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7.1 Introduction

E-lements are said to be in parallel when they are connected across the same potential
difference (see F igure 7.1.1a),

Figure 7.1.1 Elements connected (a) in parallel, and (b) in series.

Generally, loads are connected in parallel across the power supply. On the other hand,
when the elements are connected one after another, so that the current passes through
each element without any branches, the elements are in series (see Figure 7.1.1b).

frequently used symbols are shown below:

Voltage Source

Resistor

Switch I C/

Often Fhere is a switch in series; when the switch is open the load is disconnected; when
the switch is closed, the load is connected.

One can have closed circuits, through which current flows, or open circuits in which there
are no currents. Usually by accident, wires may touch, causing a short circuit. Most of
the current flows through the short, very little will flow through the load. This may burn
out a piece of electrical equipment such as a transformer. To prevent damage, a fuse or
circuit breaker is put in series. When there is a short the fuse blows, or the breaker opens.

In electrical circuits, a point (or some common lead) is chosen as the ground. This point
is assigned an arbitrary voltage, usually zero, and the voltage V" at any point in the circuit
is defined as the voltage difference between that point and ground.
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Symbols for Circuit Elements

Battery nl

Resistor

Capacitor | 1|

- Switch
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EMF Electromotive force

s What makes charges flow in circuits?
= Potential difference AV
e Source of charges

= This is what the EMF provides
« NB: EMF=Electromotive force but it’s not a force!!!

= Example of EMF: battery
« Device that maintains separation of charges between 2 electrodes
= Current flows inside via electrochemical reactions that produce AV

G. Sciolla = MIT 8.022 — Lecture 8 5

Car Battery

= Two terminals (lead oxide PbQ, and porous lead Pb) in sulfuric acid (H,50,)
- ) -

=  When immersed in acid, Pb provides free electrons:

Pb+HSO, — PbSO, +H" +2¢
s At the lead oxide electron, this reaction is energetically favored:
PbO, +3H"+HSO, +2¢ — PbSO, +2H,0
s If it is possible for both e and H* to travel from one terminal to the other:

Pb + PbO, + H,SO, — 2PbSO, +2H,0  +44eV
G. Sciolla — MIT 8.022 — Lecture 8 6




Car Batte“ry (2)

=« When terminals are not connected: no flow of e-

« E in battery does not allow flow of H+ > inhibits reaction

= When terminals are connected: electrons start flowing freely
» Electric field is reduced - H* can flow - reaction occurs

EMF of battery: ¢(+ terminal) — ¢(- terminal): AV available to drive circuit
+ terminal
EMF= [ E-ds

- terminal

G. Sciolla = MIT 8.022 — Lecture 8

Convention

= We indicate EMF with this symbol: X
= Long side: + terminal I
« Short side: - terminal v &£
= The current flows from + to —

« Counterintuitive if you think about it in terms of electrons...

G. Sciolla — MIT 8.022 — Lecture 8




Sign Conventions - Battery

Moving from the negative to positive terminal of a
battery increases your potential

€ Al -1V

S~ @

N e

‘*‘% ~ Think:
B TR



Sign Conventions - Resistor

Moving across a resistor in the direction of current
decreases your potential

f S -
——

N oe
S~ @

AV = —IR

Thlnk
Skl Slope

Q.

B"‘.

—



Sign Conventions - Capacitor

Moving across a capacitor from the negatively to
positively charged plate increases your potential

A "“Q +Q AV:V})_Va
a b




7.2 Electromotive Force

In the last Chapter, we have shown that electrical energy must be supplied to maintain a
constant current in a closed circuit. The source of energy is commonly referred to as the
electromotive force, or emf (symbol & ). Batteries, solar cells and thermocouples are some
examples of emf source. They can be thought of as a “charge pump” that moves charges
from lower potential to the higher one. Mathematically emf is defined as

gt (7.2.1)

which is the work done to move a unit charge in the direction of higher potential. The SI
unit for & is the volt (V).

Consider a simple circuit consisting of a battery as the emf source and a resistor of
resistance R, as shown in Figure 7.2.1.

)D))en

Figure 7.2.1 A simple circuit consisting of a battery and a resistor

Assuming that the battery has no internal resistance, the potential difference AV (or
terminal voltage) between the positive and the negative terminals of the battery is equal
to the emf . To drive the current around the circuit, the battery undergoes a discharging
process which converts chemical energy to emf (recall that the dimensions of emf are the
same as energy per charge). The current / can be found by noting that no work is done in
moving a charge g around a closed loop due to the conservative nature of the electrostatic
force:



W=-qd E-di=0 (7.2.2)

Let point a in Figure 7.2.2 be the starting point.

! v B

N A — Figure 7.2.2

When crossing from the negative to the positive terminal, the potential increases by ¢.
On the other hand, as we cross the resistor, the potential decreases by an amount /R, and
the potential energy is converted into thermal energy in the resistor. Assuming that the
connecting wire carries no resistance, upon completing the loop, the net change in
potential difference is zero,

e—IR=0 (7.2.3)
which implies

g
I== 7.2.4
= (7.2.4)

However, a real battery always carries an internal resistance » (Figure 7.2.3a),

i R e 5 R

¢ &

Figure 7.2.3 (a) Circuit with an emf source having an internal resistance r and a resistor
of resistance R. (b) Change in electric potential around the circuit.

and the potential difference across the battery terminals becomes
AV =e-1Ir (7.2.5)
Since there is no net change in potential difference around a closed loop, we have

e—Ir—IR=0 (7.2.6)




] = &

= 7.2.7
R+r ( )

Figure 7.2.3(b) depicts the change in electric potential as we traverse the circuit
clockwise. From the Figure, we see that the highest voltage is immediately after the
battery. The voltage drops as each resistor is crossed. Note that the voltage is essentially
constant along the wires. This is because the wires have a negligibly small resistance
compared to the resistors.

For a source with emf ¢, the power or the rate at which energy is delivered is
P=Ig=I(IR+Ir)=I"R+1I’r (7.2.8)

That the power of the source emf is equal to the sum of the power dissipated in both the
internal and load resistance is required by energy conservation.



Resstrs iN series

» We implicitly derived an important result. We wrote:

-y -y_g = ___r
&I IRR

= What does

it mean? Same current flowing in these two circuits:
R,

G. Sciolla — MIT
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Resistors in parallel vs. in series

= Resistors in series:

= The current flowing is one = add resistors > make the path harder
— I decreases - R,, increases > R, larger than any single resistor

w Resistors in parallel:
= The current flows is many resistors = add resistors - make path easier
= lincreases > R, is smaller than any single resistor

G. Sciolla - MIT 8.022 - Lecture 8 17




7.3 Resistors in Series and in Parallel

The two resistors R and R, in Figure 7.3.1 are connected in series to a voltage source AV .
By current conservation, the same current / is flowing through each resistor.

3

/ig h ! E——

o h \): o
M s MWy

By
/

4

Figure 7.3.1 (a) Resistors in series. (b) Equivalent circuit.

The total voltage drop from a to ¢ across both elements is the sum of the voltage drops
across the individual resistors:

AV=IR+IR =I(R+R,) (7.3.1)

The two resistors in series can be replaced by one equivalent resistor R,, (Figure 7.3.1b)

with the identical voltage drop AV =1 R, , Which implies that

Ry =R +R, (7.3.2)

The above argument can be extended to N resistors placed in series. The equivalent
resistance is just the sum of the original resistances,

N
R,=R+R+=)R (7.3.3)
i=]

Notice that if one resistance R, is much larger than the other resistances R, then the
equivalent resistance R,, 1s approximately equal to the largest resistor R.

Next let’s consider two resistors &, and R, that are connected in parallel across a voltage
source AV (Figure 7.3.2a).

E——

AV

i
|

o4 | Fe

Figure 7.3.2 (a) Two resistors in parallel. (b) Equivalent resistance



By current conservation, the current / that passes through the voltage source must divide
into a current / that passes through resistor R, and a current I, that passes through

resistor R,. Each resistor individually satisfies Ohm’s law, AV, = LR and AV, =1 R,.
However, the potential across the resistors are the same, AV, =AV,=AV . Current
conservation then implies

I:II+IZ=M+A—V—=AV(L+LJ (7.3.4)
Rl RZ RI RZ

The two resistors in parallel can be replaced by one equivalent resistor R,, with
AV = IR, (Figure 7.3.2b). Comparing these results, the equivalent resistance for two

resistors that are connected in parallel is given by

RIS S (7.3.5)

This result easily generalizes to N resistors connected in parallel

11 1 1 N
I EIE ST S 8 (7.3.6)
RETTAE

eq 1 2



When one resistance R, is much smaller than the other resistances R, , then the equivalent
resistance R, is approximately equal to the smallest resistor R,. In the case of two
resistors,

This means that almost all of the current that enters the node point will pass through the
branch containing the smallest resistance. So, when a short develops across a circuit, all
of the current passes through this path of nearly zero resistance.



‘Series vs. Parallel




Resistors In Series

The same current / must flow through both resistors

| h ¢ a Req

. AN . AN, ——— . W\, .

AF - 1R, +IR, —](R +R) [R




Resistors In Parallel

Voltage drop across the resistors must be the same

R

)

AV AV AV ]R ]R—]R

I=1

=l

-5 [,2

AV AV AV

T

R

o eq:,,"" ]




Internal Resistance

Real batteries have an internal resistance, r, which is

small but non-zero ekl

|
|
|
|
|
|
|

(Even if you short the leads you don't ge

 infini

e current)

Bl o






Kirchhoff’s Rules

1. Sum of currents entering any junction in a circuit
must equal sum of currents leaving that junction.




Kirchhoff’s Rules

2. Sum of potential differences across all elements
around any closed circuit loop must be zero.

N 4E-d§=0

Closed
Path v
e £ R
a m!i+ M ] b — ;% T Wf !
R I - ;
| S S —
S — . 3 7‘1', f
L el
R 5 i
d T , y |



Kirchoff’s first rule

s Let's now connect resistors in parallel:
I N

» At the node N the current I divides up into 2 pieces: I, and I,

Kirchhoff's first law:
At any node, sum of the currents in = sum of the currents out

= In other words: there is no accumulation of charges in the circuit

G. Sciolla — MIT 8.022 — Lecture 8 14

Kirchhoff’ second rule

= Close a battery on a resistor: simplest circuit!

s S

I

V_‘t:’__

V
s  How much current flows in the circuit? Ohm’s law: [ = E

= Whern the current flows in a resistor there is a voltage drop AV=-IR

Kirchhoff's second law: ;
Around any closed loops, the sum of EMF and potential drops is O

Equivalent to say that Electrostatic filed is conservative: (}; Eeds =0

G. Sciolla — MIT 8.022 — Lecture 8 9




Steps of Solving Circuit Problem

. Straighten out circuit (make squares)
. Simplify resistors in series/parallel

. Assign current loops (arbitrary)
Write loop equations (1 per loop)

€ o e

o Pl



Example: Simple Circuit

| You can simplify
Swo ) w2 resistors in series
| L) (but don’t need to)

. Vvnatis ellment .+ §R.
through the bottom M AMA Lol




Example: Simple Circuit

. 5 . Startatain both loops

=« Walk in direction of current
&

—(L,—L)R+e=0

i Addthese;*ﬁ——‘—zg”—llR;F?Ewﬂjjimfm—;—gMﬂﬁm S

. B S

- Wewanedty (L-I)R=¢ >L=S+l




Group Problem: Circuit

Find meters’ values. All resistors are R, batteries are &

, - 14




= If we have more th

= Solve the circuit: det
= What we know:

ermine currents and voltages everywhere

= Curfent flowing in the circuit must be the same everywhere, or Q would
accumulate somewhere

= Voltage drop in thel it resistor: AV,=-IR,

= Secand Kirchhoff rle: 7 -YrV=0

V

V— V;:V—-[ R/=O = [:\
,;3 ,;3 RI+R2+R3
G. Sciollg — MIT

8.022 - Lecture 8

Application (F13)

= What is the resistance of electrical components?

-

Elements of the circuit:
RS R4 ' _
- Saline solution
e - Resistor
T R3 - Diod
- light bulb
L R1 }\R% -Fluoreschent light
—AAN —AAy

= How to measure knowing the current = 135 mv?
= You are given a voltmeter!

G. Sciolla — MIT 8.022 — Lecture 8




= Red

= But K

= Series and pan
= Because of

= Apply First Kirg
= Apply Second K

irchhoff sti

arder circuits

do we solve this?

cing the circuit does not work:
allels won't work

second EMF
holds so:

hhoff law to each node

irchhoff law to each loop

G. Sciolla ~ MIT 8.022 - Lecture 8 19
arder circuits (2)
= Solutign: R
= Left loop: V) I’
« VTR -(I-L)R,=0 I N
= Right loop: Vi R, V2
= Vo LRy~(I,-1))R,=0 ‘ & A A ‘
= Node: R
3
= [(in R2)=I1-1p
= Solving|the system
How to go through a loop?
n- VIR +(Vi-v2)R2 |, Assign current direction (arbitrary)
RIR2+ R1R3+ R2R3 | e Choose a path (clockwise or ACW)
* EMF: >0 when -+ and <0 when +->-
12 = MM * V always drops on R
RIR2 + R1R3 + R2R3
G. Sciolla|- MIT

8.022 - Lecture 8 20
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Power is change in energy per unit time

S0 power to move current through circuit elements:

P=2U =2 (qar)=92,y
dt dt dt

L 3 ol
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Moving from the negative to positive terminal of a
battery increases your potential. If current flows
in that direction the battery supplies power

QP
e

— |+

S ®

e

AV = +E -




] : = SRR TEE S —
—— LY, VIO eEmm A a Y eR FaX F ¥

Moving across a resistor in the direction of current

decreases your potential. Re3|stors always
dissipate power

Y

AV = IR

})dlssnpated = ] AV [ R o i |




—__a LY VA e e e W_VL =y =

Moving across a capacitor from the positive to
negative plate decreases your potential. If current

flows in that direction the capacitor absorbs power
(stores charge)

L’::~*Q}Qf

-IAV_dQQ a0
O e 2C dt

absorbed

RTE




7 1 ,\’)’
oy e BTR LR

(power dellvered by battery) = (power dlSSlpated through resrstor)
| * g (power absorbed by the CapaCItor) .

| PIO 40{{ ~



Capacitors| in circuits

way of looking at problems:

= Until now: charges at rest or constant currents
= When capacitars present: currents vary over time
S
+

= Consider the following situation:
= A capacitor C with charge Q, > V,=Q,/C
= A resistor R in series connected by switch s
= What happens when switch s is closed?
G. Sciolla — MIT | 8.022 — Lecture 9 3

Discharging capacitors: qualitative
m Before|switch s is ¢losed:
= Difference in potential between C plates: V,
= No current circulating in the circuit (open)

P o
L \ 4

> S

I

m After syitch s is closed:
= Difference in potential between capacitor plates will induce current I

= As I /flows, charge difference on capacitor decreases - Vc decreases > 1
decreases over time

G. Sciollg — MIT 8.022 — Lecture 9 4




Not ug

1arging capacitors: quantitative

second Kircl%whoff’s law:
F supplied by capacitor C: V=Q/C
NB: this is true at any moment in time > Q(t) > V(t)

tage drop on|the resistor: -IR
2— IR=0
()

eful in this form since I=1(Q)

= I=1dQ/dt (- sign because C is losing charge)
Q + d_QR =0
C d
= Easy integral yields to exponential decay of the charge:
() = Qe ™
G. Sciolla — MIT 8.022 — Lecture 9 5
How fto integrate RC circuits
To solve 2+d—QR =0, rewrite as: d—Q = —i
C dt 0 RC
Integrate both sides:
“fdo _
9 Q 0 RC
In %2 = :
Q, RC
Q) =0 ™
NB: t=R( is called “decay constant” of the circuit
G. Sciolla — MIT 8.022 — Lecture 9 6




Solution o

w  Soluti

f RC circuit

DN

Q) =0 ™

= Exponential decay of charge stored in capacitor
= t=RC is called “decay constant” of the circuit

= Affer a time RC, the charge decreased by 1/e w.r.t. original value
= Unjts of RC:

cgs: [R]= statvolt s /esu; [C]=esu/statvolt > [RC]=s
SI: [R]=V/A; [C]=C/V; A=C/s > [RC]=s

= Deriva the current:

40 d -w)_0 7
(== =) RC | = X0 RC
P Qodt(e J RC®

s Same exponential decay as for Q(t)

G. Sciglla - MIT 8.022 - Lecture 9

Char

s Now
= Ca

= What
= WhH
&« AS
= I(t

G. Scio|

3 elements in circuit: EMF, capacitor and resistor
pacitor starts uncharged

ok g, g o V

|-
[

happens when switch s is closed?
en s is closed, current will suddenly flow and C will charge

stops when V. reaches V

la — MIT | 8.022 — Lecture 9

C charges, E opposite to EMF builds up and slows down current




Chart

+ly-
I'v
0

= Solve using Kirchhoff's second law: V_E_[R =0

. I(t)
« NB

s Firsto

= Solutig

G. Scig

=+dQ/dt
+ because the capacitor is now charging!

d—QR+2—V:O
dt Cc

1
n: Q) :'CV(I—e FCJ
i 2 - Lecture 9

der differen;tiai equation

la — MIT 8.0

jing capacitor: solve the circuit

Deta

To solve -

Setting: Q"

Integrating

=01 dQ
[

G. Scio

do

Is of integration

0

|
= R+=—-V =0, rewrite as:
dt Cc |

~0-CV |

do _ (©-CV)

dt RC

a__ &
RC

, =
Q'
between tﬁlO and t;
| e dt| on-CV _

[ — = I -
=0 RC -CV RC
\

=5
cv

f
RC

[ )
Oy =CV|l-e
\

la = MIT 8.022 — Lecture 9
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o00-CcV _
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!

RC




solution

Q 1-eURC iR _
/ Q(t):CV(]_e RC}
e R
t
V(t) |
v 1-@"[/52(: [ ——— e
L Vo(r)=Q(t)/C=V(1—e J
t:
I(t)
V/R ,
e/RC [(t) — dQ(t) _ Ke_ RrC
G.| Sciolla — MIT l 8(;2'2 - Lecture 9 11

Solutio

Are Kir

V —

Asympt
= Att
= Att

Conclus
t ]

G. Scioll

yrtant

n of RC circ

chhoff's law
0

IR =V

otic behavi
=0: I=V/R as
=infinity, I=0

jon: no nee
Solution is an
Asymptotic be

- MIT

_ V(l

r of the capacitor:
i
as if C were an open circuit

comments

!

it V.= V(l —e RC J; I1(t) = %e_ RC

valid at any moment in time?

-
—e RC

]—Rze_ﬁw OK!
R

f C were a short circuit

d to solve the differential equation!

exponential with time constant RC
havior of C gives initial/final values for V(t) and I(t)
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Time

> constant of RC circuit (E9)

s Simple RC circuit with T
. Ve =3V I
« C&13F C==F-:-
= R=11.7Q
= Questjons:
« What are V. and I?
= Verify that time|constant is RC p
A Vv(t):V4 . l_e_ﬁ?]
V(1) _—— C EMF (
W — RC =152s

/

If formula is correct =

— >

> V.=V, (1-1/e)=1.9 V when t=15.2

t
G. Sciglla — MIT 8.022 - Lecture 9 13
Verify time constant (E8) M
w RC circuit with % *
= Veye = Squared |5 V pulses R, C
= Variable Cinitially = 0.3 uF
= Variable R, initially = 400 Q G
« R,=1000Q S
= Display on scope V. and I(R,) '
= Vefify that time|constant is RC ) * A
A I t
V() | e ac(t)
sy 10mA
/K /“ e t/RC \\
t t
G. Sciglla — MIT 8.022 — Lecture 9 14




Assuming
What

G. Scig

cuit with
¢ = squared
riable C initia
riable R, initia
=100 0

1=RC...

happens wh
-RC'=2RC=21

hould we ch
:2R=2(R,+R,

lla — MIT

5V pulses
ly = 0.3 puF
lly = 400 Q

en we double C?
o 2 V (I,5) raises (falls) twice as fast

ange R2 to have the same effect?
") > R2: 400 - 900 Q

8.022 — Lecture 9
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What
Consig

Calcul
Solutiq

G. Sciol

f the RC cir
er the follov

plicated RC circuits

cuit is more than just a series of R and C?
Ving circuit:

R

1+

ate Q(E) on {
n:

Kirckhoff's I3
Use Theveni

la — MIT

he capacitor

ws will solve it: TEDIOUS!
n’'s Theorem

8.022 - Lecture 9
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7.7 Summary

The equ

The equ

Kirchho

(1) The

currents {

(2) The a
IS zero.

¢ Inacharg

e Inadischa

ivalent resistance of a set of resistors connected in series:
N
<%=&+&+&+“=ZK
i=1

valent resi§tance of a set of resistors connected in parallel

1 N
o= T

111
. R R R =

RS
Ri

ffs rules:

g into a junction is equal to the sum ofi

sum of the currents flowin
lowing out of the junction:

|
A

|
|
gebraic suhl of the changes in electric potential in a closed-circuit

closed loop

.| . ;
ng capacitor, the charges and the current as a function of time are

Q(f):Q(l——e_R%], Ht)z(%Je_”RC

rging capacitor, the charges and the current as a function of time are

q(

\
_ ~1/RC [ O —t/RC
J“)—Qe R [(t)—(E)e

*
Z
\
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