分類: 編號: 總號:

Comments

Last Lecture

Point Charge at the origin

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} \qquad \vec{E}(x, y, 3)$$

$$\nabla \times \vec{E} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial \bar{z}} \\ \frac{\chi}{(\chi^2 + y^2 + \bar{z}^2)^{3/2}} & \frac{y}{(\chi^2 + y^2 + \bar{z}^2)^{3/2}} & \frac{\chi}{(\chi^2 + y^2 + \bar{z}^2)^{3/2}} \end{vmatrix}$$

x component

(i)
$$\frac{\partial}{\partial y} \frac{\partial}{(x^2 + y^2 + z^2)^{3/2}} = \frac{\partial}{\partial z} \left(-\frac{\partial}{z} \frac{2y}{(x^2 + y^2 + z^2)^{5/2}} \right)$$

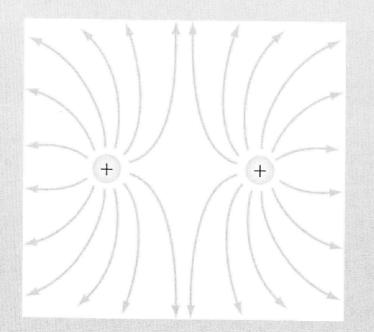
$$-(i) - \frac{\partial}{\partial 3} \frac{1}{(\chi^2 + y^2 + 3^2)^{3/2}} = -y \left(-\frac{3}{2} \frac{23}{(\chi^2 + y^2 + 3^2)^{5/2}} \right)$$

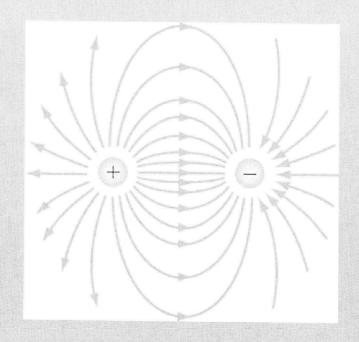
At r = 0, due to spherical symmetry, there is no preferred direction $\nabla x \vec{E}$ at r = 0 must be a vector \Rightarrow it has a direction Since at r = 0, there is no preferred direction; $\nabla x \vec{E}$ at r = 0 must vanish $\nabla x \vec{E} = 0$ vanish everywhere. For a charge Qi located at \vec{r}_i , then $\vec{E}_p(x,y,z) = \vec{E}_i(\vec{r})$ $\frac{1}{4\pi\epsilon_o}\frac{Q}{|\vec{F}-\vec{F}_i|^3}(\vec{F}-\vec{F}_i)$ One can show $\nabla x \vec{E}_i = 0$ Electric field produced by charges Q, ... Qn located at i, ... is given by $\vec{E} = \sum_{i=1}^{N} \vec{E_i}$ $\nabla x \vec{E} = \nabla x \sum_{i=1}^{N} \vec{E}_{i} = \sum_{i=1}^{N} \nabla x \vec{E}_{i} = 0$ \Rightarrow For electrostatics $\nabla x \vec{E} = 0$ $\Rightarrow \oint \vec{E} \cdot d\vec{r} = 0$ In electrostatics, E is conservative $\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla V$

Lines of Force
Useful as an aid of visualizing the electric fields
introduced by Faraday
Lines of forces are imaginary lines drawn through a region of
space so that at every point it is tangent to the
direction of \vec{E} at that point.
The lines of forces are drawn in such a way that the number
of lines per unit cross sectional area perpendicular (to
the line) is proportional to the magnitude of E
At any one point, the electric field can have only one
direction → lines of force never intersect.
The lines of force radiate from positive charge.
The number of lines radiate from positive charge is proportional
to the charge. Q. Lines of forces move toward negative charge

Electric Field Lines

- 1. Direction of field line at any point is tangent to field at that point
- 2. Field lines point away from positive charges and terminate on negative charges
- 3. Field lines never cross each other





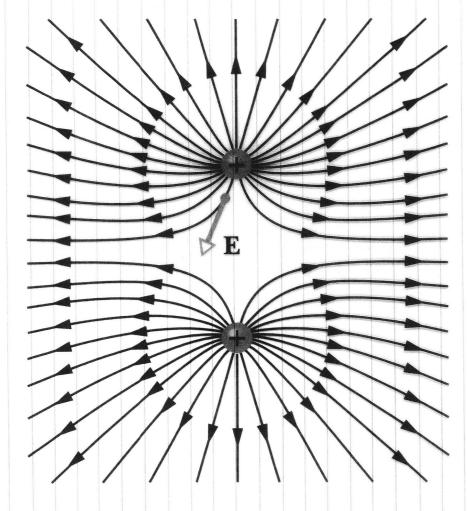


Figure 23-4

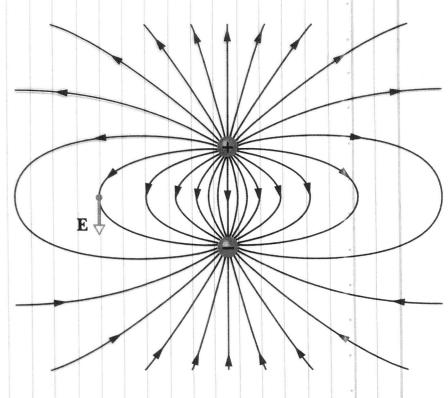
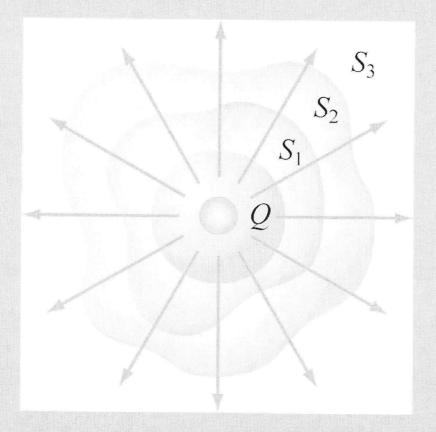


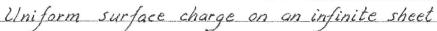
Figure 23-5

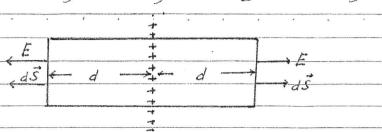
Gauss's Law - The Idea



The total "flux" of field lines penetrating any of these surfaces is the same and depends only on the amount of charge inside

Gauss' Law and Superposition principle





From symmetry consideration, the direction \vec{E} are as shown in the figure \Rightarrow only the front and back surfaces will contribute to $\oint \vec{E} \cdot d\vec{S}$

With equal distance d, the $|\vec{E}|$ at the front and back surfaces are equal

$$\oint \vec{E} \cdot d\vec{s} = 2I\vec{E}IA = \frac{1}{\epsilon_0} \sigma_{\vec{s}} A$$
charge per unit area

$$\Rightarrow |\vec{E}| = \frac{\sqrt{3}}{2\epsilon_0}$$
independent of d

Use principle of superposition

Region I.
$$\vec{E} = \frac{\sigma_S + \sigma_S'}{2\epsilon_o} \hat{U}_X$$
Region II.
$$\vec{E} = \frac{-\sigma_S + \sigma_S'}{2\epsilon_o} \hat{U}_X$$
Region III.
$$\vec{E} = \frac{-\sigma_S - \sigma_S'}{2\epsilon_o} \hat{U}_X$$

Charging

How Do You Charge Objects?

- Friction
- Transfer (touching)
- Induction

