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If the curl of a vector field (F) vanishes (everywhere), then F can be written as the gradient
of a scalar potential (V): )

VxF=0F=-VV. (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the following
theorem:

Theorem 1:  Curl-less (or “irrotational”) fields. The following con-
ditions are equivalent (that is, F satisfies one if and only
if it satisfies all the others):

(a) Vb>< F = 0 everywhere.

(b) fa F - dl is independent of path, for any given end
points.

(©) § F - dl = 0 for any closed loop.

(d) F is the gradient of some scalar, F — —V V.

Vector Polential

It the divergence of a vector field (F) vanishes (everywhere), then F can be expressed
as the curl of a vector potential (A):

V F=0F=VxA. (1.104)
That’s the main conclusion of the following theorem:

Theorem 2:  Divergence-less (or “solenoidal”) fields. The following
conditions are equivalent:
(a) V- F = 0 everywhere.
(b) [ F-daisindependent of surface, for any given bound-
ary line.
(c) ¢ F - da = 0 for any closed surface.
(d) F is the curl of some vector, F = V x A.

The vector potential is not unique—the gradient of any scalar function can be added to A
without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save for
the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will come later.
Incidentally, in all cases (whatever its curl and divergence may be) a vector field F can be
written as the gradient of a scalar plus the curl of a vector:

F=-VV4+VxA (always). (1.105)
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Summary; Electrostatic Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution p, and you
want to find the electric field E it produces. Unless the symmetry of the problem admits a
solution by Gauss’s law, it is generally to your advantage to calculate the potential first, as
an intermediate step. These, then, are the three fundamental quantities of electrostatics: p,
E, and V. We have, in the course of our discussion, derived all six formulas interrelating
them. These equations are neatly summarized in Fig. 2.35. We began with just two exper-
imental observations: (1) the principle of superposition—a broad general rule applying to
all electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electrostatics.
From these, all else followed.

n

P87 o
Gr[)éft' A
Third Ldition

Figure 2.35



4

fﬁcay cuerrents f’oc/c/ce /xfjneé&cje/df

thal are constant in  lome =
/4””/’&63 Law & Lot -dJavarl Laws
.jg g ‘a'z = /Z(o -/enc.
Lo =)

—
—

> al LT dd = Hedin
= j/.?/}d'e /u/

‘/J(ng")da" ;.-/Ll/]'dg
= 7 X g =i /“'af
No m‘ajm:i'ic /DDZC

f/‘?.d\f;::o
V4
/ (v-8)dT =9
"4 ’ R R
=4= XA

= 17 ’ g = o
[ When a J’LLeac-/)/ current jZon o g Wire
£s mfymfoC/e T must be the JSame
4

all  alon the W€
<y
o therwtse Cﬁye woudd  be
Pdt‘:)j p somewAhere

2
f -6

T

=44

7-J =0
/Z;om the conﬁmé/ c??u@ﬁ'cm =
|74 x( VX A‘) o /ao J






## £ = w# # #
) A%k — HERR TBLGE | () | A#fG — ERBLARRAE
(2) | Coulomb & 3 (2) | Biot-Savart E 42 :
1 0 po Idl x r
= dney P T dB = 472 3
EoL E

FARRABRARHER(BEER) °

B BT R AR o

Gauss & :

SESE'dSzelOZqi(SW%%)

@M(W’J‘fﬂ]ﬁiﬂiﬁu)
ST

Gauss F £ :
ﬁs-w:o@%&mﬁﬁ
(EE®FEEHBERAFE)

Ampere E £ ! J
SEFB -dl = #OZ L(r WER) dq)r

S = Gauss | I = M
dl = o BgEmE
(4) | BEEERE P = ql (4) | HEMBARAE 1
(TfBsE) (R 4E) z A ps
/ D, H <= é s
/
&, iR 4
.= PxE
i o = B MRS = A
Wit U =-P-E )
E . 51}\'%5% n = gl_QL ...... $}Uﬁ

%%m%ﬁ[

L=rxP=HEaHE
S=NEAGHE (BK)

g (gs) = Bl (B ) #BEEHEL
Nty =puxB B=SEY
Bt Ug=-p-B

I

¥

AR
H{ A

-

PRt 2RIE
néé? /%).éﬁ n
P. 143



146 V. BHE B ~ B15 ~ Biot-Savart 1] Ampere B ~ Hall W&

# E 2

(5) | E 1B ( electric dipole ) %

= b3 %

.

HAEBACKWES E, =0 [Ex.7-7]

(5) | #4518 #% 3 ( magnetic dipole field )
E gioele Tl;’ P=gq<~ [Ex7-7] Bipole o %—'« [Ex.7-34] R (7-
41d)
B E N RER mpg | (6) BV ERENHERE BK/
T Pl IS
_ 1 22 p o o2
T 4mey a - ~ 4r a
A= EMREE
Coulomb 71 % —# 71 (7) %/ﬁifﬁf&%ﬂﬁf’ﬁﬁ]ﬁx:ﬁ%ﬁ
HE#®EA HEME® A
I RYHHERFTER (8) | %48 R #y 1% 2 H Ak E A S E & 0y

% Bo

Ko r [ Ex.7 -32)

By = 3R

B#0
0o R

~




	IMG
	IMG_0001

