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Gravitational — Electric Fields
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The Origins of Magﬁnetism

= Ancient Greeks noticed that a piece of a mineral magnetite (an oxide
of iron) had very special properties:
= Could attract a piece of iron, but no effect on Au, Ag, Cu, etc
= Can attract or repel piece of magnetite depending on relative orientation
= By the 12 century people could build a magnetic compass
= A small magnetic needle is suspended so it can pivot around vertical axis
= The needle will always come to rest with one end pointing North
= By definition we call that end “North” and the other “South”

= Like poles repel, unlike poles attract: demo
= North and South cannot be separated in a magnet: demo
= Magnetic forces can be pretty strong! Demo G3: nail on a sting

G. Sciolla = MIT 8.022 - Lecture 10




Magnetism — Bar Magnet

~ Like poles repel, opposite poles attract




Magnetic Field of Bar Magnet
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Bar Magnets Are Dipoles!

< O - Create Dipole Field
/,—H\% it ”» [ ) I I f
® ) Rotate to orient with Field
N S

| _Is there magnetic “mass”
0 - 4, or magnetic “charge?”




Bar Magnets Are Dipoles!
- & -+ Create Dipole Field

O S @ Rotate to orient with Field
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Magnetic Monopoles?
Electrlc Dlpole Magnetic Dipole

‘&® -

When cut:
2 monopoles (charges) When cut: 2 dlpoles

Magnetic monopoles do not exist in isolation
Another Maxwell S Equahon' (2 of 4)
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Fields: Grav., Electric, Magnetic
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Magnetic Field of the Earth
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Magnetic Field B Thus Far...
Bar Magnets (Magnetic Dipoles)...
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Oersted . wire carrying electric_currents produced

a'jfle;:tgbzm_%,,aﬁcmaamtmmgagéigdz}zo/ es
Y /a‘c;sd__z‘awté_cirﬁzze_zy borbood

/

currents ,;L.rp_wz:e_afm;ajafficm

The big step forward

= In 1820 Oersted realized that current flowing in a wire
made the needle of a compass swing
= The direction depends on the direction of the current

= Soon after, Ampere’s experiment with parallel wires
carrying current

- B o .yjfﬁzﬁdm.ﬂl)z_ﬁ

» If currents are parallel, wires attract

s
» If anti-parallel, wires repel o .
= No force on a stationary charge nearby... L L L I
= NB: wires are overall neutral! «
» Demo

G. Sciolla — MIT 8.022 - Lecture 10 3

Magnetic force between currents
= More refined observations followed:

» Interpretation

= F~I I, > Fis proportional to velocity of charges in motion
= Direction of F is perpendicular to velocity

= Some field (magnetic field B) is created by the charges in motion
= Magnetic force is proportional to cross product v x B
A

Y S — | F =q—xB

0|<1

= Direction of B: B curls around the current (right hand rule)
» Iron fillings can be used to visualize B field lines: demo G2

G. Sciolla — MIT
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Moving Charges Feel Magnetic Force

FB
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I\/Iagnetlc force perpendlcular both to
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Magnetic Field B: Units

~ Since FB - Q'VXB
newton ” i N o N
coulomb)(meter/ second) C- m/ s A m

B Units =
(

ThIS |s Called 1 Tesla (T)

1 T = 10 Gauss (G) ’




" Putting it Together: Lorentz Force

Charges Feel...
F, = gL k.- dvVip

Electric Fields Magnetic Fields

hIS IS the flnal word on the force on a charge
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~Application: Velocity Selector
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Velocity Selector
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Lorentz force
= When a charged particle moves in electric (E) and
magnetic (B) fields it feels a force (Fiyent):
=q (E" + ix]?j
C

Fl,urenrz -
« The above formula defines the magnetic field B

= Units of B in cgs:
« [B] = [F)/[q] = dyne/esu = Gauss (G)

« NB: [B] = [E]
=q(E+17><E)

« Units of Bin STt Froens
« [B] =[F)/[gVv]=Ns/(mC) = Tesla (T)
5

= Conversion: 1 T=10*G
8.022 — Lecture 10
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ctory in magnetic fields

B
in a magnetic field B // +z axis (out of the page):
® YL

F=g

Traje
= A particle of charge g and mass m moves with velocity v // +x axis

X

xB

o | =

= What is the trajectory of q in the magnetic field?

mye
qB

= v, Band F (a) are always perpendicular - circular motion!
2
vB  mv .
centripetal
entripe c R
8.022 - Lecture 10

Eorei7/z =
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Deflection of electron beam by B

« An electron beam is produced by a cathode in a vacuum tube
= Velocity of electrons: v,

= Magnetic field B perpendicular to v, is produced by current in a
wire or by permanent magnet

= What do we expect to happen?
« Electrons curve according to Lorentz force (Demo G5, G6 V)

U N

)V N

G. Sciolla = MIT 8.022 — Lecture 10

J.J. Thompson's experiment

= Discovery of electrons and measurement of e/m, in 1897
s The idea:
« A beam of “cathode rays” crosses a region with E and B present
=« Choosing v,.//x axis, B//z axis, E//y axis = Figene// Feectic
= Eand B can be adjusted so Fyagnetic = ~Feiectric SO that e will go straight

F E Y B D y
Fl,urcmz = q(E + KXB) _»-\/Kf«. o i«?—]w_ﬂ.; )
C R \[;(WEM*K> 7 :
= Electric field alone causes a shift: 5, = - EL
2mv’ E
« Now turn on B and set it to cancel the shift due to E: v = ¢~
ituting this i i A & 2Ayc’E
= Substituting this in the previous equation gives: AN yzc '
m m B°L

G. Sciolla = MIT 8.022 — Lecture 10




Application in modern physics

« Tracking detectors in modern particle physics

= The problem

= High energy collisions between elementary particles (such as ere)
produce many particles (protons, electrons, pions, muons,...)

. How can we “see” these particles?

. Build detectors that can “visualize” the trajectory of charged
particles using the fact that particles ionize the material they cross

. How can I measure the properties of these particles?
« E.g.: measure momentum, energy, mass, etc.
. Immerse the detector in a very strong magnetic field B~ 2T
« Charged particles will curve accordingto R= i 4

Direction measures the charge qaB
Radius of curvature measures momentum p=mv

G. Sciolla — MIT 8.022 — Lecture 10

Gold plated event
in BaBar detector




Magnetic force and work

= Moving a charge in an electric field E requires work:

2—‘ e
W, = —q | E-«ds

= How much work does it take to move a charge in a magnetic field?

dW = Feds = Fovdt = L(5 x B)evdt = 0
C

-> No work is needed to move a particle in a magnetic field because
v and F are always perpendicular!

G. Sciolla — MIT 8.022 - Lecture 10 11
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To calculate the force exerted on the wire, consider a segment of wire of length ( and
cross-sectional area A, as shown in Figure 8.3.2. The magnetic field points into the page,
and is represented with crosses ( X ).

Figure 8.3.2 Magnetic force on a conducting wire

The charges move at an average drift velocity v, . Since the total amount of charge in this
segment is Q,,, = q(nA4l), where n is the number of charges per unit volume, the total

magnetic force on the segment is
F,=0Q,v,xB=qndl(V,xB)= I({xB) (8.3.1)

where I =nqv,A, and 7 is a length vector with a magnitude ( and directed along the

direction of the electric current.

For a wire of arbitrary shape, the magnetic force can be obtained by summing over the
forces acting on the small segments that make up the wire. Let the differential segment be
denoted as d s (Figure 8.3.3).

B

Figure 8.3.3 Current-carrying wire placed in a magnetic field

The magnetic force acting on the segment is
dF, =1d§xB (8.3.2)

Thus, the total force is

(8.3.3)




where a and b represent the endpoints of the wire.

As an example, consider a curved wire carrying a current / in a uniform magnetic field B,
as shown in Figure 8.3.4.

Figure 8.3.4 A curved wire carrying a current /.

Using Eq. (8.3.3), the magnetic force on the wire is given by
FB=1(J:’d§)x1§=1Zx1§ (8.3.4)

where £ is the length vector directed from a to b. However, if the wire forms a closed
loop of arbitrary shape (Figure 8.3.5), then the force on the loop becomes

F, =1(c§d§)x1§ (8.3.5)

s A

/ |
! . )&«@y

Figure 8.3.5 A closed loop carrying a current / in a uniform magnetic field.

Since the set of differential length elements d's form a closed polygon, and their vector

sum is zero, i.e.,qd§ =0 . The net magnetic force on a closed loop is FB =0.

Example 8.1: Magnetic Force on a Semi-Circular Loop

Consider a closed semi-circular loop lying in the xy plane carrying a current / in the
counterclockwise direction, as shown in Figure 8.3.6.



Figure 8.3.6 Semi-circular loop carrying a current /

A uniform magnetic field pointing in the +y direction is applied. Find the magnetic force
acting on the straight segment and the semicircular arc.

Solution:

LetB = Bj and Fl and Fz the forces acting on the straight segment and the semicircular

parts, respectively. Using Eq. (8.3.3) and noting that the length of the straight segment is
2R, the magnetic force is

F =I(2Ri)x(B])=2IRBk

where Kk is directed out of the page.

To evaluate E , we first note that the differential length element d's on the semicircle can

be written as d'§ = ds0 = RdAO(— sin@i+ cos@j). The force acting on the length element
ds is

dF, = Id§x B = IRdO(-sin 0 +cos 6 j)x (B]) =—IBRsin 0d6 k

Here we see that sz points into the page. Integrating over the entire semi-circular arc,

we have

F, =—IBRk ['sin6d6 = -21BRk

Thus, the net force acting on the semi-circular wire is

lE‘net = l3] + FZ = 6
This is consistent from our previous claim that the net magnetic force acting on a closed
current-carrying loop must be zero.



8.4 Torque on a Current Loop

What happens when we place a rectangular loop carrying a current / in the xy plane and

switch on a uniform magnetic field B = Bi which runs parallel to the plane of the loop,
as shown in Figure 8.4.1(a)?

ifpussoms [ : 5
0] 0 O a—

Figure 8.4.1 (a) A rectangular current loop placed in a uniform magnetic field. (b) The
magnetic forces acting on sides 2 and 4.

From Eq. 8.4.1, we see the magnetic forces acting on sides 1 and 3 vanish because the
length vectors Z’l =—bi and 23 = bi are parallel and anti-parallel to B and their cross

products vanish. On the other hand, the magnetic forces acting on segments 2 and 4 are
non-vanishing:

F, = I(-aj)x(Bi) = IaBk
j o ) (8.4.1)
F, = I(aj)x(Bi) =—-IaBk

with Fz pointing out of the page and E into the page. Thus, the net force on the
rectangular loop is

F =F+F+F+F, =0 (8.4.2)

n

as expected. Even though the net force on the loop vanishes, the forcesF, and F, will

produce a torque which causes the loop to rotate about the y-axis (Figure 8.4.2). The
torque with respect to the center of the loop is

N e RS e

(labB IabB

(8.4.3)

jj=laij'=IABj




where A =ab represents the area of the loop and the positive sign indicates that the
rotation is clockwise about the y-axis. It is convenient to introduce the area vector

A = Afiwhere fiis a unit vector in the direction normal to the plane of the loop. The
direction of the positive sense of n is set by the conventional right-hand rule. In our case,

we have n = +Kk . The above expression for torque can then be rewritten as

i=]AxB (8.4.4)
Notice that the magnitude of the torque is at a maximum when B is parallel to the plane
of the loop (or perpendicular to A ).

Consider now the more general situation where the loop (or the area vector A ) makes an
angle & with respect to the magnetic field.

Figure 8.4.2 Rotation of a rectangular current loop

From Figure 8.4.2, the lever arms and can be expressed as:

- by s A -

I, =5(—sm61+c056k)=—r4 (8.4.5)
and the net torque becomes

#= BB, + %, xF, =28, xF, = 2.2 -sini + cos6k ) 1aBk)

(8.4.6)
= JabBsin@j=IAxB
For a loop consisting of N turns, the magnitude of the toque is
7=NIABsinf (8.4.7)
The quantity N/A is called the magnetic dipole moment i:
ji=NIA (8.4.8)




Figure 8.4.3 Right-hand rule for determining the direction of p

The direction of i is the same as the area vector A (perpendicular to the plane of the
loop) and is determined by the right-hand rule (Figure 8.4.3). The SI unit for the magnetic
dipole moment is ampere-meter2 (A-m?). Using the expression for ji, the torque exerted
on a current-carrying loop can be rewritten as

T=[ixB (8.4.9)

The above equation is analogous to T =pxE in Eq. (2.8.3), the torque exerted on an
electric dipole moment p in the presence of an electric field E . Recalling that the

potential energy for an electric dipole is U =—p-E [see Eq. (2.8.7)], a similar form is
expected for the magnetic case. The work done by an external agent to rotate the
magnetic dipole from an angle 6, to @ is given by

W, = J: 7d0' = j: (uBsin0')d6' = uB(cos 6, —cos o) (8.4.10)

=AU =U-U,
Once again, W, , =—W, where W is the work done by the magnetic field. Choosing

ext

U,=0at 6, =/2, the dipole in the presence of an external field then has a potential

energy of
U=-puBcosO=—ji-B (8.4.11)

The configuration is at a stable equilibrium when i is aligned parallel toB, making U a

minimum with U _. =-uB . On the other hand, when ji and B are anti-parallel,

min

U,.. =+uBisamaximum and the system is unstable.



8.4.1 Magnetic force on a dipole

As we have shown above, the force experienced by a current-carrying rectangular loop
(i.e., a magnetic dipole) placed in a uniform magnetic field is zero. What happens if the
magnetic field is non-uniform? In this case, there will be a net force acting on the dipole.

Consider the situation where a small dipole ji is placed along the symmetric axis of a bar
magnet, as shown in Figure 8.4.4.

Iy
e DY)
g
u

-

Ax

Figure 8.4.4 A magnetic dipole near a bar magnet.

The dipole experiences an attractive force by the bar magnet whose magnetic field is non-
uniform in space. Thus, an external force must be applied to move the dipole to the right.
The amount of force F._ exerted by an external agent to move the dipole by a distance

ext

Ax is given by
E Ax =W, =AU =-uB(x+Ax)+ puB(x)=—p[B(x + Ax)—B(x)] (8.4.12)

where we have used Eq. (8.4.11). For small Ax, the external force may be obtained as

7 o plBtA)- B 6B (8.4.13)

et Ax dx

which is a positive quantity since dB/dx <0, i.., the magnetic field decreases with
increasing x. This is precisely the force needed to overcome the attractive force due to the
bar magnet. Thus, we have

dB d

F.=u—="(i-B 8.4.14
p=H dx(u ) ( )

More generally, the magnetic force experienced by a dipole ji placed in a non-uniform

magnetic field B can be written as
F,=V(ji-B) (8.4.15)

where

10



V:ai§+ij+_@1; (8.4.16)

is the gradient operator.

Charged Particles in a Uniform Magnetic Field

If a particle of mass m moves in a circle of radius r at a constant speed v, what acts on the

particle is a radial force of magnitude F' = mv? | r that always points toward the center
and is perpendicular to the velocity of the particle.

In Section 8.2, we have also shown that the magnetic force FB always points in the

direction perpendicular to the velocity v of the charged particle and the magnetic fieldB .
Since f‘B can do not work, it can only change the direction of v but not its magnitude.
What would happen if a charged particle moves through a uniform magnetic field B with
its initial velocity Vv at a right angle toB ? For simplicity, let the charge be +¢ and the
direction of B be into the page. It turns out that F,will play the role of a centripetal

force and the charged particle will move in a circular path ina counterclockwise direction,
as shown in Figure 8.5.1.
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Figure 8.5.1 Path of a charge particle moving in a uniform B field with velocity v
initially perpendicular to B.

With
2
gvB="" (8.5.1)
r
the radius of the circle is found to be
mv
r=——r0 8.5.2
JB (8.5.2)

The period T (time required for one complete revolution) is given by

T=27rr:2_7rmv_27rm

e P i 8.5.3
\J v gB ¢gB ( )

Similarly, the angular speed (cyclotron frequency) @ of the particle can be obtained as

w=2nf=2=98 (8.5.4)

14 m

If the initial velocity of the charged particle has a component parallel to the magnetic

field B . instead of a circle, the resulting trajectory will be a helical path, as shown in
Figure 8.5.2:

s —— - . "

Figure 8.5.2 Helical path of a charged particle in an external magnetic field. The velocity
of the particle has a non-zero component along the direction of B.
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8.6.1 Velocity Selector

In the presence of both electric field E and magnetic field B, the total force on a charged
particle is

F=q(17:+vx1§) (8.6.1)

This is known as the Lorentz force. By combining the two fields, particles which move
with a certain velocity can be selected. This was the principle used by J. J. Thomson to
measure the charge-to-mass ratio of the electrons. In Figure 8.6.1 the schematic diagram
of Thomson’s apparatus is depicted.

Figure 8.6.1 Thomson’s apparatus

The electrons with charge g = —e and mass m are emitted from the cathode C and then
accelerated toward slit A. Let the potential difference between A and C belV, -V, =AV".

The change in potential energy is equal to the external work done in accelerating the
electrons: AU =W_, = gAV =—eAV . By energy conservation, the kinetic energy gained

ext

isAK =—AU = mv* /2. Thus, the speed of the electrons is given by

b [2eAV (8.6.2)
m

If the electrons further pass through a region where there exists a downward uniform
electric field, the electrons, being negatively charged, will be deflected upward. However,
if in addition to the electric field, a magnetic field directed into the page is also applied,
then the electrons will experience an additional downward magnetic force—eV x B. When
the two forces exactly cancel, the electrons will move in a straight path. From Eq. 8.6.1,
we see that when the condition for the cancellation of the two forces is given by e£ = evB,
which implies

(8.6.3)

<
I
o | b

In other words, only those particles with speed v = E/ B will be able to move in a straight
line. Combining the two equations, we obtain

15



= (8.6.4)

By measuring £, AV and B, the charge-to-mass ratio can be readily determined. The
most precise measurement to date is e/m = 1 .758820174(71)x10" C/kg.

8.6.2 Mass Spectrometer

Various methods can be used to measure the mass of an atom. One possibility is through
the use of a mass spectrometer. The basic feature of a Bainbridge mass spectrometer is
illustrated in Figure 8.6.2. A particle carrying a charge +¢ is first sent through a velocity
selector.

Figure 8.6.2 A Bainbridge mass spectrometer

The applied electric and magnetic fields satisfy the relation £ = vB so that the trajectory
of the particle is a straight line. Upon entering a region where a second magnetic field

B, pointing into the page has been applied, the particle will move in a circular path with
radius r and eventually strike the photographic plate. Using Eq. 8.5.2, we have

mvy

e 8.6.5
’ 9B, ( :

Since v = E/ B, the mass of the particle can be written as

_ 9By _ 11% (8.6.6)
v

m
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= Similarly, in magnetism the magnetic field B and its sources

NB: no demonstration has been given so far for Ampere’s law.

Amre’s law

In electrostatics, the electric field E and its sources (charges) are
J‘ E.d‘a = 4”Qenc/

related by Gauss’s law:

Surface

= Why useful? When symmetry applies, E can be easily computed

(currents) are related by Ampere’s law:

encl

c

C

= Why useful? When symmetry applies, E can be easily computed

= NB: This is a line integral!

G. Sciolla —= MIT 8.022 - Lecture 10
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Application of Ampere’s law:

Long, straight wire in which flows a current I
Calculate magnetic field B created by I

Solution:
= Apply Ampere’s law:

YR
= [B=—g¢p

encl y
or

§ Beds = Br)27r = i,
¢ C

= Direction: right hand rule

NB: B, ~ 1/r. Does this look familiar?
= Remember E created by a line of charge:
= Coincidence? Not at all...

G. Sciolla — MIT 8.022 - Lecture 10

B created by current in a wire

E(i’):gl1




Force between 2 wires

Force on wire 1 due to magnetic field B created by wire 2:

F = £’—Lﬁ x B,

¢ =2l

Magnetic field created by wire 2: B, = —
cr
Total force F: F = 2—122—11-
cr
Usually we quote the force/unit length: ZZ_ = EI_ZZL
cr

« Direction? F o I, x @, Using right hand rule:
» I, and I, parallel: attractive
« 1, and I, anti-parallel: repulsive

G. Sciolla = MIT
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