate at which coefficients approach zero as k — oo and then use
Egs. (2) to evaluate the coefficients. Each function is defined in —7 <
T < 7.

(8) f(@) = 1 for |z|<7/2
= 0 elsewhere
(b) f(z) = =z for |z|<=/2
= 0 elsewhere
(¢) flz) = =z for 0Lz <
= 0 elsewhere

(d) f(z) = z? in the interval.

2. For each function below, sketch A(k), B(k) by inspection of f (z), then
compute A(k) and B(k) and compare.

(a) £(%)
1
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(b) f(x) (c) f(x)
. 1-x% N <1
i ) K I { I X
LA [+A
Alk)
A(k)
! } k
f f k
B(k)
3 f k
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- 10.1 Introduction

Man has always been fascinated by the rhythmic
undulations of the surface’ of the sea. The complex

breakers which regularly approach our shores have .

been observed and studied for thousands of years, and
yet our understanding of Ocean waves is even now far
from complete. Ocean waves may originate very far
from shore and may travel at high speed toward their
final destiny, but during their long journey they
neither transport the debris in the ocean nor do they
move any water over large distances. This statement
contains the very essence of wave motion, for a wave
is a disturbance of a medium, a disturbance which
itself moves from place to place but which does not
carry the medium with it as jt goes. The wave is

capable of transporting energy over large distances
but in doing so it does not transport any matter.

The world we live in is full of waves. Without the
electromagnetic waves that light the sky and warm our
planet, our world would be ice cold and devoid of
life. Without the waves we detect as sound, we could
not hear the music of Beethoven or Brahms nor
could we communicate by speech. Without waves,
we would have no radios, no television sets, nor most
of our modern technology. Without waves, we could
never have gone to the moon, or even have been aware
of its existence. Wave phenomena are one of the most
basic aspects of physical reality and are fundamental
to any description of matter on an atomic or sub-
atomic scale. .

Not all waves work for the benefit of man. Tidal
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.w'ves ‘(tsuna'”is) have devastated coastal cities and -

s of life'in the past.and will probably
ue to.do 5o in the . future. ‘Shock waves from
alrcraft cause a sonic boom which can
_ glass and damage the structure of buildings.

verdoses of energy carried by waves in the form of

rradra on can be harmful to life.

: _ysmlsts have studied waves at the macro-
seoprc and microscopic levels, and these studies have
pro ed to be of enormous value to c1vrlrzat10n

10 2 Types of Waves

Let us begm our study of wave, motron by discussing-
the waves that are somewhat famthar to us. We will-

ﬁrst consrder waves that move in-a physrcal medium
suoh as water, air, or a string. Later in-a subsequent
chapter we will take up the very nnportant special

case ‘of electromagnetlc waves, which can travel ‘or

pr opagate in empty space or vacuum.

CTf someone were to-ask you ‘to describe in 'wor ds
the concept of a wave, you would probably ‘have some
dll’ﬁculty domg this. Perhaps the best you could do
would be to say that a wave is a-self-propagating dis-
tu; barice which travels in a medium and which owes

‘it§ existence to a source that 1n1t1ally created the
: clrsturbance ‘Your questioner is likely to be confused
by your choice of words, and perhaps the best thing

to.do is to take h1rn into a laboratory and show him

: some examples ‘of waves. This is likely to. be the

soundest way to approach the subject; and therefore
thls is the procedure we will adopt. After a number of

’ examples have been discussed, the pr1n01pal features

of wave motion will become apparent.
: ne of the s1mplest examples of wave motron

can' be demonstrated by -using-a long rope tied to-a:
‘post, If the rope is taut and the free end is jiggled, a
-disturbance propagateés along the rope by traveling
toward the post. Figure 10.1 schematically illustrates.
“a number of snapshots of the rope taken at equal time

intervals. This type of wave, which moves in a one-
dimensional system, is called a one-dimensional wave.
The rope is- a one-dimensional medium since each

-element of it may be-located by means of a smgle

coordinate x when the medium is in equilibrium.! The
surface of water is two-dimensional, and, therefore,

surface waves in a fluid are called two-dimensional

waves.

! In this example; since the motion of the rope that is initiated by
the passage.of the wave is in the y-direction, this is no longer
strictly true when the equilibrium of the system is disturbed by the
propagat1on of the wave. Now, the-coordinate x locates the part of
the system we are discussing, while a drsplacement along the y-
direction describes the magnitude of the disturbance.
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-FIGURE 10.1. Propagatlon ofa wave in the form of a
3 transverse pulse along a rope ' :

r

As the wave of Frg 10.1. progresses toward
the post those parts of the rope whichare moving
experience. a transverse dlsplacement along the y-
direction. This transverse dlsplacement will varyias-a
function of time and also as a function of the distancs
x along the rope. We must, therefore, regard thé dis-

‘ placement y(x, t)as a function of two varrables X anal t.
. The displacements of various elements of the’ rope in
' thls type of wave motion are always pérpendlcular or

transverse, to the direction of the wave propagatron
We say that we have a transver se. waye, whenever
particle velocity and wave velocrty are perpendrcw{ar
in this manner. Note that in this wave Thotion thefe
is no net movernent of any part of the :rope in the
direction of the wave.

" There are many possible ways of 1n1t1atmg dis-
turbances of different shapes on the tope of Fig. 10.1.”
All of these produce transverse waves, and all of these
waves move at the same speed, provrded the tensron
in the rope is the same in each instance.

_ Not all waves are transverse. Another class,
known as longitudinal waves, are present when the
displacements of particles undergsing'disturbance.are
parallel to the direction of wave propagatmn An
example of this typg, of wave is illustrated in Fig 10.2.
The left end of a spring which is 'l a horizontal posi-
tion on a frictionless table top is given a sudden
momentary displacemen® by quickly pushing it to thé
right (causing 4 compres$ion) and then pulling it back
to the left (creating a rarefzrtion). This disturbance
then propagates fo the right with'a speed governed by

the charaCteristics of the spring. If we focus our atten-

tion on a small segment of the spring which is in
motion, we notice. thav its motion is eithier parallel or
antiparallel to the dlreetlon of motion of the wave.
This wave is another’ example. of a oné-dimensional
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FIGURE 10.2. Propagation of a wave in the form of
a longitudinal pulse along a.spring.

T 777777

wave. The displacements-can again be characterized

by means of a variable, 4, which depends on the single

variable x and also on t. In this case, however, it is
important-to realize that the displacement u(x, t) is
parallel to the x-axis. Any such wave is referred to as a
longitudinal wave.

An essential characteristic of one-dimensional
wave motion is that the initial disturbance moves with
constant speed. Photographs of the medium taken at
equal intervals of time all look alike in the sense that

10.2 Types of Waves

' the disturbance maintains its initial shape but mereiy

‘moves toa different location. The speed and direction

of motion of the disturbance define a velocity vector.

known as the wave velocity. In the next section, some
of'the qualitative ideas discussed above will be made
more quantitative.
We have mentioned two. examples of waves,
both of which are one-dimensional. There are also
~ examples of waves which move in two dimensions and
in three dimensions. An example of the former is
provided by the surface waves which spread on a pond

after a stone has been tossed into the water. An exam-’

ple of the latter is provided by sound waves coming
from a train whistle. The type of wave created and
transmitted depends on the medium that carries the
wave as well as on the geometry of the source that
produced the wave. For example, a point source such
as a whistle will send out sound waves in all directions.

At a given time, any displacement of the medium that -
" exists at any point on a sphere, centered at the source,

is the samé at any other point on this sphere. In this
case we say that the wavefronts are spherical. The
stone falling into a pond sends out circular 'surface
waves which are disturbances with circular wavefironts.
. Waves with plane and cylindrical wavefronts are also
very commonly encountered. In Fig. 10.3, a number of

(a} Point source
(three-dimensional)
Spherical wavefronts

{b) Plane sources
.Plane wavefronts

(c) Line source A
Cylindrical wavefronts

(d) . Surface waves

" from point
source (two-
dimensional)
Circular wave-
fronts

FIGURE 10.3. Spherical (a), plane (b), and'cylindrica‘l (c) wave fronts. (d) Circular
waves on the surface of a liquid, génerated by a point source. ’
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propagating as a wave.

different waves are illustrated, with several wavefronts
for each case. These wavefronts have the property that
the magnitude of the disturbance of material particles
(displacement from equilibrium) is everywhere the
samme on a given wavefront. Furthermore, the wave
always propagates along a direction perpendicular to
the wavefront at any point. '

10.3 Mathematics of
One-Dimensional Waves

There are two considerations which must be incor-
porated into the mathematical description of one-
dimensional waves. One of these is the constant speed
of propagation of the initial disturbance, while the
second is the maintenance of the original form of the
disturbance. '

The physics can best be described with reference
to the rope of Fig. 10.1. At ¢t = 0, the rope has experi-
enced an initial disturbance. This initial disturbance
at t = 0 may then be characterized by means of the

equation
y(x, 0) = F(x)

which gives the transverse displacement of each point
x on the rope at the initial time. How do we now deter-
mine the dependence of y on t for all subsequent times
for each value of x, subject to the considerations men-
tioned above? In order for the disturbance to main-
tain its initial shape, it is essential that after a time
interval t has elapsed, each and every. displacement y
should have moved to a new location some constant
distance d from the original location. The constancy
of speed is guaranteed by requiring that d = vt, where
the constant v is called the wave velocity, or the phase
velocity. These considerations are “demonstrated in

(10.3.1)
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ocity associated with different points ina distxjrbance

Fig. 10.4. The conditions mentioned above are ful- -
filled if the time dependence of the disturbance is given -
by the equation’ :

\' y(%, 1) = F(x — of)

If we set ¢ = 0, this describes the initial disturbance as
given by (10.3.1), but it also describes the situation at
any later time t. Equation (10:3.2) gives a one-dimen-
sional traveling wave moving to the right. For a wave
traveling to the left, (10.3.2) would be modified by
changing the sign in front of the velocity v. We shaill
see later that the magnitude of the phase velocity is in *
all instances determined by the physical properties of
the medium in which the wave propagates.
 The most important feature of (10.3.2) is the -
occurrence of the combination x — vt as the argument -~
of the function F. For example, if the maximum of the
disturbance defined by the function F (x — vt) should -
occur where the argument of the function is zero, it is
clear that the location of that point as a function of
time will be defined by the condition that x — vt =0
or x = vt; in other words, the point of the disturbar}cé -
moves to the right, along the direction of propaga/t‘ion, '
with constant wave velocity v. The same general re-
marks clearly apply to all other points defined by
F(x — vt), and it is evident, therefore, that writing the

(10.3.2) .

argument of such a function in the form x — vt (rather
than simply as x) causes the function to “travel” in'the
x-direction with velocity v just the way a wave would!
The function F itself must be determingd from initial
conditions; and although any function F leads to a
wave motion in the mathematical sense, in practice,

2 In this equation, the quantity x — vt represents the argurhgnt of
the function F described (for t = 0} in Bq. (10.3.1). It is decidedly
not a factor that multiplies F!
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physical considerations will limit the range of possi-
bilities, as the following example demonstrates.

EXAMPLE 10.1

Which of the following mathematical expressions can -

represent one-dimensional waves that are physically
reasonable?

a, y{x, t) = yOe”i("""”2 _ (10.3.3)
b. y(x, t) = B(x + ot)* . (10.3.4)
e y(x, 1) = poe T AU (10.3.5)
d. y(x, 1) = Yo sin k{x — vt) (10.3.6)

Let us first consider which of these expressions 1'eprer'
sents a wave motion in one dimension. We recall that
a one-dimensional traveling wave must be in all cases
a function of x — vt or of x + vt. The functions given
by (a), (b), and (d), therefore, meet the mathematical
criteria, but (¢) does not. The “wave” given by (b) is
not physically sensible since it predicts that at each
value of x the displacemients become arbitrarily large
as ¢ increases. There are no physical systems which
actually display this behavior and, therefore, (10.3.4)
is not likely to be a wave of any physical interest. In
Fig. 10.5, the above functions are illustrated for var-
ious equally spaced time intervals. Notice that (a),

_ (b), and (d) maintain their shape as t increases, whereas

(c) does not. Equation (d) represents a sinusoidal wave,
which turns out to be the simplest and most important

. type of wave motion.

Equation (10.3.2) is a solution of a well-known
differential equation called the wave equation. This

. equation relates the second partial derivative of y

with respect to the variable x.to the second partial
derivative with respect to t. Partial derivatives® are
needed because y depends on two variables, x and .
In calculating the partial derivatives of functions of
x and ¢, it is important to note that in taking the

-partial derivative with respect to X, the quantity ¢ is

held constant, while in taking the partial derivative
with respect to ¢, the quantity x is held constant. These
derivatives may be obtained from (10.3.2) with the
help of the “chain rule” of calculus. Letting u(x, t) =
x — vt, we obtain '

dy 0 _dEw) ou _ dF(u) 0 _dF(u)-
é—ﬂé-azlr‘(u)— du ox  du —a—;(x—vt)—— du
@y 0 (oy\_ 9 (dFG)\ [ d-(dFe\]du
%2 ox\ox/) ox\ du ) |du\ du )|ox
d*F(u) 0 . d*Fu)
==z —a—x—(x— ut)-——gi;i— (10.3.7)

3 The basic mathematical facts about partial derivatives are set
forth in Ap'pendix D at the end of the book. i

10.3 Mathematics of One—Dimen‘sivon‘é‘l‘

By 0 dF@) ou  dFu) 8 . -
e — F = — 222 e o
Pt rRiC it it rAC RN L
dF(u) '
v du
Py_o(\_o(_ dFw\_ [0 (dFe)]ou
otz ar\ot) ot )T u\ du ) |or
R 0 , F) |
= —v—dzl—f- a(x —vt)=0v 7 (10.3.8)

Dividing (10.3.8) by v* and comparing it to (10.3.7),
we see that y(x, ) satisfies the partial diffetential
equation

o — s =5 =10 (10.3.9)

This equation is a one-dimensional wave equation. Any
function y(x, t) that has the properties of a wave as
outlined above will satisfy this equation.

There are, of course; many systems in which
waves do not propagate; their motion is not described
by an equation of this form. In systems in which waves
do propagate, we shall see that-the wave equation
arises directly from the physical principles that govern
the system’s motion. Thus, Newton’s laws of motion
should reveal that a string must satisfy a wave equa-
tion of the form given above rather than some other
type of equation. Let us investigate this further by
discussing the application of Newton’s laws to a
moving string. ‘

Consider a small segment of a string which has
been disturbed as in Fig. 10.1; this segment is shown
in Fig. 10.6. The left end has been displaced an
amount y(x, t), while the right end has been displaced
y(x + Ax, t) at time t. The angles which the ends of
this segment make with the x-axis are 0(x) and
0(x + Ax), respectively. These angles are assumed to
be quite small, so that the piece of string has been
displaced from equilibrium by only a small amount.
Tt is also assumed that the tension in the entire string
is uniform and has the value T. Now, according to
Newton’s second law, the resultant of all forces acting
on this segment is equal to its mass multiplied by
its acceleration. If the segment is taken to be very
small (infinitesimal), then the concept of a single
acceleration is meaningful since the segment ap-
proaches a point mass. Accordingly, we have .-

T sin 0(x + Ax) — T sin 0(x) = ma, = (K Ax)a,

3%y
= (1 Ax) =3

- (10.3.10)
ot

@where u is the linear mass density, that is, the' mass
per unit length. The acceleration a, is written as a
partial derivative since the quantity y is a function
not only of time but also of position x along the string.
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FIGURE 10.5
Since we have assumed that the angles are very _ N EAY
small and that they are expressed in radians, it is ~\ox x+Ax fes1m

legitimate to use the approximations

Substituting these approximations in (10.3.10) and

. 0 :
-sin f(x) = 6(x) = tan 0(x) = <“‘X> dividing both sides of the equation by Ax,

0x
i recalling that the- slopeya);/ax is the tangent of the dy [y
T <ax>x+Ax B <b;>x _ azy

angle 0. Also, at x + Ax, - : Oy

in 0(x + Ax) = 0(x + Ax) = tan 0(x + Ax) o Ax e (10312




- - X
+ Ax-

FiGURE 10.6. . Forces and displacements associated
with an infinitesimal element of a string along which a
wave propagates.

Finally, if we allow Ax to become arbitrarily. small,
we obtain ‘

azy azy
T, prcial b | (103.13)
or
2 1 . a-
a_io’____“,_:‘.’zo ) (10.3.14)

ax*  (To/u) ot

since in the limit as x — 0 the quantity on..the left
side ‘of equation ( 10.3.13) becomes,* by definition,
T'o(6/dx)(0y/ox), or To(8* yjox?). ‘

This equation may now be compared to (10.3.8),
the general equation for a one-dimensional wave,
This' comparison reveals that the string does, indeed,
satisfy the wave equation and can therefore propagate
waves. It also tells us that the waves which propagate
must have a wave velocity such that 1 v = /Ty, or

A ’
T,
t= /7‘9 (10.3.15)

Thus, we see that the emergence of wave motion is

a direct consequence of Newton’s laws applied to the

string as well as some approximations which are
quite valid in many instances. We see also that the
velocity of the waves is related directly to the physical
characteristics of the propagating medium, which in
this case is the string. From (10.3.14), it is apparent
that the wave velocity is directly proportional to the

Square root of the tension and inversely proportional

to the mass per unit length.
The wave equation, (10.3.14), has an enormous
number- of possible solutions. The simplest familiar

“ See Appendix D for the definition of the partial derivative in
terms of fundamental limiting processes.

10.3 Mathematics of One-Dimensional Waves

examples of these are sinusoidal solutions, having the
form '

y(x, 1) =y, sin[k(x — vt} + 5]J (10.3.16)

The fundamental importance of sinusoidal solutions
will become more apparent later when we discuss
more complex solutions. It may be shown directly by
differentiating (10.3.16) and substituting the resulting
expressions into (10.3.14) that the sine wave (10.3.16)
will be a solution of the wave equation, but it is not
the only solution, since we have already demonstrated
that any function of the variable, x — vt will' be a
solution, and (10.3.15) is such a function.

- Let us now describe some of the properties of the
sinusoidal waves described by (10.3.16). At a fixed
time t,, (10.3.16) specifies the displacement of every
point of the string from its equilibrium position; we
shall continue to use the string as an example although
many of the remarks we make are applicable to other
systems as well. In Fig. 10.7, we illustrate schematically
the dependence of y on X at some time t,. This figure

shows a number of locations where. y assumes a.

maximum value of y, or a minimum value of — Yo-
These values occur whenever sine takes on a value
of +1or —1, 'respecti_vély. Therefore, the quantity Yos
which is called the amplitude of the wave, répresents
the maximum possible displacement from equilibrium.
The entire argument of the sine function in
(10.3.16) is [k(x — vr) + 6] This is called the phase
of the wave. The constant & appearing in the phase
is determined from initial conditions. For example,
it may be regarded as the phase angle at x = 0 and
at the initial time t = 0. ‘
Referring to Fig. 10.7 again, we see that the
distance A represents the distance between successive

maximum positive displacements. This distance is

called the wavelength. Now suppose a maximum of
displacement occurs at x = xy. If we substitute y = Yos

X = Xy, into (10.3.16), this tells us that
Yo = yo sinlk(x; — vto) + §]

y
N PR

NAA
A

FIGURE 10.7. Sinusoidal wave, illustrating the
wavelength and amplitude.
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WAVE MOTION

or .

k(x, — vtp) + 6 = z (10.3.17)

2

CIfA represents the wavelength, then the next maximum

will occur at x=x, + A, and in the interval be-
tween.these two successive maxima, the phase angle
[k(x — vt) + 8] will have advanced by precisely 27

“radians. Bquation (10.3.17) then becomes

K(xy A= vto) + 6 = -g +on

(10.3.18)

Subtracting (10.3.17) from (10.3.18), we now obtain

(10.3.19)

The constant k, called the propagation constant, can,
therefore, be expressed in terms of the wavelength by
means of the above relation. :

We have examined several features of a “snap-
shot” of the wave at time f, and have, therefore,
studied the dependence of y on x for a fixed value
of t. Let us now study the dependence of .y on ¢ for
a fixed value of x, for example, x = x,. Here, we are
looking at only a tiny point on the string and we are
watching how that point moves as time progresses.
From (10.3.16) it is evident, setting x = xo, that the
motion is simple harmonic motion, with frequency f
and period T given by. the relation

- 2n

w = kv =2nf ===

3.2
T (10.3.20)

But since k = 2n/A and w = 2nf, we may express the
velocity v by

w

(10.3.21)

which relates the frequency, the wavelength, and the
wave velocity. B

Using the various relations above, we can write
the qriginal wave equation (10.3.16) in a number of
different equivalent forms. These include '

y(x, £) = yo sin[k(x — vt) -+ 6]
= Y, sin F;(x — )+ 5]
= Yo sin[(}kx — ot) + 6)] .
= Yo sin<2n;~ft + (5> ‘

. x t
= y, sin <27£ 7 ~ T + 5> (10.3.22)
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All of these expressions contain the same information.
The student should be able to derive one form from

. any other. To reinforce some of these concepts, let us

discuss a few examples.

EXAMPLE 10.3.1

- A long string of mass density 0.001 slug/ft is stretched

so that the tension is 0.5 pound. The left end is moved

* up and down with simple harmonic motion having

a period of 0.5 sec and an-amplitude of 1.5 ft. Assume
the tension is constant thronghout the motiox. (a) Find
the speed of the wave generated in the string. (b) What
is the frequency of the wave? (¢) Determine the wave-
length. (d) Obtain a mathematical expression for the
displacement y(x, t) at any point. .
The expression for the velocity of propagation
has already been derived and is given by (10.3.15).
Substituting the numbers given above, we obtain

T, 0.5
= [20= [ =S —224ft
v . 0,001 224 ft/sec

If we look at a small segment of the string and observe
its motion, we will-find that it is simple harmonic
motion with a frequency given by the frequency of

(10.3.23)

“the source of the wave. Therefore, the frequency of

the wave is
1

wow that we know both the frequency and the

~ speed of the wave, we can use (10.3.21) to determine

the wavelength. In the present example, we obtain

v 224
A=—=—=1121H
0

f
Finally, we may try to. determine the mathematical
expression for the wave. This can be done by using
(10.3.23), (10.3.24), and (10.3.25) in conjunction with
the expressions given by (10.3.22). We find that

(10.3.25)

Y(x, 1) = Yo Si.n.[(/cx — wt) + 8]

2n
poed i B sl S 7
1.5 sin (11.2 x — 27(2.0)t + 5)

or

y(x, 1) = 1.5 sin(0.561x — 12.57¢ + 6) ft (10.3.26)

Now, this cannot be a complete solution since the
phase angle § has not been specified, nor can it be
“determined from the conditions stated in the problem.
We need to know something else. The reader should
show that if it is specified that y = 0 and 0y/0t. <0
at x =5 ft and ¢ = 0.4 sec, then this information is
enough to give § = 2.221 rad. It is clear from this
that a given wave motion is completely specified by
amplitude, frequency or wavelength, velocity, and




initial phase. The velocity may be obtained by
knowing the physical properties of the medium (ten-
sion, mass per unit length, etc.); but the others can
be ascertained only by determining, somehow, the
position, velocity, and acceleration of any point of
the system at some stage of the motion.

EXAMPLE 10.3.2

The equation for a transverse wave on a string is
given by

y=2 cos[n(x — 1001)] m (10.3.27)

where x and y are in meters and ¢ is. in seconds.
(2) What is the amplitude of this wave? (b) What is
the phase angle 67 (c) Determine the frequency. of
vibration of the string. (d) Find the wave velocity.
(e). At t =1 sec, find the displacement, velocity, and
acceleration of a small segment of the string located
at x =2 m. A

The amplitude of a simple wave such as that
expressed by (10.3.17) is the maximum possible dis-
placement y,. Now in (10.3.17) the wave is specified
by means of a sine function, whereas in the present
example we have used a cosine function. The simple
trigonometric identity cos § = sin(0.+ 37) may be used
to convert one form to another Thus, (10.3.27) may
also be written as

y=2 sm[n(x - 100t) + n/2] 110.3.28)

Let us now compare thlS to (103 22). We find that
the amplitude is y, = 2 m, the phase angle § is 7/2,

the frequency of vibration is f=50Hz, and the
wave velocity is v = 100 m/sec. Usmg (10.3.28), we can
determine directly the displacement of any part of
the string at any time 1. We may also determine the

velocity and acceleration of any portion of the string

by evaluating appropriate derivatives of Eq. (10.3.28).
Thus, the up-and-down velocity of a segment located
at a given distance x from the origin will be given by
‘the partial derivative dy/dt evaluated at x, from which

v, = % = —200x cds[n(x —100t) + 7/2] (10.3.29)

The acceleration is given by dv,/0t evaluated at x, or

_ 6‘1),,;_~ %y

0 =D %Y 5000002 s _ T
fy =7 = 32 20,0007 sm[n(x. 100¢z) 4 ZJ

(10.3.30)

The values at t = 1 sec and x = 2 m are, therefore,

y=2 sin[n('z — 100) + Zﬂ =2 sin[—98n + Zﬂ

10.3 Mathematics of One-Dimensional Waves

dy I 7 N £ 1A
rind —200% cos[—98n -+ <§>] =u,— 2Q07r cgs(§> —Q

and

52 , ' N )
Y 20,00077 sin| —987 + (£
ot* - N 2

— —20,000n2 m/sec? = —1.97 x 10° m/sec?

‘This is a very large acceleration. It is eV1dent‘

from the above calculation that the maximum magm-
tude of the accelération is always given by.

(a'y)max = CL) Yo (10331)

Therefore, waves of large amplitude and high fre-

quency can possess a very large acceleration, as in

the present example.

So far, e have been _discuésing the physics of
one-dimensional transverse waves, using a string as
our primary example. Transverse waves can be pro-

duced and propagated in other ways. For example,

if a pebble is dropped ihito a pond, a famiiliar cir-
cular pattern of waves emanates from the source.
A stretched membrane alsb provides a medium in
which two-dimensional waves can .propagate. For

. two-dimensional waves, the displacements z from

equilibrium depend on the time 't as well as the
segment of the mediuth undergoing displacements.
Now each part of the undisturbed medium must be
located by means of two spatial coordinates x and y.
If z represents the dlsplacement of water molecules
located at (x, y) when a wave is present, then z can
be shown to satisfy the equation

0%z R 0z 18z
x> oy* ot
The above equation is a natural generalization of
(10.3.9) and is a two-dimensional wave equation.

In the case of one-dimensional wave motion, a

disturbance propagates undiminished (in the absence
of dissipation), and the amplitude of the simple har-

monic motion described by (10.3.16) is unchanged as

the wave progresses. This is a consequence of the fact
that the initial energy given to the system must be
transferred through every point x. The situation is
quitée different for a two-dimensional circular wave.
The initial disturbance created by a stone falling into
a pond 1rnpa1ts a certam energy to the system. As
this energy propagates,outward from its source, more
and more particles must share that energy. As a
consequence, each particle will have an amplitude of
vibration that decreases w1th mcreasmg distance from
the source.

Waves also propagate in three- dlmenswnal me-
dia and are goverried by the wave equation

Pu 0w w10

AR =) Tl 11089
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“ wl.ore u represents the displacement from equilibrium.
An example of a solution of this equation is provided
by sound propagation in three dimensions. Sound
waves propagate in all directions from a point source
of sound in the atmosphere, Since the velocity is the
same in all directions, the wavefronts emitted by such
a source are sphencal ‘Once again, since the energy
emitted by the source is spread over a larger and larger
area as the wavefronts propagate outward, the wave
amphtude decreases as the distance rfrom the source
increases. In this instance, the amplitude varies in-
versely w1th the distarice from the source. For this
reason, sound seems fainter and fainter to onr ears
as we move further away from the source. Light waves
ernitted from a point source behave in the same way.
If we are very far from a point source that emits
spherical wavefronts the curvature of the, wavefronts
. becomies very. small, and. for practtcal purposes the
wavefronts can' be regarded as planes rather than
spheres For example the sun emits light in the form
‘of spherlcal electrom’tgnetrc waves. But when these
wavefronts reach the earth, thelr radius is nearly
150,000,000 km. When we consider that the earth’s

earth 1ntercepts only a very tiny portron of the spherr-
“cal wavefronts emltted by the sun; thls restucted
portlon of suoh an, enormous sphere is for all‘.mtents
and purposes ﬂat ,Just as the small part of the earth’s
surface we. see m our 1mmed1a_te vicinit; A8 ssentrally
ﬂat Plane waves are the sxmplest and most mportant
examples of waves that propagate in three-dimen-
sional systems. Indeed, even though they propagate
in three dimensions, their amplitude can be described
by the one-diniensional wave equation (103 9 or by
the :solutions given in Eq. (10.3.22). We shall have

o om
Ikil_ A

FIGURE 10.8. The concept.of the propagation vector.

radius is less than' 6400 km it is dpparerit that the’

occasion to study the characteristics of plane waves
in great detail, not only in this chapter, but’ also in
our later study of electromagnetic waves and optics.

In the case of 2 wave that travels in a three-

dimensional medium, the characteristic features of its -

propagation -may be conveniently described by a
propdgation vector k. The propagation vector is a.
vector which is perpendicular to the wavefront at
every point and whose magnitude is given by k = 2x/A.
‘The propagatlon vector at every part of the wavefront
points in the direction of propagatton at that point, as
illustrated by Fig. 10.8. The propagatron vector is a

_natural generalization of’ the propa ation constant

introduced prevrously for one-dimen
tion, Tt enables us to v1suahze the way' m which the
wavefronts are movmg at evely pomt It is a concept

“that we shall have occasion to refer to often in our

future work coricerning sourd waves; electromagnetrc
waves, 'tnd the plopagatlon of hght .

g,

10.4 Longntudmaﬂ WaveS' '
Sound Waves C

The emphasrs in the prevrous sectxon Has beefi placed
on'transverse wive motion ‘even’ though much ‘'of the
mathematics is also applicable to-the case of Tongitudi-
nal-wayes. 1n this section; we consider the propagation
of longltudmal waves and in. particular, sound waves,

‘ Wthh are ‘the most 1mp01tant example of Iongltudmal
- waves. There is a profound differénce” between the

waves prevrously discussed and the sound ‘waves e
will study If you ‘have seen wives travehng on water
or moving along a strmg, you kilow' that the dlsplace-

nients’ of’partlcles froth equdrbrlum are mactoscople.

IRTRRA

ones"that are usually vmbl o the‘“hu'man eye On

Y

trem ly'{rnmute i some ‘Gases as'small 4§ 1078
Newton s second law was used to show that a
string’ under tensmn can support wave motion. The
derivation of its one-dimensional wave equation also
described the velocity of wave propagation. We wouild
like to ask now whether Newton’s second law can also
bé used to predict, Wave motion in a solid bar which
has’ been dlsturbed by being struck with a hathmer.
If wave motioii'does result, what is the wave velocity

and how does it depend on the properties of solids? .

To answer these questions, it is necessary first.to know
a little about ‘elastlc deforination of solids.

‘Let us. con51der -a solid bar ,Qf ngth lp and
cross- sectlonal area A4, as shown in Flg 10.9. If this
rod experiences forces of magnitude .F on both of its

faces; the rod is said to be under longltudmal ‘S{ress,

-and the amount of stress is defined by

i
t
i
{
i
i
i
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’FIGURE 10.9. Solid elastic bar in wh_iCh longitudinal
waves are excited.

tr F 10.4.1
stress = 1 (10.4.1)
This stress can be due to compression, as in Fig. 10.9,
or it.can be due to tension. An idealized “rigid object”
will not exhibit any deformation.at all when under
stress; but real substances, even those that are quite
“rigid” in the conversational sense. of the word, will
undergo a slight deformation when stress is applied.
Therefore, when longitudinal stress is applied to the
bar shown in Fig. 10.9, its length will change by a
-small -amount Al. The change in length divided by
the length I, is known as the longitudinal strain:

strain = —
0

(10.4.2)

Now, if the stress is not too large, the relationship
between stress and strain for most substances is a
linear one. The stress is directly proportlonal to the
strain and the propmtlonahty constant is given by a
number Y, which is called Young’s modulus. The
magnitude of Young’s modulus will depend upon the
' mechamcal properties of the substance and is, in fact,.
a quantitative measure of its rigidity. The equation
relating stress and strain may. thus be written

F
E

(10.4.3)
lo

This equatlon in which the stress varies linearly with
the strain, is simply another form of Hooke s law.

Y

¥ A ' ulx + Ax)

10.4 Longitudinal Waves:

Equation (1043) may be-used to. study.the
propagation of a disturbance in a bar of ﬁmte lengt
Let us consider a very small section -of such’ a bar,
having mass Am and length Ax when in equﬂlb ium,
and located at position x. This section is shown in'
Fig. 10.10. Wheri the bar is struck by a hammer, this
section is no longer in equ111br1um Its Jeft end, at
some time f, has undergone a displacement u(x, 1)
from its -equilibrium position. Its right end has ex--
perienced a similar displacement u .+ Au. Tts length'
‘therefore, due to applied stress, has changed by an
amount Au from Ax to Ax + Au(x). Accordingly, at
the left end; where the force is Ffx) and the elastic
elongation Au(x), (10.4.3) becomes-

f_(zc_) Au(x)
A Ax

=Y (10.4.4)

At the right end, the force is F(x + Ax) and the
elastic elongation is Au(x + Ax). Under these circum-

- stances, (10.4.3) becomes

Flx 4+ Ax) YAu’(x + Ax)
Pl =y (10.4.5)
“The total force acting on the element is, therefore,
F(x + Ax) — F(x) = AY. Au(x + Ax)  Au(x)
Ax Ax
(10.4.6)

If-‘Ax approaches zero, Au(x)/Ax represents the partial
derivative of u with respect to x, evaluated at x. Using
Newton’s second law, we find, therefore, that

A du ou 82u 2y
A =
Y [(m)x ‘s (w” (Am) =z az

(10.4.7)

‘where p is the density, or mass per unit volume, and
0%u/dt* is the acceleration of the element. If we now

=u{x) + Au

/

Flx) demmp

FIGURE 10.10. Forces and dlsp!acements agsociated with an mﬁmteSImal element
i of an elastic bar along whlch longitudinal waves propagate. :

315




WAVE MOTION

divide both SIdCS of (10.4.7) by Y Ax and take the
limit as Ax — 0, we obtain

e =0 v (10.4.8)
Equation (10.4.8) is a one-dimensional wave equation

describing the displacement u of a small segment
located at x. The wave velocity is given by (10.3.9) as

b= Y/p . (1049)

We find, therefore, that any initial dlsplacement of
molecules at the-left end of the bar, the end struck
by the hammer, can propagate as a longitudinal wave
described by a solution of (10.4.8). Such a wave is
nothing more nor less than a sound wave. A typical

: singsoidal solution' of Eq. (10.4.8) can be written as

ulx, t)y = A sm(/cx —"wt) » (10.4.10)
with ‘
v=wlk=\Y/p

It is important to realize that the displacement
u(x, t) of any part of the bar from its equilibrium
position takes place along the x-direction. The particles

‘of the bar execute simple harmonic motion about their

equilibriiim positions, vibrating back and forth along
the x-axis, while the wave itself is, according to Eq.

(10.4.10), p1opagating also anng‘the x~direction. The-

situation is very Similar to that illustrated in Fig. 10.2
by the passage of a compresswnal pulse along a
spring. This type of wave motion, in which the partlole
displacements take place palallel to the direction in
which the wave itself travels, is called longttu(hnal
wave motion and is to be contrasted with the trans-
verse type of wavs miotion -studied prev1ously, in
which particle motions took place. pelpendlcular to
the direction of+ravel of the wave.

EXAMPLE 10.4.1 . :

A metalhc bar of length 1 m and cross- sectlonal area
2cm? has a density of 3 g/cm®. It is subjected to
compression by forces of 10° newtons at its ends, and

as a result of this compression, the bar contracts by

0.1 mm. (a) Find the longitudinal strain on the. bar.
(b) What is the longitudinal stress? (c) Determine

Young’s modulus. (d) What is the velocity of propaga- - -

tion of longitudinal waves traveling in the bar?
The strain is given by the expression

. Al . 01mm u
strain = L= 1000 mm 107
while the stress is given by
stress = — = 108 ~= 0.5 x 108 dyn/c
AT 2 T ynjom?

3i6

Using . these two results in. conjunetion ‘with the
definition of Young’s modulus, we obtain "'
_ stress _

x 1 12 dyn/cm?
st1a11 0 y /

To find the speed of wave propagation, we use the
formula given by Eq. (10.4.9) to,find -

0.5 x 1012\12 . .
= <+O_> = 0.41 x 10 cm/sec = 4100 m/sec

This wave velocity is typical of the speed of longitu-
dinal waves in metallic objects and'gives an idea of
what we might expect for the veloc1ty of sound m
solid substances.

When a longitudinal disturbance propagates in
a solid as a wave, the form of the disturbance’ depends '

on its source. The blow of a hammer causes a sharp .

pulse to propagate from one end to the other. On the
other hand, a periodic disturbance of a definite fre-
quency causes a periodic or sinusoidal wave to propa-"
gate. Just.as we found that the wave equation for a
one-dimensional string could exhibit sinusoidal solu-
tions of a definite frequency and wavelength, we also
find that one- dlmenswnal longitudinal waves possess
these same characteristics. LN
Longitudinal waves propagating thlough asolid-
{or llqmd or gas)aré'also called sound waves, although
not all waves of this type ‘are audible to the human
ear. Those waves which have flequencles below 20 Hz
are called infrasonic waves'and are inaudible: These:
waves are usually generated by very big sources since
their wavelength is generally very long. For-example,

“a longitudinal 'wave of 1/20 Hz traveling through the

earth, where the wave speed is about 5000 m/sec,
would have a wavelength A = v/f = 100,000 meters.
Such waves can be produced inside the earth’s'mantle
by seismiic ‘activity. such as earthquakes In' fact,
longitudinal waves with a wavelength as large as the
diameter of the earth have been detected.

When Iongltudmal waves contain frequencies
in the range of 20 to 20,000 Hz, they are in the audlble
range and can be heard as sound by the human ear.’
Such waves may originate in vibrating strings, air
columns, membranes, loudspeaker diaphragms, and
other sources. Their wavelength depends on the sound

-velocity in the medium in which the .waves are

traveling as well as their frequency. In air, where the.
sound velocity is about 330 m/sec 20- Hz waves’ have

5 Other animal specics can hear much higher fre‘quencies. For

“example, bats can hear up to 120,000 Hz and porpoises, up to

240,000 Hz. However, at the low-frequency end, bats.and porpoises
are fimited to 10,000 Hz and would, therefore not be able to
apprecnate our music. Although many ammals hear frequencies
that’ are ultrasomc few can match the human sensmwty in the
low-frequency end of the spectrum Con




a wavelength of about 16 m, while 20,000-Hz sound
waves have a wavelength of around 1.6cm. ,

High- frequency longitudinal waves (above
20,000 Hz) cannot be ‘detected by the human ear.
These waves may be produced by electrically induced
high-frequency vibrations of crystals; they can also
by produced and detected by bats and porpoises, and
are extremely important for navigation and- food
gathermg for both of these species. They are referred
to as ultrasonic waves.

‘We have discussed to some extent the. p1opaga— ‘

tlon of sound in a solid. Sound also travels through

gases and liquids, although the speed is usually smaller.

than in solids. Liquids and gases are fluids rather than
rigid substances, and, therefore, . the descrlptlon of
sound propagation in them is different in one im-
portant respect. Instead of using Young's modulus
to characterize their elastic properties, we must usé
instead the bulk modulus B of the substance, which
'is defined by

AV AP o
AP ‘B - or AB w2 (10.4.11)
where AV/V, is the fractional volume change a volume
¥, of the substance undergoes when subjected to an
externally applied change in pressure (force per unit
area) AP. The bulk modulus B or, more’ properly,
its inverse, is a direct measure of the compressibility
of the substance. The velocity of sound in a liquid
or a gas’is, therefore, expressed by .

PRI T
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In wat'er’,'this -velocity is approximately 1500 m/sec,
while in air at normal atmospheric pressure and at &

Oscillator . = = = %

o= = ST (o

- 105 EnergyTranspo’rt by Waves -

“ temperature of 0°C the sound velocity is 331. 4 m/sec,

or 1089 ft/sec. .

For a gas, both the bulk modulus B and the '
den51ty depend upon the temperature and pressure,
and, therefore, the velocity of sound varies signifi- -
cantly if these parameters change to any large extent. .
In normal terrestrial surroundings, the atmospherlc
temperature and pressure variations that arise from
changing climatic conditions are not sufficiently great
to alter the sound velocity very much from the figure
given above. However, we shall learn more about the -
variation of the sound velocity with temperature and
pressure in Chapter 13

10.5 Eneﬁ‘gy Transport'by Wavés

Energy may be transpoxted from one plé{ce to another
in two ways. In the first of these, the energy is carried
between two places because of the motion of a body
that possesses energy. For example, the energy of a
thrown baseball is carried by the ball from the pitcher’s
hand to the. catcher’s glove. The second means of
transporting energy is. by wave motion, and it is this
mechanism which is of primary interest in this section.

 To illustrate the basic concepts, let us consider
the very 1deahzed problem of transfenlng energy

between two peaks-of a mountain range by using the
transverse waves that can propagate -along a rope,

strung between the two peaks ‘On one of the peaks,
an energy source is avallable in the form of an oscil- -
lator which can vibrate up and down at a definite
frequency. The ‘end of the .rope is.attached to the
escﬂlatm and, theref01e energy is transferred to the
rope. Figure 10.11 illustrates a number of snapshots '

of the rope at various time intervals. In the absence-

Receiver

i

'FIGURE 10.11. Successive stages'in the transport of energy from an oscillator. to a

distant receiver via transverse waves in a rope
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i et e

FIGURE 10.12. Typical mass element of the rope
ilustrated in Fig. 10.11.

of any mechanism for loss of energy, we have a rope

which ultimately delivers energy to the second peak
at the same rate that it receives it. If the rope oscillates
in such a manner as to ultimately establish a wave of
the form

¥ = yo sin(kx — wi) (10.5.1)

then at what rate is eriergy being transferred between
the two peaks?

To answer this question, let us consider a small
element of the rope of length Ax whose mass is
Am = p Ax, where p is the linear mass density, or
mass per unit length. Such an element, as illustrated
in Fig. 10.12, moves up and down with simple har-
monic motion of amplitude y, and frequency w. Tts
contribution to the kinetic energy of the rope will be

o ;
AU, = H(Ampp,? = %(u Ax)( 4 )

since v, = dy/ot. But y(t) is given by (10.5.1), from
which

% = wYyo cos(kx — wt) ('10.5.3)
' Substiiutiqg_this into (10.5.2), we obtain
AU, = 3uw*yy* Ax cos®(kx.— wr) (10.5.4)

But we may use the well-known trigonometric identity

cos?f =441 cos 20 (10.5.5)

to write. ( 10.5.4) in the form

AU, = fuw?y,? Ax + uw?y,? Ax cos 2(kx — wt)
(10.5.6)

If we average this over a length of time-corresponding
to many periods of the harmonic motion, we will
obtain the time-gverage kinetic energy associated with
this portion of the rope, AU,. This is easily accom-
plished, since the first term in the above equation is
constant with respect to time, and the time average
of the second term is zero because the average value
of cos 2wt is-zero over many cycles. We then obtain

818

(10.5.2)

AU, = %;ucozyoszx (10.5.7)

It is possible, though somewhat less straightforward,
to calculate directly the average potential energy -
associated with this element of the system. To simplify
matters, we shall"recall from our previous work in
section 9.3 that the average potential energy of a
simple harmonic oscillator is equal to its average
kinetig energy. Therefore,

AU, =AU, (10.5.8)

and the average total energy AU can, therefore, be
written

AU = AU, + AU, =2AU0, = $uw?yy®> Ax  (105.9)

In the limit where Ax — 0, this can be expressed as

dU =Luw?y,? dx (10.5.10)

We may interpret this result in the following way.
Equation (10.5.9) tells us that every segment of length
dx has total energy dU. Since the sysiem executes a
wave motion of constant amplituac and frequency,
all the energy received by every such segment from
its neighbor on the left in any given time interval
must be balanced by an equal amount that i is passed
on to the nelghbormg segment on the right. At the
extreme left erid of the rope, energy is fed in by an
externally powered oscillator. The rate at which this
energy is absorbed from the external source by the
rope is simply the power output of the oscillator. At
the same time, if there is no internal energy dissipation
in the rope, energy will be transferred at the same rate
into whatever energy-absorbing system is fastened to
the right-hand end. In any time interval dt, therefore,
the first segment of the rope of length dx on the left-

_ hand end—which, you will recall, receives all its

energy from the externally powered source—will re-
ceive an amount of energy dU as given by (10.5.10),
and the last segment of length dx on the right will
give up an equal amount to whatever it is connected
to. Clearly, then, the amount of energy transported
by the system during this time interval must be

_ dx
dU = $uw?y,? dx = tuw?y,> ( lt)dt (10.5.11)

- Since dx/dt corresponds to the velocity with which

energy is transported by the system, hence the wave
velocity v, this can be written

dU = Luvw?y,? dt ' (10.5.12)
or finally,

= 4O -

P= e Tuvw?y,? (10.5.13)




In this equation, P represents the average power
transmitted by the wave motion that has been set up

‘in the system.

Equation (10.5.13) exhibits some very nnportant
features of energy transfer in wave propagation. In
particular, we note that the power depends on the
square of the amplitude and on the square of the

" frequency. It also has a linear variation with the wave
velocity. Although the above features were derived -
for a transverse wave traveling in one dimension, they’

are also valid for one-dimensional longitudinal waves.

In the case of one-dimensional waves, in which

there is no dissipation of energy, any -energy which
flows past any given point in 1 sec must also flow
past any other point in that same time interval.- The

- situation is very much like water flowing through a

pipe; the rate of flow is constant everywhere.

For waves in two or in three dimensions, the -

energy goes out in many directions, and, as a con-
sequence, the energy flowing through a given unit
area perpendicular to the direction of propagation
depends crucially on the exact location of the area.
For this reason it is useful to define a new term called
the intensity. The intensity I at a glven locatron is

defined as the average energy which crosses a unit

area perpendleular to the propagatron direction in
unit time, that i is, '

AT e p

(AABY A4

as 111ustrated by Fig. 10.13. The yalue of. I depends

upon the energy mput by the source of the wave as well
as the geometry! which’ 1elates the grven ared 'to the '
sotirce. Typrcal units used to méasure I afe watts/cm? '
or watts/m In the case of a sound wave propagatmg’ ‘
in'a gaseous medium, Eq. (10.5.13) is still correct, even.

though the wave is 1ong1tud1na1 rather than transverse.

- The average power crossmg an area A per iinit time,
therefore, is

J N
A~ 24

In this expressmn the quant1ty u/A represents mass

divided by (length x area), or mass per unit volume

It may, therefore, be replaced by the volume den51ty o
of the medium, which expresses its mass per unit
volume Maklng thlS substltutron (10.5. 15) becomes

I= 7pvw Vo2 " {10.5.16)

EXAMPLE 10.5.1

A pomt source emits energy with a pOWer of 10 watts ‘

in the form of spherical sound waves. Find the inten-
sity 5 m from the source, and also find the energy

[=_ 22l T N (10.5.14).  -spherical sound waves rad1at1ng from a point'source

In 5 sec, the energy passmg through 3 cm s

. (10.5.15)
" electrical power inpul needed to créate this acoustic
. power. The conversion of electrical power in devices
_usually quite; inefficient, much of the; electrical energy

" has an intensity (at the ear) of 10-16 watts/em2 ThlS
“ represents an extremely ‘small amount of energy re- it

‘respond effectively to intense sound waves: but’ gen- !

10.5 Energy Transport by Waves

.Area AA

, Propagarion direction
/ = ) - e o
. At AA k

FIGURE 10. 13 Transport of wave energy across an .
arbitrarily orrented area element _ '

which crosses an area 3 cm? (perpendlcular to the
direction of propagation of the wave) every 5 sec if
the area is'S m away from the source.

Let .P be the average power emitted by the
source. Thus, P joules are emitted each second, where
P has the numerical value 10 in the present case. “This
amount of energy must pass through any sphere whose
center is at the source (assummg no absorptlon) ‘and
therefore, from (10513) R A
I'—~’ Au__p _ P 10. 17

= AOAA) A At . ofesan)
where I is the intensity a drstance r from the source.
It is evident from this equation that the 1ntensrty of

falls off inversely as the square of the dzstance from the
source Substrtutlng numbers we obtam

nmv o o !

1072 'wa'tt/m‘

rivoen,

o i . ] ( 1 r 3] c ot
ThlS express:on may now be utilized to ﬁnd the energy
passing through any area on-a sphere of 1ad1us 5 m.

= (32 x 10° 6)(3)(5) 48 10751

It should be remarked that P = 10 wattsisthe acoustlc
power output, which is consxderably smaller than the
such . as loudspeakers to' useful acoustic. power is.
being wasted in the form of heat. S
The famtest sound the human ear can. detect
ceived by the ear each second, and it reminds us that .

the ear is an enormously sensitive organ. The ear ‘can .

erally cannot- tolerate intensities larger than, about 1.
10~ * watts/cm? \w1thout experiencing pain, D _of,them
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large range of intensities we hear, it has become
customary to characterize sound intensities by means
of a logarithmic scale which gives the intensity of
sound relative to the minimum discernible’ intensity
Iy, = 10716 watts/cm? If I is the intensity of a sound
wave at a givén location, then”

B =101log I  (10.5.18)
Iy

gives a measure of intensity in so-called decibels, or db."
Thus, if I = I,, B = 0; whereas if I = 10™* watts/cm?,

B=120db. A value of 10 db implies an 1nten51ty 10
times as large as I, while 20 db corresponds to 100
times I,. Ordinary conversation occurs at about 65 db,

while. whispering corresponds to 20 db. It should be

kept.in mind that intensity is a quantitative measure of

" energy received and is mot.synonymous.with the sen- -

sation of loudness, although there is, to be.sure, a
correlation. It could happen that'sound waves of the

same intensity appear to have different loudness since -
they may be of different frequency. The sensation of -

loudness is a qualitative physiological response which
depends on many factors. Two people can disagree on
the “loudness’ of a TV set, and often do, but they will
not disagree on its intensity if they have the proper

_instruments with which to measure 1t

Ty

EXAMPLE 10.52

“Ata football stadmm the plays are announced ﬁom a.
-single loudspeaker since the university cannot afford
a more elabarate system. The most. dlstant spectator

is 600 ft from the speaker. If an intensity level of 70 db
is desired at this point, what is the mmlmurn acoustlc

" power required?

The intensity I may be determined. from Eq.

(10.5.18), according to which 70 = 10 log I/IO, which
-implies (noting that I represents the minimum auul-

bleiritensity of 1. 00 x:10748 watt/om S

Substltutmg this numerxcal value into Eq (lO 5. 17)
we obtain, for r = 600 ft = 1.83 x 10%¢cm,” -

P = dmr?l = (4)(183 x 1042(10°%) = 421 waits

We can compare the relative sound intensities-I and I"
at-different distances rand /* from a point source that -
radiates at a. constant power level P by noting from
(105 17) that o o

This equatlon is SImply another way ¢ of expressing the "
inverse square law'fot*a poiiit soiirce. In this éxample, '

.,,‘,no;~5-19> :

’ S (10.5.20)

we know that for r = 600 ft, I = 1.0 x 1072 watt/crn
Usmg (10.5. 70) it is easy to show that.for += 30 ft,
I'=4.0 x 10”7 watt/cm?; and for r = 3 ft, I' =40 x
1077 watt/cm?. Both of these figures arestill below
the pain threshold of 10™* watt/cm?, although in the
latter case the 1ntens1ty level would cer tamly be un--
comfortable. A

EXAMPLE 105 C
At 10,000 cycles per second the tlneshold of audlblhty
occurs at-about.11 db. Find the amplitude'of molec-
ular vibrations in air (at standard.temperature and
pressme) at thIS frequency The ! density ~of air -is
=1.29°x 1072 g/cm® and -the wave speed is v =
3 31:x 10* cm/sec. Note that 1 watt.= Ljoule/sec =
107 ergs/sec = 107 dyne-cm/sec = 107 g-cm?/sec?.
From (10 5.18), we can determine.the mtenstty i
at 11 db. We may write, therefore, ~ o

I R I IR
= 1 — Py TSR]
1 10 ogI i T

Wthh 1mphes Ifly= 12 6 or -

I= 17 6 x 10 16 watts/cm '
=12, 6 % 10“16 g cm?/sec’ ¢cm?

since I = 1.00 x' 10~ watt/cm Then fro nj(lO 5 16),
, 2 @026 x 10°9) .

Yoo =35 =

pro* (129 x 107 3)(3.31 x 104)(271 X 0‘*)2
=149 x 1072° cm? ‘
yo=386x1070em i

ThlS is an mcledlbly small dlsplacement amphtude )

In fact, the displaceme t,,of molecules. or atoms from
thelr ethbmum _positions 4is- ‘Conslde1ably, smalle1

1 0.6 Superposition of Waves

' One of the most profound p11nc:1ples underlymg vvave

monon 1s the s0- called supe; posztzon pr znczple It states ;

......
.....

that the dlsplacement of partlcles in the medlum is ob-
tained by direct addition of the displacements which
each of the separate waves would produce in the
absence of all others. This principle is confirmed by
experlment prov1ded the amplltudes"of the various

waves are not too lar; ge ‘For very large’ amphtudes
the restormg ‘forces ‘'on the’ paltlcles ‘do not’ obey

~ Hooke’s law, and this siple result is no longer true.”’
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FIGURE 10 14, Spattal interference of sound waves
em;tted by two loudspeakers

&
[T

As a consequence of the supe1 posmon prlncxple
waves exhibit ah effect called mterference When two

or m01e waves interfere, they do not in any way affect,

one another It is unfortunate, thelefore that the word

) 1nterference has become umversally adopted for in,
- the. present context it melely means that two or more’
waves add or superpose to provide a resultant whlch,

may produce effects that were not inherent in any of

- the individual waves. Thus, interference is really syn-

onymous with superposition. There are two main
classes of mterference phenomena since waves can .

interfere elther spatlally or temporally The distinc-
t10n between these classes wﬂl be made below
Conmder an example

ffequency 'an‘w,, nplitude,
denoted by e e -

= J, Sin kx -t ‘
Vi Yo.( 1 —t) ‘(10.6.1)
Y2 = Yo sin(kx, — o)

In these expressions, x, and x, are the distances,
respectively, from speaker 1 and speaker 2 to a detec-

-tor D, and y, and y, are the molecular displacements

produced there at time ¢ by each speaker acting by
itself. The movable detector D, which is far from the
speakers in comparison to their separation, is free to
move along the line SS’. What is the resultant wave
received by the detectm and how does the mtens1ty of
sound vary as the detector is moved?

The geometr y of the situation is .illustrated m‘

Fig. 10.14. According to the superposition pr1n01ple
the 'molecular dlsplacements at the detector are g1ven
by , .

y= yi +y, = yo[sin(7<x1 — o]
o (10.6.2)

- tut) + sin“(lc.x2

The above sum may be evaluated by utlhzmg the
trlgonometrlc B! ,entlty -

sina + sin b = ZSméa'—i-b)cos%(a—‘b)

- (10.6.3)

tlstrated by Fig. 10 14 1n‘
it sound wayes of the same 3
’,and let these _waves be

" of the detector Therefore thls phen

10.6 Supetposition ‘of Waves
If thls is used we obtain

— X3)
(10.6.4)

y= 2y0 sm[zk(xl + xz) - a)t] cos +k(x,

for the result.Since we have assumed that the speaker.
separation is small compared to the distance from the |
detector; the distance (x; + x,) is approximately the
distance from the detector to the point P m1dway
between the speakers. .- ‘ : s
Let us now rewrlte Eq (10 6.4) as

y= Y, sm(/cX wt) (10.6:,5")‘
where

Yo = 2y, COS Fh(x, — xz)v
nosm

X =3(x; +x;) ‘and

Now Eq (10 6 5) Iooks hke a smgle wave, except that:
its amplitude-Y, depends on the positionof the detector:

+ If x; and x, are equal, which corresponds to having

the detector midway between the speakers, the ampli--
tude Y, assumes'its ‘maximum- value' of 2y,. As we
have seen previously, the intensity of a wave is propor-
tional to the square of the amplitude, and therefore an
amplitude of 2y, gives an intensity four times as large
as the intensity which would have been present if the'
sound from-only. one speaker were received, Now; as:
the" dlstance X, — Xy increases, the ampht’ude and
tﬁerefore_the 1nten31ty decreases untll when ~k(x1

two waves cancel one anbther and w ave complete
destr uctzve mterference Whether ‘the nterference is:
constructlve or destructive depends upon ‘the' path :.
‘difference x; —x; and thus upon the spat1al position*:
: enon is known :‘

as spatzal mte; fe; ence of the waves




or, in other words,

n=0,+1,+2 +3,...
(10.6.8)

X, — %, = (n+ A

These conditions simply state that constructive inter-
ference occurs whenever the path difference x; — x,
amounts to an integral number of wavelengths, or
whenever the phase difference is an integral multiple
of 2z radians. Destructive interference takes place
whenever the path difference amounts to 4n odd num-
ber of half-wavelengths, or when the phase difference
is an odd multiple of = radians.

There are a number of subtle features concer mng
the above derivation of interference which we have
glossed over but which should at least be mentioned.
We have assumed that the amplitude of each wave,
Yo, does not depend upon position. This is actually

not true; the amplitude is much larger riear a speaker’
than far away. We may'expect ‘however, that Egs. -

(10.6.1) are valid expressions for giving the dlsplace-
ments along the line SS/, prov1ded this. line is so far
from the speakers that,-as D is varied, the distance x;
changes by an-amount much. smaller than x, itself.

The amplitude y, then will not vary appreciably as the

FIGURE 10.15. Spatial interference of water waves

excited by two point sources. (Ripple tank photo

- courtesy of ProfessorT A. nggms Pennsytvanla State
University)

detector is moved. The assumption that the detector
is far away is needed for still another reason. Since the
waves are longitudinal the displacements character-
ized by y; and y, are not really parallel, as we have
assumed. If, however, the distance to the detector is
large in comparison to the speaker seéparation, . the
displacements are practically parallel, and our as-
sumption is a good one. Finally, we have been
assuming, withotit specifically saying so, that the two
waves are coherent. This means there is a definite
constant phase relation between the two waves at
every instant of time.

A.second example of spatial interference of
waves is illustrated by Fig. 10.15, a photograph of
“double slit initerference” of water Waves At the bot-
tom of the picture, waves are generated by two
mechanically driven oscillators excited at the same
frequency and phase. Cir cular waves spread out from

each of the two sources and superpose to produce a

pattern in -which light and dark spots correspond
respéctively, to destructive and constructive inter-
ference. This example is very similar to the precedmg
one, except that now the waves are transvelse rather
than longltudmal -

EXAMPLE 10.6.1
The two sources in a rlpple tank” are separated bya

. distance d, as lllustlated in Flg '10.16."A ‘wave of
.angular’ frequency a) is incident. Discuss the pattern
produced by the superposmon of waves, Assume that

each’ wave has an amphtude which is a function of
dxstance from the source given by Yolry) and yo(ry).
‘Let P be the pomt of observation. The super-

position principle gives a resultant wave at Pas
y = yolrs) sinlkr; — @) + yolrz) sin(ler, = o)
‘ ' o 7 (10.6.9)

/ ET\~

P

FIGURE 10 16. Geometry of spatlal mterference from
two pomt sources.




The complete interference pattern is very difficult to
calculate explicitly because yo(ry) and yo(r,) may be
quite different at an arbitrary point. Let us, therefore,
simplify the problem by assuming that r; and r, are
very large in comparison to the distance d. Under this
‘condition, r; and r, are almost. equal. In fact, as an
approximation, we may assume that yo(r;) = yo(r,) =

yo(r), where r = %(r; + rp). Under this assumptlon '

Eq. (10.6.9) may be transformed once again using the
1dent1ty (10. 6 3), to y1e1d the dlsplacement

y 2yo(r)eos Ic< 5 )sin’(kr— wt) (10.6.10)
He1e we have a resultant wave w1th an eﬂ"ectlvel
amphtude ‘. : '

A= 2yo(;)0057k(;1—;2) S (10.6.11)

.The 1nd1v1dual waves are transverse ;wo dlmensxonal
.waves and, therefore there is no difficulty in numeri-
hcally adding ihe dxsplacements This would be true. .

even without the approximation made above.

The amplitude 4 will vary slowly with 7 The

reader should show that for lar ge r it is reasonable to
expect a dependence yo(r) ~ v~ /2, Figure 10.16 shows
the geometry of the situation. When ry and r, are

" large, their difference may be expressed in terms of the

separatlon of the sources and the angular variable 6.
It is easy to see from the figure that

-—;2-dsm0 o :’._'(10612)

The amphtude therefme can be expressed in terms .
" of r and 8 by means of the equatlon

[T P

A(r, 0) = 2yo(1)cosz(kd sin 9) T ‘.(1’0 6.13)

For a fiked value of r, this amphtude vaues sig--
mﬁcantly, with' the angle 6. The arnphtude is ‘zero .

. wheneve1
/é . o1 3n 5w
'z'dSI?B—E,?,—S—, (10614)
and has its maximum value when
1k , : ) 5
3 dsin 0 =0, w, 27, 37, . ... (10.6.15)

When the amplitude is zero, we have complete

destructive interference. The points at which it van-

- ishes arecalled nodes. Constructive interference is
- implied by the condition (10.6:15). These locations are
_ called antinodes. At all other points, the waves super-

pose to produce neither a2 minimum nor a maximum

‘m the amphtude -
“Let us rewrite the condition for a muinimun
' amplztude by using the relation k = 2n//1 dlscussed

earlier. This glves

' interference pattern. Thus, the condition for a nice,

106 Superposition of Waves
’

dsin = (10.6.16)

Now, the valae of sin 6 lies between zero and unity.
Thelefore if d < /2, it is impossible to- obtain any

 minimum in the interference pattern. If d is’ very much

larger thah ,1/2 the maxima and minima may be lo- .
cated too close to one another to reveal a discernible.

visible pattern is that d be larger than A/2, perhaps '
five or ten times as large, but certainly not very much -

: larger (for example, not 100 times as large).

In much the same way, the condition for, maxz- .
mum amplztude can be wrltten as ’ :

d‘sm@:O,,l,%,M,... L (106.17)

" We see that the variation of amplitude with 6 is
quite pronounced For a fixed angle 0, the amplitude
does vary with r but the variation is quite gradual.
This varlatlon is due to the fact that at large values of
F, the avaﬂable energy is dlstrlbuted overa larger area
and, th '.efo1e the d1splacement amplitude at each

, pomt wﬂl' be coxrespondmgly reduced.

We have discussed two 81m11ar examples of, .
superposmon of waves to produce an mtelference pat-. '
tern that eXhlbltS a strong spatlal Varlatlon of the
dlsplacement amphtude “The first case 1nvolved a
longitudinal wave, while the second involved a trans-‘
verse wave. Let us now consider a third example of
spatial interfererice, this one resulting from waves’

'travelmg in opp031te directions with the same speed

and frequency ThlS sxtuatlon is one Wthh comrnonly
occurs in systems in which a wave may be reflected.
It isillustrated in Fig. 10.17. A string is given a- pulse‘
that travels to the [Tight toward, the suppoit to which .
its rlght end i is t1ed If no energy is lost at the support,.
the pulse 1s reﬁected and inver ted as shown .in the

FIGURE 10.17. Reflection of a transverse wave ina
string by a ﬂxed ‘boundary, Hlustratmg the 180° phase ’_‘f.”
change o e
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FIGURE '10.18. System of standmg waves m a vsbratmg strmg

-support; the string exerts a force on the support while
the support exerts an equal and opposite force on the

string. The force the support exerts has a time varia-

tion and a magmtude exactly siich’ as to cause the

’_1nvers1on This same phenomenon of 1nver310n also
occurs for a continuous wave and in thlS case can be

regarded as a phase change of 180° 'upon reﬂectlon

- Consider now the case of a’ stnng ﬁXed at both

ofits ends. In thls case, reflection occurs at both ends

Let us suppose, for snnphc1ty, that the stnng is vi-

brating with'a. single frequency . Theé motion must

-then be 2 superposxtlon of waves travehng to thenght

Once again the trrgonometrlc 1dent1ty, (10 6 3), can be
utilized to transform thls expressmn mto oo

V5= 2y0 sin kx cos wt v | ;:(10.6.19)

attauns ‘the ‘Maximiir
lowrng condltlon is fulﬁlled

Tlrfése locations of maximum amplitude of vibration
are ‘known as antinodes. There are also positions for °
Wth the amphtude of. v1brat10n vamshes These are

F(x — vt), we reverse the dxrectron in which the wave travels .

324

(10.6.20)-

6 Recall that when w replace'u by, v in the expressron y—'

. cetvteen s
at x = L, then these locations must be nodes since the
string cahnot move at these points. The expression
(10.6.19) certainly guarantees the existence of a node
at the left end The condmon to have a node at the
right 'eénd reqtures “that for x = L sm kL =0, Thls
1mphes 1n turn that

o 4 B oy oo

/€L=,7C, 275,;'.;
or VT
2nL S §
———=<1t,=2n,.’.f.» N S A (10622)
’1.,\1'_—.2::?:.'.-' EE PSS S RS "',-:U'3'~ [TV TR IR
or il ' ' ' S s

The wavelength and the frequency are 1elated by the

condition fA = v, where ¥ is the velocity of the com-

ponent traveling, wayes. Ther efore, the equation above
also 1mphes the,t ,a stung ﬁxecl at both ends‘eannot
vibrate w1th any éubltlary frequency, but only.those.
frequencies -that result when condition (10672) is.

satisfied. The only possible frequencres are, therefore :

given by : oor
f'--v— ELEL) iv— " (10.6.28)
2’21 2L 2L T

These frequenc1es are all multiples of the lowest fre-

" quency, v/2L, which is known as the fundamental.

-, The disturbance produced by medns of this
superposition is not a traveling wave at all; but.is.
referred to as a standing wave. The reason-for this’
terminology is.clear when one.examines; Fig. 10.18.
Here, the, whole string is viewed at a number:of in-
stants in time.-Since the nodes are places which-are at
rest, energy cannot be transmitted across :a node.:
Therefore, the energy contained in the region between
two adjacent nodes * stands there; although it alter-.
nates bétween kinetic and potential energy during the




.peuod of vibration. The standing wave pattern may
also be understood from a slightly different viewpoint.
‘Two component waves “have been superposed and

each transports ener gy- The wave moving to the right"

'transports energyim that drrectron while the, wave
movmg to the, left carrres‘energy fo, the left. The: total
effect is,no éner gy transfer at all, since both waves are
transferi Ting equal energres each second butin opposrte
directions! ks i L

The various frequencres wh1ch are poss1ble hs

given by Eq: (10.6.22), are known as the natural fre-
quencies of the string, or the harmonics of the string.

In addition to the fundamental frequency fi =v/2L,
also-called the first harfionic; we may havéall mtegral '

multiples of it. These are known as the oveitones, or
the higher harmonics. Thus; f, = 2f; and f; =3 f1 are
the second harmonic (first overtone) and third har-
monic (second overtone), respectively. The series con-
tinues in the same manner for all .other harinonics:

In the preceding chapter on sxmple harmonic
‘motion, we encountered various systems which Vibrate’
at only one natural frequency Examples of this were
provided:by a ‘miass ‘attactied to'a’ sunple sprmg ‘and
“alsoxby @& pendulummWeihave now 'seen’ that' otHer
systéms can have many natural’ frequencres of vi-
‘bration. It.is very fortunate that this is:the’case, for
otherwise ‘the music emanating from a stringed in-
strument'such a$- a‘violin-would be ‘incredibly dull:
The'quality. of sound .emanating fiom a violin'or other
musical instrument depends cirtically ‘lon: the'relative
amphtudes of the arious overtones as well-as.upon

the fundamental vibration frequency. A typlcal sound -

spectrumfromvaviolinds showniinFig:10. 19.1¢ should
be miertioned thatoui ears: «differentiatetheisound:of:
afi -oboe,} ifor- example 'from :thessound.:of -a violin!
" playing the:. same-fandamental i notes- completely o’
the basis of the different spectrum of harmonics or
ovextones enutted by the two instruments. - v

)
Let us now tum our attention to a very d1ffe1 ent )

G
Q
l

taniig !

‘Relative level in decibels - -

type of mterference namely, mterference in time.Tn"
the cage of spatial interference of waves the amplitude’

of the resultant disturbance is st1ongly dependent on '
position. The resultant dlsplacemen‘g in any wave mo-

tion alsohas a time variation, ofj course Wthh is
charactérized- by the frequency, but this varlatlon is

.generally too rapid for; our ears to. deteét- The;fre-

qu%‘ncy of most sotnd waves is simply too hlgh to

:_ 'allow identification of’ the md1v1dual}max1ma and
V'mlmma of the dlsplacements The ear responds, there- -
fore, only to the time-averaged 1nteqs1ty Itis, however,

true that different frequencies cause distincly different

physiologic responses which we rdentlfy as the piich,
) "and theréfore the 1ndrv1dua1l
"without therr effect }

et

aves are ‘not. entlrely,-

B ‘L l?
By~ superposmon of waves 1t is nevertheless

possible to create sounds in which distinct time varia-
tions. of'intensity are readily detected by ‘the ear’. The\
phenomenon leads to' the. identification 'of beats. et
us’suppose, for: example that we' have two' tuning .
forks which ‘whens$truck énit:sound ‘waves of-fre- -
quency f, and:f,!'At the posmon of:an observer’s ear,
the net’ d1sp1acement ‘of rholecules ‘of: the medmm 8!
gn‘/en byt g Ao g s -‘.u_:v', RIS Y

y yo sm(k1

provrded the: amphtude of each of the waves is the!
same. The resultant wave, Eq (10624), can be re-l‘
expressed as. il . ;

10624) :

y 2y0 sm 2[(k1 + kz)x - (wl + wz)t]
X cos 2[(k1 - kz)\ - (col'— a)z)t] _
lt)‘coslz [(Ak)x = (Aw) ] (10 6 25)

3 el dosry uld o ‘
htiat ‘1" vlnr’ I :_i :
) 1(601 ‘+ wz)wf-:
kl"'-—'k Dl TR = e 'cd SUIIEE ,s(

e (;, ol 4:,‘, i Th rp et

St

10 6 26)

‘ The quantltles @ and k represent the average of the
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- Frequeney, spectrum-of-sound emitted by a violin. Sound mtenstty I :; l"‘ i
. level, in. dembels 8, plotted on the vertical axis, while frequency is plotted alongthe ... :
is. From M V.. Mathews and J. Kohut J. Acoust. Soc. Amer. 53 1620,
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o FIGURE 10.20. Temporal mterference of two waves havmg shghtly dlfferent
frequencnes lllustratmg the phenomenon of beats

individual frequencres and propagation constants
while Aw and Ak represent their differences,

- . Ata ﬁxed position x, this expression displays a
var zatzon ‘i time in both the sine factor.as well as the
cosine factor. Let us now assume that the two angular
frequencies w; and w, are very nearly equal. Then, the
first factor contains a very rapid time variation deter-
mined by the average of both frequencies. However,
since Aw is ow small, the variation in time governed
by the second factor may indeed by . quite, notrceable;

-and may:show up as beats, or successions; of maximum: -
amplitude spaced far enough in tlme to -be: distin--

guished by the ear. The situation is, 1llustrated by
means of Fig. 10.20,in which:a gr aph of yasa function

.of t is given at the position'x =0 Any other value for

x would, of course, illustrate the same general charac-
teristics. This graph exhibits two distinct time scales.
The time between any two relative maxima such as a
and, b is the period T, which is the reciprocal of the
average frequency f., On the other hand, there is also
a time T’ between two absolute maxima such as ¢

and d. These maxima-occur whenever the-cosine ‘fung-

tion becomes +1 or —1. This tlme mterval between
maxima corresponds to a change in the phase of the
cosine of 180°, or n radians, and therefore

AT ==
or
m 1 1 ‘ ‘
T=—"__ = . (10.6.27)
0=y fy— fz I ‘ :

There are, therefore, absolute maxima occurring at a
“beat frequency” of f, = 1/T" given by the difference

between the frequenciés f;.and f,. This phenomenonis. - -
- one which most of us have noticed while listening to
musical instruments that are slightly “out of tune.”

The phenomenon is not restricted to ‘sound waves =
‘but is also present for other forms of waves. In a

df _1dT, o
f;f 2T

1 To obtam 2 beats per second we require a fractlonal

i PR L o I

subsequent sectlon its appllcatlon to radar will be

- discussed.

: EXAMPLE 10 6.2,
Two 1dent10al plano wires. of equal Iength have a f1e~ ,

quency of 386 Hz when kept under the same tension..
What fractional increase in tensioa: will lead to 2-beats
per second when the wires vibrate at the same time?
A change in; tension will have the.effect of modi-
fying the wave speed v,-which is: related to the tension
T, by means ofw = {/To/p.The product of frequency
and ‘wavelength- is:the- wave speed Dy and therefore

fA= «/To/,u, Or /1%

fZ/'LZ —_ T /ﬂ e <.a)‘tn

(10628)'

ThlS 1mp11es that frequency is proportlonal to- the
square root of the tension since the wavelength is fixed
by geometry. Differentiating the above. equ’ation with
respect to Ty, regardlng /t as.ﬁxed lwe ﬁnd

(-10 6.29)

L

Yoia i L«l) H

Multrplymg this equatlon on both srdes by T0 and
writing To/u as f 2)2, this can be expressed as

1ncrease in frequency given by df /' = 2/386 = 0.00518. ;
This can be obtained by a fractional increase in ten-
tion of 2‘=df/f , or 0.0104. :

1

10 7 Fourler Serles

8 In studylng the vrbratmg strmg, we’ hav tried to re-

‘strict the discussion to vibrations ofd sifigle frequency .
The samie restriction was also madé for sound waves.
The superposition principle tells us, however, that a

(10.6.30)




very complicated wave may bé*built by means of the '

addmon of many waves with diffeung amplitudes and
flequencnes Now suppose we have a very complicated

lave like that which i is excited: whern a violin string is
bOWed or plucked Is. it poss1ble to decompose this
wave into a sum “of snnple sinusoidal waves:each of
Wthh v1brates at its IJown definite frequency” Or,
turnmg the questlren ar ound is xt poss1b1e to synthesxze
a complex nonsmusmdal wave, by superposing simple
sintisoidal components" The answers to these ques-
tions were provided many years ago, in 1807 ‘by the
brilliant French mathematician J. B. J. Fourier in the
course 9 tudies of heat conduction. Fourier
showr

- Specifically, he discovered that if f (x) is a func- :
" tion which is periodic over an interval ~L < x < L,
"them f(v) can;be written as an infinite sum. of sine and.
cosine-functions of the form .. - LR

f(x)‘=-a—o+ Z <a,, coS —— L +b,, sin IL > - (10.7.t)

The coeﬁiments a, and b, aré called the Founer coeffi- -
cients, and their values are giveén by the formulas

S 0.7.9)

f "f(x) éo's’a—— de

"=LT f )sn,——-d‘c

. For these mteg1als to. ex1st the functlon fix). must be
reasonably well behaved. - ;
~ InFig:: 10 21, <acfevw ﬂlustra‘uons: .ofthe, abovef
methpd..are -given for various!simple-periodic. func-:
tiens. In-principle;; an sinfinite numbet: of term's “afre :
-

PR RIRERRENANEY bt ¥ BRI

(10.7:8)

“arbitrary” periodic function could
be described as an infinite sum of smusmdal functlons .

10.7 Fourier Series

. needed in the series to reproduce exactly the function

fx). In practice, however it’ usually happens that a
very good approximation to the actual function may
be obtained by keeping a limited. finite number of
terms. If a small number of terms suffices as an ap-
proxunatlon we say that the series converges rapidly,
while if many terms are needed we say that the con-
vergence is slow. '

. Ifwehavea functlon Wthh isnot periodic but i is
limited in its domaln of deﬁmtlon to an interval from -
L to L, we may extend the' function to make it
periodic, and then the above formulas are valid for

» descublng the functlon in the reglon between — L, to '

L. Asan example conSIder the human proﬁle traced :

- from a photograph in Playboy magazine and shown

.in Fig. 10.22, Professor G. Ward of Penn State Univer-

sity has Fourier analyzed this profile numerically. The
sequence of pictures illustrates various approxima-
tions to the profile by taking one, two, three, five, ten,
20, 30, .and 40 terms:-in the Fourier. seriés, It is clear
from these figures that 40 terms constitute'a very good

" approximation to the actual profile. Even so, 40 is a

lot less. than. theé infinite number needed for its exact'

“reconstruction. Tz

"The technique of Fourier analysis is extremely

~ powerful apd marks a significant advance in the devel-

opment of mathematical physics. Since the method
may be somewhat beyond the mathematical level of
many of the students for whom this text.is intended,
we shall try to-convey an appreciation of the basic-
ideas involved without a full presentation of the
mathematics. To fix a framework for these ideas, let
us attempt to descrlbe the general motion of a string
of length L which is fixed at both ends. We have
previously shown in (10.6.19) that if waves of a definite

. f(X) | ) i Losleg i
\/\/\/\/\/\/ )
3L —L oL A3L ‘5[_ 7L
h o =2e 3 2 (1)) s T -~
) Z n= (nﬂ')z ' “}L ‘ : ‘
[ u . oo ' P
’ , l [ 1 -
- I . |: { ! E i
. R < i .
| | f(x):ﬁ i 'h_ -1+ (-1)"] smmp—( A ‘
2 = nm L it I o YR
(b) : A ‘ .‘_!:)1 i

FIGURE 10. 21

(a) Founer series representmg “saiwtdoth"” wave of wavelength

2L. (b) Fourier series representing ''square’’ wave of wavelength 2L,
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frequency movmg in .opposite. directions’ are super-

posed, -a . standing wave .of: 2. definite: frequency: is.
established. -The poss1ble frequencies iwere: givel by.
- f= /2L, .According to the superposition principle,-

the most general standingiwave would, therefore, have

‘the form of a.sum of waves like: those shown 1n‘

'(106 19), that is, ' Lt

Pyt od“ St RN A A
y(x, t),— 3 (bysin. k,,x)xcos w,,t o b g_,«
: i "T} T ll,ﬂflf sl i h

In thlS euuatlon accordmg to (10 6 22) and (10 3. 21),

.wemust choosel el il i ol
ceafd oy s e b
] L7 21f 3n . O .
or !
L L L oy
and Food g s 'Hil‘ Cooaaly et R
VN C A ST AT ST RAFERN E N FO P Rt R
. i nmwo, .. e b O Y Yy e,
L o AL B S IR I [
‘a) k ='——-—.—‘ !
n L .

"The above equation may, therefore, be written as

{ . . .
: ® .. nmx\ ~ [nmo
Y, t) = "};1 (b,, sin -—I:—> cos <—L— )

(10.7.4)

Suppose now that at ¢ = 0, the string has the

form shown in Fig. 1023, corresponding to a violin
string that is plucked and suddenly released. Then, at ™
-t =0, since cos (nnvt/L) has the value of unity, the
function ' 4 K

nmx
Z b, sin ——

(x, 0
y(x, 0) = P 7

(10.7.5)

must somehow represent the triangular form of the

plucked string shown in Fig. 10.23. This can be accom-
plished by makmg the proper choice of the Foumer
coefﬁments in Eq. (10.7.1). Indeed, it is evident that if

; o be zero, (10.7.1) 1educes to,
the equation above The numerical- values of the re—

328

coefﬁCIents a,-of the cosine ,

mamlng coefﬁclents b,, are calculated from (1073)

usmg forf(x) the function i . aiE St ._L ¥
f(x) -3'3:’ L0=x< ) A ]

L 'zh‘i:;'~"3‘: o IR ;,"\' .; I e
f(V):—'(L—-x)‘ ' (L/2<x<L), it o o

'

. which represents the triangular- shape of. the‘ plucked

string at ¢ = 0. We shall not go through the details of

"the calculation, but instead s1mply state that the coef—

ficients; b, are found to have the form' ALE ? R
b, 8h sin i i " | (10.7..6)
= e L STU VAL L B VIR LA R N I g
n n 2 2 S ’! e

In this expresswn we should note that s1n(mr/2) =1,
0, —1,.0, .1 forla=1;.2,:3,” 4;:i, usrAccording: ito-
(10 7.4); then, the form of xthe ~str1ng dt, any time t can
be represented as

P

| (x t) i 8h smmsmnnxcosm t '(1077)
JX, 1) "'annz 2 L L . . . |
v Vi
A
"
A
- h:"” .‘
_i l * - X
N .. 7|0 : L
. \\ A T SR —
\/
P e {

FIGURE 10.23. Geometry.ofithe plucked strmg at tlme
t=20.- -, O SR
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Now let us review what has been accomplrshed
We started with a snapshot of a plucked violin string
at t = 0, at which time the string was not moving, We
went through some fairly complicated mathematics
to obtain the result shown above as Eq. (10.7.7). This ™
equation tells us, however, exactly what a snapshot
of the string would look like at any.instant of time
greater than zero. We were able to determine the entire
- time dependence of the motion of the string by know-
ing. the time dependence of the component standing
waves as well as the Fourier coefficients, which provide

a measure of how much of each standing wave is. prese'nt'

in the entire sum.

It should be noted from Eq (1076) that the
Fourier coefficients contain the factor 1/n” and, there-
fore, drop off rapldly with increasing n. This is an

example of a series which has rapid convergence, and

'we might expect that the first ten terms already

- represent an excellent approximation to the actual..."

function. We have carried out a numerical evaluat1on
by keeping ten nonvanishing terms and have plotted
a number of different snapshots of" what the string
would look like at different times. The results are
given in Fig. 10.24. The idea that a complex nonsinu-
soidal wave can always be represented as a super-
~ position " of simple sinusoidal components is an
important concept and one that we may on occasion
ask you to recall.

l

10. 8 The Doppler Effect and
Some Related Phenomena

10.8 The Doppler Effect and Somme Rela’t?d,F?ih(epqmena

in the medium will detect S wavefronts pef second In
other words the- number emitted andthe number

received are 1dent1cal "as_shown in Fig. 10254 In
Ry

~Fig. 10.25b, the observer is movmg toward the source

of sound, and in 1 second he " now receives midre

wavefronts,as a result of his motion. TH¢. seconds, he
..moves a drstance d = upt, and as a conseqiience he

detects d/A = vyt/A additional wavefronts. Slnce the

frequency f” detected by him is merely the number of

wavefronts he receives per second, REAS
: : {38

t Vo .

Sl=f (10:8:1)
A1

where A is the wavelength of the wave. But since

=v/f, where v is the wave velocity, this equatlon

can be written as o 3 yoot
(10'38.'2),

SR N
FErErE (1)
RSN

By the same reasoning, if the observer‘recedes from
the source of sound as in Fig. 10.25c, he~ recerves
“fewer 'disturbances per second and, therefore the
detected- frequency would be . -t

A

f’=.(‘ —P—Q>f E )

v % .
‘We may ¢ombine both (10 8.2) and (10.8. 3) by wr1t1ng
f¢'=(1 if’vﬁ)f | o Hees
. T LT R tqt\t

where .the plus sign denotes a frequency mc,rease
(observer approaching source) and the minus! s1gn

Whenever there is relatlve motlon between the SOULCE...denotes-a-decrease: (observer-receding-from sour’cle)

of 4 wave and an observer, there are some ve1y iipor-
 tant and easily observable effects that occur. The siren.
of a speeding police car or ambulance appears to in-
crease in pitch as the vehicle approaches and to de-

* crease when it is moving away. This alteration in the

frequency of detected sound is even. more pronounced
when the source is a train whistle or a jet plane. In the
case of electromagnetic waves, the frequencies are

- also modified by relative motion. The frequency of
" light waves coming from distant galaxies is thus

‘lowered as aresult of the recession of the galaxies from
our solar system.

The effect in which the emitted and detected
frequencies differ due to relative motion is known as
the- Doppléi effect. It was named after the Austrian
physicist' Christian Johann Doppler who dlscovercd
the effect in 1842 for light waves.

Consider the simple case of emission of a sound
wave of definite frequency f from a fixed point source.
The source may be considered to emit f disturbances
or f wavefronts per second which then travel outward
at the speed of sound. An observer who is stationary

- Therefore, the distance referred to above is grven by

. For sound waves, Eq. (10.8.4) does ot account

w—'--for all- f1equency~sh1fts~due to-relative: motlon since

we must also consider the possibility of motion (l)f\ the
source of sound toward or away from the observe1
When the source of sound moves toward the’ observer
there is a decrease in ‘wavelength directly ahead of
the source and an increase directly behind the source,

.as shown in Fig. 10.26. In the forward direction}the
- decrease in wavelength is easily calculated since it is

equal to the distance traveled by the source in, the
time interval between two successive' emlssmns of
wavefronts or disturbances. This distande is equal to
the velocity of the source multlphed by the] tine
interval between two successwe emissions. ButOthis
time interval is the period ‘T, which is, in turny; the
reciprocal of the frequency_f emitted by the. source

v,/f . The wavelength as seen by the stationary obsérver
is then xO-&

dggd

RNy .

~
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10.8 The Doppler Efféct and Some Related Phenomend
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~and hence«.the ﬁequency of sound heard by the
observerds .l; jy:i G [

LT U’ RNt
/ X A=) ‘

But-since 1 is given'by v/f, we may erte S e Ty

- -(10.5.6‘)

(10.8.7)

A
;=1 <1—<vs/v)>

‘FIGURE 10.24." Fourler series solutlons accordmg to (10 7.7), showmg the plucked o ' . (,-7' : '
string m vanous stages of nts vrbratlonal cycle 'Each succeedmg fllustration ' ' oL

N4

as the freq‘ueﬁcy detected by the observer at P. An
observer located at Q. w111 hear a smaller frequency,y
given by~ ) :

"o 1 ' " |
;=1 (1 +(vs/v>) .

oo iy

emitted. :
Let us summarize Eqs. (10 8 7) and (10 8 8) by
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'FIGURE 10.25. Schemati

c-illustration of the Doppler effect involving motion of the
observer,

writing, as before,

however, there is no distinction to be made between
— e the two cases discussed above, Light does not need
" < 1 ) a material medium in which to propagate, and,
= [ (10.8.9) : : .
= 1 + (v,/v) therefore, the effect depends only on the relative motion
: of the source and the detector of light.
for the situation in which the source is in motion. - - We may state, without proof, that if this relative
From the arguments presented above, we see velocity u is much smaller than' the speed of light ¢,
that there is a distinct difference between motion of the Doppler shift for light is given by
the observer and motion of the source in determining
the Doppler shift of sound waves, This difference is fio' > f< 1+ E) (10.8.10)
present because sound propagates through a physical T ¢
;nedi_t.xm, and there is a distﬁnct difference in the way As a matter of fact, even for sound waves the dis-
n which wavefronts are emitted and propagate when . tinction between f, ' and f+" disappears if the relative
the source is at' rest and when it is in motion. For velocity of source and observer is very much smaller
light waves, which propagate through empty space, '

than the wave speed. The following examples will
illustrate some of these ideas,

EXAMPLE 10.8 1

An ambulance speeding down a street 4t 66 #ph has a
siren which emits sound at440 Hz. At an intersection

for the red light to appear green to the driver? The nu-
_merical information requiréd is v(sound) = 331 m/sec,
v(light) = ¢ =3 x 108 m/sec, A(green) = 540 x 10-2 m,
and A(red) = 660 x 10-9 m, 1 mph = 0.45 m/sec,
In this example, we have a cage in which the
source of sound is in motion. Whg,n the ambulance
IS moving toward the pedestrians, the frequency they

detect is
7" 1 : '
- , Si' =440 — - =479.1 Hz (10.8.11)
FIGURE 10.26. Schematic illustration of the Doppler 1 80045
effect involving motion of the source., : 331

332




u'is the speed of the ambulance and ¢ is the
speed ‘of light. The frequencres are related to ‘the

avelengths by f4=.c, and, therefore (10 8. 13) may
be rewrittenas , .., .

cho Faina e -y, ) B
540 10°m 660 107 m( * E)' e
This i is easrly soIVed for u/c | A
u 66 a { )
5_52_1 02‘ (10.8.15)

If we now substrtute for ¢, we find that the ambulance‘
must. be going at a speed of 0.66 x 108 m/sec, or
1. 47 X, 108 ‘mph. This is a pretty good speed for:an
ambulance It certalnly suggests that if. .you get a
ticket: for passrng a red light, and you argue that the
light appeared green because of the Doppler effect,
you arg:not likely to. be:convincing.’ 7 I the. pohceman
" wants to show off his knowledge . of physics, he might
very well say, “Perhaps .you are right, Sir, about

seeing a green light,-but if you did, then you surely

deserve a speeding ticket.” (
The numerical answer to the latter part of the
above example may seem a bit absurd. It is un-

doubtedly true that if you can detect any light fre-

. quency shift at‘all with your eyes, your speed is
extremely high. There are, however, instruments much
more sensitive- than the human eye, and these are
_capable of measuring very small frequency shifts and,
therefore, low' speeds. The tadar sets that are used

to measure auto speeds are examples of such refined -

instruments. Their operation is only possible because
of the Doppler effect. The followrng example illus-
trates the method. ‘

7 Although R. W. Wood, formerly Professor of Physics at Johns
" Hopkins Umversrty, is reputed to have used this argument ona

judge and gotten away ‘with it!

-only 0.66 x 10~

‘.‘velocrty vs 1n excess of the speed of, sou _,1,“9.

10.8 The Doppler Effect and Some Relatéd Phenomena

EXAMPLE 10.8.2
On Interstate Route 80, a radar trap operates by
sending out electromagnetic - “waves. of . frequency
2400 x 10° cycles per second. This frequency is in
the so-called microwave region. ‘A station 'wagon
moving at 85 mph gets pulled over for speedrng
Explain how the 1adar system based on the Doppler
effect works. B

The state trooper knows that the station wagon
was speeding because some of the micr: owaves he sent
out were reflected by the approaching vehiclé ‘and
came back with a higher frequency The station wagon
first receives microwaves which are shifted in fre-
quency by Af where . Af accordmg to (108 13) is
given by «

Af f'=f u_85x045
- 7 ¢ 3x108 =128 % 10

“The station wagon,;in-reﬂecting the microwaves back

to the radar set, acts once again as a.moving source of
microwave - energy, introducing a second, Doppler
shift of the same magnitude.: The;total frequency shift
in the waves received by the. patrol car is .therefore;

2Af 2u/o)f = (2 (128><10 7)(24><1o9) 6144Hz.

The speed of lrght isso hlgh that if the trooper s radar
hits your car when yow are 100 m.from him, it takes
6 sec for.the reflected radar waves, to
return to-his car.:During. this time interval, your
vehicle, moving 85 mph, has only. moved a distance
of 2.5.:%.107% m; 0r,0.025 mm. Fantastic, but true!

i The; actual shzft in frequcncy between the emitted

jdeteotmg the beats b tween the two ,frequencres ,T he
number-of nbeatsi

‘directly; proportronal ‘tosithe
vehicle’s speed,: and in & typical situation.the trooper. -
in the radar car reads your speed directly on a digital
display panel. The entire process is practrcally
instantaneous:..+ ... o ‘ SRS
‘There are many: other 1mportant uses. of the
Doppler effect, especrally for light. We will return to

_ . the subject again.in the chapters on electromagnetic
~ waves and will dlscuss more examples at that time. The

Doppler effect prov1des an examiple of a physical
phenomenon that arises. from the relative motion
between a source of waves and a receiver of waves.
Other interesting phenomena also emerge as a con-
sequence of this relative motlon As one example, we
shall considerthe sonic boom observed when the
speed of an aircraft or'any other obJect is in excess of

. the speed of sound

iy ’/

.EXAMPLE 10,83 . sl o

In Fig. 10.27, 4 pro;er‘trle is in motlon w1th a constant
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FIGURE 10.27. Wavefronts emitted by an object

travelirig at a speed in excess of the speed of sound,
illustrating the formation of a shock front.

medium. At ¢ = 0, the projectile is at a point P, while
at some later time t, it is at point P'. In this figure, the
spherical wavefronts which have been emitted in the
time of flight between P and P’ are shown. In the
present case, in which v, > v, the wavefront has a
conical shape, with the angle 0 at thé apex given by
sin @ = v/v,. The reciprocal of this number, vy/v, is
called the Mach number. An actual photograph of this
conical shape is illustrated in Fig. 10.28 for a bullet
moving at:-Mach 2.5. When the wavefronts of a sound
wave have this form as a result of supersonic speeds,
we have what is known as a shock wave. This shock
wave is résponsible for the so-called sonic boom or
explos1on caused By-supersonic aircr aft.

“'Let us now refer to the-situation shown in Fig.
10.29. At time ¢ when an airplarie (or other supersonic
object) is at point P, let us consider’the sound which
arrives at a point A on the conical front, which might
répresént some given point on the ground. Points C
and D are former locations of the airplane separated
by a'distance v, At, where Ar is the time of flight be-
tween C and-D. Now let us calculate the difference in
arrival times at A of a sound wave emitted at C and
oné at D. 1t and p deniote these times, we find

FIGURE 10.28. Photograph of shock wave assomated
with a buliet moving at Mach 2.5. Reconstructed image
of a double-exposed holographic interferogram of a
high-velocity 22-caliber bullet. The first exposure was
made just before the firing, and the second exposure
was made when the bullet was passing through the
scene volume. A pulsed ruby jaser was used. The
interference fringes give the change in optical path
which, in turn, gives the air density behind the shock
wave. (Photo courtesy of L. O. Heflinger, R. F. Wuerker,
and R. E. Brooks; TRW Systems)

, CA
€=
and
DA .
= At + ~ (10.8.16)

where CA and DA are the distances. Therefore,

1
tp = e = At~ (DA — CA)

E
= At + % (DA — EA — CD) (10.8.17)

Geometry of shock wave excited by a éupersonic aircraft.
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Now, if the distance CD is much smaller than C4, it 4

follows that DA = EA. We also note that CE=

CD cos ¢ = (v, At) cos ¢, and, therefore, the difference
in arrival times is

(10.8.18)
Several ,conclusions can now be drawn from

Eq. (10.8.18), an equation which would also be valid
at subsonic. speeds. If v, < v (subsonic), there is no

possibility of simultaneous arrival at point A. Waves'

emitted at different times arrive at A at different times.

However, if v, > v, then if the angle ¢ is chosen to be’

‘P, Where cos ¢y = v/v,, the arrival times are iden-
tical. In fact, subject to the approximations made, the
arrival time of all sound waves emitted between points
B and B’ are the same. This implies that a very sub-
'stantial constructive interference of sound occurs at
point A, and as a result a sonic boom or loud explosion
is heard at A! The only condition is that B and B

should be points whose separation is substantially -

smaller than their distances to the detector (at A). Itis
Seen that the angle ¢, obtained above is the comple-
ment of the previously defined angle 6. »

The very large intensity at A ‘and the corre-
spondingly large pressure variations which result
pose a very serious problem. The sonic boom pro-

~duced by such a shock wave can shatter glass and do
considerable damage to the structure of buildings. It
is also extremely unpleasant to hear the intense sound
wave. Actually, supersonic aircraft.produce a double
boom. One is caused by the nose and the other by the
tail of the airplane. This is illustrated in Fig. 10.30.
Sonic boom cannot be eliminated. Supersonic

raircraft are designed so as to minimize the shock

waves, but there seems to be no ‘way in which they can
be ‘done away with altogether. The only solution to

Tail wave

Pressure .

10.9 QOcean Waves

the problem seems to be to require aircraft ‘to. fly
subsonically until they attain enough altitude so that
the sonic boom will not pose any difficulty at ground
level. b . ‘

10.9 Ocean Waves

We began our discussion of wave motion by referring
to the water waves that travel across the surface of the
sea. Although these waves are familiar to all of us,
their behavior is very complex. We- shall, therefore,

- present only a brief qualitative survey of their more

important properties. .

. Ocean waves originate in the action of the wind.
Winds create small ripples on a calm sea. The profile-
of these ripples presents additional surfaces that
absorb energy from the air currents and further in-
creases their size. The ultimate amplitude of the waves
that are formed depends upon the average  wind
velocity, the time during which the wind acts, and the
distance over which it is effective. o

~ Ocean waves can carry huge amounts of energy
and can, therefore, cause severe damage to coastal
installations when they come ashore. At Wick,
Scotland, for example, in a great storm that occurred -
in 1872, the designer of the breakwater watched:from
a nearby cliff as the sea wrought its destruction on his
handiwork. The end of the breakwater was capped by
an 800-ton piece of concrete secured to the foundation
by iron columns 3.5 inches in diameter; Both cap and
foundation, weighing a total- of 1350 'tons were
removed as a unit and swept into the sea. The designer,
undaunted "by this, rebuilt the. installation, using .a.
larger ‘cap that weighed 2600 tons. The new break-
water, however, suffered a similar fate a few ‘years -

[

. Sonic boom
Sonic boom '

FIGURE 10.30. Double “sonic boom" excited by nose and tail of aircraft. ' AT
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later Whether he kept his _]Ob and made a third try is
not documented.®
-Although most ocean waves are generated by

the wind, underwater earthquakes, landslides, and

“volcanic activity can also cause huge waves. Waves
. such as these are often referred to as tidal waves, or

‘tsunamis, which is the Japanese equivalent.

On
August 27, 1883, an eruption of the volcano Krakatoa
in the East Indies caused a tremendous tsunami in
which waves 100 feet high swept away the town of
Merak, killing 36,380 persons. Tidal waves can travel
thousands of miles at speeds of 300 to 400 mph, yet
are hardly visible in the open sea. Only when they
approach the shore can their impact, which is usually

deadly, be realized. -

" One of the main reasons for the complex be-
havior of water waves is that the wave velocity is not

-a single fixed number but is instead a function of the

- wavelength. A. water wave of short wavelength

travels slower than a wave of longer wavelength, the
relation . between velocity and. wavelength being
something like v* = 5.124, if 1 is measured in feet and
v in ft/sec. This behavior is distinctly different from
the way in which waves propagate in stretched strings
or.in gases, where the wave velocity is completely
independent of wavelength or frequency. Waves such
as water waves, whose velocity varies with wavelength,
are said to exhibit the phenomenon of dispersion.
Dispersion plays an important role in physics,
particularly in the propagation of light and electro-
magnetic waves in dense transparent substances like
glass. However, light waves traveling in a vacuum or

‘in a rarified gaseous medium such as air do not ex-

hibit dispersion; they travel with the same speed
(2.997 x 10® m/sec) regardless of wavelength. In a

‘dense, transparent substance such as glass or-water, on

RN

»8

the other hand, their speed is significantly reduced
and depends on the wavelength Because the phe-
nomenon of dlspelslon is present when light prop-
agates through glass or water, these substances are
often referred to as dispersive media with respect to
the propagation of light. Dispersion is responsible for
the separation of white light into its constituent
spectral colors in the rainbow or in a glass prism. We
shall investigate the subject of dispersion in more
detail in our later work on light and optics.

Another complexity in the study of water waves
arises from the fact that they are neither purely
transverse nor purely longitudinal, but rather a
mixture of the two. For plane water waves in an
infinitely large body of very deep water, the motion of
individual volume elements within the medium is

“circular, the size of the circular paths decreasing with

See, for example, W. Bascom, “Ocean Waves,” Scientific American
(August 1959). The reader will find many other interesting facts
about ocean waves in this comprehensive artlcle
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“increasing depth. But in shallow water, this picture is

no longer valid and the situation becomes even more
complex. As the water depth decreases, the wave
amplitude increases, the wavelength decreases, and
the wave velocity is reduced. This decrease in wave
velocity accounts for the fact that wavefronts are
nearly always parallel to the coast when they reach.’
shore: When a wave approaches shallow water at an
angle to the coastline, the part nearest the shore, where
the water is shallowest, begins to travel more slowly
than before. The part farther out, in deeper water,
therefore, catches up, so to speak, until the entire
wavefront is practically parallel with the shoreline..
Ultimatély, the effect of shallow water in reducing the
wavelength and at the same time increasing the

- amplitude causes the waves to crest and break up in

what we recognize as surf. In this process, the orig-

_ inally circular -orbits of water elements first become

elliptical, and finally extremely irregular as the waves
break up. A

Our understanding of the complex dynamics of
water waves is still incomplete, and a better under-
standing of waves in fluid media is necessary to
resolve existing problems in’ ship design, harbor
planning, and the construction of coastal structures.
Research in the behavior of water waves is therefore
an active field of endeavor which utilizes sophisticated
experimental tanks, testing basins, and computmg
equlpment

SUMMARY

Waves are self-propagating disturbances that travel
through material media, transporting energy without
transport of the medium itself. In the case of light and
electromagnetic waves, transport of energy through
empty space can be accomplished by interaction of
electric and magnetic fields.

Periodic waves are characterized by amplitude,
phase angle, wavelength, frequency, and propagation
velocity: Amplitude refers to'the maximum possible
displacement of a point in the medium from its equi-
librium position. The phase angle specifies the part of
the periodic cycle that is at hand for any point in the.
medium at any given time. Wavelength . refers to
the distance between successive maxima or.minima, or
between any two neighboring points having equiva-
lent phase angles.

Frequency f refers to the number of cycles of
motion executed by a given particle per. unit time .
angular frequéncy w is simply 2n times the frequency.
Propagation velocity v refers to the rate at which a
point having a given phase (such as a’ maximum or
minimum of displacement) travels through the me-




length arerelated by v = fA. ... . . ..
vt The.propagation constant k is a quantlty deﬁned
by Ic = 27/A. .The wave velocity can be expressed in

-terms of the angular frequency.and the propagatlon g

constant as

.,,,‘(y,\f.:' I

f—-,;-

+‘Wavefronts represent the locus of pomts in the
medrum of equal phase, such as pomts corresponding
to maximum' dlsplacement or zero drsplacement
Wavefronts' propagate through the medlum w1th waye
velocity v. In general, the shape of the’ wavefront
depends upon the nature of the source of wave motion
and the distance of the wavefront from the source,zbut
there are three particularly simple cases: point sotrce,
g1v1ng rise to spherical wavefronts; line source, giving
rlse to cylznd; ical wavefronts and plane,sow ce, giving
rrse to. plane wavefronts. .., ...
. .c....Plane wavefronts also approxrmate the behavior
;of. cyhndrlcal and spherical wavefronts at large dis-
tances from the source of: the waves. The direction in
which the wave disturbance propagates is everywhere
‘perpendicular to the wavefront. '

!
R
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plane vwaves in three’ dlmensmns the dlsplacement
X, ) of the medtum from equrhbrrum at any pomt X
A7 yt1 e ¢.can be expressed as. . ...

T ma:
.velocityiand; ift represents any

functron of the argument X —;vt The most 1mportant

2! )(lv 7

-Waves, Where

u(x, ) = Asin[(kx —. goti +5]

N oot e x
. ,;;’L,,’_.'_,_._:,A Sm[Zn(zc--'—ft>+5]*‘ e N

ith ofk= fi= L. In the case of langztudznal waves,
the dlsplacement of the medlum is parallel to the
dlrectron of propagatron "while for transverse waves,

' the dlsplacement is normal to the propagation direc-

tion. Any of the three. functions written above satisfies
a part1a1 differential wave equatzon of the form -

1 az iR .(".." - Vil e rabeng
5;2- U 6t2 . Dy _, o : TR '

pressed 1n terms of the physrcal propertles of the

medium in whrch the waves travel. For example, for-

transverse waves in a stretched string where the
tension is T, and the linear mass densny is u,

U';"V:T?O/‘ulf S o RO

.‘Adrum . Propagation. velocrty, frequency, and., wave-‘

‘ ‘Mathematlcally, for one-drmensmnal waves or

Jr

i

while for longitudinal dcoustic waves in, é’n elastic
solid substance

U= Y/p

" where Y is Young’s modulus defined by (10 4. 3) and p

is the density. For longitudinal sound waves in gases,
the velocrty is

U—~ B/p-‘.z

where B is the bulk modulus defined by (10.4. 11) and
p is the density. i

O S 277 A

FE
. lrt - ;Summéry

The average energy U transmrtted by a one- |

dlmensronal wave, such as mlght propagate along a
1ope in time At 1s grven by S

S R T

AU—~,uvcu yoz At o

‘where y, is the’ amphtude and u 1s the mass per umt
length et

" The mtensrty I of a wave is the : average energy
which crosses unit area normal to ‘the propagatton
*direction in unit trme For a rope as chscussed above

AU uva) yo
T @AAB) - 244

while for a wave in a three- dlmensronal medlum of
density p, the intensity is

I—zpvao.- G e
" “Waves can be superposed or added by addmg
the Separate dlsplacements caused by-each at every
p‘omt in the medlum at every mstant of trme -
Spatzal interfer ence occurs when the phase re-

Jationships:between two wayves,of; equal frequency are
such as to cause remforcement or cancellatrou of wave

ENS PO |
T

ference occurs at pomts where the dll’ference in path
between the two sources is.an. odd-mtegral number of
half wavelengths. ... . . c
Temporal interference occurs when waves emit-
‘ted.from two different sources have slightly different
frequencres The intensity of the received wave then
‘varies in amphtude ‘petiodically’ with “a “beat” fre-
‘quency’ equal to ‘the dlfference i’ the two: source

(SIPENN & SR A OH PEARSLN B I EN

frequencres e

" The Doppler eﬁ”ect IS an alteratron in percerved

frequency caused by _.motron of source or observer

- For. sound waves In, the. case where the observer is
moving, the percelved frequency f 2 is related to the . °

source. frequency f.by ..

s
]
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The Doppler Effect and Sonic Booms

Daniel A. Russell, Kettering University

The sudden change in pitch of a car horn as a car passes by (source motion) or in
the pitch of a boom box on the sidewalk as you drive by in your car (observer
motion) was first explained in 1842 by Christian Doppler. His Doppler Effect is
the shift in frequency and wavelength of waves which results from a source
moving with respect to the medium, a receiver moving with respect to the medium,
or even a moving medium.

- The perceived frequency (f ") is related to the actual frequency (f() and the
relative speeds of the source (vy), observer (v,), and the speed (v) of waves in the
medium by

. v vy
f= fo(v tv 3)
The choice of using the plus (+) or minus (-) sign is made according to the
convention that if the source and observer are moving towards each other the
perceived frequency (f ") is higher than the actual frequency (fp). Likewise, if the

source and observer are moving away from each other the perceived frequency (f
") is lower than the actual frequency (fo).

Although first discovered for sound waves, the Doppler effect holds true for all
types of waves including light (and other electromagnetic waves). The Doppler
effect for light waves is usually described in terms of colors rather than frequency.
A red shift occurs when the source and observer are moving away from eachother,
and a blue shift occurs when the source and observer are moving towards
eachother. The red shift of light from remote galaxies is proof that the universe is
expanding. :

The animations below will illustrate this phenomena for a moving source and
stationary observer.

Stationary Sound Source

The movie at left shows a stationary sound
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The sudden change in pitch of a car horn as a car passes by (source motion) or in
the pitch of a boom box on the sidewalk as you drive by in your car (observer
motion) was first explained in 1842 by Christian Doppler. His Doppler Effect is
the shift in frequency and wavelength of waves which results from a source
moving with respect to the medium, a receiver moving with respect to the medium,
or even a moving medium.

The perceived frequency (f ') is related to the actual frequency (fj)) and the
relative speeds of the source (v,), observer (v,), and the speed (v) of waves in the
medium by

. vt v,
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The choice of using the plus (+) or minus (-) sign is made according to the
convention that if the source and observer are moving towards each other the
perceived frequency (f ') is Aigher than the actual frequency (fj). Likewise, if the

source and observer are moving away from each other the perceived frequency (f
") is lower than the actual frequency (f)).

Although first discovered for sound waves, the Doppler effect holds true for all
types of waves including light (and other electromagnetic waves). The Doppler
effect for light waves is usually described in terms of colors rather than frequency.
A red shift occurs when the source and observer are moving away from eachother,
and a blue shift occurs when the source and observer are moving towards
eachother. The red shift of light from remote galaxies is proof that the universe is
expanding.

The animations below will illustrate this phenomena for a moving source and
stationary observer.

Stationary Sound Source

The movie at left shows a stationary sound
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propagate symmetrically away from the source
at a constant speed v, which is the speed of
sound in the medium. The distance between
wavefronts is the wavelength. All observers
will hear the same frequency, which will be
equal to the actual frequency of the source.

For a movie showing how circular waves can
be created (in terms of particle motion and
wave motion) go here.

Source moving with vgource < Vsound ( Mach 0.7)

In the movie at left the same sound source is

radiating sound waves at a constant frequency
in the same medium. However, now the sound
source is moving to the right with a speed v, =

0.7 v Mach 0.7). The wavefronts are
produced with the same frequency as before.
However, since the source is moving, the
center of each new wavefront is now slightly
displaced to the right. As a result, the
wavefronts begin to bunch up on the right side
(in front of) and spread further apart on the left
side (behind) of the source. An observer in
front of the source will hear a higher frequency
f "> fy, and an observer behind the source will

hear a lower frequency [ < fj.

Source moving with Viource = Vsound ( Mach 1 -
breaking the sound barrier )

Now the source is
moving at the speed of
sound in the medium
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air at sea level is about 340 m/s or about 750
mph. The wavefronts in front of the source are
now all bunched up at the same point. As a
result, an observer in front of the source will
detect nothing until the source arrives. The
pressure front will be quite intense (a shock
wave), due to all the wavefronts adding
together, and will not be percieved as a pitch
but as a "thump" of sound as the pressure wall
passes by. The figure at right shows a bullet
travelling at Mach 1.01. You can see the shock
wave front just ahead of the bullet.

Jet pilots flying at
Mach 1 report that there
is a noticeable "wall"
or "barrier" which must
be penetrated before | | o
achieving supersonic speeds ThlS "wall" is
due to the intense pressure front, and flying
within this pressure front produces a very
turbulent and bouncy ride. Chuck Yeager was
the first person to break the sound barrier when
he flew faster than the speed of sound in the X-
1 rocket-powered aircraft on October 14,

1947. Check out the movie The Right Stuff for
more about this significant milestone, and the
beginnings of the US space project. The figure
at right shows a n F-18 at the exact instant it
goes supersonic. Click on the figure to see
more information and a MPEG movie of this
event.

Source moving with vource > Vsmmd (Mach 1.4 -

supersonic)

The sound source has now broken through the
d db i dit i t14
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shows the shock wave
front generated by a T-38
Talon, a twin-engine, high-
altitude, supersonic jet
trainer (below).

The Doppler Effect and Sonic Booms

source is moving faster than the sound waves it
creates, it actually leads the advancing
wavefront. The sound source will pass by a
stationary observer before the observer
actually hears the sound it creates.

As you watch the
animation, notice the
clear formation of the
Mach cone, the angle of
which depends on the
ratio of source speed to sound speed. It is this
intense pressure front on the Mach cone that
causes the shock wave known as a sonic boom
as a supersonic aircraft passes overhead. The
shock wave advances at the speed of sound v,
and since it is built up from all of the
combined wave fronts, the sound heard by an
observer will be quite intense. A supersonic
aircraft usually produces two sonic booms, one
from the aircraft's nose and the other from its
tail, resulting in a double thump. The figure at
right shows a bullet travelling at Mach 2.45.
The mach cone and shock wavefronts are very
noticeable.

This picture shows a sonic
boom created by the
THRUST SSC team car as

The picture at the left it broke the land speed

record (and also broke the
sound barrier on land).
Click on the image to
download a larger version
of the image.
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Other important applications of the Doppler Eff

* Doppler Radar uses the doppler effect for electromagetic waves to predict
the weather.

o The Doppler shift for light is used to help astronomers discover new planets
and binary stars.

e Echocardiography - a medical test using ultrasound and Doppler techniques
to visualize the structure of the heart.

e Radio Direction Finding Systems
e There is also an instrumental rock group called The Doppler Effect

' This web page was given a Five Star Rating
(xxxxx) by Schoolzone's panel of expert teachers

i

Back to the Vibration and Waves Dembs Page
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Doppler effect

From Wikipedia, the free encyclopedia

The Doppler effect
(or Doppler shift),
named after Austrian
physicist Christian
Doppler who
proposed it in 1842 in
Prague, is the change
in frequency of a
wave for an observer
moving relative to the
source of the wave. It
is commonly heard
when a vehicle
sounding a siren or
horn approaches,
passes, and recedes
from an observer. The
received frequency is
higher (compared to
the emitted frequency)
during the approach, it
is identical at the
instant of passing by,
and it is lower during
the recession.

The relative changes
in frequency can be
explained as follows.
When the source of

Change of wavelength caused by motion of the source.

An animation illustrating how the Doppler effect causes a car
engine or siren to sound higher in pitch when it is approaching
than when it is receding. The pink circles are sound waves.
When the car is moving to the left, each successive wave is
emitted from a position further to the left than the previous
wave. So for an observer in front (leff) of the car, each wave
takes slightly less time to reach him than the previous wave. The
waves "bunch together", so the time between arrival of
successive wavefronts is reduced, giving them a higher
frequency. For an observer in back (vight) of the car, each
wave takes a slightly longer time to reach him than the previous
wave. The waves "stretch apart”, so the time between the arrival
of successive wave-fronts is increased slightly, giving them a
lower frequency.

the waves is moving toward the observer, each successive wave crest is emitted
from a position closer to the observer than the previous wave. Therefore each
wave takes slightly less time to reach the observer than the previous wave.
Therefore the time between the arrival of successive wave crests at the observer
is reduced, causing an increase in the frequency. While they are travelling, the
distance between successive wave fronts is reduced; so the waves "bunch
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wave, so the arrival time between successive
waves is increased, reducing the frequency.
The distance between successive wave fronts
is increased, so the waves "spread out".

For waves that propagate in a medium, such as
sound waves, the velocity of the observer and
of the source are relative to the medium in
which the waves are transmitted. The total

P

Doppler effect may therefore result from Doppler effect of water flow
motion of the source, motion of the observer, around a swan.

or motion of the medium. Each of these effects
are analyzed separately. For waves which do not require a medium, such as light
or gravity in general relativity, only the relative difference in velocity between the
observer and the source needs to be considered.
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Development

Doppler first proposed the effect in 1842 in his treatise "Uber das farbige Licht
der Doppelsterne und einiger anderer Gestirne des Himmels" (On the coloured

light of the binary stars and some other stars of the heavens).[!] The hypothesis
was tested for sound waves by Buys Ballot in 1845, He confirmed that the
sound's pitch was higher than the emitted frequency when the sound source
approached him, and lower than the emitted frequency when the sound source
receded from him. Hippolyte Fizeau discovered independently the same
phenomenon on electromagnetic waves in 1848 (in France, the effect is
sometimes called "I'effet Doppler-Fizeau" but that name was not adopted by the
rest of the world as Fizeau's discovery was three years after Doppler's). In
Britain, John Scott Russell made an experimental study of the Doppler effect

(1848).12]

An English translation of Doppler's 1842 treatise can be found in the book 'The
Search for Christian Doppler by Alec Eden.[!!]

General

r;: 1° Doppler Eftect Model in 1Doppier Efteet]

In classical physics, where the speeds of
source and the receiver relative to the medium
are lower than the velocity of waves in the
medium, the relationship between observed

frequency fand emitted frequency fj) is given e .
Ry ‘
by:13! Tl
o+,
f= Jo
O — 10 B 10
RS Bl TA e Q‘f-’
where Stationary sound source produces

) ] , sound waves at a constant
c 18 the velocity of waves in the

medium
Uy is the velocity of the receiver
relative to the medium; positive if the

frequency f, and the wave-fronts
propagate symmetrically away
from the source at a constant
speed ¢ (assuming speed of
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to the medium; positive if the source is
moving away from the receiver.

The frequency is decreased if either is moving
away from the other.

The above formula works for sound waves if
and only if the speeds of the source and
receiver relative to the medium are slower than
the speed of sound. See also Sonic boom.

The above formula assumes that the source is
either directly approaching or receding from
the observer. If the source approaches the
observer at an angle (but still with a constant
velocity), the observed frequency that is first
heard is higher than the object's emitted
frequency. Thereafter, there is a monotonic
decrease in the observed frequency as it gets
closer to the observer, through equality when it
is closest to the observer, and a continued
monotonic decrease as it recedes from the
observer. When the observer is very close to
the path of the object, the transition from high
to low frequency is very abrupt. When the
observer is far from the path of the object, the
transition from high to low frequency is
gradual.

In the limit where the speed of the wave is
much greater than the relative speed of the
source and observer (this is often the case with
electromagnetic waves, e.g. light), the
relationship between observed frequency f and

emitted frequency f) is given by:13]

speed of sound in the medium.
The distance between wave-fronts
is the wavelength. All observers
will hear the same frequency,
which will be equal to the actual
frequency of the source where

/=7

fer Effect

g1y Doppler Eftect Model in 1|Dopg

Yy raagingtes
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The same sound source is
radiating sound waves at a
constant frequency in the same
medium. However, now the sound
source is moving to the right with
aspeed 0y = 0.7 ¢ (Mach 0.7).
The wave-fronts are produced
with the same frequency as before.
However, since the source is
moving, the centre of each new
wavefront is now slightly
displaced to the right. As a result,
the wave-fronts begin to bunch up
on the right side (in front of) and
spread further apart on the left side
(behind) of the source. An
observer in front of the source will
hear a higher frequency |
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source will hear a lower fcequency
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Now the source is moving at the

speed of sound in the medium

(vg = ¢, or Mach 1). assuming the

speed of sound in air at sea level is

about 330 m/s . The wave fronts in

front of the source are now all

bunched up at the same point. As

a result, an observer in front of the

source will detect nothing until the

source arrives where

f= (C—}—% ) fo=ocHz.
£ —

An observer behind of the source
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Observed frequency Change in frequency

f= @~“0m Af=-f= -2

where

s = Us — Uy is the velocity of the source relative to the receiver: it is
positive when the source and the receiver are moving further apart
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travelling in a vacuum)
Aq is the wavelength of the transmitted
wave in the reference frame of the
source.

These two equations are only accurate to a
first order approximation. However, they work
reasonably well when the speed between the
source and receiver is slow relative to the
speed of the waves involved and the distance
between the source and receiver is large
relative to the wavelength of the waves. If
either of these two approximations are
violated, the formulae are no longer accurate.

Analysis

The frequency of the sounds that the source
emits does not actually change. To understand
what happens, consider the following analogy.
Someone throws one ball every second in a
man's direction. Assume that balls travel with
constant velocity. If the thrower is stationary,
the man will receive one ball every second.
However, if the thrower is moving towards the
man, he will receive balls more frequently
because the balls will be less spaced out. The
inverse is true if the thrower is moving away
from the man. So it is actually the wavelength
which is affected; as a consequence, the
received frequency is also affected. It may
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The sound source has now broken
through the sound speed barrier,
and is traveling at 1.4 times the
speed of sound, ¢ (Mach 1.4).
Since the source is moving faster
than the sound waves it creates, it
actually leads the advancing
wavefront. The sound source will
pass by a stationary observer
before the observer actually hears
the sound it creates. As a result, an
observer in front of the source will
detect
£=(E22) fo= ool
LC— T,
and an observer behind the source
C— Uy

= o =042f
f (c n '11'5) fo fo

also be said that the velocity of the wave remains constant whereas wavelength

changes; hence frequency also changes.

If the source moving away from the observer is emitting waves through a medium
with an actual frequency f{), then an observer stationary relative to the medium

detects waves with a frequency f given by

r={_°% V&
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where vy is positive if the source is moving away from the observer, and negative
if the source is moving towards the observer.

A similar analysis for a moving observer and a stationary source yields the
observed frequency (the receiver's velocity being represented as v,):

f= '( -+ -u,.,} fn

C

where the similar convention applies: v, is positive if the observer is moving
towards the source, and negative if the observer is moving away from the source.

These can be generalized into a single equation with both the source and receiver
moving.

C _+_ JI—""‘J‘ .
I= ’( — “Us) fo

or, alternatively:

' Ve g
f ( -+ it fo

where Usy = Vs — Uy,

However the limitations mentioned above still apply. When the more complicated
exact equation is derived without using any approximations (just assuming that
source, receiver, and wave or signal are moving linearly relatively to each other)
several interesting and perhaps surprising results are found. For example, as Lord
Rayleigh noted in his classic book on sound, by properly moving it would be
possible to hear a symphony being played backwards. This is the so-called "time
reversal effect" of the Doppler effect. Other interesting conclusions are that the
Doppler effect is time-dependent in general (thus we need to know not only the
source and receivers' velocities, but also their positions at a given time), and in
some circumstances it is possible to receive two signals or waves from a source,
or no signal at all. In addition there are more possibilities than just the receiver
approaching the signal and the receiver receding from the signal.

All these additional complications are derived for the classical, i.e., non-

relativistic, Doppler effect, but hold for the relativistic Doppler effect as
well [citation needed)
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A common misconception

Craig Bohren pointed out in 1991 that some physics textbooks erroneously state
that the observed frequency increases as the object approaches an observer and

then decreases only as the object passes the observer.] In most cases, the
observed frequency of an approaching object declines monotonically from a
value above the emitted frequency, through a value equal to the emitted
frequency when the object is closest to the observer, and to values increasingly
below the emitted frequency as the object recedes from the observer. Bohren
proposed that this common misconception might occur because the intensity of
the sound increases as an object approaches an observer and decreases once it
passes and recedes from the observer and that this change in intensity is
misperceived as a change in frequency. Higher sound pressure levels make for a
small decrease in perceived pitch in low frequency sounds, and for a small

increase in perceived pitch for high frequency sounds. ]

Application

Sirens

The siren on a passing
emergency vehicle will start
out higher than its stationary
pitch, slide down as it
passes, and continue lower
than its stationary pitch as it
recedes from the observer.

Astronomer John Dobson L. ‘
explained the effect thus: A stationary microphone records moving police sirens
at different pitches depending on their relative direction.

"The reason the siren
slides is because it doesn't hit you."

In other words, if the siren approached the observer directly, the pitch would
remain constant (as vg . is only the radial component) until the vehicle hit him,
and then immediately jump to a new lower pitch. Because the vehicle passes by
the observer, the radial velocity does not remain constant, but instead varies as a
function of the angle between his line of sight and the siren's velocity:
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where vy 1s the velocity of the object (source of waves) with respect to the

medium, and O is the angle between the object's forward velocity and the line of
sight from the object to the observer.

Astronomy

The Doppler effect for electromagnetic waves
such as light is of great use in astronomy and
results in either a so-called red shift or blue shift.
It has been used to measure the speed at which
stars and galaxies are approaching or receding
from us, that is, the radial velocity. This is used
to detect if an apparently single star is, in reality,
a close binary and even to measure the rotational
speed of stars and galaxies.

The use of the Doppler effect for light in
astronomy depends on our knowledge that the
spectra of stars are not continuous. They exhibit
absorption lines at well defined frequencies that
are correlated with the energies required to excite
electrons in various elements from one level to
another. The Doppler effect is recognizable in the
fact that the absorption lines are not always at the 7"
frequencies that are obtained from the spectrum Redshift of spectral lines in the
of a stationary light source. Since blue light has a optical spectrum of a

higher frequency than red light, the spectral lines supercluster of distant galaxies
of an approaching astronomical light source (right), as compared to that of
exhibit a blue shift and those of a receding the Sun (left).

astronomical light source exhibit a redshift.

Among the nearby stars, the largest radial velocities with respect to the Sun are
+308 km/s (BD-15°4041, also known as LHS 52, 81.7 light-years away) and
-260 km/s (Woolley 9722, also known as Wolf 1106 and LHS 64, 78.2 light-
years away). Positive radial velocity means the star is receding from the Sun,
negative that it is approaching.

Temperature measurement
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plasma) which is emitting a spectral line. Due to the thermal motion of the
emitters, the light emitted by each particle can be slightly red- or blue-shifted,
and the net effect is a broadening of the line. This line shape is called a Doppler
profile and the width of the line is proportional to the square root of the
temperature of the emitting species, allowing a spectral line (with the width
dominated by the Doppler broadening) to be used to infer the temperature.

Radar

Main article: Doppler radar

The Doppler effect is used in some types of radar, to measure the velocity of
detected objects. A radar beam is fired at a moving target — e.g. a motor car, as
police use radar to detect speeding motorists — as it approaches or recedes from
the radar source. Each successive radar wave has to travel farther to reach the
car, before being reflected and re-detected near the source. As each wave has to
move farther, the gap between each wave increases, increasing the wavelength. In
some situations, the radar beam is fired at the moving car as it approaches, in
which case each successive wave travels a lesser distance, decreasing the
wavelength. In either situation, calculations from the Doppler effect accurately
determine the car's velocity. Moreover, the proximity fuze, developed during
World War I, relies upon Doppler radar to explode at the correct time, height,
distance, etc.Lcitation needed)

Medical imaging and blood flow measurement

An echocardiogram can, within certain limits, produce accurate assessment of the
direction of blood flow and the velocity of blood and cardiac tissue at any
arbitrary point using the Doppler effect. One of the limitations is that the
ultrasound beam should be as parallel to the blood flow as possible. Velocity
measurements allow assessment of cardiac valve areas and function, any
abnormal communications between the left and right side of the heart, any leaking
of blood through the valves (valvular regurgitation), and calculation of the
cardiac output. Contrast-enhanced ultrasound using gas-filled microbubble
contrast media can be used to improve velocity or other flow-related medical
measurements.

Although "Doppler" has become synonymous with "velocity measurement” in
medical imaging, in many cases it is not the frequency shift (Doppler shift) of the
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Velocity measurements of blood flow are also
used in other fields of medical ultrasonography,
such as obstetric ultrasonography and neurology.
Velocity measurement of blood flow in arteries
and veins based on Doppler effect is an effective
tool for diagnosis of vascular problems like

stenosis.[0]

Flow measurement

Instruments such as the laser Doppler
velocimeter (LDV), and acoustic Doppler
velocimeter (ADV) have been developed to
measure velocities in a fluid flows. The LDV .
emits a light beam and the ADV emits an =G he
ultrasonic acoustic burst, and measure the colour flow ultrasonography
Doppler shift in wavelengths of reflections from (Doppler) of a carotid artery -
particles moving with the flow. The actual flow iS | gcanner and screen
computed as a function of the water velocity and =~ -—-—

phase. This technique allows non-intrusive flow

measurements, at high precision and high frequency.

Velocity profile measurement

Developed originally for velocity measurements in medical applications (blood
flow), Ultrasonic Doppler Velocimetry (UDV) can measure in real time complete
velocity profile in almost any liquids containing particles in suspension such as
dust, gas bubbles, emulsions. Flows can be pulsating, oscillating, laminar or
turbulent, stationary or transient. This technique is fully non-invasive.

Satellite communication

Fast moving satellites can have a Doppler shift of dozens of kilohertz relative to
a ground station. The speed, thus magnitude of Doppler effect, changes due to
earth curvature. Dynamic Doppler compensation, where the frequency of a signal
is changed multiple times during transmission, is used so the satellite receives a

constant frequency signal. [7]

Underwater acoustics
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In military applications the Doppler shift of a target is used to ascertain the speed
of a submarine using both passive and active sonar systems. As a submarine
passes by a passive sonobuoy, the stable frequencies undergo a Doppler shift,
and the speed and range from the sonobuoy can be calculated. If the sonar system
is mounted on a moving ship or another submarine, then the relative velocity can
be calculated.

Audio

The Leslie speaker, associated with and predominantly used with the Hammond
B-3 organ, takes advantage of the Doppler Effect by using an electric motor to

rotate an acoustic horn around a loudspeaker, sending its sound in a circle. This
results at the listener's ear in rapidly fluctuating frequencies of a keyboard note.

Vibration measurement

A laser Doppler vibrometer (LDV) is a non-contact method for measuring
vibration. The laser beam from the LDV is directed at the surface of interest, and
the vibration amplitude and frequency are extracted from the Doppler shift of the
laser beam frequency due to the motion of the surface.

See also

Relativistic Doppler effect
Dopplergraph

Fizeau experiment

Fading

Inverse Doppler effect
Photoacoustic Doppler effect
= Differential Doppler effect

= Rayleigh fading
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