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~ FLUID MECHANICS

11.1 Introduction

We shall now attempt to apply the laws of mechanics
to fluids. No change needs to be made in Newton’s
laws themselves, but there is the problem of under-
standing in precise terms how fluids behave and how
we may most effectively apply Newton’s laws to them.

First of all, what do we mean by the term fluids?
Fluids are substances that can be made to flow by the
proper application of forces. Generally speaklng,

fluids can be classified as liquids or gases. Liquids are ‘

practically incompressible and, therefore, can be

regarded as having a fixed volume, even though their

shape may. change as, for example, when ‘they ‘are
poured from one contamer_ to anether. Gases are

342

highly compressible (or, looking at it the other way
round, highly expandable) and, therefore, have no
characteristic volume; they simply expand to fill any !
container in which they may be placed.

Well, then, what makes a fluid flow, and under
what conditions will it flow? The answer to this is that
any fluid body will support normadl forces that may
act on its boundaries, without flowing, and can be in
equilibrium under the action of a number of such

.normal forces, But a fluid cannot resist tangential,

shearing, or bending forces; as soon as such forces are
exerted on a fluid, it will flow in response to them. The
situatign, which is 111ustrated by Fig.r 11. 1, has a
resem_blance‘to that at a frictionless interface between
an object and a plane which supportsit; there can be
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normal forces at such an interface, but no tangentlal

ones. The difference is, of course, that in the case of a

rigid body on a frictionless surface, this condition
applies only at the surface, while for a fluid it holds for
every point within the substaince.

A necessary condition for a fluid body to be in

equilibrium, therefore, is that its boundaries experi- °

ence only normal forces. Water in a pond or in-a pan or
other container, or a compressed gas within a cylinder
are examples of such situations.

On the atomic scale, the difference between

solids, liquids, and gases is attributable entirely to the
interplay between the attractive forces that exist
bétween individual atoms, ions, or molecules and to
the random motion these particles.acquire as a result
of their thermal energy. In a solid, at very low temper-
atures, the thermal motion of atoms or molecules is
very slight and excites only small vibrations in the
rigid crystalline lattice of atoms, molecules, or ions.
With increasing temperature, the thermal motions
increase in energy until they are strong enough oc-
casionally to tear apart the bonds between neigh-
boring atoms or molecules; atoms or molecules are
now still held together by long-range cohesive forces,
but can move more or less freely past one another. The

‘solid has now melted and has become a liguid. Finally, -

-as the temperature is increased still further, the average

“-thermal kinetic energy of each atom or molecule
becoines greater than the average attractive potential
energy that binds it to the other particles. The atoms
or molecules now fly apart and are constrained only
by the walls of whatever container they may be in. The
substance has now vaporized and exists as a gas.

It is clear that the sume substance may exist at
different temperatures as solid, liquid, or gas and that
the transition temperatures between these states
depend primarily on the strength of the cohesive
forces between individual atoms, molecules, or ions.
We shall postpone the detailed description of ther-
mal relations between solids, liquids, and gases to a
later chapter, but the student will perhaps more readily
appreciate on an intuitive level the difference between
the properties of these states of aggregation in the
light of this simplc discussion.

V| —

11.2 Basic Properties of Fluids: Pascal’s
Principle; Pressure, Volume, and Density

In studying theé mechanics of particles ‘and rigid
bodies, we found it most useful to work with the
masses of individual objects, the.forces acting on’

individual bodies, and the linear dimensions of such

bodies. In the case of fluids, due to their special prop- -
erties, it is generally more convenient to speak in--
stead in terms of density, pressure, and volime.

We are already familiar with volume. We have
also occasionally worked with the density p, defined
as mass per unit volume. For an incompressible
fluid, the density is constant throughout, but this is not
generally true for a-compressible fluid, though it may '
be approximately true under certain restricted con-
ditions. The earth’s atmosphere is an example of
variable density in a compressible fluid; in this
instance, the density decreases with altitude, in re-
sponse to decreasing atmospheric pressure. Over a -

~ restricted range of altitudes, however, this variation

can often be neglected.

The concept of pressure may best be understood
by considering an infinitesimal element of area da
somewhere in the fluid, as illustrated in Fig.-11.2. It
may in some cases. be helpful to envisiona tiny piece of
paper or_plastic film of zero thickness and mass and

.area da to represent such a surface area element, but

this is not absolutely necessary. In any case, there
may be forces exerted by the fluid on such an area
element. Due to the properties of fluids, these forces,
at least at equilibrium, will be normal to the element,
since fluids cannot sustain tangential forces without
flowing. The pressure on such an element of area is
defined as the magnitude of the force acting on it
divided by the area of the element. This may be
written as o

_dF (11.2.1
=T 2. ')

or as an expression for the force, in the form
dF = P da (11.2.2)

W sin 8 tangential component
of weight of fluid, acts to set
fluid into flow

—p Fluid flows

SHETY =
. ] ‘ ) Normal forces
W
~ FIGURE 11.1. (a) Fluids in equilibrium experience only forces normal to their-

boundaries. (b) The action of tangential forces is to cause fluid flow.
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FLUID MECHANICS

FIGURE 11.2, Equilibrium of forces within fluids,
illustratin_g the definition of pressure as the ratio qf force
to area.

The total force on an area of finite size can be obtained
by integrating this over the finite area:

F = j; P da (11.2.3)

- It is important to understand that pressure; as
ordinarily defined, is a scalar rather than a vector; it is
the ratio of the magnitude of a force to an area. In
Fig. 11.2, it is clear that if the element da is to. be in
_equilibrium, there can be no resultant force on it. The
- force dF acting on one side of it must, therefore, always

be accompanied by an equal and opposite force dF'
.on the other side. In defining the pressure, of course,

since only the magnitude of the force is used to define

P, it makes no difierence whether the magnitude of
dF or dF' is.employed, since they are equal.

In Eq. (11.2.3), the pressure P over an area of’

finite size may vary from point to point. In general,
therefore, the pressure P cannot be written outside the
integral. This can be done only if the pressure is con-
stant over the entire surface in question. This condition
' is-often satisfied in cases of particular interest, and

when it is, (11.2.3) becomes
F= Pfsda= Pa (11.2.4)

or

(11.2.5)

It is, however, only under the conditions set forth
above that we may resort to the simple idea that
“pressure is force divided by area” or “force is pressure
times area.”

In the metric system, density is expressed in
units of g/cm® and kg/m?, while pressure is expressed
as dynes/cm? or newtons/m?. It is-easy to show that
1 g/em® = 103 kg/m3 and that 1 dyne/cm® = 0.1 new-
ton/m?. In the English system, the unit of pressure is
the Ib/ft? or, more commonly, Ib/in.%. Also in common

* use is the bar, equal to 10° dynes/cm?, and the standard
atmosphere, equal to 1.013 x 10° dynes/cm?, . or
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14.7 Ib/in.2. One atmosphere is the average pressure
exerted by the earth’s atmosphere at sea level at a

temperature of 0°C.

The basic propertles of a fluid in equlhbrlum
discussed in the previous section from .a rather

. different point of view, can be expressed concisely in

a statement often referred to as Pascal’s principle,
since it was first set forth by the French mathematician
and philosopher Blaise Pascal (1623-1662). Pascal’s
principle states:

Pressure applied to a fluid is transmifted undi-

minished to all parts of the fluid and-to the walls of |

the container enclosing it.

For example, when a fluid is enclosed in a vessel
fitted with a piston, as illustrated in Fig. 11.3, certain
pressures PA, Py, and P will exist at points A, B, and
C.If now a sudden change in pressure AP is caused by
the application of a force F on the piston, Pascal’s
principle tells us that the pressures at A, B, and C
immediately take on the values P, + AP, Py + AP,
and P + AP.-At point C, the fluid is kept in equilib-
rium by a normal force exerted by the wall of the
container. This normal force per unit area also

. experiences an immediate increase of magnitude AP.

Another -consequence of Pascal’s principle is

exhibited by Fig. 11.4. In this illustration, four different

containers are shown, each filled to the same level
with the same fluid. The arrows represent the forces
exerted per unit area (thus the pressures exerted) by -
the fluid on the container walls at various points.
These forces arise ultimately from the weight forces
acting on each volume element of the. fluid which
transmits force, hence pressure, to all parts of the fluid
beneath and thence to the container walls. We can
easily understand how this occurs by imagining, in
Fig. 11.3, that the force F could equally well arise
from the weight force associated with a layer of fluid
on top of that shown instead of from an external force -
applied to a piston. In the slightly different situation
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FIGURE 11.3. Pascal’s principle. Forces acting on one
part of a fluid are transmitted to the mter\or of the fluid
and to its boundaries. :
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FIGURE 11.4. Weight forces exerted by flunds on contammg vessels as predicted by

Pascal’s principle.

shown in Fig. 11.4, it is apparent from Newton’s third.

law that the forces exerted by the fluid on the container
walls must be equal and opposite those exerted by the
walls of the container on the fluid. If the fluid is in
equilibrium, however, the Ilatter forces must be

everywhere normal to the walls of the vessel. Other-

wise, they would have tangéntial components that
‘would cause the fluid to flow. The forces the fluid
exerts on the container, shown in Fig. 11.4, which are
-equal and opposite, then must likewise be normal to
the container wall as shown in the drawing. Pascal’s
principle, along with Newton’s laws, allows us in this
way to understand how the pressure of higher layers
of fluid are transmitted to those below, and also that
these pressures generate normal forces on the con-
tainer walls as illustrated in Fig. 11.4.

Though Pascal’s principle applies in general
only at equilibrium, it is frequently useful even in non-
equilibrium situations. Though we shall not try to
show why this is true in a rigorous mathematical way,
the argument that follows will serve as a rough
qualitative explanation. In the case of compressible
fluids, forces are transmitted by longitudinal pressure
waves in the fluid which propagate with the velocity of
sound from the point of application of the force.

Therefore, there is a tifne lag corresponding to the .

travel time of a longitudinal wave from the point of
application of a force to the poirit where the pressure
it ultimately creates is observed. Pascal’s principle
- neglects this time lag and, therefore, can be applied
rlgorously only in situations ~of equilibrium, where
‘the dynamic state of the fluid is independent of time.
- There are, nevertheless, many important cases where
the effect of this time lag is negligible for practical
purposes and where Pascal’s principle can be used
even in problems involving accelerated motion of
compressible fluids to derive results which, though
not exact, are very good approximations. For a

perfectly incompressible fluid, the bulk modulus

(—-V AP/AV) is infinite, since AV is identically zero.

The wave velocity, equal to \/—_* , becomes infinite in
 this limit, and hence, for such a substance there is no

time lag and Pascal’s principle is always valid. -

11.3 The Variation of
Fluid Pressure with D;epth

Let us now try to calculate in detail how the pressure
in a fluid in equilibrium changes as a function of
depth. Consider the shaded élement of fluid of
thickness dy in Fig. 11.5. As usual in mechanics prob-
lems dealing with situations of equlllbrlum we may
proceed by isolating the fluid element, writing all the
individual forces acting on the element, and setting
their vector.sum equal to zero. The forces F, F, A
and A’ are forces exerted by the rest of the fluid against
this element; they arise from the pressure in the fluid.
The forces A and A’, which are equal in magnitude but .
opposne in direction, serve merely to maintain the' -
system in equilibrium along the x-direction and are
of no particular interest otherwise. There are three .
forces which have y-componerits, and since the sysjem

is in equlhbrlum these y-components- must Sum to

zero Therefore -

.

ZF =F-— F’+mg 0 , 4118

Now let the pressure at depth y be P, and at
depth y + dy let it be P + dP. Then, since the pressure
over the top surface of the shaded @emient is constant,
as is the pressure over the bottom surface, F = Pg and

='(P 4 dP)a, where a is the area of the surface of
the element. Also, since the mass of the element can be
written as the density p times the volume a dy, Eq.

|

FIGURE 11.5. System of forces acting on a fluid '
element of infinitesimal thickness, in equilibrium.
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(11.3.1) één be expréssed as

Pa — (P + dP)a + pgady =0 (11.3.2)
or
dP = pg dy (11.3.3)

This is the general expression relating a differential
pressure variation dP to the depth change dy.

To understand what finite pressure change
occurs over a finite distance y, we must integrate. If
we are dealing with an incompressible fluid, p is
constant and does not change as the pressure (or the
depth) varies. Therefore, p may be written outside the
integral. We may then integrate (11.3.3) from y = 0,
at which point ‘P has the value P, and expresses
whatever atmospheric or other pressure exists at the
surface of the fluid, to the depth y, at which point the
pressure is P. Thus,

P .
fpo dP = pg foy dy (11.3.4)
or
P — Py = pgy (11.3.5)

P =Py + pgy (11.3.6)

This simple result tells us that the pressure change
P — P, in an incompressible fluid increases linearly
with depth. It is an important finding and one that
we shall make use of constantly. The quantity P is
often referred to as the absolute pressure, and the
quantity P — P, is sometimes called the gauge pres-
sure, since it is this pressure that is measured by any
instrument calibrated to read zero at atmospheric
pressure. '

' In a compressible fluid, such as a gas, the density
p is no longer constant but changes as the pressure
(or the depth) varies. In this case, the specific form of
the dependence of density upon pressure must be
known before (11.3.3) can be integrated; now, needless
to say, the quantity p may no longer be'writte_n outside
the integral. Under these circumstances, the variation
of pressure with depth may be quite complex. Though
we may examine one or more such instances in detail
at a later point, at the present we shall confine onr
pressure-versus-depth investigations to incompress-
* ible substahces. '

Let us now inquire into the total force F, exerted
on that part of the bottom of the container directly
below the area a. This can most easily be found by
multiplying both sides of (11.3.6) by a and setting y
equal to the total depth of fluid h in the resulting
equation:

Pa = Pya + (pah)g (11.3.7)
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Fr=Fg+tmag

FIGURE 11.6. Forces acting on a column of fluid, in
equilibrium.

Now, Pa is the force F, on the bottom of the vessel,
while Pya is simply the force exerted by the atmo-
sphere on the surface. The quantity ah'is simply the
volume of the fluid in a column having surface area a
and height h (the boundaries of this column are the
vertical dotted lines in Fig. 11.5). The quantity pah is,
therefore, the mass of the fluid within that column. We
may write, then,

(11.3.8)

Ft=Fo+mng

where F, is the force on the bottom, Fy is the atmo-
spheric force on the surface, and m, is the mass of the
fluid within the column. The force on any area of the
bottom, then, is the atmospheric force on the cor-
responding area of the surface plus the weight of the
fluid within the column standing over that area of the
bottom. The situation is illustrated in Fig. 11.6. This
result, by the way, computed only for incompressible
fluids here, is true even for compressible substances.
For example, the force exerted by the earth’s atmo-
sphere upon 1 cm? of the earth’s surface at sea level is
equal to the weight of atmosphere in a column of base
area 1 cm? that extends upward as far as the atmo-
sphere extends. Since a pressure of one standard
atmosphere equals 1.013 x 10° dynes/cm?, the weight
of air in such a column is 1.013 x 10° dynes, cor-
responding to- a mass of (1.013 x 10)/980, or
1033 grams. This calculation, of course, neglects the
varjation of g over the upward extent of the atmo-
sphere; but since most of the earth’s atmosphere is
within a few miles of the earth’s surface, the error
involved is quite small.

The discovery that gases such as air have ap-
preciable weight and that the atmosphere exerts a
definite and measureable pressure is usually attributed
to the German scientist von Guericke, who 'in 1654
demonstrated that atmospheric pressure upon the two-
halves of an evacuated sphere a few feet in diameter
gave rise to such strong forces that the two halves



could not be separated by two teams of horses.
Torricelli, an Italian scientist who in 1643 invented the
barometer and first accurately measured the atmo-
sphere’s pressure, is also credited with this discovery.
We shall investigate both these developments in the
series of examples which follows. In these examples, we
shall neglect the variation of the atmospheéric pressure
P, with height above the earth’s surface. Near the
earth’s surface, the atmospheric pressure decreases by
only 1 percent in an ascent of about 100 meters. Such
a small variation can safely be ignored when the
differences in height involved are on the scale of a few

meters But it should be understood that this var1at10n_

must sometimes be accounted for in situations where
height differences of hundreds of meters are
encountered. :

EXAMPLE 11.3.1
A swimming pool is rectangular in shape havmg a
length of 75 ft, a width of 40 ft, and a depth of 6 ft.
Find (a) the gauge pressure at the bottom of the pool,
(b) the total force on the-bottom of the pool due to the
water in it, and (c) the total force on one of the ends
of the pool, whose dimensions are 40 ft by 6 ft. What
is the absolute pressure on the bottom of the pool
under normal sea level atmospheric conditions? The
density of water is 62.4 Ib/ft3, or 1.940 slugs/ft3.

The gauge pressure on the bottom follows
directly from Eq. 11.3.5:
P, =P — Py = pgy = (1.94)(32.2)(6)

= 375 1b/ft?, or 2.604 Ib/in.?

"It is important to note that the quantity p is the mass
per unit volume, while pg represents the weight per
unit volume. Since the pool is of constant depth, the

pressure on the bottom is everywhere the same. Under
these circumstances, we may use (11.2.4) to find

F = P,a = (375)(75)(40) = 1,125,000 Ib

To find the force on one of the 40-ft by 6 ft pool ends V

we can no longer use (11.2.4), because the gauge
. pressure P — Py is not constant but varies from zera
at the surface of the water to 375 Ib/ft? at the bottom.
“We must now resorf to (11.2.3) to express the gauge

pressure as a function of depth and integrate over the

area of the pool end. To see how this is done, let us
refer to Fig. 11.7. In this diagram, the width of the pool

FIGURE 11.7

11.3 The Variation of Fluid Pressure with-Depth’

is represented by w and the depth by h. The shaded
element of area is of width w and height dy, which
approaches zero in the limit of integration so that

" the pressure variation across it is, in the limit, zero.

The force dF on the shaded element of area is given by :
dF = P da = pgywdy - (113'9)

This must be integrated from y=0to y = h, which

glVSS

F=de=pgw f;'ydy (11.3.10)
or

F = pgw[3y*]§ = 3pgwh? (11.3.11)

Substituting the proper numerical values of the
quantities in (11.3.11), :

= ($)(1.94)(32.2)(40)(6)* = 45,000 1b

The absolute pressure on the pool bottom is simply
the sum aof the gauge pressurg and the atmospheric
pressure P, which equals 14.7 Ib/in.%, or 2120 Ib/ft%.
Then, '

P =P, + Py =375+ 2120
= 2495 1b/ft?, or 17.3 Ib/in.2

Why is it that the bottom of the pool “feels” only
the gaugeé pressure P — P, rather than the absolute
pressure P? The atmospheric pressure P, is exerted
not only downward on the pool bottom (transmitted
there undiminished, according to Pascal), but also
upward on the other side of the pool bottom, from
below. These two pressures give rise to equal and
opposite vertical forces on either side of the pool
bottom, which add to zero. But there is water on only
one side of the pool bottom, and the  pressure it
generates, which is P — Py, or P is unbalanced. .
Similar considerations apply to othpr systems' on

-which atmospheric pressures act, including our own

bodies. Since atmospheric pressure acts on us from
within as well as without, we experience resultant’
pressure forces only when these two pressures become
appreciably different, as in an ascending airplane or
elevator. This pomt is illustrated also by the followmg
example. .

"EXAMPLE 11.3.2

Two hollow hemispheres whose inside dlameter is
2.0 ft can be fitted together and sealed so that the

- air can be pumped out of the hollow sphere's ‘formed

with a vacuum purhp, as illustrated in:Fig. 11.8. How
much force is required to separate the hemispheres

" when both the inside of the spherical enclosure and

the outside surroundings are at atmospheric pressure
(14.7 Ib/in.%, or 2120 Ib/ft?)? How much force is re- -

' qulred to separate the hcmlspheres when all the air
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To vacuum

pump i X
y
|
dF —ch050

da' =da cos 0

(b)

FIGURE 11.8. Magdeburg hemispheres, illustrating
forces acting on an area €lement of the container wall.

is pumped out of the interior, reducing the absolute
préssure there to zero, while the outside remains at
atmospheric pressure? :

A sectional view of the hemispheres is shown in
Fig. 11.8a, and the forces acting on an area element da
are illustrated in Fig. 11.8b. The external force on this
element arising from atmospheric pressure, dF, acts
normally to the surface, as shown. If the inside of the
sphere is at atmospheric pressure, there is an equal
but oppositely directed force acting on the inside of
the area element; the resultant of these two forces is
zero. The situation is the same on all surface elements,
.so the net force is zero everywhere. Under these
circumstances, 1o force is needed to separate the
hemispheres.

Now suppose the inside of the sphere to be
evacuated; the only forces then acting are those shown
in Fig. 11.8b. It is only the x-component of the force
dF which is effective in forcing the two halves of the
sphere together. The x-component of dF can be
written as

dF, = dF cos § = — (da cos B) = P(da cos )

(11.3.12)

since dF/da is the atmospheric pressure P. This can,
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in turn, be stated in the form
dF, = Pdda

where da' is the area da projected onto the plane AB of
Fig. 11.8a. This can be integrated over the right-hand
hemisphere to find the total force F, which holds it
against the left-hand one; the force components dF,,
of course, sum to zero over the hemisphere in such an
integration. Since the pressure of the atmosphere is
essentially constant over the surface, the pressure P
may be written outside the integral during the mtegra—
tion. Integrating (11.3.13), then,

=P‘£da’=Pa’

(11.3.13)

(11.3.14)

where «' is the area of the hemisphere projected on the
plane AB. Since this is simply the area of a circle
having the same radius as the sphere, or nr?,; F can

be written as

F, = m?P = (3.1416)(1)}(2120) = 6660 Ib

The same result can be arrived at more simply by
noting that each hemisphere car. be considered as
supportmg a circular column of atmosphere of area
@ = mr® which exerts a pressure of 2120 Ib/ft? on its

- base. We preferred, however, to do the calculation

in a more complex but rigorous fashion to show
precisely how the atmospheric forces act and why the
projected area a' rather than the total area a must be
used.

This example illustrates Otto von Guericke’s
experiment of the so-called Magdeburg hemispheres
which demonstrated in 1654 the forces exerted by the
earth’s atmosphere and which we referred to earlier.

e Vacuum

Vacuum

Gas reservoir

1)

—m_?

(a) (b) (c)

FIGURE 11.9. (a) Open U-tube manometer. (b) Closed
U-tube manometer. (c) Torricelli's barometer.




Von Guericke was, at the time, mayor of the city of
Magdeburg. Can you imagine, nowadays, the mayor

of Pittsburgh or Baltimore concerning himself with-

such doings?.

EXAMPLE 11.3.3

Consider the open U-tube manometer shown in Fig. -

-.11.9. A gas at pressure P, is connected to the left side,

while the right side is at another pressure P, (usually.

" atmospherie, in which case P, = P, but not neces-

sarily so). Find the relation between the liquid heights

y, and y, and the pressure difference at equilibrium.

* What happens when the left side is evacuated ? Assume

the fluid in thé U-tube to be incompressible.

, Consider the plane AB which intersects the tube
at its lowest point. Because the system is in equi-
librium, the pressure on the left side of the plane from

the column of fluid in the left side of the tube must be -

the same-as that on the right side due to the fluid in

that column. If it were not so, the fluid would move:

Call this common pressure at the lowest point P’

- Then, according to (11:3.5), for the column of ﬂuld
on the left,

P — P = pgy, (11.3.15)
while for the column on the right
P — P, = pgy, (11:3. 16)'

If we now subtract (11.3.15) from (11.3.16), we

will eliminate P’, obtaining

Py — P, = pg(y, — y1)

which is the desued result. If the pressure on' the

surface of the liquid on the right is atmospheric pres-

sure, then P, = P, and
Py =Po=pg(y2—y1)

If, now, -the left side of the tube is evacuated; P;
. becomes zero, and (11.3.18) becomes

Py = pg(y: — y2) = pgh (11.3.19)

where % is the difference between the levels y: and y,.
This gives a way of measuring atmospheric pressure
in terms of the height of a fluid column, and the device

so arranged is called a liguid barometer, as shown in’
Fig: 11.9b. In this device, which was first invented by .
Evangelista Torricelli in 1648, the pressure of the -

earth’s atmosphere in the open tube or reservoir is

balanced by that due to the column of liquid in the

closed tube. In practice, instead of evacuating and

sealing off one side of a U-tube, as siown.in Fig. 11.9b,"

it is usually more convenient to entirely fill a barom-
eter tube of sufficient length which is already sealed
at one end, invert it, and release the open end while
keeping it immersed in a reservoir of the fluid. This

(11.3:17).

(11.3.18)

11.3 The Variation of Fluid Pressure with Depth

is the way in which the. familiar imercury- bar ometer
shown in Fig. 11.9¢ is usually arranged. i
There are many liquids which could be used to

construct a barometer. One important requirement

is that the vapor pressure of any such liquid be very.
small, so as to allow as good a vacuum as possible
in the portion of the tube above the fluid. Mercury is
particularly -suitable in this respect, since its. vapor
pressure at room temperature is quite negligible. in
companson to atmospheric pressure. Also, mercury.
is very dense and allows a column height which is
quite convenient in the laboratory." A mercury ba-
rometer such as the one shown in Fig. 11.9¢ exhibits a
column height of 76.0 cm at sea level under.average
conditions of atmospherlc pfessure Since the density
of mercury is 13.6 g/cm?, Eq. (11.3.19) allows us to
establish that the average atmospheric pressure should
be

P, = pgh = (13.6)(980)(76) = 1.013 x 10° dynes/cm

Fluctuations in atmospheric pressure arising from

meteorologic conditions are easily measured by noting
the height of the mercury column in & barometer of

“this sort. If the barometric fluid were water instead of

mercury, the column height would be. 13.6 .times
greater because water is 13.6 times less dense than
mercury. A water barometer would, therefore, havea .
column of height 10.34 meters under average atmo-
sphenc pressure. Water is not a very good barometric
fluid, because, in addition to the inconvenjent column
height, its vapor pressure is too high. .
The widespread use of the mercury barometer
and manometer has led to the use of a unit of pressure
related to the height of the mercury column in such a
device. One may define a unit of pressure as the pres-
sure exerted by a’ column of mercury 1 millimeter in
height. This unit is called the torr (after Torricelli),
or the millimeter of mercury. It is easy to see that
1 torr (1 mm Hg) = (13.6)(980)(0.1) = 1333 dynes/cm?.
The torr is not a very good unit in some respects, but
its' use has become widespread, particularly in the
measurement of low pressures in vacuum systems and
in measuring the barometric pressure of the atmo-
sphere. It is, therefore, in line with common termi-
nology to refer to the pressure of the atmosphere under
standard conditions as 760 torr, or 760 mm Hg, or
to refer, for example, to the tiny residual pressure .
inside an electronic tube as 10~ torr, or 107¢ mm Hg;
One even occasionally sees pressures expressed in
inches of mercury, but this practice, fortunately, is -
becoming less common that it once was, despite the

fact that there are millions of inexpensive household

barometers calibrated this way.

EXAMPLE 11.3.4 , , ‘
A rowboat has a flat bottom whose area is 60 ft: The
sides of the boat are-perpendicular to the plane of the
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FIGURE 11.10. .S’ystem_of forces acting in equilibrium

’

ona boat. -,

bottom and jaave a umform height of 1.5 ft. The boat
. weighs 480 pounds. Find (a) the height of the water line
" of the unloaded boat above the bottom, (b) the dis-
“tance the boat sinks when four passengers whose total
weight is 640 pounds step aboard, and (cp the max-
imum weight the boat can carry before sinking. The
loads are assumed to be uniformly distributed in all
cases. ' '

This example illustrates how a boat works, a
subject not well understood even by many persons
who have spent most of their lives afloat. Consider
first the unloaded boat floating at equilibrium in the
water, as shown in cross section in Fig. 11.10. The
‘atmospheric pressure at the surface of the water is Py;
this same pressure is'exerted by the atmosphere down-
ward on the top surface of the boat’s bottom. There is
an upward force on the lower surface of the bottom of
the boat, the surface that is in contact with the water,
at a distance y beneath the surface. Since the pressure
at this depth is greater than Py, in view of the law of
pressure versus depth expressed by Eq. (11.3.6), the
upward force exerted by the water on the boat’s

bottom (which we shall learn to refer to in the next

section as the total buoyant force) is greater than the
downward force caused by atmospheric pressure
acting inside. But there is also the boat’s weight, which
acts downward, too, and which, of course, in equilib-
rium, makes up the difference. If we call the down-
ward force due to atmospheric pressure Fy, the total
upward force of buoyancy due to water pressure on
the boat’s bottom F,,.and the weight force W,
Newton’s first law tells us that in equilibrium,

S F,=F,—Fy—W=0

Since the pressures involved in generating F,, and F,
are both uniform over the boat’s bottom, we may
write . '

Fo = Poav
F, = Pa= (P, + pgy)a

(11.3.20)

(11.3.21)
(11.3.22)

where a is the area of the bottom of the boat and y is
its depth beneath the surface. Inserting these values
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into (11.3.20),
pgya =W
or

W .
Y= — (11.3.23).

pga N
Inserting the values of the quantities on the right-hand
side given in the initial statement of the problem, we
find, using pg = 62.4 1b/ft>, that

480
=0.128 ft

Y= 62.4)(60) 4)(60)

. When the passengers step aboard, of course, the
total weight becomes 640 pounds greater; otherwise
the argument is the same. Now,

480 + 640

* The boat, then, has sunk a distance y’ — y = 0.171 ft.

The question of how much of a load the boat will
carry before it sinks can be settled by setting y equal
to 1.5 ft in (11.3.23) and solving fo- W. The total
weight is then found to be

W = pgay = (62.4)(60)(1.5) = 5616 b

This represents the weight not only of the cargo but
also of the boat itself. The weight of cargo which can

‘be carried is 5616 — 480, or 5136 Ib.

The important thing to realize in this example is
that the buoyant force, which supports the boat and -
its cargo, 'arises because the upward pressure of the -
water on the bottom of the boat is greater than the
downward pressure of the atmosphere inside. This'is so

“because as one descends beneath the surface of an

incompressible liquid, the pressure rises steadily in
view of the pressure-versus-depth law (11.3.6); this
law, in turn, you will recall, has its origins in Pascal’s

principle and Newton’s first law. If there were no in-
crease in pressure with depth, there would be no
buoyant force, and no boat would float. This example
illustrates clearly the origin of buoyant forces. In the
next section, we shall examine in detail the action of
such forces on objects immersed or floating in fluids.

11.4 Buoyant Forces
and Archimedes’ Principle

- Anyone who has ever swum or owned a boat has ex-
"perienced very directly the buoyant forces exerted by

fluids on objects which are immersed in them or
floating on them. In Example 11.3.4, we examined how
these. forces arise in a specific example involving a
rowboat. It is now time to look at the situation in a
more general way and try to arrive at some idéa of how



11.4 Buoyant‘ Forces and Archimedes' Principle

FIGURE 11.11.

System of forces acting on an irregular, immersed object. (a) Forces

exerted by the fluid on the object. (b) Forces exerted in equilibrium on a volume of
fluid of the same size and shape as the immersed object, and forces exerted by this
volume of fluid on its surroundings. (c) Equuvalent system of forces acting on immersed
body, with the forces shown at (a) replaced by the equi\‘}alent buoyant force F,.

to express buoyant forces acting on any object in a
fluid.

‘Consider first a body of irregular shape which is
totally immersed in a fluid, as shown in Fig. 11.11a.
Itis 1mportant to realize from the outset that such an
object is not necessarily in equilibrium, for the nefs
buoyant force exerted by the liquid may be greater

than, less than, or equal to the body’s mass. In the .

first instance, the body will sink; in the second, it will
rise to the surface; and only in the final case will it
remain in equilibrium. In any event, when immersed,
any body will experience forces due to the pressures
acting on it; a diagram showing the general appear-

ance of these forces is shown in Fig. 11.11a. Since

fluids can exert only forces normal to the boundariés,
the forces must be perpendicular to the surface of the
object at all points; and since the pressure within the
fluid increases with increasing depth, the magnitude
of the forces increases with depth. The fact that the
upward forces acting on the bottom of the’ object are
greater than the downward forces acting on the top is

‘what causes the net buoyant force in the first place.
The force vectors in Fig. 11.11a will be seen to display
both these characteristics.

Now suppose that the object is removed and the -

volume it formerly occupied is filled with fluid iden-
tical to that surrounding the volume, as shown in
Fig. 11.11b. The system of forces acting upon.the
dotted volume of fluid formerly occupied by the
immersed body is no different from what it was when
the body was there; the surrounding fluid does not
know (nor care!) whether its pressure forces are
exerted upon an immersed object or upon a volume
of fluid put there in its place. But there is one differ-
ence; when the body is replaced with an identical
chunk of fluid, the system now has to be in equilibrium.

If it were not, then there would be 2 flow of fluid,

which clearly cannot take place under the conditions
of Fig. 11.11b. Since the volume of fluid occupying
the dotted volume previously filled by the body is in
equilibrium, the vector sum of all forces acting on it
must be zero. The forces-acting on the fluid in this
region are, first, the resultant of all the pressure forces
exerted on it by the surrounding fluid (which, in toto,
represents the net buoyant force itself) and, second,.
the weight of the fluid in the dotted volume. Since the

‘sum of these two forces is zero, the net buoyant force

must be equal in magnitude, but opposite in direction,
to the weight force assomated with the fluid in this
volume.

Now let us put the 1mmersed object back into
the fluid in its former location. The net buoyant force,
which is, after all, due to the surroundings, is again no
different from what it always was. But now, we know
that-under the conditions of Fig. 11.11b it had to be an-
upward. force equal to the weight of fluid occupying
the samie volume as the object itself. Therefore, that
is what it is when the object itself is in place, as in

"Fig. 11.11a or 11.11c. The basic elements of the

situation are shown in Fig. 11.11c, in which both the
object’s weight force and the resultant buoyant force
are illustrated.

 Theresult ofall this can bestated in the following -
way: : ' '

' A body immersed in a fluid experiences a résult-

ant upward buoyant force equal in magnltude to
the weight of displaced fluid.

This statement is called Archimedes’ principle, and
expresses essentially all there is to know about the
buoyant force. It is important to note that in deriv-
ing Archimedes’ principle, it was not necessary to
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‘assume that the fluid in question was incompressible.
Archimedes’ principle is, therefore, very general and
applies not only to liquids but to gases as well. It is the

‘buoyant force of the earth’s atmosphiere which allows

a balloon or blimp to rise, for example.
‘In the case of an object only partially immersed,
“buoyant forces arise only from the part of the body
below the surface of the liquid. By the same token, the
.volume of fluid displaced is no longer the total volume
of the object but only the volume of that part which is

immersed. Archimedes’ principle, nevertheless, ap-

plies equally well to bodies totally immersed or
" partially immersed,

" There are three ways for a body in a fluid to bein-

equilibrium. First, the density of the body may be

precisely equal to that of the fluid. The ‘weight of -

displaced fluid is then exactly equal to the body’s
‘own weight, and the buoyant force is precisely equal
and opposite the weight force. The object will then

remain in equilibrium while totally immerséd, under -

the action of weight force and buoyant force alone; a
submerged submarine is a good example.

Secondly, a body less dense than the fluid in
which it is placed will come to equilibrium floating
on the surface only partially immersed. Suppose, for
example, the body shown in Fig. 11.11c were less dense
than the surrounding fluid and it was released from
rest while totally immersed. The upward buoyant
force would be equal to the weight of displaced fluid,
in this case p,¥,, while the weight force would be

mg = pV,, where p is the density of the object and -
. py is the density of the fluid. Since in this case p is.

less than p , the buoyant force will exceed the weight
force and the body will undergo acceleration upward,
eventually arriving at the surface. When it arrives
there, part of its volume will rise above the surface,
leaving the object only partially immersed. As this
happens, the budyant force will -diminish, because
the volume of fluid displaced by the body is no longer

equal to the total volume of the object, but only to-

‘the volume of that part beneath the level of the fluid
surface. The object will continue to rise out of the
fluid until the weight of the volume of displaced fluid
(which is now less than the total volume of the body)
is equal to the body’s own weight. At this point the
weight force and the buoyant force will again be equal
and opposite, and equilibrium will now be attained
with the object floating on the surface only partially
immersed, as shown in Fig. 11.12. In this condition,
the buoyant force will be g times the mass of displaced
fluid, hence p,Vpmg, Where V., is the volume of the

part of the body beneath the level of the surface. Since -

the body is in equilibrium under the action of buoyant
and weight forces alone,

Fb—W=pr/xmmg_mg=0
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(11.4.1)

F.b = pfvimf;mg

FIGURE 11.12. System of forces acting on a partially

immersed object.

Vieum (11.4.2),

Finally, there is the'possibility that external forces
may be introduced to hold an object in equilibrium
either partially or wholly immersed. The magnitude

" and direction of any such external force can always

be determined by the condition of force equilibrium

" in conjunction with Archimedes’ principle. These

three possibilities will be discussed indetail in the
series of examples which follow. Before beginning this
series, the reader may find it instructive to return to
Example 11.34 and rework it using :Archimedes’ -
principle. - '

" EXAMPLE 11.4.1 :

Work out the results of Example 11.3.4 using Archi-
medes’ principle. o

This is easily enough accomplished, but first,
referring to Fig. 11.10, it is important to realize that
the total upward force F,, exerted by the water on
thé bottom of-the boat is a gross buoyant force,
attributable to the total pressure Py + pgy instead of
the pressure difference pgy, rather than the resultant
buoyant force F, réferred to in Archimedes’ principle.
The force F,, is opposed by the downward force Fy
arising from atmospheric pressure, and it is the
difference between these two (quantities which repre-
sents the resultant buoyant force F, of Archimedes’
principle and which is to be equated to the weight
of displaced fluid. The situation will be clearly illus-
trated by Figs. 11.10 and 11.13. From these drawings,

it is evident that since the boat is in equilibrium,

Y Fy=Fy—W=0 (11.4.3)

This is the same as Eq. (-11-3-20): except that F,, — Fy
is identified as the met buoyant force F,. But now,

" according to Archimedes’ principle, the net buoyant

force equals the weight of water displaced, whence

F, = weight of displaced water = p¥, = payg
: : ' (11.4.4)



FIGURE 11.13

| Therefore,

W=payg y=——
T pag ,

which is the same as Eq. (11.3.23). The numerical

results asked for in the exercise all follow directly

from this equatlon JUSt as before.

EXAMPLE 11.4.2
An engineer is assigned the task of desigring a spheri-
cal balloon which will have a gross lifting capacity of
4900 newtons. This corresponds to a mass of 500 kg,
which may include the mass of the balloon itself. The
balloon is to be filled with hydrogen whose density
is py, = 0.090 kg/m?>, while the density of air is'p,;, =
1.293 kg/m*. What is the minimum radius such a bal-
loon can have to lift this total load ? If the balloon itself
is made of flexible plastic of density p = 900 kg/m?
"and thickness 0.100 cm, what will be the net lifting
capacity or maximurm payload? What will the payload
be if the balloon is filled with helium of density
Pue = 0.180 kg/m>? .
-Let us first neglect the mass of the balloon and

deal with the lifting capacity of the gas alone. As.

~ shown in Fig. 11.14, for the gas-to lift a mass of
500 kg, corresponding to a weight force of (500)(9.8)
newtons, the buoyant force must exceed the weight
of the gas itself by that amount; in other words,

Fy = my,g = = F, = 4900 N (11.4.5)

where F, is the llftlh'g force of the gas and my, is the

mass of the hydrogen in the balloon, which is equal, -

in turn, to py,V. The buoyant force is equal to the

P Fr =P, Ve

y mHzg

FIGURE 11.14

"Such a force could lift a mass of (4535/9.8) =
"Since the plastic skin has a mass of 242 kg, the net
- mass which could be lifted under- these mrcumstances

11.4 Buoyanl Forces and Archimedes' Principle

w'éight of the displaced air, which is p,; Vg: ‘Substi-
tuting these values into (11.4.5), we find :
Vg(paic — pu,) = F, ‘

Since the volume is $7nr
may be-written as

(11.4.8)

3, where r is the radius, this

$7°g(paie — pu) = Fr
from which
(o)
Po= | m—— . B
379(pae — pu))

= (4900) s .
B <(%)(3-1416)(9.‘8)(1.293 - ()_090)’) =463 m

(11.4.7)
If the skin of the balloon is made of plastic 0.1 cm

(=103 m) thick and of density p= 900 kg/m its,

mass my, will be given by
my, = pV = pad ‘ (1148)

where a is the surface area and d the th1ckness Since
d = 47r? for a sphere,

iy, = 4nr?pd = (4)(3.1416)(4 63)2(900)(10 3 =242 kg
: ‘ ©(11.4.9)

The net lifting capacity, or payload would be 500 —
242 = 258 kg. .

- If the balloon were to be ﬁlled with helium, the
buoyant force would still be g1ven by

Fy = paiVg-

but now the weight of lifting gas would be

AWHe = pHeVg ' »

The available lifting force would now be .

Fyy — W = Vg(pair — Pue) = 3109 (0air — Puic)
= (9(3.1416)(4.63)°0.8)(1.293 — 0.180)
=4535N (11.4.12)

463 kg.

(11.4.10)

(11.4.11)

is 463 — 242 221 kg

EXAMPLE 11.43
A vessel contains a layer of water p2 = 1.00 g/cm?,’

. upon which is floating a layer of oil, p; = 0.800 g/cm?.

A cylindrical object of unknown density p whose

" base area is a and whose height is h is dropped into

the vessel, finally coming to. equlhbnum floating on
the oil-water interface,. immersed in the water to a
depth %h, as shown | in Flg 11.15. What is the density
of the object? .

In this case, the object is partly 1mmersed 1n the :
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FIGURE 11.15

water and partly in .the oil. There are two separate
buoyant forces, one from the part of the body in the
water, the other from the part in the oil, as shown in
the diagram. Since the system is in equilibrium,

S F,=Fy + F, —mg=0

. The buoyant force F,,; due to the oil is equal to the -

weight of the displaced oil, namely, the weight density
p.g times the volume of the object immersed in the
oil, which is one third the total volume. The force
F,, may be calculated in the same way:

Fyy =%p.gV = 3p1gah (11.4.14)

Fy, = %Png = %ngah

Substituting these values into Eq. (11.4.13) and ex-
pressing the total mass m of the object as pV (= pah),
we find , |

(11.4.15)

1p\gah + 3p,gah — pahg =0 (11.4.16)
Canceling gah throughout dand solving for p, we obtain

p=1%p1 +3p; = (3)(0.800) + (3)(1.00) = 0.933 g/om’

(11.4.17)

Somewhat related to this example is the question
of why we always neglect the buoyant force of the
atmosphere in any problem involving an object
floating partly immersed in a liquid and partly in the

" air, as we did in Example 11.4.1-and the explanatory
material leading to Eq. (11.4.2). The answer lies in
the fact-that the atmosphere’s density is so small that
the buoyant force arising from it is usually quite
negligible in comparison with that of the liquid. Sup-
pose, for example, in this exercise, instead of oil
‘(p; = 0.800 g/cm®) we were dealing with an upper
layer of air (p; = 0.001293 g/cm?) and that the other
conditions were the same, including the fact that the
floating object was two thirds immersed in the water.
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(11,4.13)

(This would mean that its density is no longer 0.933;

can you figure out what it would be?) The buoyant

‘forces due to the two fluids are still given by (11.4.14)

and (11.4.15), and the ratio of the buoyant forces .
arising from the two fluids is - '

&z%l)lgah___}_ﬂl_ .
Fys %ngah‘ 2ps

Now when'p, and p, have the values 0.8 and 1.0, as
in the original statement of the example, this ratio

amounts to 0.4, which is quite large. But if p, =
0.001293, as for air, the ratio of the buoyant force of

(11.4.18)

_air to the buoyant force of the water is only 6.46 x
10~#, which is'so small as to be of no consequence in

most problems.

EXAMPLE 11.4.4 , :
A certain object has a mass of 250 g and a density of
2.70 gm/cm®. When “weighed” while immersed in a
liquid of unknown density by the arrangement shown
in Fig. 11.16a, it is found that balance is obtained
when 180 g is placed on the right-hand side of the
laboratory balance. What.is the density of the fluid in
the container? ' 4

The forces acting on the object while immersed
are shown in Fig. 11.16b. The tension T in the string
is equal to the weight force associated with a mass
of 180 g. Therefore, T = (180)(980) = 176,400 dynes.
The net buoyant force F,, according to Archimedes’
principle, must be

Fy=pgV

where p is the density of the fluid (not the density
of the object, remember!). According to Newton’s
first law, then

(11.4.19)

YF,=T+F,~mg=0 (11.4.20)
or, in view of Eq. (11.4.19),
pgV=mg—T (11.4.21)

Let us now divide both sides of this equation by mg,

String of ___
negligible mass

(a)

FIGURE 11.16




mg — T, '
= p, ———— 11.4.29
pf Pw mg — Tl ( )
Also, one may solve (11.4.27) for V, the result bemg
pe— T R (11.4.30)

which can also be written as pogV, where p is the

object’s density:

pgV _ pgV _mg—T
mg  pogV  mg
or .
- omg— T . i
= 11.4.22
P = Po ma ( )

In this qase; po = 2.70, mg = (250)(980) dynes, and:
T = (180)(980) dynes. Substituting these values into

(11.4.22) gives the answer p = 0.756.

EXAMPLE 11.4.5 |
An object of mass 180 g, but of unknown density, is
“weighed” in water (density p,, = 1.00 g/cm?), the
weight so obtained corresponding to a balancing

mass of 150 g, and “weighed” again in a liquid of .

unknown density p, a balancing mass of 144 g being
needed this time. What is the density of the second
fluid? What is the density of the object?

Let the density of the object be p and its volume.

V. Then, from Newton’s first law, the two ¢ wéighings”
give :

T, + Fpy —mg =0 (11.4.23)
T, + Fyp —mg = 0. (11.4.24)
. where, according to Archimedes’ principle, -
Fyi'= p.gV (11.4.25)
Fyp=p,gV (11.4.26)
Equations (11 423) and (11.4. 24) may now be written
Ty + pugV —mg=20 ©(11.4.27)
T; +prgV —mg=0 (11.4.28)

In these equations there are two unknowns, ¥ and
ps. One may most easily eliminate’ V' by multiplying
the first equation through by p,, the second by p,,
and then subtracting the second equation from the
first. The resulting expression can be solved for p;
to give

Now, the density of the object is simply p = m/V,
with V glven above. Then,

m_ pymg

p=V mg——T1

11.5 Fluid Dynamics and Bernoulli's Equation

We are given that p,, = 1.00 g/cm?,

. mg = (180)(980) dynes

T, = (150)(980) dynes

and

T, = (144)(980) dynes .
Substituting these values iﬁtq (11.4.29) and (11.4.31),
it is €asy to establish that p, = 1.20 and p = 6.00.

11.5 Fluid Dynamics
and Bernoulli’s Equation

-Up to this point we have discussed only situations
" involving fluids in equilibrium. 1t is, of course, also

importarit to understand the mechanics of fluids which
may undergo acceleration. This branch of mechanics
is referred to as fluid dynamics. The general study of

. fluid dynamics is a complex and difficult undertaking,

involving much advanced mathematics; it is a task
we shall not attempt here, excepi*to sketch roughly
some of the problems involved and some of the
possible areas of application. It is possible, however,
to understand many of the important features of fluid
dynamics in certain restricted cases by the develop-
ment and use of a simple relation based on the
work=energy theorem and the energy conservation
principle, called Bernoulli’s equation after its originator
the Swiss scientist Daniel Bernoulli (1700-1782).

In developing Bernoulli’s equation, we shall
restrict ourselves to the case of steady-state, incom-
pressible, nonviscous ﬂvﬁid flow. By steady-state flow
we mean that at every point within the flowing fluid .
medium the velocity of the fluid does not change
with time. This does not mean that the fluid is
unaccelerated; each droplet of liquid may undergo

“acceleration as it moves from point to point. At a

fixed location, however, the velocity of the fluid flowing
past remains at all times the same ini magnitude and
direction. A fountain or a waterfall are common
examples of this type of flow. In the case of a fountain,
illustrated in Fig. 11.17, in which a stream of water is
projected upward and then falls back to the level of
the nozzle, the velocity of the water droplets is zero -
when they reach their maximum height, and this state

of affairs does not change with time. But the accelera-

tion of each droplet is not zero here; indeed, it has
the value g at this point and, for that matter, at all
other points aleng the path taken by the stream.
Under conditions of steady-state flow, a steady .

pattern of lines of flow marking the paths taken by
fluid particles within the stream is set up. These flow
lines can be made visible by dropping tiny particles
such as confetti into a liquid, or by injecting a series
of thin streams of ink at various points. In a gas flow,
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vy =0at all times

FIGURE 11.17. Motion of a projected stream of liquid.

the lines of ﬂoW, or, streamlines as they are.often
called, can be $een if tiny smoke jets are provided at

‘a number of points. Some situations involving steady- -

state flows in which the streamlines have been ren-
dered visible in this way are illustrated in Fig. 11.18.
There are two important observations to make in
regard to the lines of flow, or streamlines. First and
most obvious, since the direction of fluid flow is along
_the streamlines, there is no fluid flow perpendicular
to them. Secondly, families of streamlines can be used
to define tubes of flow within the fluid, as shown in
Fig. 11.19. Since there can be no flow across the surface
of such a tube of flow, the fluid flow is entirely along
and within the tube.

In deriving Bernoulli’s equation, we shall con-
fine ourselves to the case of incompressible fluids.
It is quite p0551ble to modify the derivation to allow
for compressibility, though for our ‘purposes this
introduces unnecessary complications. It turns out
also that the incompressible Bernoulli equation gives
a good approximate description of the steady-state
flow of compressible fluids in cases where the flow
velocity is everywhere small compared to the velocity
of sound. We shall, therefore, find ourselves using the
incompressible Bernoulli equation even in gases,
though in doing so we have to be careful to avoid
cases of h1gh—velo<31ty flow.

(b)

FIGQRE 11.18. Streamlines illustrating steady fluid
flow around a spherical obstacle (a) and an airfoil (b).
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FIGURE 11.19. Tube of fl‘o.w bounded by streamlines.

Finally, we shall have to concern ourselves w1th
fluid flow situations which are nonviscous. By viscosity
we mean the property exhibited by fluids of generating
internal forces of friction or resistance when one layer
of fluid is made to move across another parallel layer
with finite relative velocity. We are familiar with the
fact that when a liquid such as water or ethyl alcohol
is stirred with rapid rotation in a cylindrical can, it
may remain in rotation for a very long time before all
evidence of the original motion ceases. In the case of a
heavy oil, however, such rotational motion, if excited,
falls off very rapidly when stirring is ceased. It is the
internal viscous forces between fluid layers moving
at difféerent velocities that are responsible for the
damping of the motion in both cases. In both cases,
it is evident that the kinetic energy of rotation which
was excited by stirring is dissipated (actually trans-
formed into heat energy) by the action of these forces.

Viscous forces, therefore, have the characteristics
of frictional forces in fluids. These forces, which arise
from interactions between the molecules of the sub-
stance itself, are quite weak in the case of water and.
alcohol. In a given time interval, say a second, they
may transform only a small fraction of the initial
kinetic energy into heat. For such substances, it may
be- quite reasonable to completely ignore the effect
of viscosity in turning mechanical energy into heat,
just as it is possible to neglect the effect of sliding
friction. in many mechanics problems of the types
studied in earlier chapters. On the other-hand, if we are

. dealing with a very viscous fluid such as lubricating

oil or glycerine, a very large fraction of the kinetic
energy may be dissipated in a similar time interval;
now the 'viscous forces are large and cannot be
neglected.

We shall not try to treat viscous flow in this
chapter, but.shall confine ourselves to- situations in
which viscous friction is unimportant. Finally, we shall
also exclude from our treatment any situation in which

-internal rotations of the fluids, or vortex effects, are

important. If these effects are absent, the flow pattern
is said to be irrotational, and we shall consider only "
instances of this type in deriving Bernoulli’s equation.
Now, having restricted ourselves to a fairly
narrow and simple range of fluid flow conditions—
steady-state, incompressible, nonviscous, and irrota-
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FIGURE 11.20. Sysn of forces acting on fluid confined within & tube of variable

cross section.

tional—we are reado derive Bernoulli’s equation.
Consider the motioif a fluid in a pipe of variable
cross-sectional area, illustrated in Fig. 11.20. In
particular, let us inveate the motion of an element

of fluid which at timextends from point A, along

* the pipe to B; and Wh_ at a time dt later, extends
from point A, t0 Ba,ving moved a distance dx,,
at speed dx; /dt, from 4 B;, and, at the other end,
‘a distance dx,, at Spelx, /dr, from A, to.B,. Let
the cross-sectional are2the tube be g, from A, to
B, and a, from A, 10 We shall assume that the
section A;B; is at heighabove the earth’s surface

- and that the section Axg at-height y,. Since the

fluid is incompressible, tyme volume 4V is swept -
out at either end, and theans that the velocities
v, and v, and the areas ng 4, are related. The
connection between them g from the relation

dV = a, dx, = a; dX; (11.5.1)

or, dividing by dt and n0tyt 4 = gx. /dr, v, =
.dXZ/dta » 4 '
av

—_—= Uy = asvu;

. (11.5.2).
7 | )

Bernoulli’s equation is ‘equence of energy
conservation and the W-Ork'gy theorem. The

work-energy theorem States Le w61k done.on

any body by the resultant f0.4ing on it must. .
equal its change in kinef1c eNerl g therefore,
compute the work done. by alg 5oine o the
element of fluid and also. 1ts cl_la kinetic energy.
The forfes acting are of two Kifltge, o f oo P, .
and P, at the'two.ends and gravil o ces arising

from the weight of the fluid in the element. As the.
fluid element moves from its initial to its final position,

- the work done by the forces attributable to pressures

P, and P, are Pia, dx; and — P,a, dx,, the minus
stin arising from the fact that the -pressure on the
element acts in' the —x direction on the right-hand
end of the fluid element A,B; or A,B,. Recalling
Eq: (11.5.1), the net work done by the pressure forces

is'then - . :
' (11.5.3)

Work is also done on the element by gravitational
forces; in effect, as the element of fluid moves from its

dW, = P,a, dx, = P,a; dx; =(P; — P;) dV

© initial position A;B; to its final position the effect is

to raise a volume of fluid 4V, hence a mass of fluid
dm = p dV, through a height y, — y;. The amount of

. work done by gravity is therefore

AW, = —(dm)g(y2 — y) = —pg(y, —y1) AV~ (115.4)

Finally, the change in kinetic energy of the element,
dU,; can be calculated by observing that the element

. A;B, has lost its kinetic energy +(dm)v,* and the ele-

mient A,B, has acquired kinetic energy %(dm)v,2. The

- velocities of all other points in the fluid column remain

unchanged and, the'rAGfore», give no contribution to the
change in kinetic energy: The total change in kinetic
energy during the process may, therefore, be written as

AU = $(dmy® = ‘

=1p(v,? — v, dV . (1155.5)

4According to the work—energy theorem,v the
work done on' the fluid by the resultaniforce, which

~ can be expressed as the sum of the work contnoutions
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of the individual forces, equarlls‘ the chahge in kinetic-

energy of the element. Hence, we may write

or, from Egs. (11.5.3), (11.5.4), and (11.5.5),

(P, — P,) dV — pg(y> — y1) AV = $p(v* = v,%) AV
~(11.8.7)

Canceling dV. throughout and rearranging the terms,

* this can be written finally as

(11.5.8)

P, + pgys + 3pvi® =Py + pgys + %P?)zz

This is Bernoulli’s equation. the that if the fluid is
at equilibrium (v, = v, = 0), it reduces to what should

~ now be the familiar result

P+ %ﬁm)i’z.”—" P, + 3pv,*

P, — Py = pg(y2 — y1) (11.5:9)

which was set forth previously as Eq. (1 1.3.7).
The derivation was carried out for a fluid within
a pipe or tube, and it might, therefore, be thought that

_the results so obtained would not apply to freely

flowing fluids which are not so constrained. This is
not so, however, because the same derivation could

- also have been applied to the flow of a certain portion

‘of an unconstrained fluid enclosed by one of the tubes
of flow of the system! Since no fluid ever flows across
the boundary of any tube of flow, the derivation would
have been equally valid for such a situation. After all,
it makes no difference whether a certain portion of.a
flowing fluid is constrained by the physical presence
of the walls of a pipe or merely by the rest of alarger
fiuid system surrounding it and flowing along with it.

Bernoulli’s equation, (11.5.8), tells us that the

quantity P + pgy + $pv® is the same at any two points
in the flow system, which implies that its value is the
same everywhere. in the system. The quantity- pgy
represents the potential energy of the fluid per unit
volume at a given point, and the quantity 5pv* likewise
represents the kinetic energy per unit volume at that
point. Bernoulli’s equation may then be interpreted as
stating that the sum of the pressure, the potential
energy per unit volume, and the kinetic energy per
unit volume is everywhere the same—hence is con-
served. Since the derivation of Bernoulli’s equation is
based on the principle of énergy conservation, it is

. hardly surprising that it has the form ofa conservation

law.
.One of the important physical effects predicted

. by Bernoulli’s equation can be understood in simple
terms by considering the case where there is no ap- .

preciable difference in gravitational potential energy
throughout the flowing fluid. We may then set both
y; and y, equal to zero,.and (11.5.8) becomes

(11:5.10)
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(11.5:6)

FIGURE 11.21. An atomizer.
P, — Py =3p(v,* — v,%)

In this equation, suppose that v, is greater than v;
then v,2 — v, is negative, 4s is P, — P,. This means
than P, is gteater than P, or, turning it around, that '
P, is smaller than P;. In other words, when gravita-
tional effects are unimportant, an increase in the flow
velocity of a fluid is inevitably accompanied by a
decrease in pressure. This is sometimes called the
Venturi effect and is responsible for the action of

(11.5.11)

‘atomizers, automotive carburetors, winc tunnels, and

many other dévices, as well as for the carvature of the

‘path of a rapidly spinning baseball and for the aero-

dynamic lift of an airplane wing.
The example of an atomizer is shown in Fig.

“11.21. In this device, a large flow velocity v, is created

by a stream of air across the nozzle, the flow velocity
being zero or very small elsewhere, in particular at the
surface of the liquid in the reservoir. According to
Bernoulli’s equation, then, the pressure in the region
of the nozzle must be less than that experienced in
the reservoir, where atmospheric -pressure ptevails.
Accordingly, the atmospheric pressure in the reservoir
forces the liquid to rise in the tube leading to the nozzle

" (just as in a fluid barometer) and finally to emerge

from the nozzle orifice to be broken up by and carried
away in the air stream. ‘ :
The case of the spinning baseball is shown in -

EIGU_RE 11.22. Motion of a spinning.baseba(!:




Fig. 11.22. In this illustration, we are looking down .

from above ofi%a baseball thrown by a pitcher at the

far right. The pitcher has imparted an initial spin

- angular velocity @ to the ball and, at the same time,

a linear velocity v to the center of mass. As the ball
spins, it drags along a rotating layer of air as shown

by the arrows. Le't" us temporarily ‘move with the
center of mass of the baseball and try to account for
the flow velocities in its vicinity. In doing this, it is as
if the baseball ismotionless (except for spin) in a wind
tunnel which serds aistream of air at it from right to
left with velocityvy’, equal to — vy, as shown in the
diagram. The lagr of air dragged by the surface of
the ball has lineawvelocity row, at point B and —ryw,
at point A, whet.r, is the ball’s radius. The total
magnitude of flowelocity with respect to the center
of the ball is then 1 + rom, at A and vy’ — row, at B.

‘Since'the velocity 8 is less than at A, the pressure on .

the ball, according, Bernoulli’s equation, is greater
at B than-at A. Thmeans that there will be a net

force which will defl the ball upward in the diagram

or sideways to 2 Per in the position of the pitcher.
1t is evident from allis that atmospheric friction is
responsible for the wature of the ball’s path. A
pitcher, no matter ho'ood he-is, could never throw
a curve in a vacuum!

Somewhat the se analysis applies to the
problem of the dynamift of an airplane wing. The
streamlines about the & gection of such an airfoil
are shown in Fig. 1?-18]303 airfoil is so shaped and
positioned in-the austre 4t an appropriate angle -
of attack, that a pattern ow is produced in which
the velocity v, near the br surface of the wing is
necessarily greater than ﬂtlocity v near the lower
surface. According to Berpg equation, this means
that the pressure Pp OD yndersurface must be
greater than the pressure ly the top surface and
that a resultent upward 2€namic ift is created.
It is not entirely obvious hOWirfoil is to be shaped
or positioned so that this rel hetween the veloci-
ties is obtained; there are SYow velocities and
attack angles for which it 18 M 5¢ for example, in

- “stall” conditions. A more detigic ussion of aero-
dynamic lift in airfoils is S0M€heyond the scope
of this work and will not be inq fo..o.

The following series of s iyl iljustrate
more explictly how Bernoulli’s ;. may be ap-
plied to various instances of styate fluid Aow

-problems. - ‘

EXAMPLE 11.5.1 o

An incompressible fluid is flowing jop 14 right
through a cylindrical pipe such 8% shown in
Fig. 11.23. The density of the fluid . slug/ft?. Tts
velocity at the input end is 5 ft/ 5€Cia pressure.
there is 25 Tb/in. The output.end &g J o J

11.5 Fluid Dynamic; and Bernoulli's Equation

o =1.75 slug/ft3

. vy =5 ft/sec f
. P, = 25 Ibin.
15 ft -
| 3in.
f —F-Rz.z ?
FIGURE 11.23

input end. What is the pressure at the output end?
Bernoulli’s equation tells us that :
Py + pgys +3pv1* = Py + pgy, + 3p0,°

We know Py, p, ¥4, ¥2, and v,; neither P, nor v, are
given. However, since the fluid is incompressible, v,
must be related to v; by (11.5.2):

(11.5.42) -

2 1\2
a; nry’ 3
=—0 =—z0; =35(5)=3561t
v, . vy p— vy (%)2( ) : ./sec
Substituting this value along with P; = 251b/in.? = .
3600 1b/ft?, v, = 5 ft/sec, p = 1.75 slug/ft3, y, = 15 ft,

~ and y, = 0'into (11.5.12), we obtain
| 3600 + (1.75)(32.2)(15) + (0.5)(1.75)(25)

= P, + 0 + (0.5)(1.75)(35.6)*
P, = 3358 Ib/ft?, or 23.3 Ib/in? -

EXAMPLE 11.5.2

A Venturi flowmeter is illustrated in Fig. 11.24. It con-
sists of a constricted tubular section of frontal area

ea a
Area 3, Area a,

FIGURE 11.24.

The Venturi flowmeter.
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a, and throat area a,. Itis inserted into a stream of gas
or liquid flowing at velocity vy, which is to be deter-
mined, and a small orifice in the throat is connected
to a pressure gauge, shown as an open U-tube manom-

eter in the figure. A pressure P, is measured on the .

manometer. Find the equation relating the flow veloc-
ity v; which is to be measured to the known aréas a,
and a, and the measured pressure difference Py — Pj.

‘What is the flow velocity. of a stream of air (p=

1.293 x 10™* g/em®) in a situation where the frontal
area a, is 100 cm, the throat area a, is 20 cm?, and the
height h measured on an open tube mercury manom-
eter 25 cm? ' ‘

~ We begin ‘again with Bernoulli’s equation:

P, + pgy, + 3pv. 2= Py + pgys + 3pv2°

In this'situation, y, = y, = 0, and the throat velocity
v, can be expressed in terms of the stream velocity
v, by the relatipn (11.5.2), which states that a,v, =
42”2’ or

S 1
b2 =01 (11.5.14)
Bernoulli’s equation then reduces to

1,2 A’
P1+0'+§pv1 =P2+O+7pa-‘ivl .

. . 2
‘which upon rearranging may be expressed as
a
P, —P, ﬁ%pWZ(_I‘E_ 1)
’ . G2 :

from which
| P, -~ P :

L " (11.5.15)

2 _.
vyt = az
1 i
70('—5“‘1>

For an open-tube mercury manometer, using the
notation of this example, the pressure difference, ac-
cording to (11.3.17), is

Pl — P2 = pHggh (115.16)

‘where py, is the density of mercury, equal to 13.6
_g/em?®. Equation (11.5.15) now becomes

N
2 2puggh

(11.5.17)

For an air stream where p = 1,293 x 1072 g/cm® and
where h=25cm, a; = 100 cm?, and a, =20 cm?,
this gives

. ((136(980)(25)
(11293 x 1073)(5% — 1)

Dy = 4634 cmy/sec, or 46.34 m/sec

= 2147 x 10% cm?/sec?
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(11.5.13) -

'EXAMPLE 11.5.3

Pt
L

A cylindrical tank 6 ft in diameter rests atop a plat-
form 20 ft high, as shown in Fig. 11.25. Initially, the
tank is filled with water (p = 1.938 slug/ft*) to a depth-
he equal to 10 ft. A plug whose area is 1.00 in? is
removed from an orifice in the side of the tank at the
very bottom. With what velocity does the water flow
initially from this orifice? What is the velocity of the
stream initially as it strikes the ground? How long
will it take to empty the tank entirely? . '

Let us first of all assign dimensions and values
of pressure, velocity, and height to the system as
shown in Fig. 11.25. We shall work with gauge pres-
sures throughout; this is permissible when using
Bernoulli’s equation, provided it is done consistently.
What one cannot do is use gauge pressure on one side
of the equation and absolute pressure on the other,
so beware of doing that! " o

At the very top surface of the liquid, P, v, and y
have the values P, v;, and y;, and in the stream which
is just outside the orifice at the bottom of the tank,
they have the values P,, v, and ;. According to

Bernoulli’s equation,
P, + pgys + 3pvi® = Py + pgyz +3pve* (11518)

Now, obviously, the gauge pressure P, is zero; but

“would you believe that P, is also zero? Well, it is, and

the reasoning goes like this. Inside the tank, in the
water behind the orifice, the pressure is not zero but
rather pgho; but all this pressure is transformed to

-Kinetic energy in the trip through the orifice. Qutside

the orifice, the only pressure on the now rapidly

. moving stream is that of the.atmosphere, hence the

gauge pressure there is once more zero ! This argument

. neglects, as usual, the slight rise in atmospheric pres-

sure encountered in descending through the distance
ho; which in this problem is only 10 ft.

" Theheight y, is equal to ho + H, while y, equals
H. The velocities v; and v, are again related by

FIGURE 11.25



a;v; = a;v,. In this case, however, the area g; is

2= ('7:)(3)2 = O = 28.27 ft? = 4072 in.%, while a, =
1.00 in.? This means that v, is some 4000 times larger
than vy, and under these circumstances the term

1pv,2 will be some 1,600,000 times less than 3pv,2.

 We might then just as well neglect it altogether and
set v; equal to zero. Putting all this information into

Eq. (11.5.18), we find

.0+ pg(ho + H) +0 =0+ pgH +$pv,?
= \/2ghy = +/(2)(32.2)(10) = 25.4 ft/sec

Once more assigning values for P, v, and y as
P,, v,, and y, just outside the tank orifice and P, v3,
and y, as the stream hits the ground, according to
Bernoulli’s equation,

(11.5.19)

Py + pgy, +3pvs> = Py + pgys +3pvs® (11.520)

But now, Pz-P_q,—O'yZ—H ys =0, and, from
Eq. (11.5.19), v,% = 2gh,. Puttmg all this into (11.5. 20)
we obtain”

0+ pgH + pgho =0 +0+'21‘P032 ,
v3 = /2g(ho + H) = /(2)(322)(30) =

- 440 ft/sec
(11.5.21)

In finding how long it takes to empty the tank,
the time required for the depth to change from & to
zero is required, and this is closely related to the
velocity v, which we found we could neglect for the
purpose of determining v,. We must now, however,
start worrying about ;. As always in the case of an
incompressible fluid, '

a0, = a0 (11.6.22)
1 2v2

Now suppose the height k of the liquid in the tank
decreases by the amount dh during a time interval dt.
The velocity v; must now be given by

dh

T (11.5.23)

vy = —
‘the minus sign being necessary because dh/dt is nega-
tive (h is decreasing with time) while the fluid speed v,
is essentially positive, since it is the magnitude of a
velocity vector. Substituting this value for v, into
(11.5.22), we obtain

dh a,  ay

ay

A(11.5'.24)

recalling from (11.5.19) that v, = /2gh. We shall now
have to integrate this equation to find the relationship
between the depth h and the time. Multiplying the
equation by dt and dividing by /h, we may express
(11 5.24) in the form

% 7 dr
a

(11.5.25)

"ﬁ
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This may now be integrated between time t = 0, when
the depth has the initial value h, and a later time t,
when the depth is h. Accordingly,

o2

‘ (11.5.26)
a - .
Vg, = 2 ke — V) = 2T
and finally, solving for t,
_ a1 v20/ho — /h) f ) |

(11.5.27)
4 \/5 -
This equation gives the elapsed time ¢ as a function
of the fluid depth h. Initially, the depth hqy is 10 ft;
when the tank is empty, the depth is zero. Settmg
h=0in (11 5.27), we find

a [ _(4072)  (2)(10)

fema— [T w2 3209 sec, of 53.5 min

a, g (1.00) [( [(32. 2)]1/2
EXAMPLE 11.5.4
A small fixture is attached to the tank orifice of the
previous example to direct the stream upward at an
angle 6 without affecting its speed or cross-sectional
area. What is the maximum height /' attained by the
stream ?

The situation is now that illustrated in Fig. 11.26.
From Bernoulli’s equation, we know that

P, + pgys + 5pvs® = Pu + pgya + 3pvs  (11.5.28)

But P, = P, =0, y, = H, and from the results of the
preceding example, v,° = 2gh,. We may also write
0,2 = 0,2 + 05,7 = v,% cos? @ + v,” sin? 0. Bernoulli’s
equation now reads ' ’
pgH + 3pv,? cos® 6 + 3pv,? sin® 0 = pgh' + 3pv,>
(11.5.29)

In this equation, we know neither A’ nor v,. We do
know, however, that since the pressure is everywhere

FIGURE 11.26
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zero in the stream of fluid emitted by the orifice, the
“only force on the water in that stream is the force of
gravity acting on each individual droplet. Under these
circumstances, edch droplet of the stream executes
projectile motion; there is, therefore, no x-component
of acceleration for the liquid in thé stream because the
resultant force has only a y-component. The x-
component of velocity for the liquid in the stream is,
therefore, constant, and this, in turn, tells us that

U = Uy = U, COS 0 (11.5.30)

Substituting this value for v, into Bq. (11.5.29) along
with the value 2gh,, for v,* and solving for /, it is easy
to obtain

W= H + h, sin? 6 (11.5.31)

It is evident that the jet of fluid emitted by the

tank nozzle can never rise hxgher thdn the level of
fluid in the tank, since the largest value sin? 6 can have
is unity, attained when # = 90°, in which case h’ =
H + hy, the stream then rising just to the inside fluid
level.

EXAMPLE 11.5.5
A cylindrical tank 1.2 m in diameter is filled to a depth
of 0.3 m with water (p = 1000_kg/m3). The space
above the water is occupied by air, compressed to a
gauge pressure of 1.00 x 105 N/m?2 A plug is removed
from an orlﬁce in the bottom of the tank having an
‘area of 2.5 cm? What is the initial velomty of the
stream which flows through this orifice? What is the
upward fotce experienced by the tank when the plug
is removed?
The situation is illustrated in Fig. 11.27. From
Bernoulli’s equation,

Py + pgy; + 3p0.% = Py + pgy, + 5p,>

In this example, just as in Example 11.5.3, the velocity

'vy may be neglected because the area a, is so much
smaller than a,. The pressure P, is equal to 1.00 x
10° N/m?, while P, is zero; also y, = h, while y, = 0.
Putting all this into (11.5.32), we find

(11.5.32)

Py + pgh+ 0 =0+ 0 + pv,>
5,2 = 2(Py + pgh) _ (2)[(10°%) + (10°)(9.8)(0.3)]
o 103 :
© =205 m?/sec?
v, = 1435 m/sec .

(11.5.33)

To find the initial upward thrust on the tank,

we may note that before the plug is removed the
initial momentum of the system is zero. Since there
are no external forces acting on the system (tank plus
water), the momentum remains zero after the plug is
removed. But in'time interval dt, the liquid acquires
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FIGURE 11.27

a negative y-component of momentum equal to :

dpyg = — vy dm- (11.5.34) -

where dm is the mass which squirts from the orifice in
time dr. This quantity can be expressed as the product
of the density times the volume emitted in time dt, the
latter in turn being equal to the area a, times the

.distance the stream travels in time dt, which is v, dt.

We may write, therefore,

dm = payv, dt (11.5.35)
Substituting this irito Eq. (11.5.34), we find
dpq = — pasv,* dt’ (11.5.36).

The momentum imparted to the tank is just the nega-’
tive of this, in view of the fact that the total final
momientum must be zero. But the momentum im-
parted to the tank in time.dt may also be equated to.
the impulse of the force acting on the tank, according
to the impulse-momentum theorem We may write,

therefore,

(lpmnk = payv,> dt = Fdt

whereupon it is evident that the force F must be given
by .

F = payv,? = (103)(2.5 x 1074)(14.35)2 = 515N _

11.6 Surface Tension

-and Capillary Attraction

We have already had occasion to mentioni the phe-
nomenon of viscosity, or internal friction, in fluids,
and we have seen that this property has its origin in
the forces between individual molecules of the sub-
stance. There are other unique properties of liquids -
attributable to these intermolecular forces, notably
the phenomena of surface tension and capillary attrac-
tion. While these effects, like viscosity, do not alter



the basic laws of fluid mechanics, they do alter the
way they must be applied in certain particular situa-
tions. Therefore, though not treating these subjects
" in great detail, we shall offer a brief description of

each, trying to indicate under what circumstances .

they may be important and when they may safely
be neglected.
The phenomenon of surface tension arises from
" the fact that the intermolecular forces acting on
molecules at or near a liquid surface differ from those
which act on molecules deep in the interior of the
liquid. Deep inside the liquid, the forces acting on
each individual molecule are exerted equally in all
directions, while a molecule at the surface experiences
no force whatsoever from outside. A surface molecule,
when displaced slightly from its equilibrium position
toward the outside of the liquid, therefore, experiences
‘strong resultant forces which tend to return it to its
original position. This gives the surface of a liquid
somewhat- the character of a stressed elastic mem-
brane, like the surface of an inflated balloon, except,
of course, that it is self-healing when purictured !

The force necessary to rupture the surface “skin”
of any liquid can be measured conveniently by deter-
mining experimentally how much upward force is
required to pull a wire loop free of the surface, as
illustrated in Fig. 11.28a. From the force diagram
shown there, the force of surface tension T, can be
expressed in terms of the maximum force F required
to free the loop from the liquid and the weight of the
loop as

YF,=F—mg~T,=0 (11.8.1)
or

Now, the force T is clearly proportional to the length
of the loop that has to be pulled through the surface
and also to the strength of the intermolecular forces
that have to be overcome. The latter, of course,
depends in detail upon just what forces are exerted
by whatever molecules are present in the conditions
- of temperature, pressure, etc., which prevail, in other
words, upon the substance itself and its ambient
conditions. In any case, the force T, can be written
as a constant of proportionality times the length of
fluid surface ruptured: '

T, =yl (11.6.3)

All the information about the strength of the inter-
molecular forces is contained in the proportionality
constant y, called the specific surface tension parameter,
which will be different for each liquid. This parameter
is very difficult to calculate from the fundamental
properties of the molecules, but it is very easy to
measure by the arrangement shown in Fig. 11.28;

11.6 Surfacé Tension and Capillary Attraction

FIGURE 11.28. System of forces acting on a wire loop -
being pulled upward through the surface of a liquid.

in that diagram, the length of surface to be broken
is given by | =.2(2nr) = 4nr, whence from Eqs. (11.6.2)

-and (11.6.3),
yl=4nry = F — mg
F—mg (11.6.4)
4qr

It should be noted that the length of surface to be
ruptured is in this case twice the circumference of the
loop, since a surface film on the inside as well as the
outside of the wire loop has to be ‘broken, This is
illustrated in Fig. 11.28b. . _

The surface tension parameter y provides us
with an easily measured index of .the strength of.
intermolecular forces. From (11.6.3), it is evident that
7 has the dimensions of force per unit length, dynes/cm
or newtons/m in the metric system or pounds/ft in
the English system. Because of surface tension, a pin
or a razor blade can, with care, be supported by the
surface of a liquid much less dense than the metal
from which these objects are fashioned. In these cases,
the surface tension force is much greater than the
Archimedean buoyant force. Surface tension is also
responsible for the fact that small quantities of liquids
assume the form of spherical droplets, because the
stressed surface “skin” tends to contract, molding
the liquid into a form having minimum surface area
fot its volume, that is, into a sphere. Surface tension
is also important in understanding the behavior of
bubbles and soap films.

- There are situations in Wthh surface tension
forces are quite importatit and others in which they
are negligible. The surface tension of water will sup-
port a razor blade but not a battleship. Surface tension
forces are wholly responsible for the shape of a
raindrop but have nothing to .do with the shape of
Lake Erie. The difference lies in.the different ways
in which surface tension forces and weight forces vary
as a function of the linear dimensions of the fluid
mass in question. The perimeter of a fluid body varies
as the first power of its linear extent, its area varies
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as the square of the linéar extent while the volume
.(or mass) changes. -as the cube. Forces that are dlrectly
‘proportional 'to an object’s mass, therefore, fall off
much more rapidly as the dimensions of the object
decrease than do forces proportional to the surface
area or linear dimensions. The surface tension force
is an example of this latter type, while weight forces
are of the first kind.

Let us consider, for example, a ramdrop For a
spherical volume of water of radius, r, the surface
tension force holding the two hemispheric halves
together is the surface tension parameter y times the
cucumferencc of the sphere:
F, =yl =2nry (11.6.5)
The weight force, on the other hand, is given by
W =mg = pVg = %nrpg (11.6.6)

It will be equal to the external normal force expe-
rienced by the drop when it rests on a rigid surface.
For a-spherical water droplet of radius 0.1 cm, for

which p = 1.00 g/cm?® and y = 81 dynes/cm, we find

from (11.6.5) and (11.6.6) that the surface tension force
holding the droplet together is 50.9 dynes, while the
external normal force exerted by the surface on which
it rests, equal to its weight, is 4.1 dynes. In this case,
the external normal force is practically negligible in
comparison with the surface tension force; it is, there-
fore, the latter that determines the form of the droplet
and renders it practically spherical. ’
Now consider a spherical volume of water whose
radius is 10 cm. The surface tension force holding the
two halves together is now, according to Eq. (11.6.5),
100 times larger than before, or 5090 dynes. But, from
(11.6.6), the external normal force exerted on the
volume by its surroundings is proportional to 3, so it
will be 105 times larger than before and thus have the
value of 4.1 x 106 dynes. In this case, the force attrib-
utable to surface tension is almost 1000 times less
than the normal force from the surface on which the

volume of liquid rests. The surface tension force now

is clearly insufficient to maintain the spherical form
of the liquid volume. So the liquid spreads out to
ultimately take the shape of whatever container it
- happens to be in. Now the container furnishes the
normal force nécessary to establish equilibrium with
the fluid’s weight force, and the relatively small surface
tension force is of little or no importance.

If the liquid is supported only by a perfectly
flat surface, a circular puddle will form which will
spread until its circumference is so large that the
surface tension force is again sufficient to allow the
system to reach equilibrium. When this occurs, the
surface' tension force on the upper half of the puddle
(which acts downward) will just balance the normal
force exerted by the lower half of the puddle on the
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FIGURE 11.29. System of forces acting on fluid ina ~
circular puddle. ‘

upper half, as illustrated in Fig. 11.29. The normal
force N is half the weight of a sphere of water of
radius 10'cm and thus of volume ¥V = %m(10)® =
4189 cm?. The surface tension force F; is y times the
circumference of the puddle, 2zr, where r is the radius.
Equating these quantities, we find

N = LpgV = y2xr

__pgV _ (1.00)(980)(4189)
4wy (4)(3.1416)(81)

= 4033 cm, or 40.33 m
(11.6.7)

The resulting puddle is, then, over 80 m (264 ft) in
diameter! The corresponding depth of fluid, h, can-

. be obtained from

v =nr*h = 4189 cm?

SV (4189)
T ar? (3.1416)(4033)

The puddle so formed is clearly very large and very
shallow. The quantitative accuracy of these numbers
should not be taken very seriously, since there are -
many practical factors that inteffere with actually
observing the formation of such a puddle in reality.
The numbers, however, do illustrate the relative weak-
ness of surface tension forces in situations where
relatively large volumes or masses of fluids are
involved.

Closely related to surface tension is the phenom-

=820 x 10" 5cm (o8

—

FIGURE 11 30 Capillary rise of a llquxd in tubes of
various radii.

-



enon of capillary attraction. When liquids confined
within thin tubes, or capillaries, are allowed to reach
equilibrium with a free liquid outside, as shown in
Fig. 11.30, it is found that the level of the fluid within

the tube is slightly higher than the free outside level, .

and the smaller the radius of the tube, the higher the
level within. The difference in- levels depends- also
upon the liquid used and the composition of the

capillary tubing; in some cases, such as mercury within ;

glass, the liquid surface within the capillary may be
lower rather than higher. Associated with the capillary
. rise is the formation of a curved liquid surface (or
“meniscus”) within the tube, the level of the fluid rising
toward the edge of the. capillary where liquid and
tube wall meet, though in the mercury—glass system
the curvature is in the other direction.
‘This phenomenon is also caused by intermolec-

'ular attraction, but now between the molecules of the
liquid and those of the capillary wall rather than
between the molecules of the liquid alone. Consider
the situation illustrated in Fig. 11.31. From this
drawing, one may easily infer that the forces of
intermiolecular attraction responsible for the capillary
rise are those which exist where the liquid surface
meets the capillary wall, denoted by F,. Elsewhere
within the capillary, of course, there are also forces
of intermolecular attraction between molecules of
liquid and those in the capillary wall, such as F and
F' in Fig. 11.31. But these forces act horizontally, as
shown, and cannot support the liquid column within
the caplllary We need, therefore, only consider the
surface tension force F; as supporting the liquid
column. Indeed, it is only the vertical component of
this force, F, cos 6, where @ is the contact angle at
which the liquid intersects the tube wall, that supports
the column within the capillary.

- Now, F, is equal to the surface tension y times
the circumference of the tube:

F, = 2mry (11.6.9)

F Fs cos 6 ) Fs

he

FIGURE 11.31. System of forces acting on the liquid in a
capillary tube.

- Summary

. where 7 is the ms1de tadius of the caplllary Also

since the system is in equlllbnum
Y F,=F;cos0 —mg=0

where m represents the mass of the shaded liquid
column in Fig. 11.31. Neglecting the small amount
of fluid above the level k at the edges of the column
this can be written as

(11.6:10) .

m= pV = prr*h (11.6.11)

Inserting the values of m and F, as given by (11 6.11)
and (11.6.9) into (11.6.10), we obtain
2mry cos § — npgir*h =0

2y cos § (11.6.12)

pgr :
Thus, we see that the capillary rise & is proportional

to the surface tension.y and to the cosine of the contact
angle and inversely proportional to- the capillary

h=

radius and to the density of the fluid. For water in a

glass capillary (p = 1.00 g/cm?, y = 81 dynes/cm 8=
25.5°) of radius 0.05 cm, '

(2)(81)(0.9026)
(1.00)(980)(0.05)

The strength of the intermolecular attraction
between liquid molecules and-those of the capillary
wall enters into this calculation through the ‘contact,
angle 6. This quantity has a definite, measurable value
for each pair of substances. For example, for water in a
glass capillary, § = 25.5°. If the force of attraction
between molecules of liquid and capillary is the same
as between the molecules of liquid themselves, then
0 = 90° and cos § = 0, and there will be no capillary
effect at all. If the forces of attraction between liquid
and wall molecules are stronger than the forces of
attraction between liquid molecules, then 6 < 90° and -
cos 8 is positive, resulting in a capillary rise. This is
the situation encountered with water in a glass tube.
If the forces of attraction beétween individual liquid
molecules are stronger than those existing between
fluid molecules and capillary molecules, the contact
angle will be greater than 90° and cos g will be
negative, leading to a capillary depression. This effect
is observed with mercury in glass capillaries.

= 2,98 cm

SUMMARY

~ Fluids such as liquids and gases are substances that .

flow under the action of applied forces. Gases are
highly compressible, while liquids are practically
incompressible.

" The pressure exerted by a liquid or on'a liquid
is the force per unit area it exerts or experiences. The
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FLUID MECHANICS

density of a lbiqu'id is its mass per unit volume. Pascal’s
principle states that

pressure applied to a fluid is transmitted undi-
. minished to all parts of the fluid and to the walls
of its container. .

For incompressible fluids, the variation of pres-
.sure with depth is given by

P =Py +pgy

where P, is the surface pressure and y is the depth.

When a body is partially or totally immersed
in a fluid, the fluid exerts an upward force upon it
which is referred to as buoyant force. Archimedes’
principle states that the net buoyant force on a body
is equal to the weight of the fluid displaced by the
object. A B

The dynamics of steady-state, nomnviscous, ir-
rotati-nal fluid flow are described -by Bernoulli’s
equation, which states that, at any two points within
a tube of flow,

P14 pgys + 3pv,® = P, + pgy, + 3pv,?

Surface tension and capillary attraction are
_effects that arise from the action of intermolecular
_attractive forces. Near the surface of a liquid, these
 forces tend to pull fluid molecules. that are displaced

from "equilibrium toward the outside of the liquid
back inte the fluid; this gives the surface of the, liquid
the character of a self-healing stressed elastic mem-
" “brane. The surface tension parameter y is the force
necessary to rupture a unit length of fluid surface.
Surface tension is responsible for the spherical form
of liquid droplets and for the forces that allow a pin
or a razor blade to float on the surface of a fluid
. despite the fact that the weight exceeds the Archi-
medean buoyant force. ]
Capillary attraction is responsible for the rise
of a fluid within a fine capillary with respect to the
~ fluid level outside. It arises because the intermolecular
attractive forces between fluid molecules and the
molecules of the capillary tubing are stronger than
.those between the fluid molecules themselves.

QUESTIONS

L. Explain why a helium-filled balloon soars toward the
sky while an air-filled one drops to the ground.

2. Can you think of any way of using Archimedes’ principle
to determine the weight of your head without removing
it? ‘ ) "

3. An ice cube is placed in a glass of water. The fluid now
completely fills the glass. Describe what bappens when

. the ice cube melts. ‘

4. ‘Pressure is expressed fundamentally.in units of force per
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unit area. What is meant, then, when we describe pres-
sures in units such as “millimeters of mercury”?

5. Itisalways easier to float in the ocean than in a swimming
pool. Can you explain why?

6. Is it true that when an object floats, the fraction sub-
merged depends on the ratio of densities of the fluid and
the object? '

7. Under what conditions does the pressure in a Auid in-
crease linearly with depth? - o

8. A body sinking to the bottom of the ocean after a time
achieves a- certain constant terminal velocity. What
forces act on it while it sinks? '

9. What methods can be used to alter the depth at which a
submarine cruises? ‘

10. A plastic bag is weighed in air when empty and also when
filled with air at atmospheric pressure. Are the two weights
different? Explain. The two weighings are now repeated
under vacuum. Are the weights equal to each other in
this case?

11. When a truck passes your car on the highway, your car
experiences a force. Explain this on the basis of Bernoulli’s
equation,

12. A fluid flows through a funnel the upper part of which is
conical in shape. How does the fluid speed vary with
distance from the upper surface of the fluid? -

13. In steady streamline flow at any given location, the
velocity vector v does not change with time. Does that
mean that elements of fluid are unaccelerated?

14. A solid cube suspended from a spring balance under
vacuum has a weight W. When it is completely submerged
in liquid of density p, its weight is /2. Find the volume -
of the cube. _ :

15. The purity of gold can be determined by weighing it in air
and also in water. Describe how this procedure works.

16. Why is it that a towel dries you off after a shower much

more efficiently than a sheet of waxed paper having the
same dimensions? o

PROBLEMS

L Show that (a) 1g/em® =10°kg/m? (b) 1kg/m?=
- 1.939 % 1072 slug/ft, (c) 1 dyne/cm?® =0.1 N/m2, ()]
1 Ibjin.? = 68,900 dynes/crm?. :

2. In Fig. 11.4, vessels (a) and (b) have the same base area,
as do vessels () and (d). The pressure at the bottom of
each vessel is the same, since they are all filled with the
same fluid to the same level. This means that the force
exerted by the liquid on the base of (a) and (b) is the same,
and, therefore, each vessel should exert the same down-
ward force on the surface supporting it. The same remarks
apply to vessels (c) and (d). But this is saying that (a) and
(b) should have the same weight, as should (c) and (d).
However, isn’t it clear from the drawing that (b) should
weigh much more than (a), and (c) should weigh much’
more than (d)? What is the resolution of this apparent
hydrostatic paradox?

3. All the air is evdcuated from a spherical glass bulb of
radius 0.12 m. (a) Taking normal atmospheric pressure to
be 1.013 x 10° dyne/cm? or 1.013 x 10° newtons/meter?,
find the total force exerted by the atrosphere on its sur-"
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Fluid mechanics

- From Wikipedia, the free encyclopedia

Fluid mechanics is the
study of fluids and the
forces on them. (Fluids
include liquids, gases, and
plasmas.) Fluid mechanics
can be divided into fluid
statics, the study of fluids
at rest; fluid kinematics,
the study of fluids in
motion; and fluid
dynamics, the study of the
effect of forces on fluid
motion. It is a branch of
continuum mechanics, a
subject which models
matter without using the
information that it is made
out of atoms, that is, it
models matter from a
macroscopic viewpoint
rather than from a
microscopic viewpoint.
Fluid mechanics,
especially fluid dynamics,
is an active field of
research with many
unsolved or partly solved
problems. Fluid mechanics
can be mathematically
complex. Sometimes it can
best be solved by
numerical methods,

typically using computers.
d di il

Continuum mechanics

Laws

Conservation of mass
Conservation of momentum
Conservation of energy
Entropy inequality

Soﬁd mechanics

Solids
Stress » Deformation
Compatibility
Finite strain + Infinitesimal strain
_ Elasticity (linear) + Plasticity
Bending - Hooke's law
Failure theory
Fracture mechanics

Frictionless/Frictional Contact mechanics

Fluid mechanics

Fluids
Fluid statics + Fluid dynamics
Surface tension
Navier—Stokes equations

Viscosity:
Newtonian, Non-Newtonian
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dynamics (CFD), is Viscoelasticity

devoted to this approach

to solving fluid mechanics Smart fluids:
problems. Also taking Magnetorheological
advantage of the highly Electrorheological
visual nature of fluid flow | Ferrofluids

is particle image

velocimetry, an Scientists  Rpeometry - Rheometer

experimental method for

visualizing and analyzing
fluid flow. Navier + Newton - Stokes

Bernoulli - Cauchy - Hooke
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Brief history

Main article: History of fluid mechanics

The study of fluid mechanics goes back at least to the days of ancient
G h A h d i i dflid 1 db d
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advancement in fluid mechanics began with Leonardo da Vinci (observation
and experiment), Evangelista Torricelli (barometer), Isaac Newton
(viscosity) and Blaise Pascal (hydrostatics), and was continued by Daniel
Bernoulli with the introduction of mathematical fluid dynamics in
Hydrodynamica (1738). Tnviscid flow was further analyzed by various
mathematicians (Leonhard Euler, d'Alembert, Lagrange, Laplace, Poisson)
and viscous flow was explored by a multitude of engineers including
Poiseuille and Gotthilf Heinrich Ludwig Hagen. Further mathematical
justification was provided by Claude-Louis Navier and George Gabriel
Stokes in the Navier—Stokes equations, and boundary layers were
investigated (Ludwig Prandtl, Theodore von Karman), while various
scientists (Osborne Reynolds, Andrey Kolmogorov, Geoffrey Ingram
Taylor) advanced the understanding of fluid viscosity and turbulence.

Relationship to continuum mechanics

Fluid mechanics is a subdiscipline of continuum mechanics, as illustrated in
the following table.

Elasticity
Describes materials that return to their rest
shape after an applied stress.

Solid mechanics

Conti The study of the physics of PlaSt.iCitY .
ontinuum | . «:nu0us materials with a | Describes materials

mechanics |defined rest shape. that permanently Rheology
The study of deform after a The study of
the physics of sufficient applied materials with both
continuous stress. solid and fluid

i . . ; characteristics.
materials Fluid mechanics Non-Newtonian

The study of the physics of | flyids
continuous materials which

take the shape of their Newtonian fluids
container.

In a mechanical view, a fluid is a substance that does not support shear
stress; that is why a fluid at rest has the shape of its containing vessel. A
fluid at rest has no shear stress.
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Assumptions

Like any mathematical model of the real world, fluid mechanics makes some
basic assumptions about the materials being studied. These assumptions are
turned into equations that must be satisfied if the assumptions are to be held
true. For example, consider an incompressible fluid in three dimensions. The
assumption that mass is conserved means that for any fixed closed surface
(such as a sphere) the rate of mass passing from outside to inside the
surface must be the same as rate of mass passing the other way.
(Alternatively, the mass inside remains constant, as does the mass outside).
This can be turned into an integral equation over the surface.

Fluid mechanics assumes that every fluid obeys the following:

e Conservation of mass

= Conservation of energy

m Conservation of momentum

The continuum hypothesis, detailed below.

Further, it is often useful (at subsonic conditions) to assume a fluid is
incompressible — that is, the density of the fluid does not change.

Similarly, it can sometimes be assumed that the viscosity of the fluid is zero
(the fluid is inviscid). Gases can often be assumed to be inviscid. If a fluid
is viscous, and its flow contained in some way (e.g. in a pipe), then the flow
at the boundary must have zero velocity. For a viscous fluid, if the boundary
is not porous, the shear forces between the fluid and the boundary results
also in a zero velocity for the fluid at the boundary. This is called the no-
slip condition. For a porous media otherwise, in the frontier of the containing
vessel, the slip condition is not zero velocity, and the fluid has a
discontinuous velocity field between the free fluid and the fluid in the
porous media (this is related to the Beavers and Joseph condition).

Continuum hypothesis

Main article: Continuum mechanics
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continuous. That is, properties such as density, pressure, temperature, and
velocity are taken to be well-defined at "infinitely" small points, defining a
REV (Reference Element of Volume), at the geometric order of the distance
between two adjacent molecules of fluid. Properties are assumed to vary
continuously from one point to another, and are averaged values in the REV.
The fact that the fluid is made up of discrete molecules is ignored.

The continuum hypothesis is basically an approximation, in the same way
planets are approximated by point particles when dealing with celestial
mechanics, and therefore results in approximate solutions. Consequently,
assumption of the continuum hypothesis can lead to results which are not of
desired accuracy. That said, under the right circumstances, the continuum
hypothesis produces extremely accurate results.

Those problems for which the continuum hypothesis does not allow
solutions of desired accuracy are solved using statistical mechanics. To
determine whether or not to use conventional fluid dynamics or statistical
mechanics, the Knudsen number is evaluated for the problem. The Knudsen
aumber is defined as the ratio of the molecular mean free path length to a
certain representative physical length scale. This length scale could be, for
example, the radius of a body in a fluid. (More simply, the Knudsen number
is how many times its own diameter a particle will travel on average before
hitting another particle). Problems with Knudsen numbers at or above unity
are best evaluated using statistical mechanics for reliable solutions.

Navier—Stokes equations

Main article: Navier—Stokes equations

The Navier—Stokes equations (named after Claude-Louis Navier and
George Gabriel Stokes) are the set of equations that describe the motion of
fluid substances such as liquids and gases. These equations state that
changes in momentum (force) of fluid particles depend only on the external
pressure and internal viscous forces (similar to friction) acting on the fluid.
Thus, the Navier—Stokes equations describe the balance of forces acting at
any given region of the fluid.
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change of the variables of interest. For example, the Navier—Stokes
equations for an ideal fluid with zero viscosity states that acceleration (the
rate of change of velocity) is proportional to the derivative of internal
pressure.

This means that solutions of the Navier—Stokes equations for a given
physical problem must be sought with the help of calculus. In practical
terms only the simplest cases can be solved exactly in this way. These cases
generally involve non-turbulent, steady flow (flow does not change with
time) in which the Reynolds number is small.

For more complex situations, such as global weather systems like El Nifio
or lift in a wing, solutions of the Navier—Stokes equations can currently only
be found with the help of computers. This is a field of sciences by its own
called computational fluid dynamics.

General form of the equation

The general form of the Navier—Stokes equations for the conservation of
momentum 1s:

Dv _

where

{7 is the fluid density,

E}% is the substantive derivative (also called the material
deﬁvative),

v is the velocity vector,

f is the body force vector, and

[P is a tensor that represents the surface forces applied on a fluid
particle (the stress tensor).

Unless the fluid is made up of spinning degrees of freedom like vortices, J*
is a symmetric tensor. In general, (in three dimensions) [ has the form:
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Main article: Newtonian fluid

The constant of proportionality between the shear stress and the velocity
gradient is known as the viscosity. A simple equation to describe Newtonian
fluid behaviour is

v

dy
where

T is the shear stress exerted by the fluid ("drag")
L is the fluid viscosity — a constant of proportionality

d

T is the velocity gradient perpendicular to the direction of shear.
Y

For a Newtonian fluid, the viscosity, by definition, depends only on
temperature and pressure, not on the forces acting upon it. If the fluid is
incompressible and viscosity is constant across the fluid, the equation
governing the shear stress (in Cartesian coordinates) is

\Ozr; Oy

where

T;; is the shear stress on the i face of a fluid element in the jth

direction
v; is the velocity in the i th direction

X; is the jth direction coordinate.

If a fluid does not obey this relation, it is termed a non-Newtonian fluid, of
which there are several types.

Among fluids, two rough broad divisions can be made: ideal and non-ideal
fluids. An ideal fluid really does not exist, but in some calculations, the
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where

s  are normal stresses,
= 7 are tangential stresses (shear stresses).

The above is actually a set of three equations, one per dimension. By
themselves, these aren't sufficient to produce a solution. However, adding
conservation of mass and appropriate boundary conditions to the system of
equations produces a solvable set of equations.

Newtonian versus non-Newtonian fluids

A Newtonian fluid (named after Isaac Newton) is defined to be a fluid
whose shear stress is linearly proportional to the velocity gradient in the
direction perpendicular to the plane of shear. This definition means
regardless of the forces acting on a fluid, it continues to flow. For example,
water is a Newtonian fluid, because it continues to display fluid properties
no matter how much it is stirred or mixed. A slightly less rigorous definition
is that the drag of a small object being moved slowly through the fluid is
proportional to the force applied to the object. (Compare friction). Important
fluids, like water as well as most gases, behave — to good approximation

__ as a Newtonian fluid under normal conditions on Earth.[1]

By contrast, stirring a non-Newtomian fluid can leave a "hole" behind. This
will gradually fill up over time — this behaviour is seen in materials such as
pudding, oobleck, or sand (although sand isn't strictly a fluid). Alternatively,
stirring a non-Newtonian fluid can cause the viscosity to decrease, so the
fluid appears "thinner" (this is seen in non-drip paints). There are many
types of non-Newtonian fluids, as they are defined to be something that fails
to obey a particular property — for example, most fluids with long

molecular chains canreact ina non-Newtonian manner.[l]
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One can group real fluids into Newtonian and non-Newtonian. Newtonian
fluids agree with Newton's law of viscosity. Non-Newtonian fluids can be
either plastic, bingham plastic, pseudoplastic, dilatant, thixotropic,
rheopectic, viscoelatic.

See also

Notes

Aerodynamics

Applied mechanics
Secondary flow
Bernoulli's principle
Communicating vessels

1. ~4b Batchelor (1967), p. 145.
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Pressure

Pressure

Pressure is defined as force per unit area. It is usually more
convenient to use pressure rather than force to describe the
influences upon fluid behavior. The standard unit for pressure is the
Pascal, which is a Newton per square meter.

For an object sitting on a surface, the force pressing on the surface
is the weight of the object, but in different orientations it might have
a different area in contact with the surface and therefore exert a
different pressure.

Weight
1 | o [
Faree F U N .ﬁu = [_-]‘..'U“n md
Pressure = - - ___ P = 10,000 Pascals
Area A L A force
P = 1000 Pascals aiferent area.
T T different pressure

Pressure calculation.

There are many physical situations where pressure is the most
important variable. If you are peeling an apple, then pressure is the
key variable: if the knife is sharp, then the area of contact is small
and you can peel with less force exerted on the blade. If you must
get an injection, then pressure is the most important variable in
getting the needle through your skin: it is better to have a sharp
needle than a dull one since the smaller area of contact implies that
less force is required to push the needle through the skin.

When you deal with the pressure of a liquid at rest, the medium is
treated as a continuous distribution of matter. But when you deal
with a gas pressure, it must be approached as an average pressure

Index

Pressure
concepts
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Pressure

Pressure in a fluid can be seen to be a measure of energy per unit
volume by means of the definition of work. This energy is related to
other forms of fluid energy by the Bernoulli equation.

- Force F F-d W Energy
Area A A-d V  Volume

HyperPhysics***** Mechanics ***** Fluids Na\fi Lo Back
Pressure as Energy Density

Pressure in a fluid may be considered to be a measure of energy
per unit volume or energy density. For a force exerted on a fluid,
this can be seen from the definition of pressure:

_Force F_F-d W  Energy

Area A A-d V. Volume
Index

The most obvious application is to the hydrostatic pressure of a  |Bernoulli
fluid, where pressure can be used as energy density alongside concepts

kinetic energy density and potential energy density in the Bernoulli
equation.

The other side of the coin is that energy densities from other causes
can be conveniently expressed as an effective "pressure". For

example, the energy density of solvent molecules which leads to
ii d ti Th d it
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Fluid Kinetic Energy

The kinetic energy of a moving fluid is more useful in applications
like the Bernoulli equation when it is expressed as kinetic energy
per unit volume

1 2
o . - Y~ ‘
Kinetic energy 1

— pasant ; }Cﬂ_f

3
E

Volime V
Index

When the kinetic energy is that of fluid under conditions of laminar |Bernoulli
flow through a tube, one must take into account the velocity profile || concepts
to evaluate the kinetic energy. Across the cross-section of flow, the
kinetic energy must be calculated using the average of the velocity
squared , which is not the same as squaring the average velocity.

Expressed in terms of the maximum velocity vy, at the center of the

flow, the kinetic energy is

KE 1

L o, 1w
;o 2 /

.o . . . e .
V Yy = Py pv = > p— Show more detail

Go Back
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Pressure

Fluid Potential Energy

The potential energy of a moving fluid is more useful in
applications like the Bernoulli equation when is expressed as

potential energy per unit volume Index
Potential energy mgh | Bernoulli
— = ——— = pgh concepts

Volume V

The energy density of a fluid can be expressed in terms of this

potential energy density along with kinetic energy density and fluid

pressure.

R||Go Back
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Pascal's Principle

Pascal's principle : Pressure applied to an enclosed fluid is transmitted
undiminished to every part of the fluid, as well as to the walls of the
container.

A common application of this is a hydraulic lift used to raise a car off the
ground so it can be repaired at a garage. A small force applied to a small-
area piston is transformed to a large force at a large-area piston. If a car
sits on top of the large piston, it can be lifted by applying a relatively
small force to the smaller piston, the ratio of the forces being equal to the
ratio of the areas of the pistons.

l play H pause H <<step } \ step>> || reset \

l Add mass to the small cylinder l

Are you getting something for nothing here? Absolutely not. The hydraulic
lift is very similar to a lever, where a small force applied through a large
distance can move a heavy object a small distance. The work required to
lift the heavy object equals the work done by the small force. A lever uses
a bar and a fulcrum to transform the work - the fluid does that in the
hydraulic lift



12/1/4

Electrostatics
Capacitors

Current and
Resistance

Direct Current

Circuits

Electromagnetic

Forces and
Fields

Electromagnetic

Induction

Alternating

Current Circuits

Power
Light

Characteristics

of Light

Geometrical
Optics

Wave Optics
Diffraction

Modern Physics
Relativity

Quantum
Mechanics

Atomic
Structure

Nuclear Physics

~ exerted at point

Related Topics:

o Anatomy &
Physiology

o Astronomy

o Earth Sciences

n Geology

Physics: Fluids

L
oy

o
fluid

Pascal's principle is used to easily lift a car.

Let the subscripts and denote the quantities at each piston. The press
equal; therefore, Pa = 'Db . Substitute the expression for pressure in term

&
force and area to ob’cainjg/ /2’ = ( b / g*). Substitute n 2 for the are:

circle, simplify, and solve for  : =( ) 2%/ 2).Because the fol

is multiplied by the square of the ratio of the radii and
a modest force on the small piston can lift a relatively larger weight on |

Water commonly provides partial support for any object placed in it. The |
force on an object placed in a fluid is called the According

the magnitude of a buoyant force on a completel
partially submerged object always equals the weight of the fluid displacec
object.

Archimedes' principle can be verified by a nonmathematical argument. Cc
the cubic volume of water in the container of water shown in Figure _ . Tt
volume is in equilibrium with the forces acting on it, which are the weight
buoyant force; therefore, the downward force of the weight () must be
balanced by the upward buoyant force (), which is provided by the rest
water in the container.
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Pascal’s Law

* Pressure applied to an enclosed fluid is
transmitted undiminished to every portion
of the fluid and the walls of the containing
vessel



Archimedes’ Principle

* The buoyant force in a liquid is equal in
magnitude to the gravitational force on
the displaced volume of liquid
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Mass Density and Pressure

* Mass density = p = Mass/volume

e Pressure  P=

Units: pascal [ Pa] :[N-m‘2:|

* bar: 1bar =10° Pa

atmosphere latm =1.013x10° Pa



Pressure and Depth

* Fluid with one end open to atmosphere pressure

F, . Consider a slice of the fluid of cross
sectional area A at a depth z and thickness dz.
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Newton’s Second Law

A(P(z)-P(z+Az))+ pgdAz =0



Pressure and Depth

P(z+Az)~P(z)

Fluid Equation -
9 ~ PEg
Definition of derivative 42 _ . P(z+Az)-P(z)
dZ Az—0 AZ
. . . dP
Differential equation —=pg

Integration P(f) ’ ,
dP = j pgdz
I

z=0

Solution P(z)-P, = pgz
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Buoyancy

From Wikipedia, the free encyclopedia

In physics, buoyancy (s /D01.8nSi/) is
a force exerted by a fluid that opposes
an object's weight. In a column of
fluid, pressure increases with depth as
a result of the weight of the overlying
fluid. Thus a column of fluid, or an
object submerged in the fluid,
experiences greater pressure at the
bottom of the column than at the top.
This difference in pressure results in a
net force that tends to accelerate an
object upwards. The magnitude of that
force is proportional to the difference
in the pressure between the top and
the bottom of the column, and is also
equivalent to the weight of the fluid
that would otherwise occupy the
column. For this reason, an object
whose density is greater than that of the fluid in Wthh it is submerged tends
to sink. If the object is either less dense than the liquid or is shaped
appropriately (as in a boat), the force can keep the object afloat. This can
occur only in a reference frame which either has a gravitational field or is
accelerating due to a force other than gravity defining a "downward"
direction (that is, a non-inertial reference frame). In a situation of fluid
statics, the net upward buoyancy force is equal to the magnitude of the

weight of fluid displaced by the body.[l]

y of the ohject)

The forces at work in buoyancy
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Archimedes' principle

Main article: Archimedes' principle

Archimedes' principle is named after Archimedes of Syracuse, who first

discovered this law in 212 B.C.[2] His treatise, On floating bodies,
proposition 5 states: |

Any floating object displaces its own weight of fluid.

— Archimedes of Syracuse[3]

For more general objects, floating and sunken, and in gases as well as liquids
(i.e. a fluid), Archimedes' principle may be stated thus in terms of forces:

Any object, wholly or partially immersed in a fluid, is buoyed
up by a force equal to the weight of the fluid displaced by the
object.

— Archimedes of Syracuse

with the clarifications that for a sunken object the volume of displaced fluid
is the volume of the object and for a floating object on a liquid the weight of
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More tersely: Buoyancy = weight of displaced fluid.

Archimedes' principle does not consider the surface tension (capillarity)
acting on the body,[4] but this additional force modifies only the amount of
fluid displaced, so the principle that Buoyancy = weight of displaced fluid
remains valid.

The weight of the displaced fluid is directly proportional to the volume of the
displaced fluid (if the surrounding fluid is of uniform density). In simple
terms, the principle states that the buoyancy force on an object is going to be
equal to the weight of the fluid displaced by the object, or the density of the
fluid multiplied by the submerged volume times the gravitational constant, g.
Thus, among completely submerged objects with equal masses, objects with
greater volume have greater buoyancy.

Suppose a rock's weight is measured as 10 newtons when suspended by a
string in a vacuum with gravity acting upon it. Suppose that when the rock 1s
lowered into water, it displaces water of weight 3 newtons. The force it then
exerts on the string from which it hangs would be 10 newtons minus the 3
newtons of buoyancy force: 10 — 3 = 7 newtons. Buoyancy reduces the
apparent weight of objects that have sunk completely to the sea floor. It is
generally easier to lift an object up through the water than it is to pull it out
of the water.

Assuming Archimedes' principle to be reformulated as follows,
apparent immersed weight = weight — weight of displaced fluid

then inserted into the quotient of weights, which has been expanded by the
mutual volume

density welght

density of luid  weight of displaced fluid’

yields the formula below. The density of the immersed object relative to the
density of the fluid can easily be calculated without measuring any volumes:

density of object weight,

LA | :
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(This formula is used for example in describing the measuring principle of a
dasymeter and of hydrostatic weighing.)

Example: If you drop wood into water, buoyancy will keep it afloat.

Example: A helium balloon in a moving car. In increasing speed or driving a
curve, the air moves in the opposite direction of the car's acceleration. The
balloon however, is pushed due to buoyancy "out of the way" by the air, and
will actually drift in the same direction as the car's acceleration.

Forces and equilibrium

This is the equation to calculate the pressure inside a fluid in equilibrium.
The corresponding equilibrium equation is:

f+dive=20

where f is the force density exerted by some outer field on the fluid, and o 1s
the stress tensor. In this case the stress tensor is proportional to the identity
tensor:

Fij = ——jJ(LJ
Here d;; is the Kronecker delta. Using this the above equation becomes:
f =Vp.

Assuming the outer force field is conservative, that is it can be written as the
negative gradient of some scalar valued function:

f=-NVo.
Then:
Vip+ ®)=0== p+ P = constant.

Therefore, the shape of the open surface of a fluid equals the equipotential
plane of the applied outer conservative force field. Let the z-axis point
downward. In this case the field is gravity, so @ = —p,gz where g is the
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the pressure inside the fluid, when it is subject to gravity, is
P = Pr<.

So pressure increases with depth below the surface of a liquid, as z denotes
the distance from the surface of the liquid into it. Any object with a non-zero
vertical depth will have different pressures on its top and bottom, with the
pressure on the bottom being greater. This difference in pressure causes the
upward buoyancy forces.

The buoyancy force exerted on a body can now be calculated easily, since
the internal pressure of the fluid is known. The force exerted on the body can
be calculated by integrating the stress tensor over the surface of the body
which is in contact with the fluid:

B= ?,(J(EA

The surface integral can be transformed into a volume integral with the help
of the Gauss divergence theorem:

B= / divodV = — [ £dV = —psg / dV = —pegV

where V is the measure of the volume in contact with the fluid, that is the

volume of the submerged part of the body. Since the fluid doesn't exert force
on the part of the body which is outside of it.

The magnitude of buoyancy force may be appreciated a bit more from the
following argument. Consider any object of arbitrary shape and volume V’
surrounded by a liquid. The force the liquid exerts on an object within the
liquid is equal to the weight of the liquid with a volume equal to that of the
object. This force is applied in a direction opposite to gravitational force,
that is of magnitude:

B = pfl'fzﬁsp i

where pris the density of the fluid, Vg, is the volume of the displaced body
of liquid, and g is the gravitational acceleration at the location in question.
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shape, the force the liquid exerts on it must be exactly the same as above. In
other words the "buoyancy force" on a submerged body is directed in the
opposite direction to gravity and is equal in magnitude to

B=p/Vy.

The net force on the object must be zero if it is to be a situation of fluid
statics such that Archimedes principle is applicable, and is thus the sum of
the buoyancy force and the object's weight

Foee = 0=mg — pViiapy

If the buoyancy of an (unrestrained and unpowered) object exceeds its
weight, it tends to rise. An object whose weight exceeds its buoyancy tends
to sink. Calculation of the upwards force on a submerged object during its
accelerating period cannot be done by the Archimedes principle alone; it is
necessary to consider dynamics of an object involving buoyancy. Once it
fully sinks to the floor of the fluid or rises to the surface and settles,
Archimedes principle can be applied alone. For a floating object, only the
submerged volume displaces water. For a sunken object, the entire volume
displaces water, and there will be an additional force of reaction from the
solid floor.

In order for Archimedes' principle to be used alone, the object in question
must be in equilibrium (the sum of the forces on the object must be zero),
therefore;

mg = p¢Vaispd,
and therefore
m = pViisp-

showing that the depth to which a floating object will sink, and the volume of
fluid it will displace, is independent of the gravitational field regardless of
geographic location.

(Note: If the fluid in question is seawater, it will not have the same
density (p) at every location. For this reason, a ship may display a
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It can be the case that forces other than just buoyancy and gravity come into
play. This is the case if the object is restrained or if the object sinks to the
solid floor. An object which tends to float requires a tension restraint force 7'
in order to remain fully submerged. An object which tends to sink will
eventually have a normal force of constraint NV exerted upon it by the solid
floor. The constraint force can be tension in a spring scale measuring its
weight in the fluid, and is how apparent weight is defined.

If the object would otherwise float, the tension to restrain it fully submerged
is:

I'=pi/Vg—myg.

When a sinking object settles on the solid floor, it experiences a normal force
of:

N=mg —psVy.

It is common to define a buoyancy mass my, that represents the effective
mass of the object as can be measured by a gravitational method. If an object

which usually sinks is submerged suspended via a cord from a balance pan,
the reference object on the other dry-land pan of the balance will have mass:

» L
o

where 1, is the true (vacuum) mass of the object, and p, and pys are the

average densities of the object and the surrounding fluid, respectively. Thus,
if the two densities are equal, p, = ps, the object is seemingly weightless, and

is said to be neutrally buoyant. If the fluid density is greater than the average
density of the object, the object floats; if less, the object sinks.

Another possible formula for calculating buoyancy of an object is by finding
the apparent weight of that particular object in the air (calculated in
Newtons), and apparent weight of that object in the water (in Newtons). To
find the force of buoyancy acting on the object when in air, using this
particular information, this formula applies:
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The final result would be measured in Newtons.

Air's density is very small compared to most solids and liquids. For this
reason, the weight of an object in air is approximately the same as its true
weight in a vacuum. The buoyancy of air is neglected for most objects during
a measurement in air because the error is usually insignificant (typically less
than 0.1% except for objects of very low average density such as a balloon

or light foam).

Stability

A floating object is stable if it tends to restore itself to an equilibrium
position after a small displacement. For example, floating objects will
generally have vertical stability, as if the object is pushed down slightly, this
will create a greater buoyancy force, which, unbalanced by the weight force,
will push the object back up.

Rotational stability is of great importance to floating vessels. Given a small
angular displacement, the vessel may return to its original position (stable),
move away from its original position (unstable), or remain where it is
(neutral).

Rotational stability depends on the relative lines of action of forces on an
object. The upward buoyancy force on an object acts through the center of
buoyancy, being the centroid of the displaced volume of fluid. The weight
force on the object acts through its center of gravity. A buoyant object will
be stable if the center of gravity is beneath the center of buoyancy because
any angular displacement will then produce a 'righting moment'.

Compressible fluids and objects

The atmosphere's density depends upon altitude. As an airship rises in the
atmosphere, its buoyancy decreases as the density of the surrounding air
decreases. In contrast, as a submarine expels water from its buoyancy tanks,
it rises because its volume is constant (the volume of water it displaces if it
is fully submerged) while its mass is decreased.
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As a floating object rises or falls, the forces external to it change and, as all
objects are compressible to some extent or another, so does the object's
volume. Buoyancy depends on volume and so an object's buoyancy reduces
if it is compressed and increases if it expands.

If an object at equilibrium has a compressibility less than that of the
surrounding fluid, the object's equilibrium is stable and it remains at rest. If,
however, its compressibility is greater, its equilibrium is then unstable, and it
rises and expands on the slightest upward perturbation, or falls and
compresses on the slightest downward perturbation.

Submarines rise and dive by filling large tanks with seawater. To dive, the
tanks are opened to allow air to exhaust out the top of the tanks, while the
water flows in from the bottom. Once the weight has been balanced so the
overall density of the submarine is equal to the water around it, it has neutral
buoyancy and will remain at that depth.

The height of a balloon tends to be stable. As a balloon rises it tends to
increase in volume with reducing atmospheric pressure, but the balloon's
cargo does not expand. The average density of the balloon decreases less,
therefore, than that of the surrounding air. The balloon's buoyancy decreases
because the weight of the displaced air is reduced. A rising balloon tends to
stop rising. Similarly, a sinking balloon tends to stop sinking.

Density

If the weight of an object is less than the
weight of the displaced fluid when fully
submerged, then the object has an average
density that is less than the fluid and when
fully submerged will experience a
buoyancy force greater than its own
weight. If the fluid has a surface, such as
water in a lake or the sea, the object will
float and settle at a level where it

. displaces the same weight of fluid as the
due to the buoyancy force upon it. | yeioht of the object. If the object is

1 di th fid h

‘A pound coin floats in mercury
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exactly the same density as the fluid, then its
buoyancy equals its weight. It will remain
submerged in the fluid, but it will neither sink nor
float, although a disturbance in either direction will
cause it to drift away from its position. An object
with a higher average density than the fluid will
never expetience more buoyancy than weight and it
will sink. A ship will float even though it may be
made of steel (which is much denser than water),
because it encloses a volume of air (which is much
less dense than water), and the resulting shape has
an average density less than that of the water.

Beyond Archimedes' principle

Archimedes' principle is a fluid statics concept. In
its simple form, it applies when the object is not
accelerating relative to the fluid. To examine the
case when the object is accelerated by buoyancy
and gravity, the fact that the displaced fluid itself

has inertia as well must be considered. [5]

This means that both the buoyant object and a
parcel of fluid (equal in volume to the object) will
experience the same magnitude of buoyancy force
because of Newton's third law, and will experience
the same acceleration, but in opposite directions,
since the total volume of the system is unchanged.
In each case, the difference between magnitudes of
the buoyancy force and the force of gravity is the

A density column
containing some
common liquids and
solids. From top: baby
oil, rubbing alcohol
(with red food
coloring), vegetable oil,
wax, water (with blue
food coloring), and
aluminum.

net force, and when divided by the relevant mass, it will yield the respective
acceleration through Newton's second law. All acceleration measures are
relative to the reference frame of the undisturbed background fluid.

Atwood's machine analogy

The system can be understood by analogy with a suitable modification of




121174 Buoyancy - Wikipedia, the free encyclopedia

fluid and the buoyant object, as shown

in the diagram right.

= The solid object is
represented by the gray
object

m The fluid being displaced is
represented by dark blue
object

= Undisturbed background
fluid is analogous to the
inextensible massless cord

= The force of buoyancy is
analogous to the tension in
the cord

m The solid floor of the body
of fluid is analogous to the
pulley, and reverses the
direction of the buoyancy
force, such that both the
solid object and the
displaced fluid experience
their buoyancy force upward.

Results

It is important to note that this
simplification of the situation
completely ignores drag and viscosity,
both of which come in to play to a
greater extent as speed increases,
when considering the dynamics of
buoyant objects. The following simple

Atwood's Machine Analogy for
dynamics of buoyant objects in vertical
motion. The displaced parcel of fluid is
indicated as the dark blue rectangle,
and the buoyant solid object is
indicated as the gray object. The
acceleration vectors (a) in this visual
depict a positively buoyant object
which naturally accelerates upward, and
upward acceleration of the object is our
sign convention.

formulation makes the assumption of slow speeds such that drag and
viscosity are not significant. It is difficult to carry out such an experiment in
practice with speeds close to zero, but if measurements of acceleration are
made as quickly as possible after release from rest the equations below give
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A system consists of a well-sealed object of mass m and volume V which 1s
fully submerged in a uniform fluid body of density pf and in an environment
of a uniform gravitational field g. Under the forces of buoyancy and gravity
alone, the "dynamic buoyancy force" B acting on the object and its upward
acceleration a are given by:

Buoyancy force

2ampeV

g= 29

17+ l(jf'[f

Upward acceleration
~glpfV —m)

Derivations of both of these equations originates from constructing a system
of equations by means of Newton's second law for both the solid object and
the displaced parcel of fluid. An equation for upward acceleration of the
object is constructed by dividing the net force on the object (B — mg) by its
mass m. Due to the mechanical coupling, the object's upward acceleration is
equal in magnitude to the downward acceleration of the displaced fluid, an
equation constructed by dividing the net force on the displaced fluid (B —
p¢Vg) by its mass p¢V.

Should other forces come in to play in a different situation (such as spring
forces, human forces, thrust, drag, or lift), it is necessary for the solver of
problem to re-consider the construction of Newton's second law and the
mechanical coupling conditions for both bodies, now involving these other
forces. In many situations turbulence will introduce other forces that are
much more complex to calculate.

In the case of neutral buoyancy, m is equal to p¢V. Thus B reduces to mg and

the acceleration is zero. If the object is much denser than the fluid, then B
approaches zero and the object's upward acceleration is approximately —g,
i.e. it is accelerated downward due to gravity as if the fluid were not present.
As an example, a pellet of osmium falling through air will initially accelerate
at 99.98% of g downward, though this will reduce as speed increases.
Similarly, if the fluid is much denser than the object, then B approaches 2mg
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98.5% g.
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Surface tension
From Wikipedia, the free encyclopedia

Surface tension is a property of the surface
of a liquid that allows it to resist an external
force. Tt is revealed, for example, in floating
of some objects on the surface of water,
even though they are denser than water, and
in the ability of some insects (e.g. water
striders) to run on the water surface. This

“property is caused by cohesion of similar
molecules, and is responsible for many of
the behaviors of liquids.

Surface tension has the dimension of force
per unit length, or of energy per unit area.
The two are equivalent—but when referring
to energy per unit of area, people use the
term surface energy—which is a more
general term in the sense that it applies also
to solids and not just liquids.

In materials science, surface tension is used
for either surface stress or surface free
energy.

Surface tension - Wikipedia, the free encyclopedia
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Causes

The cohesive forces
among the liquid
molecules are
responsible for this
phenomenon of surface
tension. In the bulk of
the liquid, each
molecule is pulled
equally in every

liquid molecules,
resulting in a net force

of zero. The molecules at the surface do not have other
molecules on all sides of them and therefore are pulled
inwards This creates some internal pressure and forces liquid surfaces to contract to the

direction by neighboring

Diagram of the forces on two

molecules of liquid
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Surface tension is responsible for the shape of liquid droplets. Although easily deformed,
droplets of water tend to be pulled into a spherical shape by the cohesive forces of the
surface layer. In the absence of other forces, including gravity, drops of virtually all liquids
would be perfectly spherical. The spherical shape minimizes the necessary "wall tension" of
the surface layer according to Laplace's law.

Another way to view it is in terms of energy. A molecule in contact with a neighbor is in a
lower state of energy than if it were alone (not in contact with a neighbor). The interior
molecules have as many neighbors as they can possibly have, but the boundary molecules are
missing neighbors (compared to interior molecules) and therefore have a higher energy. For
the liquid to minimize its energy state, the number of higher energy boundary molecules must
be minimized. The minimized quantity of boundary molecules results in a minimized surface

area.[l]

As a result of surface area minimization, a surface will assume the smoothest shape it can
(mathematical proof that "smooth" shapes minimize surface area relies on use of the Euler—
Lagrange equation). Since afny curvature in the surface shape results in greater area, a higher
energy will also result. Consequently the surface will push back against any curvature in
much the same way as a ball pushed uphill will push back to minimize its gravitational
potential energy.

Effects in everyday life

Water

Several effects of surface tension can be seen with ordinary water:

A. Beading of rain water on the surface of a waxy surface, such as a leaf. Water adheres
weakly to wax and strongly to itself, so water clusters into drops. Surface tension gives them
their near-spherical shape, because a sphere has the smallest possible surface area to volume
ratio.

B. Formation of drops occurs when a mass of liquid is stretched. The animation shows water
adhering to the faucet gaining mass until it is stretched to a point where the surface tension
can no longer bind it to the faucet. It then separates and surface tension forms the drop into a
sphere. If a stream of water were running from the faucet, the stream would break up into
drops during its fall. Gravity stretches the stream, then surface tension pinches it into

spheres. [2]

C. Floatation of objects denser than water occurs when the object is nonwettable and its

weight is small enough to be borne by the forces arising from surface tension.!!] For example,
water striders use surface tension to walk on the surface of a pond. The surface of the water
behaves like an elastic film: the insect's feet cause indentations in the water's surface,

increasing its surface area.l?]

i il d (i hi dli id )i db i i
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tension”, but its physics are the same.

E. Tears of wine is the formation of drops and rivulets on the side of a glass containing an
alcoholic beverage. Its cause is a complex interaction between the differing surface tensions
of water and ethanol; it is induced by a combination of surface tension modification of water
by ethanol together with ethanol evaporating faster than water.

"— 1

A. Water beadingon a leaf ~ B. Water dripping froma C. Water striders stay atop
tap the liquid because of surface
tension
= _
D. Lava lamp with E. Photo showing the "tears
interaction between of wine" phenomenon.

dissimilar liquids; water
and liquid wax

Surfactants

Surface tension is visible in other common phenomena, especially when surfactants are used
to decrease it:

= Soap bubbles have very large surface areas with very little mass. Bubbles in pure
water are unstable. The addition of surfactants, however, can have a stabilizing
effect on the bubbles (see Marangoni effect). Notice that surfactants actually reduce
the surface tension of water by a factor of three or more.

= Emulsions are a type of solution in which surface tension plays a role. Tiny
fragments of oil suspended in pure water will spontaneously assemble themselves
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(or vice versa).
Basic physics

Two definitions

Surface tension, represented by the —
symbol y is defined as the force along a
line of unit length, where the force is
parallel to the surface but perpendicular
to the line. One way to picture this is to
imagine a flat soap film bounded on one
side by a taut thread of length, L. The
thread will be pulled toward the interior
of the film by a force equal to 2vL (the

|

factor of 2 is because the soap film has Diagram shows, in cross-section, a needle floating on

two sides, hence two surfaces).[4] the surface of water. Its weight, F, depresses the

Surface tension is therefore measured in surface, and is balanced by the surface tension foroes

forces per unit length. Its SI unit is on either side, F, which are each parallel to the water's

newton per meter but the cgs unit of dyne surface at the points where it contacts the needle.

per cm is also used.l’] One dyn/cm Notice that the horizontal components of the two Fg

corresponds to 0.001 N/m. arrows point in opposite directions, so they cancel each
. . i other, but the vertical components point in the same

An equalent deﬁmtlo'n, one that 18 direction and therefore add upm to balance Fy.

useful in thermodynamics, is work done

per unit area. As such, in order to
increase the surface area of a mass of liquid by an amount, 4, a quantity of work, 704, is

needed.[4] This work is stored as potential energy. Consequently surface tension can be also

measured in SI system as joules per square meter and in the cgs system as ergs per cm?.

Since mechanical systems try to find a state of minimum potential energy, a free droplet of
liquid naturally assumes a spherical shape, which has the minimum surface area for a given
volume.

The equivalence of measurement of energy per unit area to force per unit length can be
proven by dimensional analysis.[4]

Surface curvature and pressure

If no force acts normal to a tensioned surface, the surface must remain flat. But if the pressure
on one side of the surface differs from pressure on the other side, the pressure difference
times surface area results in a normal force. In order for the surface tension forces to cancel
the force due to pressure, the surface must be curved. The diagram shows how surface
curvature of a tiny patch of surface leads to a net component of surface tension forces acting

normal to the center of the patch. When all the forces are balanced, the resulting equation is
[6]
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Ap "\ &, + R, df,,,w’jjf’”"’"’m“"““‘*
where: - RSBy \.,ﬁ__}
s Ap is the pressure FL BB E:“
difference. \\M”"’“ \ ——
= - is surface tension. 7 Y
F

= R, and R, are radii of | [ — i N —
curvature in each of the Surface tension forces acting on a tiny (differential) patch of

axes that are parallel to surface. 60y and 66, indicate the amount of bend over the
the surface. dimensions of the patch. Balancing the tension forces with
pressure leads to the Young-Laplace equation

The quantity in parentheses on the
right hand side is in fact (twice) the mean curvature of the surface (depending on
normalisation).

Solutions to this equation determine the shape of water drops, puddles, menisci, s0ap bubbles,
and all other shapes determined by surface tension (such as the shape of the impressions that
a water strider's feet make on the surface of a pond).

The table below shows how the internal pressure of a water droplet increases with decreasing
radius. For not very small drops the effect is subtle, but the pressure difference becomes
enormous when the drop sizes approach the molecular size. (In the limit of a single molecule
the concept becomes meaningless.)

Ap for water drops of different radii at STP
Droplet radius 1 mm 0.1 mm 1 pm 10 nm
Ap (atm) 0.0014 0.0144 1.436 143.6

Liquid surface

To find the shape of the minimal surface bounded by some [
arbitrary shaped frame using strictly mathematical means
can be a daunting task. Yet by fashioning the frame out of
wire and dipping it in soap-solution, a locally minimal
surface will appear in the resulting soap-film within
seconds.[417]

The reason for this is that the pressure difference across a
fluid interface is proportional to the mean curvature, as
seen in the Young-Laplace equation. For an open soap film,
the pressure difference is zero, hence the mean curvature is zero, and minimal surfaces have
the property of zero mean curvature.

Minimal surface
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Main article: Contact angle

The surface of any liquid is an interface between that liquid and some other medium. [note 1]
The top surface of a pond, for example, is an interface between the pond water and the air.
Surface tension, then, is not a property of the liquid alone, but a property of the liquid's
interface with another medium. If a liquid is in a container, then besides the liquid/air interface
at its top surface, there is also an interface between the liquid and the walls of the container.
The surface tension between the liquid and air is usually different (greater than) its surface
tension with the walls of a container. And where the two surfaces meet, their geometry must

be such that all forces balance.[4[6]

Where the two surfaces meet, they form a contact
angle, #, which is the angle the tangent to the surface
makes with the solid surface. The diagram to the right
shows two examples. Tension forces are shown for
the liquid-air interface, the liquid-solid interface, and
the solid-air interface. The example on the left is
where the difference between the liquid-solid and
solid-air surface tension, 1 —ex, is less than the
liquid-air surface tension, 71, but is nevertheless
positive, that is

&

Forces at contact point shown fgr
contact angle greater than 90° (left) and
less than 90° (right)

)
N

-2
&

!
b
1
i
-

In the diagram, both the vertical and horizontal forces
must cancel exactly at the contact point, known as

equilibrium. The horizontal component of fis is canceled by the adhesive force, a4
fa = fasm 7 |

The more telling balance of forces, though, is in the vertical direction. The vertical component
of fi» must exactly cancel the force, fie.[4

f!s — Jsa — ”“fla cos
Qince the forces are in direct proportion Liquid Solid Contact angle
to their respective surface tensions, we  |water
also have:[®] ethanol

. soda-lime glass
s — Ysa = —a €OSO dicthyl ether —lead glass 0°
carbon tetrachloride
fused quartz

where glycerol

acetic acid

= e is the liquid-solid
surface tension, water
. . . . 1 (¢]

= i is the liquid-air surface silver 90

tension, soda-lime glass 29°

paraffin wax 107°
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= ¢ is the contact angle, mercury soda-lime glass| 140°

where a concave meniscus Some liquid-solid contact angles!*]
has contact angle less than

90° and a convex meniscus
has contact angle of greater than 90°.14]

This means that although the difference between the liquid-solid and solid-air surface tension,
~s—7sn, 18 difficult to measure directly, it can be inferred from the liquid-air surface tension, =
, and the equilibrium contact angle, o, which is a function of the easily measurable advancing
and receding contact angles (see main article contact angle).

This same relationship exists in the diagram on the right. But in this case we see that because
the contact angle is less than 90°, the liquid-solid/solid-air surface tension difference must be
negative:

Ma & 0 > 7 — Yea
‘Special contact angles

Observe that in the special case of a water-silver interface where the contact angle is equal to
90°, the liquid-solid/solid-air surface tension difference is exactly zero.

Another special case is where the contact angle is exactly 180°. Water with specially

prepared Teflon approaches this.[6] Contact angle of 180° occurs when the liquid-solid
surface tension is exactly equal to the liquid-air surface tension.

! e ~ . . o
Ma — Ts — Tsa 0 6 = 130

i

Methods of measurement

Because surface tension manifests itself in
various effects, it offers a number of paths to its
measurement. Which method is optimal depends
upon the nature of the liquid being measured,
the conditions under which its tension is to be
measured, and the stability of its surface when it
is deformed.

= Du Noiiy Ring method: The traditional
method used to measure surface or
interfacial tension. Wetting properties
of the surface or interface have little
influence on this measuring technique. p
Maximum pull exerted on the ring by l

the surface is measured.[®]

Surface tension can be measured using the
endant drop method on a goniometer.




1211/4 Bernoulli's principle - Wikipedia, the free encyclopedia

= This page was last modified on 3 January 2012 at 18:43.
= Text is available under the Creative Commons Attribution-ShareAlike License; additional

terms may apply. See Terms of use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit

organization.



12/1/4

33.

34.
35.
36.

Bernoulli's principle - Wikipedia, the free encyclopedia
(http ://www.planeandpﬂotmag.com/component/zine/article/289.html) Retrieved on 2009-11-26
A Phillips, O.M. (1977). The dynamics of the upper ocean (2nd ed.). Cambridge University Press. ISBN 0
521 29801 6. Section 2.4.
A Batchelor, G.K. (1967). Sections 3.5 and 5.1
A Lamb, H. (1994) §17-§29 '
A Weltner, Klaus; Ingelman-Sundberg, Martin. "Physics of Flight — reviewed" (http://user.uni-
frankfurt.de/~weltner/F light/PHYSIC4.htm) . http /Juser.uni-frankfurt.de/~weltner/F light/PHYSIC4.htm. "The
conventional explanation of aerodynamical lift based on Bermnoulli’s law and velocity differences mixes up
cause and effect. The faster flow at the upper side of the wing is the consequence of low pressure and not its
cause.”

Notes

L.

A Clancy, L.J., derodynamics, Section 5.5 ("When a stream of air flows past an airfoil, there are local
changes in flow speed round the airfoil, and consequently changes in static pressure, in accordance with
Bernoulli's Theorem. The distribution of pressure determines the lift, pitching moment and form drag of the
airfoil, and the position of its centre of pressure.")

Further reading

= Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press.
ISBN 0521663962.

« Clancy, L.J. (1975). Aerodynamics. Pitman Publishing, London. ISBN 0273011200.

» Lamb, H. (1993). Hydrodynamics (6th ed.). Cambridge University Press. ISBN 0780521458689.
Originally published in 1879; the 6th extended edition appeared first in 1932.

= Chanson, H. (2009). Applied Hydrodynamics: An Introduction to Ideal and Real Fluid F lows
(http ://www.uq.edu.au/~62hchans/reprints/booklS.htrn) _CRC Press, Taylor & Francis Group.
ISBN 978-0-415-49271-3. http://www.uq.edu.au/~32hchans/reprints/book15.htm.

External links

» Interactive animation demonstrating Bernoulli's principle

(http://home. earthlink.net/~mmc1919/venturi.html)

Denver University — Bernoulli's equation and pressure measurement
(http://mysite.du.edu/~jcalvert/tech/ﬂuids/bemoul.htm)

Millersville University — Applications of Euler's equation
(http://www.millersville.edu/~j dooley/macro/macrohyp/ eulerap/eulap.htm)
Nasa — Beginner's guide to aerodynamics (http://www.grc.nasa. gov/WWW/K-
12/airplane/bga.html)

Misinterpretations of Bernoulli's equation — Weltner and Ingelman-Sundberg
(http://user.uni—ﬁarﬂcfurt.de/~we1tner/1\/ﬁs6/mis6.htrrﬂ)

Video demonstration of levitating ping pong ball using Bernoulli principle
(http://www.physics.org//interact/physics-to-go/bemoulli-balls/index.htnﬂ)

Retrieved from "http:/ en.wikipedia.org/w/index.php?
title=Bernoulli%27s __principle&oldid=469369736"

Categories: Aerodynamics \ Equations of fluid dynamics \ Fluid dynamics ‘ Principles

|




12/1/4

10.

11.

12.
13.

14.
15.
16.
17.

18.
19.
20.
21.

22.

23.

24.
25.
26.

27.

28.

29.

30.

Bernoulli's principle - Wikipedia, the free encyclopedia

frankfurt. de/~weltner/Mis6/mis6.html) , http ://user.mli-frankﬁlrt.de/~Weltner/1\/ﬁs6/mis6.html

@ b Batchelor, G.K. (1967), §5.1, p. 265.

A Mulley, Raymond (2004). Flow of Industrial Fluids: Theory and Equations. CRC Press.

ISBN 0849327679., 410 pages. See pp. 43-44.

A Chanson, Hubert (2004). Hydraulics of Open Channel Flow: An Introduction. Butterworth-Heinemann.
ISBN 0750659785., 650 pages. See p. 22.

A Qertel, Herbert; Prandtl, Ludwig; Bohle, M.; Mayes, Katherine (2004). Prandil's Essentials of Fluid
Mechanics. Springer. pp. 70-71. ISBN 0387404376.

A "Beroulli's Equation” (http //www.grc.nasa.gov/WWW. /K-12/airplane/bern.htm) . NASA Glenn Research
Center. http://www.grc.nasa.gov/WWW /K-12/airplane/bern.htm. Retrieved 2009-03-04.

aab Clancy, L.J., Aerodynamics, Section 3.5.
A Clancy, L.J. Aerodynamics, Equation 3.12

~a b Batchelor, G.K. (1967), p. 383

A Clarke C. and Carswell B., Astrophysical F' luid Dynamics

A Clancy, L.J., Aerodynamics, Section 3.11

A Van Wylen, G.J., and Sonntag, R.E., (1965), Fundamentals of Classical T hermodynamics, Section 5.9,
John Wiley and Sons Inc., New York

~ab ¢ Feynman, R.P.; Leighton, R.B.; Sands, M. (1963). The Feynman Lectures on Physics. ISBN 0-201-
02116-1., Vol. 2, §40-3, pp. 40-6 — 40-9.

A Tipler, Paul (1991). Physics for Scientists and Engineers: Mechanics (3rd extended ed.). W. H. Freeman.
ISBN 0-87901-432-6., p. 138.

A Feynman, R.P.; Leighton, R.B.; Sands, M. (1963). The Feynman Lectures on Physics. ISBN 0-201-
02116-1., Vol. 1, §14-3, p. 14-4.

A Physics Today, May 1010, "The Nearly Perfect Fermi Gas", by John E. Thomas, p 34.

A Resnick, R. and Halliday, D. (1960), Physics, Section 18-5, John Wiley & Souns, Inc., New York ("
[streamlines] are closer to gether above the wing than they are below so that Bernoulli's principle predicts the
observed upward dynamic Lift.")

A Eastlake, Charles N. (March 2002). "An Aerodynamicist’s View of Lift, Bernoulli, and Newton"

(http Jiwww.df.uba.ar/users/sgil/physics _paper_doc/papers ~phys/ﬂuids/Bs‘:moulli__Newtom_liﬁ.pdt) . The
Physics Teacher 40.

hitp//www.df.uba.ar/users/s gil/physics_paper_doc/papers _phys/ﬂuids/Bemoﬂli_ﬂNewton_liﬁ.pdf. "The
resultant force is determined by integrating the surface-pressure distribution over the surface area of the
airfoil."

A Clancy, L.J., Aerodynamics, Section 3.8

A Mechanical Engineering Reference Manual Ninth Edition

A Castro-Orgaz, O. & Chanson, H. (2009). Bernoulli Theorem, Minimum Specific Energy and Water Wave
Celerity in Open Channel Flow (http ://espace.hbrary.uq.edu.au/view/UQ:187794) . Journal of Irrigation and
Drainage Engineering, ASCE, Vol. 135, No. 6, pp. 773-778 (DOL http //dx.doi.org/10.1061/(ASCE)IR.1943-
4774.0000084) (ISSN 0733-9437). http ://espace.library.uq.edu.au/view/UQ:187794.

A Chanson, H. (2009). Transcritical F low due to Channel Contraction

(http ://espace.hbrary.uq.edu.au/vieW/UQ:l87795) _Journal of Hydraulic Engineering, ASCE, Vol. 135, No.
12, pp. 11131114 (ISSN 0733-9429). htip ://espace.lﬂarary.uq.edu.au/ViveUQ:187795.

A Chanson, H. (2006). Minimum Specific Energy and Critical Flow Conditions in Open Channels

(http ://espace.hbrary.uq.edu.au/ iew.php?pid=UQ:7830) . Journal of Irrigation and Drainage Engineering,
ASCE, Vol. 132, No. 5, pp. 498-502 (DOL: 10.1061/(ASCE)0733-9437(2006)132:5(498)) (ISSN 0733-9437).
http 'j/espace.hbrary.uq.edu.au/view.php?pid=UQ 77830.

A Glenn Research Center (2006-03-15). "Incorrect Lift Theory" (http://www.grc.nasa. gov/WWW/K-
12/airplane/wrong1 html) . NASA. http://www.grc.nasa. gov/WWW /K-12/airplane/wrong].html. Retrieved
2010-08-12.

A Chanson, H. (2009). Applied Hydrodynamics: An Introduction to Ideal and Real Fluid F lows
(http://www.uq.edu.au/~e2hchans/reprints/book1S.htm) _CRC Press, Taylor & Francis Group, Leiden, The
Netherlands, 478 pages. ISBN 978-0-41 5-49271-3. http ://www.uq.edu.au/~62hchans/reprints/bookl5.htm.




12/1/4

Contact Angle & Capillarity - Liquid in a Vertical Tube

BRAIN TRAINING GAMES

Memory Focus : Spatial Reasoning.

Attention Speed Pmblém Solving

Absut.com Physics

Contact Angle & Capillarity - Liquid in a Vertical Tube

By Andrew Zimmerman Jones, About.com Guide

(Continued from Page 2)
Contact Angle

Surface tension occurs during a gas-liquid interface, but if that interface
comes in contact with a solid surface - such as the walls of a container -
the interface usually curves up or down near that surface. Such a
concave or convex surface shape is known as a meniscus

The contact angle, theta, is determined as shown in the picture to the Determining the contach
. ang th af liquid in &
nght‘ vertical tuba,

Bubfic domasi

The contact angle can be used to determine a relationship between the
liquid-solid surface tension and the liquid-gas surface tension, as follows:

gamma,, = ~— gamma,, cos theta
where

e gamma; is the liquid-solid surface tension
o gamma, is the liquid-gas surface tension

e theta is the contact angle

One thing to consider in this equation is that in cases where the meniscus is convex (i.e. the contact
angle is greater than 90 degrees), the cosine component of this equation will be negative which
means that the liquid-solid surface tension will be positive.

If, on the other hand, the meniscus is concave (i.e. dips down, so the contact angle is less than 90
degrees), then the cos theta term is positive, in which case the relationship would result in a
negative liquid-solid surface tension!

What this means, essentially, is that the liquid is adhering to the walls of the container and is
working to maximize the area in contact with solid surface, so as to minimize the overall potential
energy.

Capillarity
Another effect related to water in vertical tubes is the property of capillarity, in which the surface of

liquid becomes elevated or depressed within the tube in relation to the surrounding liquid. This, too,
is related to the contact angle observed.
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y= (2 gamma, , cos theta) / (dgr)
where

e y is the vertical displacement (up if positive, down if negative)
e gamma, is the liquid-gas surface tension

e theta is the contact angle

e d is the density of the liquid

e g is the acceleration of gravity

e r is the radius of the capillary

NOTE: Once again, if theta is greater than 90 degrees (a convex meniscus), resulting
in a negative liquid-solid surface tension, the liquid level will go down compared

to the surrounding level, as opposed to rising in relation to it.

Capillarity manifests in many ways in the everyday world. Paper towels absorb through capillarity.
When burning a candle, the melted wax rises up the wick due to capillarity. In biology, though blood
is pumped throughout the body, it is this process which distributes blood in the smallest blood
vessels which are called, appropriately, capillaries.

Related Searches Vertical Displacement Vertical Tubes  Contact Angle Liquid Interface Surface Tension
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Surface Tension

By Andrew Zimmerman Jones, About.com Guide

Surface tension is a phenomenon in which the surface of a liquid, where
the liquid is in contact with gas, acts like a thin elastic sheet. This termis
typically used only when the liquid surface is in contact with gas (such as
the air). If the surface is between two liquids (such as water and oil), it
is called "interface tension.”

Causes of Surface Tension
Various intermolecular forces, such as Van der Waals forces, draw the

liquid particles together. Along the surface, the particles are pulled
toward the rest of the liquid, as shown in the picture to the right.

Surface tension (denoted with the Greek variable ) is defined as
the ratio of the surface force to the length along which the force
acts:

=/

Units of Surface Tension

Surface tension is measured in SIunits of N/m (newton per meter), although the more common unit
is the cgs unit dyn/cm (dyne per centimeter).

In order to consider the thermodynamics of the situation, it is sometimes useful to consider it in
terms of work per unit area. The SI unit in that case is the 3/m? (joules per meter squared). The cgs
unit is erg/cmz.

These forces bind the surface particles together. Though this binding is weak - it's pretty easy to
break the surface of a liquid after all - it does manifest in many ways.

Examples of Surface Tension

Drops of water. When using a water dropper, the water does not flow in a continuous stream, but
rather in a series of drops. The shape of the drops is caused by the surface tension of the water.
The only reason the drop of water isn't completely spherical is because of the force of gravity pulling
down on it. In the absence of gravity, the drop would minimize the surface area in order to minimize
tension, which would result in a perfectly spherical shape.

Insects walking on water. Several insects are able to walk on water, such as the water strider.
Their legs are formed to distribute their weight, causing the surface of the liquid to become
depressed, minimizing the potential energy to create a balance of forces so that the strider can move
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Needle (or paper clip) floating on water. Even though the density of these objects are greater
than water, the surface tension along the depression is enough to counteract the force of gravity
pulling down on the metal object. Click on the picture to the right, then click "Next," to view a force
diagram of this situation or try out the Floating Needle trick for yourself.

Other Surface Tension Topics

e Pressure Inside a Bubble

e Contact Angle & Capillarity - Liquid in a Vertical Tube
e Surface Tension Physics Experiments & Tricks

o Experimental Surface Tension Values

Related Searches Water Dropper Gas Acts Liquid Particles Tensjon Causes Elastic Sheet Force Of Gravity
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From Wikipedia, the free encyclopedia

Pressure (the symbol: P) is the force per unit

area applied in a direction perpendicular to the o
surface of an object. Gauge pressure is the +. o, +
pressure relative to the local atmospheric or . v e
ambient pressure. . E .
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Definition

Pressure is the effect of a force Control volume * Instruments

applied to a surface. Pressure is the

amount of force acting per unit area.
[1][2]
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Formula
Mathematically:
F df,
P = :'_i' Qr P —_ CIL» —i
where:

P is the pressure,

F is the normal force,

A is the area of the surface area
on contact

Pressure is a scalar quantity. It
relates the vector surface element (a
vector normal to the surface) with the
normal force acting on it. The
pressure is the scalar proportionality
constant that relates the two normal
vectors:

dF, = —PdA = —PndA

The minus sign comes from the fact
that the force is considered towards
the surface element, while the normal
vector points outward.

It is incorrect (although rather usual)
to say "the pressure is directed in
such or such direction". The pressure,
as a scalar, has no direction. It is the
force given by the previous
relationship to the quantity that has a
direction, not the pressure. If we
change the orientation of the surface
element, the direction of the normal
force changes accordingly, but the
pressure remains the same.

Pressure is transmitted to solid
boundaries or across arbitrary
sections of fluid normal to these
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Reversibility - Trreversibility
Endoreversibility

Cycles:
Heat engines + Heat pumps
Thermal efficiency
System properties
Property diagrams
Intensive and extensive properties

State functions:
Temperature / Entropy (intro.) T
Pressure / Volume
Chemical potential / Particle no. ¥
(T Conjugate variables)
Vapor quality
Reduced properties

Process functions:
Work * Heat

Material properties

Ta5
Specific heat capacity ¢ = _if-;—
NJT
1 gV
Compressibility 3 = — —Q—Ij——
Vop
1 Ny s
Thermal expansion ¢, = ——QE’—
VorT
Property database
Equations
Carnot's theorem
Clausius theorem
Fundamental relation
Ideal gas law
Maxwell relations

Table of thermodynamic equations




12/1/4 Pressure - Wikipedia, the free encyclopedia

thermodynamics, and it is conjugate
to volume.

Units

The ST unit for pressure is the pascal
(Pa), equal to one newton per square
meter (N/m? or kg-m”'l-s_z). This
special name for the unit was added
in 1971;13] before that, pressure in SI
was expressed simply as N/m?.

Non-SI measures such as pounds per
square inch and bars are used in
some parts of the world, primarily in
the United States of America. The
cgs unit of pressure is the barye (ba),
equal to 1 dyn-cm 2 or 0.1 Pa.
Pressure is sometimes expressed in

grams-force/cm?, or as kg/cm? and
the like without properly identifying
the force units. But using the names
kilogram, gram, kilogram-force, or
gram-force (or their symbols) as units
of force is expressly forbidden in SL
The technical atmosphere (symbol:

at) is 1 kgf/cm? (14.223 psi).

Since a system under pressure has
potential to perform work on its
surroundings, pressure is a measure
of potential energy stored per unit
volume measured in J-m 3, related to
energy density.

Some meteorologists prefer the
hectopascal (hPa) for atmospheric air
pressure, which is equivalent to the
older unit millibar (mbar). Similar
pressures are given in kilopascals
(kPa) in most other fields, where the

~ hecto- prefix is rarely used. The inch

Internal energy U(S, V)

Enthalpy HSp)=U+pV
Helmholtz free energy A(T,V) = U — TS
Gibbs free energy  G(Tp)=H — TS

History and culture

Philosophy:

Entropy and time + Entropy and life
Brownian ratchet
Maxwell's demon

Heat death paradox
Loschmidt's paradox
Synergetics

History:
General - Heat + Entropy - Gas laws
Perpetual motion
Theories:
Caloric theory * Vis viva
Theory of heat
Mechanical equivalent of heat
Motive power
Publications:
" An Experimental Enquiry Concerning ... Heat"
"On the Equilibrium of Heterogeneous Substances"

"Reflections on the
Motive Power of Fire"

Timelines of:
Thermodynamics « Heat engines

Art:
Maxwell's thermodynamic surface

Education:
Entropy as energy dispersal
Scientists
Daniel Bernoulli
Sadi Carnot
Benoit Paul Emile Clapeyron
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measure underwater pressure in Constantin Carathéodory

decibars (dbar) because an increase Pierre Duhem

in pressure of 1 dbar is approximately Josiah Willard Gibbs
equal to an increase in depth of James Prescott Joule

1 meter. Scuba divers often use a James Clerk Maxwell
manometric rule of thumb: the Julius Robert von Mayer
pressure exerted by 10 meters depth William Rankine

of water is approximately equal to John Smeaton

one atmosphere. The increase in Georg Brnst Stahl

pressure at 34 feet of fresh water or

. Benjamin Thompson
33 feet of sea water is one atm. / P

William Thomson, 1st Baron Kelvin

The standard atmosphere (atm) is an John James Waterston

established constant. It is

approximately equal to typical air

pressure at earth mean sea level and is defined as
follows:

standard atmosphere = 101,325 Pa =
101.325 kPa = 1,013.25 hPa.

Because pressure is commonly measured by its
ability to displace a column of liquid in a
manometer, pressures are often expressed as a depth
~of a particular fluid (e.g., centimeters of water, mm
or inches of mercury). The most common choices are
mercury (Hg) and water; water is nontoxic and
readily available, while mercury's high density
allows a shorter column (and so a smaller
manometer) to be used to measure a given pressure.

The pressure exerted by a column of liquid of height
h and density p is given by the hydrostatic pressure

Mercury column

equation p = pgh. Fluid density and local gravity can

vary from one reading to another depending on local factors, so the height of a fluid
column does not define pressure precisely. When millimeters of mercury or inches of
mercury are quoted today, these units are not based on a physical column of mercury;
rather, they have been given precise definitions that can be expressed in terms of SI
units. One mmHg (millimeter of mercury) is equal to one torr. The water-based units
still depend on the density of water, a measured, rather than defined, quantity. These
manometric units are still encountered in many fields. Blood pressure is measured in
millimeters of mercury in most of the world, and lung pressures in centimeters of water
are still common.
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confusion, for example 'kPaa', 'psia'. However, the US National Institute of Standards
and Technology recommends that, to avoid confusion, any modifiers be instead applied

to the quantity being measured rather than the unit of measurel*! For example,
"Py =100 psi" rather than "P = 100 psig".

Differential pressure is expressed in units with 'd' appended; this type of measurement
is useful when considering sealing performance or whether a valve will open or close.

Presently or formerly popular pressure units include the following:

= atmosphere (atm)
® manometric units:
® centimeter, inch, and millimeter of mercury (torr)
= Height of equivalent column of water, including millimeter (mm
H,0), centimeter (cm H,O), meter, inch, and foot of water
m customary units:
= kip, ton-force (short), ton-force (long), pound-force, ounce-force, and
poundal per square inch
® ton-force (short), and ton-force (long) per square inch

= non-SI

metric units:

m bar, decibar, millibar
m kilogram-force, or kilopond, per square centimeter (technical

atmosphere)

Pressure units

gram-force and tonne-force (metric ton-force) per square centimeter
barye (dyne per square centimeter)
kilogram-force and tonne-force per square meter
sthene per square meter (pieze)

technical | standard pound per
pascal bar torr .
atmosphere | atmosphere square inch
Pa bar at atm Torr psi
1Pa|=1N/m?| 107  |1.0197x107°|9.8692x107|7.5006x1073|145.04x107°
1 5 =
1.01 0.98692 50.06 14.5037744
bar 10 106 dyn/om? 0197 750 77
1 at O'iﬁ%@“ 0.980665 | =1kp/cm? | 0.96784 735.56 14.223
1 | 1.01325 _
atm|  x10° 1.01325 1.0332 =Po 760 14.696
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1 psi|6.895%103|68.948%1073|70.307%x1073|68.046x1073|  51.715 | =1 Ibg/in®

Examples

As an example of varying pressures, a finger can be pressed against a wall without
making any lasting impression; however, the same finger pushing a thumbtack can
easily damage the wall. Although the force applied to the surface is the same, the
thumbtack applies more pressure because the point concentrates that force into a
smaller area. Pressure is transmitted to solid boundaries or across arbitrary sections of
fluid normal to these boundaries or sections at every point. Unlike stress, pressure is
defined as a scalar quantity.

Another example is of a common knife. If we try to cut a fruit with the flat side it
obviously won't cut. But if we take the thin side, it will cut smoothly. The reason is that
the flat side has a greater surface area (less pressure) and so it does not cut the fruit.
When we take the thin side, the surface area is reduced and so it cuts the fruit easily
and quickly. This is one example of a practical application of pressure.

The gradient of pressure is called the force density. For gases, pressure is sometimes
measured not as an absolute pressure, but relative to atmospheric pressure; such

measurements are called gage pressure (also spelled gauge pressure).l°] An example
of this is the air pressure in an automobile tire, which might be said to be

"220 kPa/32 psi", but is actually 220 kPa/32 psi above atmospheric pressure. Since
atmospheric pressure at sea level is about 100 kPa/14.7 psi, the absolute pressure in
the tire is therefore about 320 kPa/46.7 psi. In technical work, this is written "a gage
pressure of 220 kPa/32 psi". Where space is limited, such as on pressure gauges, name
plates, graph labels, and table headings, the use of a modifier in parentheses, such as
"kPa (gage)" or "kPa (absolute)", is permitted. In non-SI technical work, a gage
pressure of 32 psi is sometimes written as "32 psig" and an absolute pressure as

"32 psia", though the other methods explained above that avoid attaching characters to

the unit of pressure are preferred.[6]

Gauge pressure is the relevant measure of pressure wherever one is interested in the
stress on storage vessels and the plumbing components of fluidics systems. However,
whenever equation-of-state properties, such as densities or changes in densities, must
be calculated, pressures must be expressed in terms of their absolute values. For
instance, if the atmospheric pressure is 100 kPa, a gas (such as helium) at 200 kPa
(gage) (300 kPa [absolute]) is 50% denser than the same gas at 100 kPa (gage)

(200 kPa [absolute]). Focusing on gage values, one might erroneously conclude the
first sample had twice the density of the second one.
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In a static gas, the gas as a whole does not appear to move. The individual molecules
of the gas, however, are in constant random motion. Because we are dealing with an
extremely large number of molecules and because the motion of the individual
molecules is random in every direction, we do not detect any motion. If we enclose the
gas within a container, we detect a pressure in the gas from the molecules colliding with
the walls of our container. We can put the walls of our container anywhere inside the
gas, and the force per unit area (the pressure) is the same. We can shrink the size of our
"container" down to an infinitely small point, and the pressure has a single value at that
point. Therefore, pressure is a scalar quantity, not a vector quantity. It has magnitude
but no direction sense associated with it. Pressure acts in all directions at a point inside
a gas. At the surface of a gas, the pressure force acts perpendicular (at right angle) to
the surface.

A closely related quantity is the stress tensor o, which relates the vector force F to the
vector area A via

F=0cA

This tensor may be divided up into a scalar part (pressure) and a traceless tensor part
shear. The shear tensor gives the force in directions parallel to the surface, usually due
to viscous or frictional forces. The stress tensor is sometimes called the pressure
tensor, but in the following, the term "pressure" will refer only to the scalar pressure.

According to the theory of general relativity, pressure increases the strength of a
gravitational field (see stress-energy tensor) and so adds to the mass-energy cause of
gravity. This effect is unnoticeable at everyday pressures but is significant in neutron

stars, although it has not been experimentally tested.l’]
Types

Fluid pressure

Fluid pressure is the pressure at some point within a fluid, such as water or air,
Fluid pressure occurs in one of two situations:

1. an open condition, called "open channel flow"
a. the ocean, or
b. swimming pool, or
c. the atmosphere.
2. a closed condition, called closed conduits
a. water line, or
b gas line
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non-moving conditions (even in the ocean where there are waves and currents), because
the motions create only negligible changes in the pressure. Such conditions conform
with principles of fluid statics. The pressure at any given point of a non-moving (statlc)
fluid is called the hydrostatic pressure.

Closed bodies of fluid are either "static", when the fluid is not moving, or "dynamic",
when the fluid can move as in either a pipe or by compressing an air gap in a closed
container. The pressure in closed conditions conforms with the principles of fluid
dynamics.

The concepts of fluid pressure are predominantly attributed to the discoveries of Blaise
Pascal and Daniel Bernoulli. Bernoulli's equation can be used in almost any situation to
determine the pressure at any point in a fluid. The equation makes some assumptions

about the fluid, such as the fluid being ideall®] and incompressible.l8] An ideal fluid is
~ a fluid in which there is no friction, it is inviscid,!®] zero viscosity.[8] The equation is
written between any two points in a system that contain the same fluid.

p vl p v

L +e=2 4

T 29 Yo 2g
where:

= pressure of the fluid

y = pg = density-acceleration of gravity = specific weight of the fluid.8]
v = velocity of the fluid

g = acceleration of gravity

z = elevation

P

— = pressure head

o~
'f

ki velocity head
29

Applications

Artesian well
Blood pressure
Hydraulic head
Plant cell turgidity
Pythagorean cup

Explosion or deflagration pressures
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Negative pressures

While pressures are, in general, positive, there are several situations in which negative
pressures may be encountered:

s When dealing in relative (gauge) pressures. For instance, an absolute pressure
of 80 kPa may be described as a gauge pressure of —21 kPa (i.e., 21 kPa
below an atmospheric pressure of 101 kPa).

s When attractive forces (e.g., van der Waals forces) between the particles of a
fluid exceed repulsive forces. Such scenarios are generally unstable since the
particles will move closer together until repulsive forces balance attractive
forces. Negative pressure exists in the transpiration pull of plants, and is used
to suction water even higher than the ten meters that it rises in a pure vacuum.

= The Casimir effect can create a small attractive force due to interactions with
vacuum energy; this force is sometimes termed "vacuum pressure" (not to be
confused with the negative gauge pressure of a vacuum).

= Depending on how the orientation of a surface is chosen, the same distribution
of forces may be described either as a positive pressure along one surface
normal, or as a negative pressure acting along the opposite surface normal.

= In the cosmological constant.

Stagnation pressure

Stagnation pressure is the pressure a fluid exerts when it is forced to stop moving.
Consequently, although a fluid moving at higher speed will have a lower static pressure,
it may have a higher stagnation pressure when forced to a standstill. Static pressure and
stagnation pressure are related by the Mach number of the fluid. In addition, there can
be differences in pressure due to differences in the elevation (height) of the fluid. See
Bernoulli's equation (note: Bernoulli's equation only applies for incompressible,
inviscid flow).

The pressure of a moving fluid can be measured using a Pitot tube, or one of its
variations such as a Kiel probe or Cobra probe, connected to a manometer. Depending
on where the inlet holes are located on the probe, it can measure static pressures or
stagnation pressures.

Surface pressure

There is a two-dimensional analog of pressure — the lateral force per unit length applied
on a line perpendicular to the force.

Surface pressure is denoted by 7 and shares many similar properties with three-
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constant temperature.

_F
)“_E.

Pressure of an ideal gas

Main article: Ideal gas law

In an ideal gas, molecules have no volume and do not interact. Pressure varies linearly
with temperature, volume, and quantity according to the ideal gas law,

where:

P is the absolute pressure of the gas
n is the amount of substance

T is the absolute temperature

V is the volume

R is the ideal gas constant.

Real gases exhibit a more complex dependence on the variables of state.[10]
Vapor pressure

Main article: Vapor pressure

Vapor pressure is the pressure of a vapor in thermodynamic equilibrium with its
condensed phases in a closed system. All liquids and solids have a tendency to
evaporate into a gaseous form, and all gases have a tendency to condense back to their
liquid or solid form.

The atmospheric pressure boiling point of a liquid (also known as the normal boiling
point) is the temperature at which the vapor pressure equals the ambient atmospheric
pressure. With any incremental increase in that temperature, the vapor pressure
becomes sufficient to overcome atmospheric pressure and lift the liquid to form vapor
bubbles inside the bulk of the substance. Bubble formation deeper in the liquid requires
a higher pressure, and therefore higher temperature, because the fluid pressure
increases above the atmospheric pressure as the depth increases.

The vapor pressure that a single component in a mixture contributes to the total
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Liquid pressure or pressure at depth

Used with liquid columns of constant density or at a depth within a substance (example:
pressure at 20 km depth in the Earth).

P=pgh
where:

P is Pressure

g is gravity at the surface of overlaying material
p is density of liquid or overlaying material

h is height of liquid or depth within a substance

See also
m Atmospheric pressure = Orders of magnitude (pressure)
= Blood pressure = Partial pressure
= Boyle's Law = Pressure measurement
= Combined gas law = Pressure sensor
= Conversion of units = Sound pressure
m Critical point (thermodynamics) = Spouting can
® Dynamic pressure = Timeline of temperature and
= Hydraulics pressure measurement
® Internal pressure | “technology
= Kinetic theory = Units conversion by factor-
= Microphone label
= Vacuum

= Vacuum pump
= Vertical pressure variation
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Bernoulli Equation

The Bernoulli Equation can be considered to be a statement of the

conservation of energy principle appropriate for flowing fluids. The
qualitative behavior that is usually labeled with the term "Bernoulli
effect" is the lowering of fluid pressure in regions where the flow
velocity is increased. This lowering of pressure in a constriction of a
flow path may seem counterintuitive, but seems less so when you
consider pressure to be energy density. In the high velocity flow
through the constriction, kinetic energy must increase at the expense
of pressure energy.

Energy per unit volume belors = Ensrgy per wnit volume alter Index
1A 2 _ 1y 2
B+ ,pvy + pghy = Py +5pv, + pgh,
ey SN ’ ' Bernoulli
Pressure] |Kinetic §  |Pobential
lEne'rgy Energy] |Ensrgy - — - concepts
et e unit] |per enit The often cited example of the
volumal  holums Barmoulli Equation or "Bernoulli
o Effect" ix the reduction in pressure
Flow velocity Flowe velacity ) which ocours when the fluid spaed
W V., incressss.
A< A,
P< Pt
P Ineressed fuld speed, o
1 dacreassd imtarnal pressiire,
Bernoulli calculation
: . . : Go Back
HyperPhysics***** Mechanics ***** Fluids R Nave

||(which affect the calculated kinetic energy). The model calculation

Bernoulli Calculation

The calculation of the "real world" pressure in a constriction of a
tube is difficult to do because of viscous losses, turbulence, and
the assumptions which must be made about the velocity profile
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Initial position.
Time, t=0.

Aq

Fluid has moved to
the right by time t=0.

We examine a fluid section of mass m traveling to the right as shown in the schematic
above. The net work done in moving the fluid is

where F denotes a force and an x a displacement. The second term picked up its negative
sign because the force and displacement are in opposite directions.

Pressure is the force exerted over the cross-sectional area, or P = F/A. Rewriting this as F
= PA and substituting into Eq.(1) we find that

AW=RA x;-FAyX,. Eq.(2)

The displaced fluid volume V is the cross-sectional area A times the thickness x. This
volume remains constant for an incompressible fluid, so

Eq.(3)

VA x, = AL X,.
Using Eq.(3) in Eq.(2) we have T 272

AW=(R-F)V. Eq.(4)
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Equation (11) is commonly referred to as Bernoulli's equation. Keep in mind that this
expression was restricted to incompressible fluids and smooth fluid flows.

© 2003-2008, 4Physics

T -

AEHY SIS Shop for neat sclence stufi!

} Search }
" ».m'H;TML 1
WAL L oted




12/1/5 Bernoulli equation for incompressible, smooth fluid flow.

The Bernoulli Effect

The Bernoulli Equation for an
Incompressible, Steady Fluid Flow

In 1738 Daniel Bernoulli (1700-1782) formulated the
famous equation for fluid flow that bears his name.
The Bernoulli Equation is a statement derived from
conservation of energy and work-energy ideas that
come from Newton's Laws of Motion.

An important and highly useful special case is where
friction is ignored and the fluid is incompressible. This
is not as unduly restrictive as it might first seem. The
absence of friction means that the fluid flow is steady.
That is, the fluid does not stick to the pipe sides and
has no turbulence. Most common liquids such as
water are nearly incompressible, which meets the
second condition.

Consider the case of water flowing though a smooth
pipe. Such a situation is depicted in the figure below.
We will use this as our working model and obtain
Bernoulli's equation employing the work-energy
theorem and energy conservation.
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A

hq

l

The energy change between the initial and final positions is given by

AE = (mgh,+ mvi/2) - (mghy+ mv?2/2).

Eq.(5)

Here, the the kinetic energy K = mv2/2 where m is the fluid mass and v is the speed of the
fluid. The potential energy U = mgh where g is the acceleration of gravity, and h is average

fluid height.

The work-energy theorem says that the net work done is equal to the change in the

system energy. This can be written as
AW = AE.
Substitution of Eq.(4) and Eq.(5) into Eq.(6) yields
(B - B )V = (mghy+ mvgzﬂ) - {mgh.+ mv2/2).
Dividing Eq.(7) by the fluid volume, V gives us
R - B = (aghy+pv3/2) - (6ghy+0vi/2)

where

g=m/v

is the fluid mass density. To complete our derivation, we reorganize Eq.(8).

R+ pgh,+pvii2 = B+ pghy+pvi/2.

Eq.(6)

Eq.(7)

Eq.(8)

Eq.(9)

Eq.(10)
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Bernoulli's principle

From Wikipedia, the free encyclopedia

In fluid dynamics, Berneulli's principle states that for an
inviscid flow, an increase in the speed of the fluid occurs
simultaneously with a decrease in pressure or a decrease in the
fluid's potential energy.{l}{z] Beroulli's principle is named
after the Dutch-Swiss mathematician Daniel Bernoulli who
published his principle in his book Hydrodynamica in 1738.[31

Bernoulli's principle can be applied to various types of fluid
flow, resulting in what is loosely denoted as Bernoulli's
equation. In fact, there are different forms of the Bernoulli
equation for different types of flow. The simple form of
Bernoulli's principle is valid for incompressible flows (e.g.
most liquid flows) and also for compressible flows (e.g. gases)
moving at low Mach numbers. More advanced forms may in
some cases be applied to compressible flows at higher Mach
numbers (see the derivations of the Bernoulli equation).

A flow of air into a venturi meter.
The kinetic energy increases at the
expense of the fluid pressure, as
shown by the difference in height
of the two columns of water.

Bernoulli's principle can be derived from the principle of conservation of energy. This states that,
in a steady flow, the sum of all forms of mechanical energy in a fluid along a streamline is the
same at all points on that streamline. This requires that the sum of kinetic energy and potential
energy remain constant. Thus an increase in the speed of the fluid occurs proportionately with an
increase in both its dynamic pressure and kinetic energy, and a decrease in its static pressure and
potential energy. If the fluid is flowing out of a reservoir the sum of all forms of energy is the
same on all streamlines because in a reservoir the energy per unit volume (the sum of pressure

and gravitational potential p g /) is the same everywhere.[4]

Bernoulli's principle can also be derived directly from Newton's 2nd law. If a small volume of
fluid is flowing horizontally from a region of high pressure to a region of low pressure, then there
is more pressure behind than in front. This gives a net force on the volume, accelerating it along

the streamline.[%1(6]

Fluid particles are subject only to pressure and their own weight. If a fluid is flowing horizontally
and along a section of a streamline, where the speed increases it can only be because the fluid on
that section has moved from a region of higher pressure to a region of lower pressure; and if its
speed decreases, it can only be because it has moved from a region of lower pressure to a region
of higher pressure. Consequently, within a fluid flowing horizontally, the highest speed occurs
where the pressure is lowest, and the lowest speed occurs where the pressure is highest.

Contents

» | Incompressible flow equation
= 1.1 Simplified form
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2 Compressible flow equation
= 2.1 Compressible flow in fluid dynamics
= 2.2 Compressible flow in thermodynamics

3 Derivations of Bernoulli equation

4 Real-world application

5 Misunderstandings about the generation of lift

6 See also

7 References

8 Notes

9 Further reading

10 External links

Incompressible flow equation

Tn most flows of liquids, and of gases at low Mach number, the mass density of a fluid parcel can
be considered to be constant, regardless of pressure variations in the flow. For this reason the
fluid in such flows can be considered to be incompressible and these flows can be described as
incompressible flow. Bernoulli performed his experiments on liquids and his equation in its
original form is valid only for incompressible flow. A common form of Bernoulli's equation, valid
at any arbitrary point along a streamline where gravity is constant, is:

vg P
— 4+ gz + — = constant (A)
2 P

where:

v is the fluid flow speed at a point on a streamline,

g is the acceleration due to gravity,

-+ is the elevation of the point above a reference plane, with the positive z-direction pointing
upward — so in the direction opposite to the gravitational acceleration,

p is the pressure at the chosen point, and

0 is the density of the fluid at all points in the fluid.

For conservative force fields, Bernoulli's equation can be generalized as:[]

vt P ‘
— + ¥ + = = constant
2 P

where ¥ is the force potential at the point considered on the streamline. E.g. for the Earth's gravity
V=gz.

The following two assumptions must be met for this Bernoulli equation to apply:m

s the flow must be incompressible — even though pressure varies the density must remain
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By multiplying with the fluid density p, equation (A) can be rewritten as:
%‘P"Ug + pgz + p = constant

or:
g+ pgh = po + pgz = constant
where:

g=%p v? is dynamic pressure,

Y
h=z+ % is the piezometric head or hydraulic head (the sum of the elevation z and the

pressure head)[83[9] and

pg = p + g is the total pressure (the sum of the static pressure p and dynamic pressure
q).[IO]

The constant in the Bernoulli equation can be normalised. A common approach is in terms of total
head or energy head H:

2 2
]J _rUA.. ,U.x..

H - —— — I f e
*t g T2y 'Yy

The above equations suggest there is a flow speed at which pressure is zero, and at even higher
speeds the pressure is negative. Most often, gases and liquids are not capable of negative
absolute pressure, or even zero pressure, so clearly Beroulli's equation ceases to be valid before
zero pressure is reached. In liquids — when the pressure becomes too low — cavitation occurs. The
above equations use a linear relationship between flow speed squared and pressure. At higher
flow speeds in gases, or for sound waves in liquid, the changes in mass density become significant
so that the assumption of constant density is invalid.

Simplified form

In many applications of Bernoulli's equation, the change in the p g z term along the streamline is
so small compared with the other terms it can be ignored. For example, in the case of aircraft in
flight, the change in height z along a streamline is so small the p g z term can be omitted. This
allows the above equation to be presented in the following simplified form:

pP+q=7po

where p is called total pressure, and g is dynamic press.ure.[1 11 Many authors refer to the
pressure p as static pressure to distinguish it from total pressure pg and dynamic pressure g. In

Aerodynamics, L.J. Clancy writes: "To distinguish it from the total and dynamic pressures, the
actual pressure of the fluid, which is associated not with its motion but with its state, is often
referred to as the static pressure, but where the term pressure alone is used it refers to this static

pressure."[m
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equation:
static pressure + dynamic pressure = total pressure[lz]

Every point in a steadily flowing fluid, regardless of the fluid speed at that point, has its own
unique static pressure p and dynamic pressure g. Their sum p + g is defined to be the total
pressure pg. The significance of Bernoulli's principle can now be summarized as fotal pressure is

constant along a streamline.

If the fluid flow is irrotational, the total pressure on every streamline is the same and Bernoulli's

principle can be summarized as fotal pressure is constant everywhere in the fluid ﬂow.{l?’] It is
reasonable to assume that irrotational flow exists in any situation where a large body of fluid is
flowing past a solid body. Examples are aircraft in flight, and ships moving in open bodies of
water. However, it is important to remember that Bernoulli's principle does not apply in the
boundary layer or in fluid flow through long pipes.

If the fluid flow at some point along a stream line is brought to rest, this point is called a
stagnation point, and at this point the total pressure is equal to the stagnation pressure.

Applicability of incompressible flow equation to flow of gases

Bernoulli's equation is sometimes valid for the flow of gases: provided that there is no transfer of
kinetic or potential energy from the gas flow to the compression or expansion of the gas. If both
the gas pressure and volume change simultaneously, then work will be done on or by the gas. In
this case, Bernoulli's equation — in its incompressible flow form — can not be assumed to be valid.
However if the gas process is entirely isobaric, or isochoric, then no work is done on or by the
gas, (so the simple energy balance is not upset). According to the gas law, an isobaric or isochoric
process is ordinarily the only way to ensure constant density in a gas. Also the gas density will be
proportional to the ratio of pressure and absolute temperature, however this ratio will vary upon
compression or expansion, no matter what non-zero quantity of heat is added or removed. The
only exception is if the net heat transfer is zero, as in a complete thermodynamic cycle, or in an
individual isentropic (frictionless adiabatic) process, and even then this reversible process must
be reversed, to restore the gas to the original pressure and specific volume, and thus density. Only
then is the original, unmodified Bernoulli equation applicable. Tn this case the equation can be
used if the flow speed of the gas is sufficiently below the speed of sound, such that the variation
in density of the gas (due to this effect) along each streamline can be ignored. Adiabatic flow at
Jess than Mach 0.3 is generally considered to be slow enough.

Unsteady potential flow

The Bernoulli equation for unsteady potential flow is used in the theory of ocean surface waves
and acoustics.

For an irrotational flow, the flow velocity can be described as the gradient V ¢ of a velocity
potential ¢. In that case, and for a constant density p, the momentum equations of the Euler

equations can be integrated to:[14]

gl Rl Ly
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which is a Bernoulli equation valid also for unsteady — or time dependent — flows. Here Op/0t
denotes the partial derivative of the velocity potential ¢ with respect to time £, and v = |V ¢| is the
flow speed. The function f{f) depends only on time and not on position in the fluid. As a result,
the Bernoulli equation at some moment ¢ does not only apply along a certain streamline, but in the
whole fluid domain. This is also true for the special case of a steady irrotational flow, in which

case fis a constant.[14]

Further f{¢) can be made equal to zero by incorporating it into the velocity potential using the
transformation

t f
A N L .
¢ =yp— f f{7) d7, resulting in %t— € %v‘ + %+ gz =0.
7 i) N

Note that the relation of the potential to the flow velocity is unaffected by this transformation:
V& =Vo.

The Bernoulli equation for unsteady potential flow also appears to play a central role in Luke's
variational principle, a variational description of free-surface flows using the Lagrangian (not to
be confused with Lagrangian coordinates).

Compressible flow equation

Bernoulli developed his principle from his observations on liquids, and his equation is applicable
only to incompressible fluids, and compressible fluids at very low speeds (perhaps up to 1/3 of
the sound speed in the fluid). It is possible to use the fundamental principles of physics to
develop similar equations applicable to compressible fluids. There are numerous equations, each
tailored for a particular application, but all are analogous to Bernoulli's equation and all rely on
nothing more than the fundamental principles of physics such as Newton's laws of motion or the
first law of thermodynamics.

Compressible flow in fluid dynamics

For a compressible fluid, with a barotropic equation of state, and under the action of conservative
forces,

) R
v 53
—+ / —-2;—- + ¥ = constant[1’] (constant along a streamline)
2 v pl p (\]JJ
where:

p is the pressure

p is the density

v is the flow speed

¥ is the potential associated with the conservative force field, often the gravitational potential

Tn engineering situations, elevations are generally small compared to the size of the Earth, and the
time scales of fluid flow are small enough to consider the equation of state as adiabatic. In this
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2 e .
%_ + gz + (._..___1_> E;. = constant[m] (constant along a streamline)
2 o 2

where, in addition to the terms listed above:

y is the ratio of the specific heats of the fluid
g is the acceleration due to gravity
2 is the elevation of the point above a reference plane

Tn many applications of compressible flow, changes in elevation are negligible compared to the
other terms, so the term gz can be omitted. A very useful form of the equation is then:

5 :
wr i B2 ~ Po
— + [ —— — T (U, e
2 (‘""‘r" - 1) 3 ("It — 1) o

where:

Do is the total pressure
po is the total density

Compressible flow in thermodynamics

Another useful form of the equation, suitable for use in thermodynamics, 1s:

)

T _ ) 17
5 + W4+ w= conzst.a.nt.[ ]

Here w is the enthalpy per unit mass, which is also often written as % (not to be confused with
"head" or "height").

P : : :
Note that &' = € + ; where ¢ is the thermodynamic energy per unit mass, also known as the

specific internal energy.

The constant on the right hand side is often called the Bernoulli constant and denoted b. For
steady inviscid adiabatic flow with no additional sources or sinks of energy, b is constant along
any given streamline. More generally, when b may vary along streamlines, it still proves a useful
parameter, related to the "head" of the fluid (see below).

When the change in ¥ can be ignored, a very useful form of this equation is:

02

——‘)— +w = Wy

where wy is total enthalpy. For a calorically perfect gas such as an ideal gas, the enthalpy is

directly proportional to the temperature, and this leads to the concept of the total (or stagnation)
temperature.

Wh h k i f f i hihh h ki i d h 1l
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this rule is radiative shocks, which violate the assumptions leading to the Bernoulli equation,
namely the lack of additional sinks or sources of energy.

Derivations of Bernoulli equation

Bernoulli equation for incompressible fluids

The Bernoulli equation for incompressible fluids can be derived by integrating the Euler
equations, or applying the law of conservation of energy in two sections along a streamline,
ignoring viscosity, compressibility, and thermal effects.

The simplest derivation is to first ignore gravity and consider constrictions and expansions in
pipes that are otherwise straight, as seen in Venturi effect. Let the x axis be directed down the
axis of the pipe.

Define a parcel of fluid moving through a pipe with cross-sectional area "A", the length of the
parcel is "dx", and the volume of the parcel A dx. If mass density is p, the mass of the parcel
is density multiplied by its volume m =p 4 dx. The change in pressure over distance dx is
"dp" and flow velocity v = dx / dz.

Apply Newton's Second Law of Motion Force F =mass . acceleration and recognizing that the
effective force on the parcel of fluid is -A dp. If the pressure decreases along the length of the
pipe, dp is negative but the force resulting in flow is positive along the x axis.

dv
m-—ci- :; F
v
pAd T = —Adp
du dp

p— = —
Pat dx
In steady flow the velocity is constant with respect to time, v = v(x) = v(x(£)), so v itself is not

directly a function of time ¢. It is only when the parcel moves through x that the cross sectional
area changes: v depends on ¢ only through the cross-sectional position x(7).

dv devdz dv  d (.UB>

4 —dzdf  dz. _dz \?2

With density p constant, the equation of motion can be written as

d [ *
iz ( 5 + p)' =0

by integrating with respect to X

2 p

27" p

h Ci t t ti f dt tB I ot tki t i 1
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In the above derivation, no external work-energy principle is invoked. Rather, Bernoulli's
principle was inherently derived by a simple manipulation of the momentum equation.

A streamtube of fluid moving to the right. Indicated are pressure, elevation, flow speed, distance
(s), and cross-sectional area. Note that in this figure elevation is denoted as 4, contrary to the
text where it is given by z.

Another way to derive Bernoulli's principle for an incompressible flow is by applying
conservation of energy.[1 8] In the form of the work-energy theorem, stating that(1°]

the change in the kinetic energy By, of the system equals the net work W done on the
system,

W = AEkin-
Therefore,
the work done by the forces in the fluid = increase in kinetic energy.

The system consists of the volume of fluid, initially between the cross-sections 4; and 4. In
the time interval At fluid elements initially at the inflow cross-section 4; move over a distance
s1 =v| At, while at the outflow cross-section the fluid moves away from cross-section 4, over
a distance s, = v At. The displaced fluid volumes at the inflow and outflow are respectively
Ay 51 and 4, 5. The associated displaced fluid masses are — when p is the fluid's mass densit;
— equal to density times volume, s0 p 4j 51 and p A, s,. By mass conservation, these two

masses displaced in the time interval At have to be equal, and this displaced mass is denoted
by Am:

pAis, = pAiv At = Am,
pAosy = pﬂg'uzl‘st = Am.

The work done by the forces consists of two parts:

s The work done by the pressure acting on the areas 4y and 4,
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H“'prr;z'ss»;\ma = Fmessure §1 — F‘E,pm‘ssme Sa = .?3'14"&151 ‘“p?.fl‘z'SQ = Am—-—A4m

P

9

2

= The work done by gravity: the gravitational potential energy in the volume Aq sy is
lost, and at the outflow in the volume Ay s, is gained. So, the change in gravitational

potential energy AEpqt, gravity in the time interval At is

AEp o gravity = Am gz — Amgz.

Now, the work by the force of gravity is opposite to the change in potential energy,

Waravity = ~4Epot, gravity- while the force of gravity is in the negative z-direction, the work
—gravity force times change in elevation—will be negative for a positive elevation chang

Az = zy — z1, While the corresponding potential energy change is positive.
Wavity = ~A Bt gravity = Am gz — Am gza.
And the total work done in this time interval At is
W = Wiressure T Waravisy-

The increase in kinetic energy is

1

N 2
;,;ﬁkm (i

, 1
ABEg, = —5&?71 vg —

Putting these together, the work-kinetic energy theorem W = AEjq, gives:[lg]

z 7 1 1 :
Am PL_ Am b2 + Amgz — Nmgz = z4m vs — =Am w
p P 2 2
or
1 2 ., p 1, B A P2
;)—Am v + Amgz + Am —-{7 = —Q—ﬁs-nz. vy + Am gz + Am —;
After dividing by the mass Am =p A; vi At=p Ay v At the result is:[18]
15 p 1, P2
'{2'1-’{ + gz + —p‘" = :j’b‘:i + gz + —fj’—
or, as stated in the first paragraph:
2 ‘
5 + gz + P_ o (Eqn. 1), Which is also Equation (A)
2 P

[20] So:

Further division by g produces the following equation. Note that each term can be described i1

the length dimension (such as meters). This is the head equation derived from Bernoulli's

principle:
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The middle term, z, represents the potential energy of the fluid due to its elevation with respec
to a reference plane. Now, z is called the elevation head and given the designation Zejevation-

A free falling mass from an elevation z > 0 (in a vacuum) will reach a speed

= \/ 20z, when arriving at elevation z = 0. Or when we rearrange 1t as a head: h,, = 2
' g

The term v2 / (2 g) is called the velocity head, expressed as a length measurement. It
represents the internal energy of the fluid due to its motion.

The hydrostatic pressure p is defined as

p = Po — PYZz, with pg some reference pressure, or when we rearrange it as a head:
o2
Py
The term p / (pg) is also called the pressure head, expressed as a length measurement. It
represents the internal energy of the fluid due to the pressure exerted on the container.

When we combine the head due to the flow speed and the head due to static pressure with the
clevation above a reference plane, we obtain a simple relationship useful for incompressible
fluids using the velocity head, elevation head, and pressure head.

hm' + Zelevation T ?ﬁ" =C (Eqn. 2b)

If we were to multiply Eqn. 1 by the density of the fluid, we would get an equation with three
pressure terms:

2
%—— +pgz+p=C (Eqn. 3)
We note that the pressure of the system is constant in this form of the Bernoulli Equation. If
the static pressure of the system (the far right term) increases, and if the pressure due to
elevation (the middle term) is constant, then we know that the dynamic pressure (the left term)
must have decreased. In other words, if the speed of a fluid decreases and it is not due to an
elevation difference, we know it must be due to an increase in the static pressure that is
resisting the flow.

All three equations are metely simplified versions of an energy balance on a system.

Bernoulli equation for compressible fluids

The derivation for compressible fluids is similar. Again, the derivation depends upon (1)
conservation of mass, and (2) conservation of energy. Conservation of mass implies that in
the above figure, in the interval of time Af, the amount of mass passing through the boundary
defined by the area A4 is equal to the amount of mass passing outwards through the boundary
defined by the area A:
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Conservation of energy is applied in a similar manner: Tt is assumed that the change in energy
of the volume of the streamtube bounded by A4 and 4, is due entirely to energy entering or

leaving through one or the other of these two boundaries. Clearly, in a more complicated
situation such as a fluid flow coupled with radiation, such conditions are not met.
Nevertheless, assuming this to be the case and assuming the flow is steady so that the net
change in the energy is zero,

0=AE — Ak
where AE] and AE; are the energy entering through A; and leaving through 4,, respectively.

The energy entering through 4 is the sum of the kinetic energy entering, the energy entering

in the form of potential gravitational energy of the fluid, the fluid thermodynamic energy
entering, and the energy entering in the form of mechanical p dV work:

1
AF = [zjmvf + Uipy +e1p + 13‘1] Ay At

where ¥'= gz is a force potential due to the Earth's gravity, g is acceleration due to gravity,
and z is elevation above a reference plane.

A similar expression for AE, may easily be constructed. So now setting 0 = AE| — AEy:

1 1
0= [-‘5—)0111% +Wip4em+ 231] Aoy At— {-‘5{331)'2? + Wopy + €22 + pg:\ Aovg At
which can be rewritten as:

1 o ) 1 i25
0= ;5'1»‘1“ + Wy + e+ Gl prdo At — ;5@‘3 + Uy + €2 + B padave Al

~ 1 2

Now, using the previously-obtained result from conservation of mass, this may be simplified
to obtain

1 )
—5@2 + W4+ P — constant = &

& X

which is the Bernoulli equation for compressible flow.

Real-world application

In modern everyday life there are many observations that can
be successfully explained by application of Bernoulli's
principle, even though no real fluid is entirely inviscid?!] and a
small viscosity often has a large effect on the flow.

= Bernoulli's principle can be used to calculate the lift
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air flowing past the top surface of an aircraft wing is | Condensation visible over the 11
moving faster than the air flowing past the bottom upper surface of a wing caused by ‘
surface, then Bernoulli's principle implies that the the fall in temperature

pressure on the surfaces of the wing will be lower accompanying the fall in pressure,
above than below. This pressure difference results in Both due to acceleration of the ﬂ

an upwards lift force. P 1[22] Whenever the
distribution of speed past the top and bottom surfaces of a wing is known, the lift forces
can be calculated (to a good approximation) using Bernoulli's equations[23] — established
by Bernoulli over a century before the first man-made wings were used for the purpose
of flight. Bernoulli's principle does not explain why the air flows faster past the top of
the wing and slower past the underside. To understand why, it is helpful to understand
circulation, the Kutta condition, and the Kutta—Joukowski theorem.

The carburetor used in many reciprocating engines contains a venturi to create a region
of low pressure to draw fuel into the carburetor and mix it thoroughly with the incoming
air. The low pressure in the throat of a venturi can be explained by Bernoulli's principle;
in the narrow throat, the air is moving at its fastest speed and therefore it is at its lowest
pressure.

The Pitot tube and static port on an aircraft are used to determine the airspeed of the
aircraft. These two devices are connected to the airspeed indicator which determines the
dynamic pressure of the airflow past the aircraft. Dynamic pressure is the difference
between stagnation pressure and static pressure. Bernoulli's principle is used to calibrate
the airspeed indicator so that it displays the indicated airspeed appropriate to the

dynamic pressure.[24]

The flow speed of a fluid can be measured using a device such as a Venturi meter or an
orifice plate, which can be placed into a pipeline to reduce the diameter of the flow. For
a horizontal device, the continuity equation shows that for an incompressible fluid, the
reduction in diameter will cause an increase in the fluid flow speed. Subsequently
Bernoulli's principle then shows that there must be a decrease in the pressure in the
reduced diameter region. This phenomenon is known as the Venturi effect.

The maximum possible drain rate for a tank with a hole or tap at the base can be
calculated directly from Bernoulli's equation, and is found to be proportional to the
square root of the height of the fluid in the tank. This is Torricelli's law, showing that
Torricelli's law is compatible with Bernoulli's principle. Viscosity lowers this drain rate.
This is reflected in the discharge coefficient, which is a function of the Reynolds number
and the shape of the orifice.[?’]

In open-channel hydraulics, a detailed analysis of the Bernoulli theorem and its extension
were recently (2009) developed.[26] It was proved that the depth-averaged specific
energy reaches a minimum in converging accelerating free-surface flow over weirs and
flumes (also[27][28]). Further, in general, a channel control with minimum specific energy
in curvilinear flow is not isolated from water waves, as customary state in open-channel
hydraulics.




Pressure
viscous losses can be neglected, and assumes that the velocity
profile follows that of theoretical laminar flow. Specifically, this
involves assuming that the effective flow velocity is one half of the

maximum velocity, and that the average kinetic energy density is

given by one third of the maximum kinetic energy density.

Variables in Ap
A,  calculation o

My e — e — e e

Now if you can swallow all those assumptions, you can model* the
flow in a tube where the volume flowrate is J= cm’/s
and the fluid density is p = gm/cm’. For an inlet tube
area A= cm? (radius ry = cm), the geometry
of flow leads to an effective fluid velocity of v{ = cm/s.
Since the Bernoulli equation includes the fluid potential energy as
well, the height of the inlet tube is specified as h; = cm.
If the area of the tube is constricted to Ay= cm? (radius
= cm), then without any further assumptions the
effective fluid velocity in the constriction must be v, =
cr/s. The height of the constricted tube is specified as hy =

cm.

The kinetic energy densities at the two locations in the tube can
now be calculated, and the Bernoulli equation applied to constrain
the process to conserve energy, thus giving a value for the pressure
in the constriction. First, specify a pressure in the inlet tube:
Inlet pressure = Py = kPa = Ib/in” =

mmHg = atmos.
The energy densities can now be calculated. The energy unit for the
CGS units used is the erg.

.y ict
Inlet tube energy densities Constricted tube energy
densities

Kinetic energy = Kinetic energy =

densi 3 )
ty erg/cm density ergfem’

Potential =
energy density erg/cm?

Pressure =

Potential =
energy density erg/cm?

Index

Bernoulli

concepts
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The pressure energy density in the constricted tube can now be
finally converted into more conventional pressure units to see the
effect of the constricted flow on the fluid pressure:

Calculated pressure in constriction =
Py= kPa = Ib/in” = mmHg =
atmos.

This calculation can give some perspective on the energy involved
in fluid flow, but it's accuracy is always suspect because of the
assumption of laminar flow. For typical inlet conditions, the energy
density associated with the pressure will be dominant on the input
side; after all, we live at the bottom of an atmospheric sea which
contributes a large amount of pressure energy. If a drastic enough
reduction in radius is used to yield a pressure in the constriction
which is less than atmospheric pressure, there is almost certainly
some turbulence involved in the flow into that constriction.
Nevertheless, the calculation can show why we can get a significant
amount of suction (pressure less than atmospheric) with an
"aspirator" on a high pressure faucet. These devices consist of a
metal tube of reducing radius with a side tube into the region of
constricted radius for suction.

*Note: Some default values will be entered for some of the values
as you start exploring the calculation. All of them can be changed
as a part of your calculation.
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Curve of a Baseball

A non-spinning baseball or a stationary baseball in an airstream
exhibits symmetric flow. A baseball which is thrown with spin will
curve because one side of the ball will experience a reduced
pressure. This is commonly interpreted as an application of the
Bernoulli principle and involves the viscosity of the air and the
boundary layer of air at the surface of the ball.
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There are some difficulties with this picture of the curving
baseball. The Bernoulli equation cannot really be used to predict
the amount of curve of the ball; the flow of the air is compressible,
and you can't track the density changes to quantify the change in
effective pressure. The experimental work of Watts and Ferrer
with baseballs in a wind tunnel suggests another model which
gives prominent attention to the spinning boundary layer of air
around the baseball. On the side of the ball where the boundary
layer is moving in the same direction as the free stream air speed,
the boundary layer carries further around the ball before it
separates into turbulent flow. On the side where the boundary
layer is opposed by the free stream flow, it tends to separate
prematurely. This gives a net deflection of the airstream in one
direction behind the ball, and therefore a Newton's 3rd law
reaction force on the ball in the opposite direction. This gives an
effective force in the same direction indicated above.

Similar issues arise in the treatment of a spinning cylinder in an
airstream, which has been shown to experience lift. This is the
subject of the Kutta-Joukowski theorem. It is also invoked in the
discussion of airfoil lift.
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Airfoil

The air across the top of a conventional airfoil experiences constricted flow lines
and increased air speed relative to the wing. This causes a decrease in pressure
on the top according to the Bernoulli equation and provides a lift force.
Aerodynamicists (see Eastlake) use the Bernoulli model to correlate with
pressure measurements made in wind tunnels, and assert that when pressure
measurements are made at multiple locations around the airfoil and summed, they
do agree reasonably with the observed lift.

Airfoil A Lift
miction

Nlustration of lift force

and angle of attack

Bernoulli vs Newton;
for airfoil lift

Airfoil terminology

Others appeal to a model based on Newton's
laws and assert that the main lift comes as a
result of the angle of attack. Part of the
Newton's law model of part of the lift force
involves attachment of the boundary layer of
air on the top of the wing with a resulting
downwash of air behind the wing. If the wing
gives the air a downward force, then by
Newton's third law, the wing experiences a
force in the opposite direction - a lift. While
the "Bernoulli vs Newton" debate continues,
Eastlake's position is that they are really
equivalent, just different approaches to the
same physical phenonenon. NASA has a nice
aerodynamics site at which these issues are
discussed.

Increasing the angle of attack gives a larger
lift from the upward component of pressure
on the bottom of the wing, The lift force can
be considered to be a Newton's 3rd law
reaction force to the force exerted downward
on the air by the wing.

At too high an angle of attack, turbulent flow
increases the drag dramatically and will stall
the aircraft.
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A vapor trail over the wing helps visualize the air flow. Photo by Frank Starmer,
used by permission.
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Misunderstandings about the generation of lift

Main article: Lift (force)

Many explanations for the generation of lift (on airfoils, propeller blades, etc.) can be found; but
some of these explanations can be misleading, and some are false.[2%] This has been a source of
heated discussion over the years. In particular, there has been debate about whether lift is best
explained by Bernoulli's principle or Newton's laws of motion. Modern writings agree that both

Bernoulli's principle and Newton's laws are relevant and either can be used to correctly describe
liﬁ.[SO][?’l]DZ]

Several of these explanations use the Bernoulli principle to connect the flow kinematics to the
flow-induced pressures. In cases of incorrect (or partially correct) explanations relying on the
Bernoulli principle, the errors generally occur in the assumptions on the flow kinematics and how

these are produced. It is not the Bernoulli principle itself that is questioned because this principle
is well established.331341351136]

See also

Terminology in fluid dynamics

Navier—Stokes equations — for the flow of a viscous fluid
Euler equations — for the flow of an inviscid fluid
Hydraulics — applied fluid mechanics for liquids

Venturi effect

Inviscid flow
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equation describes this mathematically (see the complete derivation in the appendix)."Babinsky, Holger
(November 2003), "How do wings work?" (http://www.iop.org/E)/article/0031-
9120/38/6/001/pe3_6_001.pdf) , Physics Education, hitp//www.iop.org/El/article/0031-
9120/38/6/001/pe3_6_001.pdf

6. A "Acceleration of air is caused by pressure gradients. Air is accelerated in direction of the velocity if the
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Taking Blood Pressure -

Blood pressure readings are a fundamental diagnostic tool for health care professionals.
What is the physics behind blood pressure?

When visiting a clinic, a patient usually gets a blood pressure reading. High blood pressure,
hypertension, can warn of impending cardiovascular disease. Excessively low blood pressure can
prevent blood from flowing to higher portions of the body, including the brain. Pressure is a
basic physical quantity. How does physics apply to blood pressure?

Pressure

The pressure on a surface is the total force acting on the surface divided by the surface's area.
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Pressure is usually measured in newtons per square meter (often called pascals) or in pounds
per square inch. Pressure is also often measured in millimeters of mercury (mm HG), a unit that
originated from old-fashioned mercury barometers. The conversion factor is:
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1 mm Hg = 133 pascals = 0.02 pounds per square inch.

Blood pressure is the force the blood applies to the artery wall divided by the area of the wall.
Higher blood pressure means the blood applies more force to each square meter of artery wall.

Read This Next

e Does Cutting Out Salt Really
Reduce the Risk of Heart Disease?

e Understanding Pressure in Physics

e What High Blood Pressure Means
in a Child

Medical personnel measure blood pressure in millimeters of mercury. A typical blood pressure
reading of 120 mm Hg equals 16,000 newtons per square meter or 2.4 pounds per square inch.
The blood applies a force of 16,000 newtons to every square meter of artery wall or 2.4 pounds
to every square inch.

Diastolic and Systolic Pressure

Ablood pressure reading is two numbers, for example 120/80. The higher number is the systolic
pressure and is the maximum pressure on the artery walls during the pumping cycle. The lower
number is the diastolic pressure is the lowest pressure during the cycle.

The heart pumps blood through the body. With every heartbeat the ventricles (lower heart
chambers) contract, squeeze the blood out to the arteries, maximizing the blood pressure,
producing the systolic reading. When the ventricles relax, the blood pressure is minimized,
producing the diastolic reading. The heart refills with blood and the cycle repeats.
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slowly decreased.

Eventually the pressure in the cuff is low enough that blood starts flowing again in the
constricted artery. The healthcare worker listening to the artery with a stethoscope hears
turbulence as the blood flow resumes, and reads the systolic blood pressure from the
sphygmomanometer dial. When the turbulence stops, the pressure reading is the diastolic
reading. The blood again flows smoothly because the pressure in the cuff is too low to constrict
the blood flow during any part of the pumping cycle.

Blood pressure is taken on the arm at the same level as the heart because the pressure in a fluid
varies with the height of the fluid.

Effects of High and Low Blood Pressure

If blood pressure is too high, the extra force on the artery walls eventually leads to increased
risk of cardiovascular problems. If arteries are clogged by fatty deposits from high cholesterol,
the narrow arteries force the heart to pump harder, leading to high blood pressure. Those with
high blood pressure wanting details of the health consequences should consult their physicians.

Pressure in a fluid decreases with height, so there must be enough blood pressure to pump the
blood upward to the brain. If the blood pressure is too low the heart cannot push the blood up to
the brain and the person may faint.

Further Reading
Wilson, J.D., Buffa, A.J., and Lou, B., ., Pearson, 2007.
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