Appendix 8

The Influence of Pressure on
the Melting Point of Ice

One of the earliest applications of thermodynamics, which goes back to Clapeyron
and James Thomson, concetns the influence of pressure on the melting point ofy ice
Or%e can argue, going back to the original ideas of Carnot, as follows: Make z;
Carnot engine in which 1 gram of a solid at the melting point melts at temperature T
and under pressure p. To melt the solid, we must supply the melting heat r; the solid
on melting changes volume, and the volume decreases from v, to vy, where, v,and v
are the specific volumes of solid and liquid. The melting occurs i/sothermicaljly Wel
now decrease the pressure adiabatically to p — dp, and correspondingly the teml'aera-
ture varies from T to T — dT. We then freeze the liquid again isothermically at this
temperature, and close the cycle by returning adiabatically to the original conditions.

T-dT

Solid Liquid v

The heat su'pplied in the first melting, multiplied by the efficiency of the
cycle (yvhmh according to Carnot is dT/T) gives the work obtained. This work
according to the figure, is dp (v, — v)). We thus have ,
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This formula is called the Clapeyron formula. Note that the sign of dp/dT is the
same as that of v, — v, for water, since ice floats on water, v, — , is negative.

In the case of the melting of water, »= 79.71 cal/g, which can be
transformed to joules at the rate 4.184 joules = 1 cal. The specific volume of water
is 1.00016; that of ice is 1.0905 in cm?/g; the melting temperature at atmospheric
pressure is 273.16 K. Inserting these numbers in the equation, one obtains dp/dT =
—1.351 X 108 dynes/cm, or — 133.36 atmospheres/degree. The melting point
decreases at high pressure. In a glacier, the ice at the bottom melts under the pressure
of the incumbent mass, and the glacier “flows.”

As an example, we will derive Clapeyron’s formula also by the standard
procedure of expressing that 4§ is a perfect differential. First, what is a perfect
differential? If we have an expression of the type

dz = Alx, y) dx + B(x, y) dy,

we say that it is a perfect differential if there is a function z(x, y) such that dz is the
differendial of such function. A necessary and sufficient condition for this to happen is
that

0A(x, y) _ 0B(x, y)
dy 0x

When this condition is satisfied, it is also possible to integrate z in the plane x, y,
and the integral on a closed path is zero, from which it follows that the integral from
a point P to a point Q does not depend on the integration path. The converse of the
last property is also true.

All this may be immediately applied to thermodynamics. We may restate
the second principle by asserting that there is a function § of the state such that 4§ =
dQ/T is a perfect differential. Note that 4Q is NOT a perfect differential.

In our specific case, we choose T and V' as variables and write the first and
second principles combined as
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and, executing the derivatives and simplifying, we obrain the general equation
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When a unit mass of ice melts at constant temperature, the heat supplied is

= u, — ;T plo, — ).
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The greatest part goes to the change of internal energy #,, — #;,; the remainder goes
to external work p(v,,

the melting.
We thus have

— v;), where v, — v, is the change of volume accompanying

if My T _r T P, —v)
lé] V T Yy, — v; Vy — v;
which, introduced in the general equation (3), gives Clapeyron’s result
r 4,
=7,
v, — v dar

| Appendix 9

The Absolute Scale of
Temperature and the Gas
Thermometer

The first principle of thermodynamics says that for a gas
dQ=dU + pdV. (1)

Gay-Lussac’s experiment (expansion of a gas in a vacuum) contemplates a
situation in which the external work vanishes because there is no pressure opposing
the expansion when the gas expands in a vacaum. The experiment occurs in an
isolated system to which no heat is supplied, and hence 4Q = 0. The experiment
shows that the temperature is not changed by the expansion.

Using V and T as variables, equation (1) gives

U au
40 (av)T av (aT)VdT pdV =0, )

and since 4T is by experiment zero (as ate 4Q and pdV) we must have

ij =0 (3)
av/]r .

This relation and the equation of state pV = RT define a perfect gas.
Using the general equation (3) of Appendix 8, which embodies the second
principle of thermodynamics, we have that, at constant volume,

dp/p =dT/T. . 4

On the other hand, in a conventional gas thermometer, the temperature 6 is defined
by the equation of state, with o« constant:

PV = poVo(l + ) (5)

U
() o

At constant volume we have, from equation (5),
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Appendix 10

d_p _ d6
» 1l/a+6 ) , . )
which, compared with the previous exptession of dp/p from equation (4) yields Maxwell S DIStrlbutlon Of
T=1/a+6 Velocities of Molecules in His

Thus, the gas thermometer gives absolute temperatures.

Own Words

Maxwell read a paper at the meeting of the British Association of Aberdeen in
September 1859. It was published in the Philosophical Magazine in 1860, and it
contains the following heuristic argument on the velocity distribution.

“If a great many equal spherical particles were in motion in a petfectly elastic
vessel, collisions would take place among the patticles, and their velocities would be
altered at every collision; so that after a certain time the vis viva will be divided
among the particles according to some regular law, the average number of particles
‘ whose velocity lies between certain limits being ascertainable though the velocity of
each particle changes at every collision.

Prop. IV. To find the average number of particles whose velocities lie
between given limits, after a great number of collisions among a great number of
equal particles.

Let N be the whole number of particles. Let x, , z be the components of the
velocity of each particle in three rectangular directions, and let the number of
particles for which x lies between x and x + dx, be Nf(x)dx, where f(x) is a function
of x to be determined.

The number of particles for which y lies between y and ¥ + dy will be
Nf(9)dy; and the number for which z lies between z and z + dz will be Nf(2)dz
where f always stands for the same function.

Now the existence of the velocity x does not in any way affect that of the
velocities y or z, since these are all at right angles to each other and independent, so
that the number of particles whose velocity lies beeween x and x + dx, and also
between y and y + dy, and also between z and z + dz, is

Nf()f(9) f(2)dxdydz.

If we suppose the N particles to start from the origin at the same instant, then this
will be the number in the element of volume (dxdydz) after unit of time, and the
number referred to unit of volume will be

NfeOf (0 f(2).




But the directions of the coordinates are petfectly arbitrary,
number must depend on the distance from the origin alone, that is

Solving this functional equation, we find

and we should find the whole number of particles infinite. We therefore make A

. 1
negative and equal to —-—, so that the number between x and x + dx is
«

Integrating from x = —® to x = + %, we find the whole number of particles,

[f(x) is therefore

Whence we may draw the following conclusions:—

lies between x and x + dx is

together and divide by the number of particles; the result is

by N,

Maxwell's Distribution of Velocities of Molecules in His Own Words

and therefore this

f@fDf(@) = ¢(x? + 32 +23).

f(x) = Cet*, d(r?) = C3eA7,

If we make A positive, the number of particles will increase with the velocity

NCe™#/9]x.

NCGVr =Ng:c=—L,
avr
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1st. The number of particles whose velocity, resolved in a certain direction,

1
N —— /gy )
avrm

2nd. The number whose actual velocity lies between v and v + dv is

N

v2e vy )
aNn

3rd. To find the mean value of », add the velocities of all the particles

2a
mean velocity = — 3

T

4th. To find the mean value of »2, add all the values together and divide

mean value of v2 = 32, 4)

This is greater than the square of the mean velocity, as it ought to be.”

Appendix 11

Boltzmann’s Epitaph

Forgetting all the reservations and difficulties besetting the definition of W, the
probability of a state, we can show an interesting feature of the relation between
probability and entropy, assuming that there is a functional relation,

S =fW). )

Consider two separate independent systems having entropies §, and §, and
probabilities W, and W, .

Combining the two systems, the entropies add. The composite system has
the entropy

S=8+S,. )

On the other hand, the probability is the product of the probabilities W, W,.
The function § of equation (1) thus has the property that

Wy + f(Wy) = (W, W), . 3
which is satisfied by
fW)=klog W
with £ constant.
We thus have Boltzmann’s epitaph, »
S==Fklog W.
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The Essentials of Boltzmann’s
H-theorem

Let f(r, v, t)drdv be the probability that at time # a monatomic molecule is contained
ig a space volume-element and a velocity volume-element around r and v in 2
six-dimensional representative space. The distribution function changes in time for
two reasons. First, the motion of the particles, apart from collisions, produces a flow

T of
in six-dimensional space | = | . From analytical mechanics, using Liouville’s
flow

theorem, one obtains for this, in the absence of forces, —v * grad,f, to which one
adds a term due to possible potential fields —a * grad, £, The other cause of change

. . 9
is collisions, and one has the term (—9; . Collisions can throw out of the volume

coll
element certain molecules as well as bringing in others, taking them from all the

six-dimensional space.

. In the first case f(v, r, #) decreases because a molecule of velocity v collides
with c,>ne of velocity v,, and after the collision the two molecules have velocities v’
and v1. In the second case, in which f(v, r, #) increases, the molecules colliding have

. N , . .
before the collision v§loc1tles v" and vi, and after the collision velocities v and v,
The frequency of collisions of the first kind is proportional to [ /i, and the frequency
. nr . PR ; ;

of col!mons of Ehe second kmd/ is proportional to /1 f”. Here and in the integral of
equation (1), /7 stands for f(v], r, #), etc.

The collisional term was calculated by Boltzmann and is the integral in
equation (1), which is the famous Boltzmann transport equation

of
o + v grad,f+a - grad,f= f av, f aQglig, OLf f1—FAL (D)

Here a is the acceleration due to an outside potential U(r) that may be present.

Clegrly, for a molecule of mass 7, a = — grad, U/m. The indexes on grad denote on
which variables one has to take the derivatives.

The Essentials of Boltzmann's H-theorem

In the integral, g is the magnitude of the relative velocity of the colliding
molecules, before the collision; I(g, ) is the appropriate differential collision cross
section for collisions producing a deflection € and for which the final velocity is
contained in the solid angle element 4Q.

Boltzmann proved that, for a general U(r), any initial distribution f(r, v, 0)
will in time change to the stationary Maxwell-Boltzmann distribution, which is
time-independent

f (r, v) = Ae—/i{mz/z-!-U(r)}, 5

where A is determined by the total number of molecules that normalize the function
and B = 1/£T. The last equation determining f8 is obtained by considering the total
energy.
Boltzmann'’s proof proceeds by showing that there is a positive quantity H,
which under the influence of the collisions decreases or is stationary
dH

—
= 0. (3)

This famous quantity H, for which the theorem is named, is

H@) = f dr f avf(e, v, Hlog f(r, v, 9. “4)

Ultimately, H will be identified with the entropy, with its sigh changed, except foran
arbitrary constant; thus, the decrease of H is the increase of entropy brought about by
the collisions.

Boltzmann proved that H is constant only if for all collisions

FA=F It G)

The stationaty state by virtue of equation (1) also satisfies the equation
o
o + v - grad,f+a - grad, /=0

Equations (1) and (3) determine the Maxwell-Boltzmann distribution for normal
cases.

Boltzmann’s equation (1) has been studied incessantly since it was formu-
lated in 1872, and it even has practical applicatiqns, for instance, to isotope
separation. On its centennial, a conference in Vienna was devoted to a review of its
status and its consequences. The proceedings of this conference are an eloquent
testimonial to the vitality of Boltzmann'’s equation.
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Dilemmas Posed by the
Equipartition of Energy

Here is a sample of the paradoxes connected with the equipattition of energy.
Consider a perfect gas, either monatomic or polyatomic. Thermodynamics give for

h l 1 atld fO[ the“l l 1 ] at
the moila 1]631 at constant V()ll]l 1€ (: Ola €

C Z i The 1 b
fant Dressur == =(Z=Z) + o ]
at constant pressure C, ar), i), y/ aT), e last term, because

of the equation of state, is R. Hence

C,—C, =R (1)
If molecules have 7 degrees of freedom, the equipartition theorern requires
Cy = nR/2

and because of equation (1)
C/Cr=(m~+2)/n

The ratio C,/Cy, can be accurately measured, for instance, from the velocity of sound.

For a monatomic gas, assume 3 degrees of freedom per atom, corresponding
to the motion of a material point; one has C,/Cy = 3 = 1.667. Experiments on
noble gases support this result. The question may be raised, however, about the
degrees of freedom corresponding to the electronic motions in the atom. This
difficulty could not be answered by classical physics. Furthermore we may assume
that a diatomic molecule is similar to a rigid body shaped like 2 dumbbell. It then has
6 degrees of freedom, and C,/Cy should have the value £ = 1.3333. Experiment
shows that C,/C, =% = 1.40. For a dumbbell model, we can not deny the 3
degrees of freedom corresponding to the coordinates of the center of mass, nor the 2
coordinates that orient the dumbbell in space. More questionable may appear the
sixth degree of freedom, corresponding to the rotation along the line connecting the
two atoms forming the dumbbell molecule. Classically, it should certainly be
counted, but in face it is hidden, frozen, as the internal degrees of freedom in the
atoms. The reason is to be found in quantum theory.

Appendix 14

The Marvelous Equation of
van der Waals and Clausius’
Virial Theorem

The equation of van der Waals for N molecules of a real substance is

<p+ﬂl\;2> (v — bN) = NET (1)

v
and may be inferred qualitatively starting from the perfect gas equation
pv = NET . )

by remarking that the volume accessible to the molecules is not v, buF is diminished
by the volume occupied by the molecules themselves when they ate in contact, Nb.
Furthermore, to the pressure exerted by the walls of the gas container we must add a
pressure due to attractive forces that may exist berween Fhe m9lecules. This
additional pressure is proportional to N2 /22 because we may think of it as due to the
force acting on a thin surface layer of the gas exerted by the molecules of the bulk (.)f
the gas and not counterbalanced on the side of the wall. The number~ of molecules in
the surface layer is proportional to N/», and the number of attracting molecules is
also proportional to N/v; hence the additional pressure is 2N?/ 1./2.

We may improve this crude qualitative argument using a theorem of
Clausius (1870), called the virial theorem.

Given N material points of mass 7, we call the virial of the system the
quantity

V= —% 2 mr; * F;, ' (3)

where F, is the force acting on the point 7 of coordinates r;. Using the equation F; =
mt; and the identity

d

Brr=—i-or— i
dt
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we obtain

By taking the time average of the virial over a sufficiently long time ¢
we

T 1 )
. + E <2 mir,-2>

The first right hand term vanishes because the difference between the initial

and final values of Zmr; - r; stays finite, while 7 increases indefinitely. We obtain
thus the “‘virial theorem’’:;

have

1
Vy=—= mi
< > ZT mlrt rl

(V) = (Bu) = 3T "

the last equality is due to the equipartition theorem.

. We apply the virial theorem to a gas confined to a cube of side L contained
m.the first octant of a coordinate system, with sides on the axes and a corner in the
opgﬁn of the coordinates. In the computation of the virial, it is convenjent to
dlstmgmslh.thf': part due to exterior forces V, and the part due to intermolecular forces
V;. The virial is the sum of the two. We calculate firs V,. The exterior forces give the
pressure on the wall. For the walls perpendicular to the x axis, we have, at abscissa L,
2 F,L =— pL3, while the wall containing the origin does not contribute to the Viriai

Eecause x = 0. Extending this argument to all walls and summing the results, we
ave 7

(V.) = 3pL> = 3pv $))

where v is the gas volume.
From equations (4) and (5) we thus have

SNET = 3pv + (V). (6

If thgre are no intermolecular forces, (V;) = 0, and we obtain the perfect gas
equation.

We give now the outline of an evaluation of (V,) based on a plausible
model, leading to van der Waals's equation. We assume that the force berween
molecules contains a short-range strongly repulsive zone due to a hard core and a
long-range attractive zone where the force varies an #~* with 7, in practice, near 6.

Consequently, it is expedient to divide V into V. due to the hard core and
V.. due to the artractive force.

To evaluate the part of the virial due to the hard core, we consider the change
of momentum due to the collisions. The corresponding short-range and short-dura-

The Marvelous Equation of van der Waals and Clausins’ Virial Theorem

tion forces contribute to the virial when the centers of the molecules are at a distance
27, and are applied with the frequency at which the collisions occur. A calculation
gives as final result

(Vi) = —4GrrN)p = — 3pbN %)

where 4, sometimes called the covolume, is 4 times the volume occupied by the
molecules (this is the van der Waals constant ).

The contribution to the virial made by the long-range attractive forces f(7) is
for each pair of molecules with their centers at distance > 27, — f(#) * r. Multiply-
ing this quantity by the number of such pairs 47r2dr + (N/v) * 7N and integrating,

N2 [®
v, = 21— f(Dr3dy (8)
v 27y
Using now equations (0), (7), and (8), we have
Nz 2 *
NET = pv — pbN + — ?” f fiwrdr ©)
v 27
Calling
2 o0
a= i f frridr
3 2r

and neglecting small terms containing @4, equation (9) can be rewritten in the van
der Waals form:

p2

2
NET = (v — 6N) (p+”N )

For instance, for CO,, using as units atmospheres, liters, and degrees Kelvin and
referring to one mole N = 6.022 - 10?*>; Nk = R = 0.08206; N2z = 3,592,
Nb& = 0.04267.

For the zone in the pv plane in which liquid and gas coexist, van der Waals
isothermals are replaced by horizontal straight lines corresponding to the pressure of
the saturated vapor. These lines intercept the van der Waals isothermals at three
points and form two loops with the same. Where are these horizontal lines to be
located? Maxwell gave the criterion that the two loops must have the same area. His
thermodynamical argument considers a cycle formed by the horizontal line and the
van der Waals isothermal. If we follow this cycle, we go around the two loops,
leaving one to the right and one to the left. The loops thus have opposite signs.
Consider now the cycle mentioned above. It is completely isothermal; thus, it has
efficiency zero, and no mechanical work can be performed. The mechanical work is
given by the area of the cycle, which thus must be zero. Hence the two loops must
have equal areas.
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