Sources of Magnetic Fields

9.1 Biot-Savart Law

Currents which arise due to the motion of charges are the source of magnetic fields.
When charges move in a conducting wire and produce a current I, the magnetic field at
any point P due to the current can be calculated by adding up the magnetic field

contributions, B, from small segments of the wire ds , (Figure 9.1.1).
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Figure 9.1.1 Magnetic field 4B at point P due to a current-carrying element /ds .

These segments can be thought of as a vector quantity having a magnitude of the length

of the segment and pointing in the direction of the current flow. The infinitesimal current
source can then be written as /ds .

Let 7 denote as the distance form the current source to the field point P, and r the
corresponding unit vector. The Biot-Savart law gives an expression for the magnetic field

contribution, dB , from the current source, /d's,

JB <25 JHAZE (9.1.1)
47 r
where 14, is a constant called the permeability of free space:
Hy=47x107T-m/A (9.1.2)

Notice that the expression is remarkably similar to the Coulomb’s law for the electric
field due to a charge element dy:

4; d—ff (9.1.3)
&y P

dE =

Adding up these contributions to find the magnetic field at the point P requires
integrating over the current source,
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The Blot Savart Law

Current element of Iength ds carrying Current I
produces a magnetic field:
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Example COI| of Radlus R

Consider a coil with radius R and current |
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Example : Coil of Radius R

Consider a coil with radius R and current /

|

1) Think about it:
* Legs contribute nothing
| parallel to r
* Ring makes field into page
I 2) Chooseads =
3) Pick your coordinates >
4) Write Biot-Savart ==




Example : Coil of Radius R

In the circular part of the coil...

dsS Lt — |dSxi|=ds

I Biot-Savart:
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Example : Coil of Radius R

Consider a coill with radius R and current /
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Example : Coil of Radius R

B — Mol

Into page
R pag

o Notesa « ;o
~ <This is an EASY Blot-Savart problem
e No vectors mvolved |

at | would expect on exam ', -




B Field from Coil of Radius R

Consider a coil with radius R and carrying a current /

Y What is B at point P? WARNING:
| This is much
harder than

what | just
did! Why??




el ) % o Eee
P 0 FE

- ‘

. ok L2 ;.- ? - - - |

e - ARt | A ’,J:.TL B S o - g ) -

Al FE b ot 9y Y A= Z4 ZEr o0 R TR N R 7 o - | |

| -

it - ,,161,‘0& - b{‘ﬂ;l{amf L

{

|

|

|
-
1]

I

|

K

1 v

|

S - 7 < B . A F 2 ) PR VNS S Il 4
D L B AR, AU RE L e T Wi § B ||

I - 1 /ﬁ- “P — N ’ |
) R . ¢ 2 2 N
& B } L. o o A %2 (_ﬁ"‘iﬁ?a, (0, 0.32 _  .Source ;/ba" -
S Pmens — 0 % A y“ ’: -\':" R . T‘" I
- oy P RRERER (xy3) observatiof |
point
N o ) y

2 /A i —— (x, 4, 3-3") &)l

| x y 323 179

T

) T e e A A P T - o o -
R <A 2T w3 ] 1

: - . . . . - - - - . - . - - - -




4 L (5) |
A, = —-—/-———— (-y7i L.fi],) - . -

[y LG/ I S
— % Hi—ox i

G OAE Al = Retd0 BTN |

 —

% R Ablia® prEAING I rBr XA e HA

— | N F AT n o Al A = Ak O, w3 B al
. i B . 11§ T P — __P__-‘,_.___————’—

T S a2)




&)

P t’%

re

F
S~

wHE

205

K

P
b

;3 3 :’;‘

N
-7
e

Lk

S

LN e

% B4

W ol 7

R

P2

(5) & °*




7N J-dsxr (9.1.4)

B= [aB=10" :

47 a

wire wire
The integral is a vector integral, which means that the expression for B is really three
integrals, one for each component of B . The vector nature of this integral appears in the
cross product /dsxr . Understanding how to evaluate this cross product and then
perform the integral will be the key to learning how to use the Biot-Savart law.

Interactive Simulation 9.1: Magnetic Field of a Current Element

Figure 9.1.2 is an interactive ShockWave display that shows the magnetic field of a
current element from Eq. (9.1.1). This interactive display allows you to move the position
of the observer about the source current element to see how moving that position changes
the value of the magnetic field at the position of the observer.

Figure 9.1.2 Magnetic field of a current element.
Example 9.1: Magnetic Field due to a Finite Straight Wire
A thin, straight wire carrying a current / is placed along the x-axis, as shown in Figure

9.1.3. Evaluate the magnetic field at point P. Note that we have assumed that the leads to
the ends of the wire make canceling contributions to the net magnetic field at the point P .

Pa

Figure 9.1.3 A thin straight wire carrying a current /.




Solution:

This is a typical example involving the use of the Biot-Savart law. We solve the problem
using the methodology summarized in Section 9.10.

(1) Source point (coordinates denoted with a prime)

Consider a differential element ds = dx'i carrying current / in the x-direction. The

location of this source is represented by r'= x'i.
(2) Field point (coordinates denoted with a subscript “P”)

Since the field point P is located at (x,)=(0,a), the position vector describing P is

A

r,=aj.
(3) Relative position vector

The vector F=F, —r' is a “relative” position vector which points from the source point

to the field point. In this case, F = aj—x'f, and the magnituder =¥ |=+/a’ + x" is the
distance from between the source and P. The corresponding unit vector is given by

~

aj—x'i

:zﬁzzsiné’j—-cosé’i
va +x'

r=

~ | =y

(4) The cross product d's xr
The cross product is given by

d§xt=(dx')x(~cosOi+sin0]) = (dx'sinO)k
(5) Write down the contribution to the magnetic field due to 7d's

The expression is

JB - ol dSx¥  p 1 dx sin@l;
4z’ dr 5

which shows that the magnetic field at P will point in the +k direction, or out of the page.

(6) Simplify and carry out the integration




The variables 6, x and r are not independent of each other. In order to complete the
integration, let us rewrite the variables x and 7 in terms of 8. From Figure 9.1.3, we have

{r =al/sinf=acscl

x=acotd = dx=-acsc’0dO

Upon substituting the above expressions, the differential contribution to the magnetic
field is obtained as

_ Ml (—acsc’ 6dB)sin6 _ Ml

sin@d6o
A7 (acscB) 4ma

dB

Integrating over all angles subtended from -0, to 6, (a negative sign is needed for 6, in

order to take into consideration the portion of the length extended in the negative x axis
from the origin), we obtain

B=—t! fz sin@ do = o (cos®, +cos b)) (9.1.5)
dra *6 dra

The first term involving 6, accounts for the contribution from the portion along the +x
axis, while the second term involving 6, contains the contribution from the portion along
the —x axis. The two terms add!

Let’s examine the following cases:

(1) In the symmetric case where 6, =06, , the field point P is located along the

perpendicular bisector. If the length of the rod is 2L, then cosf = L/\I* +a* and the
magnetic field is

Ll 05O = oy L

C R
2ma ' 27a \JI? + 42

(ii) The infinite length limit L — oo

B= (9.1.6)

This limit is obtained by choosing (6,,6,) =(0,0). The magnetic field at a distance a
away becomes

Lol
Bzﬁ (9.1.7)




Note that in this limit, the system possesses cylindrical symmetry, and the magnetic field
lines are circular, as shown in F igure 9.1.4.
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Figure 9.1.4 Magnetic field lines due to an infinite wire carrying current /.

In fact, the direction of the magnetic field due to a long straight wire can be determined
by the right-hand rule (F igure 9.1.5).

Current fowing
oul of the page

Figure 9.1.5 Direction of the magnetic field due to an infinite straight wire

If you direct your right thumb along the direction of the current in the wire, then the
fingers of your right hand curl in the direction of the magnetic field. In cylindrical
coordinates (r,¢,z) where the unit vectors are related by rx@® =2, if the current flows

in the +z-direction, then, using the Biot-Savart law, the magnetic field must point in the
@ -direction.

Example 9.2: Magnetic Field due to a Circular Current Loop

A circular loop of radius R in the xy plane carries a steady current 7, as shown in Figure
9.1.6.

(a) What is the magnetic field at a point P on the axis of the loop, at a distance z from the
center?

(b) If we place a magnetic dipole = ,u__l; at P, find the magnetic force experienced by
the dipole. Is the force attractive or repulsive? What happens if the direction of the dipole
isreversed, i.e., i = —u__l::




Figure 9.1.6 Magnetic field due to a circular loop carrying a steady current.

Solution:

(a) This is another example that involves the application of the Biot-Savart law. Again
let’s find the magnetic field by applying the same methodology used in Example 9.1.

(1) Source point

In  Cartesian coordinates, the differential  current element located at
F'=R(cos¢'i+sin¢'j) can be written as /ds = /(dr 1dg )d¢'=IRd¢'(~sing'i+cosg'j).

(2) Field point

Since the field point P is on the axis of the loop at a distance z from the center, its
position vector is given by = k.

(3) Relative position vector F = r,—r'
The relative position vector is given by
F=F,—F'=—Rcosg'i-Rsing'j+ zk (9.1.8)

and its magnitude

r =lFl=\/(—>Rcos¢5')2 +(—Rs.in¢')2 +z =R + 22 (9.1.9)

is the distance between the differential current element and P. Thus, the corresponding
unit vector from Id's to P can be written as
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(4) Simplifying the cross product

The cross product d§ x (F, —F") can be simplified as

dSx(Y, —F")=Rdp'(—sind'i+cosd'})x —Rcosd'i— Rsin i+ zk
(F, ~F) = Rdg'( ¢ m}[A ¢ $'j+2Kk] ©0.110
:Rd¢'[zcos¢'i+zsin¢’j+Rk]

(5) Writing down JB

Using the Biot-Savart law, the contribution of the current element to the magnetic field at
Pis

JB = Ml dsxr I dsxr _ Ml dSx (¥, -7

dr  r 7y S 4z ¥, —F'f
n " . (9.1.11)
_MIR zcosg'i+zsing' j+ Rk g
4 (R*+2°)"?
(6) Carrying out the integration
Using the result obtained above, the magnetic field at P is
EzyOIR L2zrzcos¢1:r2512nfﬁ/2]+de¢, (9.1.12)
4rx (R +z%)
The x and the y components of B can be readily shown to be zero:
HoIRz 2 e HolRz . [27
= a5 | cosdldg'=—L07 i =0 9:.1.13
Y 4n(R? + 22 L gy 4m(R* +2%)*? 4 0 ( )
ﬂO]RZ 27 ¢ ' 1 /uO‘[RZ [ 272-
B, =—"F—— | sing'dgp'=—— 0% . =0 9.1.14
Y Ar(R + 2% L ¢dg 47(R* + 27> / 0 ( )
On the other hand, the z component is
Ly IR’ 27 iy 2mIR? 1, IR’
B =" [Tdp=L0 = 9.1.15
z 472_ (R2+ZZ)3/2 .£ ¢ 47[ (R2+22)3/2 2(R2+ZZ)3/2 ( )

Thus, we see that along the symmetric axis, B. is the only non-vanishing component of
the magnetic field. The conclusion can also be reached by using the symmetry arguments.




The behavior of B, /B, where B, = Hol /2R is the magnetic field strength at z=0, as a
function of z/R is shown in Figure 9.1.7:

BB,

Figure 9.1.7 The ratio of the magnetic field, B./ B, , as a function of z/R

(b) If we place a magnetic dipole W= K at the point P, as discussed in Chapter 8, due
to the non-uniformity of the magnetic field, the dipole will experience a force given by
dB,

F, = V(i B)=V(uB)=p. (d—jk (9.1.16)

Upon differentiating Eq. (9.1.15) and substituting into Eq. (9.1.16), we obtain

. 3. IR?z

ng_mk (9117)
Thus, the dipole is attracted toward the current-carrying ring. On the other hand, if the
direction of the dipole is reversed, p= —,u__l; , the resulting force will be repulsive.

9.1.1 Magnetic Field of a Moving Point Charge

Suppose we have an infinitesimal current element in the form of a cylinder of cross-
sectional area 4 and length ds consisting of » charge carriers per unit volume, all moving
at a common velocity v along the axis of the cylinder. Let 7 be the current in the element,
which we define as the amount of charge passing through any cross-section of the
cylinder per unit time. From Chapter 6, we see that the current / can be written as

ndqlv|=1 (9.1.18)

The total number of charge carriers in the current element is simply dN = n A ds, so that

using Eq. (9.1.1), the magnetic field ¢B due to the dN charge carriers is given by




JB = Ho (nAg|V)dsx¥  puy (n4 ds)gvxr  u, (dN)qvxr
dgx r? Y r? 4r r

(9.1.19)

where r is the distance between the charge and the field point P at which the field is being
measured, the unit vector r =F/r points Jrom the source of the field (the charge) o P.
The differential length vector d's is defined to be parallel to v. In case of a single charge,
dN =1, the above equation becomes

<
o 53

X

B=to 4V (9.1.20)
47 -

k-

Note, however, that since a point charge does not constitute a steady current, the above
equation strictly speaking only holds in the non-relativistic limit where v < ¢, the speed
of light, so that the effect of “retardation” can be ignored.

The result may be readily extended to a collection of NV point charges, each moving with a
different velocity. Let the jth charge ¢, be located at (%,,¥,,2,) and moving with velocity

v, . Using the superposition principle, the magnetic field at 2 can be obtained as:

ﬁ:iﬂqv ) (x—x,)f+(y—y,)3+(Z—Z,)‘A<3/2 (9.1.21)
A =)+ )+ (2= 2)]

Animation 9.1: Magnetic Field of a Moving Charge

Figure 9.1.8 shows one frame of the animations of the magnetic field of a moving

positive and negative point charge, assuming the speed of the charge is small compared
to the speed of light.

_

Figure 9.1.8 The magnetic field of (2) a moving positive charge, and (b) a moving
negative charge, when the speed of the charge is small compared to the speed of light.

10




Animation 9.2: Magnetic Field of Several Charges Moving in a Cirecle

Suppose we want to calculate the magnetic fields of a number of charges moving on the
circumference of a circle with equal spacing between the charges. To calculate this field
we have to add up vectorially the magnetic fields of each of charges using Eq. (9.1.19).

Figure 9.1.9 The magnetic field of four charges moving in a circle. We show the
magnetic field vector directions in only one plane. The bullet-like icons indicate the
direction of the magnetic field at that point in the array spanning the plane.

Figure 9.1.9 shows one frame of the animation when the number of moving charges is
four. Other animations show the same situation for N=1, 2, and 8. When we get to eight
charges, a characteristic pattern emerges--the magnetic dipole pattern. Far from the ring,
the shape of the field lines is the same as the shape of the field lines for an electric dipole.

Interactive Simulation 9.2: Magnetic Field of a Ring of Moving Charges

Figure 9.1.10 shows a ShockWave display of the vectoral addition process for the case
where we have 30 charges moving on a circle. The display in Figure 9.1.10 shows an
observation point fixed on the axis of the ring. As the addition proceeds, we also show
the resultant up to that point (large arrow in the display).

Figure 9.1.10 A ShockWave simulation of the use of the principle of superposition to
find the magnetic field due to 30 moving charges moving in a circle at an observation
point on the axis of the circle.
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Figure 9.1.11 The magnetic field due to 30 charges moving in a circle at a given
observation point. The position of the observation point can be varied to see how the
magnetic field of the individual charges adds up to give the total field.

In Figure 9.1.11, we show an interactive ShockWave display that is similar to that in
Figure 9.1.10, but now we can interact with the display to move the position of the
observer about in space. To get a feel for the total magnetic field, we also show a “iron
filings” representation of the magnetic field due to these charges. We can move the
observation point about in space to see how the total field at various points arises from
the individual contributions of the magnetic field of to each moving charge.

9.2 Force Between Two Parallel Wires

We have already seen that a current-carrying wire produces a magnetic field. In addition
when placed in a magnetic field, a wire carrying a current will experience a net force
Thus, we expect two current-carrying wires to exert force on each other.

>

Consider two parallel wires separated by a distance a and carrying currents J 1 and 4, in
the +x-direction, as shown in Figure 9.2.1.

Figure 9.2.1 Force between two parallel wires

The magnetic force, F,, . exerted on wire 1 by wire 2 may be computed as follows: Using

the result from the previous example, the magnetic field lines due to b going in the +x-

direction are circles concentric with wire 2, with the field f}z pointing in the tangential

12




direction. Thus, at an arbitrary point P on wire 1, we have B, = (I / 27za)j, which
points in the direction perpendicular to wire 1, as depicted in Figure 9.2.1. Therefore,

L . : L1 -
Flz=1,1><B2=11(zi)x(—%jj:-“§#k 9.2.1)

Clearly F,, points toward wire 2. The conclusion we can draw from this simple

calculation is that two parallel wires carrying currents in the same direction will attract

each other. On the other hand, if the currents flow in opposite directions, the resultant
force will be repulsive.

Animation 9.3: Forces Between Current-Carrying Parallel Wires

Figures 9.2.2 shows parallel wires carrying current in the same and in opposite directions.
In the first case, the magnetic field configuration is such as to produce an attraction

between the wires. In the second case the magnetic field configuration is such as to
produce a repulsion between the wires.

* (a) (b)

Figure 9.2.2 (a) The attraction between two wires carrying current in the same direction.
The direction of current flow is represented by the motion of the orange spheres in the
visualization. (b) The repulsion of two wires carrying current in opposite directions.

9.3 Ampere’s Law

We have seen that moving charges or currents are the source of magnetism. This can be
readily demonstrated by placing compass needles near a wire. As shown in Figure 9.3.1a,
all compass needles point in the same direction in the absence of current. However, when

I#0, the needles will be deflected along the tangential direction of the circular path
(Figure 9.3.1b).

13




Figure 9.3.1 Deflection of compass needles near a current-carrying wire

Let us now divide a circular path of radius » into a large number of small length vectors
As = As@, that point along the tangential direction with magnitude As (Figure 9.3.2).

,,,,,,,,,,,,,,,,

Figure 9.3.2 Amperian loop

In the limit AS — 0 , we obtain

cjf;-dnggfds:( “01](2;”):/101 (9.3.1)

2rr

The result above is obtained by choosing a closed path, or an
follows one particular magnetic field line. Le
Amperian loop, as that shown in F igure 9.3.3

“Amperian loop” that
t’s consider a slightly more complicated

.. B2
- b &
¢ / e “ . ,»\\ &
/. i
. B,

Figure 9.3.3 An Amperian loop involving two field lines
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The line integral of the magnetic field around the contour abeda is

qffs-cﬁ: jﬁ-d§+jﬁ-d§+j§-d§+ jﬁ.d§
ab be cd cd (932)
=O+Bz(r26’)+O+B,[r,(27z—9)]

abcda

where the length of arc be is »0 ., and 1,(27—6) for arc da. The first and the third

integrals vanish since the magnetic field is perpendicular to the paths of integration. With
By =u I /271, and B, = y4,1/ 271y, the above expression becomes

g(f;-dgziol(rzeﬁﬂ[n(zﬂ—e)]:ﬂm‘ij(zﬂ—mzw (9.3.3)
27, 27y, 2r 27

abeda

We see that the same result is obtained whether the closed path involves one or two
magnetic field lines.

As shown in Example 9.1, in cylindrical coordinates (r, ¢, z) with current flowing in the

tz-axis, the magnetic field is given by B = (UL /27r)@ . An arbitrary length element in
the cylindrical coordinates can be written as

dS=drt+rdpd+dzz (9.3.4)

which implies

= - ’L[O[ /IO] /101
B-ds= — |rdp="2- dp="2-Q2n)=u,l 9.3.5
Cj ; Cj: (27rr)r ¥ 2 C'f v 2z (7) =t ( )

closed path closed path closed path

In other words, the line integral of Cfﬁ-d s around any closed Amperian loop is

proportional to 7, , the current encircled by the loop.

enc ?

Figure 9.3.4 An Amperian loop of arbitrary shape.
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The generalization to any closed loop of arbitrary shape (see for example, Figure 9.3.4)
that involves many magnetic field lines is known as Ampere’s law:

c_fﬁ-d§ = 1 (9.3.6)

Ampere’s law in magnetism is analogous to Gauss’s law in electrostatics. In order to
apply them, the system must possess certain symmetry. In the case of an infinite wire, the
system possesses cylindrical symmetry and Ampere’s law can be readily applied.
However, when the length of the wire is finite, Biot-Savart law must be used instead.

. 5 Mol rdSxr general current source
I B="-
BiopiSavart Law Ar I r? ex: finite wire
D g2 t source has certain symmetry
’ B-ds=yl CTERNT, STGE LS S
Aperes Lo Cf Hotene ex: infinite wire (cylindrical)

Ampere’s law is applicable to the following current configurations:

1. Infinitely long straight wires carrying a steady current / (Example 9.3)

2. Infinitely large sheet of thickness & with a current density J (Example 9.4).
3. Infinite solenoid (Section 9.4).

4. Toroid (Example 9.5).

We shall examine all four configurations in detail.

Example 9.3: Field Inside and Outside a Current-Carrying Wire

Consider a long straight wire of radius R carrying a current / of uniform current density,
as shown in Figure 9.3.5. Find the magnetic field everywhere.

Amperian loops

Figure 9.3.5 Amperian loops for calculating the B field of a conducting wire of radius R.
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Solution:

(1) Outside the wire where > R, the Amperian loop (circle 1) completely encircles the
current, i.e., I, . =1 . Applying Ampere’s law yields

dB-d5s=Bdds=B(27r)= 1

which implies

2y

B: /’lOI

(ii) Inside the wire where » < R, the amount of current encircled by the Amperian loop
(circle 2) is proportional to the area enclosed, i.e.,

2
JGI]C =( ”rz ]]
7R

O zr’ Iy
<}:B-ds=B(27rr)=,u0[(ﬂR2J = B:27;R2

Thus, we have

We see that the magnetic field is zero at the center of the wire and increases linearly with
r until r=R. Outside the wire, the field falls off as I/r. The qualitative behavior of the
field is depicted in Figure 9.3.6 below:

B
|
LTS S
2R |

W Bl

Figure 9.3.6 Magnetic field of a conducting wire of radius R carrying a steady current / .

Example 9.4: Magnetic Field Due to an Infinite Current Sheet

Consider an infinitely large sheet of thickness b lying in the xy plane with a uniform
current density J =J,i. Find the magnetic field everywhere.

17




Figure 9.3.7 An infinite sheet with current density J= Joi.

Solution:

We may think of the current sheet as a set of parallel wires carrying currents in the +x-
direction. From Figure 9.3.8, we see that magnetic field at a point P above the plane
points in the —y-direction. The z-component vanishes after adding up the contributions

from all wires. Similarly, we may show that the magnetic field at a point below the plane
points in the +y-direction.

Figure 9.3.8 Magnetic field of a current sheet

We may now apply Ampere’s law to find the magnetic field due to the current sheet. The
Amperian loops are shown in F igure 9.3.9.

b

Figure 9.3.9 Amperian loops for the current sheets

For the field outside, we integrate along path C,. The amount of current enclosed by C,
is

18




L= [[3-dA=J,00) (9.3.7)

Applying Ampere’s law leads to
dB-d5=BQ0) = pyl,, = ,(J,bt) (9.3.8)
or B=p,J,b/2. Note that the magnetic field outside the sheet is constant, independent

of the distance from the sheet. Next we find the magnetic field inside the sheet. The
amount of current enclosed by path C, is

I = Hid&:Jo(z[zw) (9.3.9)

Applying Ampere’s law, we obtain

qB-d5=B20) =yl = 1,J,(2] 2] 0) (9.3.10)

or B=y,J,|z|. At z=0, the magnetic field vanishes, as required by symmetry. The
results can be summarized using the unit-vector notation as

—’UOT%bj, 2»bi2

— oz ) —b/2<z<b/2 (9.3.11)

==H}
Il

'uOTJobj, z<—=b/2

Let’s now consider the limit where the sheet is infinitesimally thin, with # — 0. In this
case, instead of current density J= Jof, we have surface current K = Ki , Where K=Jb.
Note that the dimension of X is current/length. In this limit, the magnetic field becomes

ﬂOKj, z>0

B= i (9.3.12)
0

j, 2<0

9.4 Solenoid
A solenoid is a long coil of wire tightly wound in the helical form. F igure 9.4.1 shows the

magnetic field lines of a solenoid carrying a steady current I We see that if the turns are
closely spaced, the resulting magnetic field inside the solenoid becomes fairly uniform,
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L= [[3-dA=J,b0) (9.3.7)

Applying Ampere’s law leads to
dB-d5=B20) = 1, = 1, (JbL) (9.3.8)
or B=pu,J,b/2. Note that the magnetic field outside the sheet is constant, independent

of the distance from the sheet. Next we find the magnetic field inside the sheet. The
amount of current enclosed by path C, is

I, = [[1-dA=J,2]|z]0) (9.3.9)
Applying Ampere’s law, we obtain
Cfﬁ ' dg - B(zg) = luolenc = /I’lOJO(2 | Z| f) (9310)

or B=u,J,|z|. At z=0, the magnetic field vanishes, as required by symmetry. The
results can be summarized using the unit-vector notation as

_HIbs b
2
B={-yJ,zj, —-b/2<z<b/2 (9.3.11)

“OTJOZ’j, z<—b/2

Let’s now consider the limit where the sheet is infinitesimally thin, with & — 0. In this
case, instead of current density J= Joi, we have surface current K = K f, where K =Jb.
Note that the dimension of K is current/length. In this limit, the magnetic field becomes

—ﬂOKj, z>0
B=! 2 9.3.12)
MoK
20y, z<0
2

9.4 Solenoid
A solenoid is a long coil of wire tightly wound in the helical form. Figure 9.4.1 shows the

magnetic field lines of a solenoid carrying a steady current /. We see that if the turns are
closely spaced, the resulting magnetic field inside the solenoid becomes fairly uniform,
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provided that the length of the solenoid is much greater than its diameter. For an “ideal”
solenoid, which is infinitely long with turns tightly packed, the magnetic field inside the
solenoid is uniform and parallel to the axis, and vanishes outside the solenoid.

Figure 9.4.1 Magnetic field lines of a solenoid

We can use Ampere’s law to calculate the magnetic field strength inside an ideal solenoid.

The cross-sectional view of an ideal solenoid is shown in Figure 9.4.2. To compute B,
we consider a rectangular path of length / and width w and traverse the path in a

counterclockwise manner. The line integral of B along this loop is

B-ds= [B-ds+ [B-ds+ [B-ds+ [B.ds
40 et B B [ o)

= 0 + 0 + B + 0

B

Figure 9.4.2 Amperian loop for calculating the magnetic field of an ideal solenoid.

In the above, the contributions along sides 2 and 4 are zero because B is perpendicular to
ds. In addition, B =0 along side 1 because the magnetic field is non-zero only inside
the solenoid. On the other hand, the total current enclosed by the Amperian loop is
I,.. = NI, where N is the total number of turns. Applying Ampere’s law yields

cjﬁ.dg = Bl = u,NI (9.4.2)

or
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/

B= Honl (9.4.3)

where 7= N /[ represents the number of turns per unit length., In terms of the surface
current, or current per unit length K = n/ , the magnetic field can also be written as,

B=puK (9.4.4)

What happens if the length of the solenoid is finite? To find the magnetic field due to a
finite solenoid, we shall approximate the solenoid as consisting of a large number of
circular loops stacking together. Using the result obtained in Example 9.2, the magnetic
field at a point P on the z axis may be calculated as follows: Take a cross section of
tightly packed loops located at z> with a thickness dz ', as shown in Figure 9.4.3

The amount of current flowing through is proportional to the thickness of the cross
section and is given by dl = I(ndz")= I(N /1)dz', where n=N/I is the number of turns

per unit length.

Figure 9.4.3 Finite Solenoid

The contribution to the magnetic field at P due to this subset of loops is

R2 2
dB, = o I, L (9.4.5)
A(z-z"Y +R°T 2[(z=z")" +R7]

Integrating over the entire length of the solenoid, we obtain

172
B - LonIR? I/z dz' _ pnlR’ z'—z

e L A N e

_tnl| -z (UD+z
2 | Je-1127 R Jz+i/27 R

21




A plot of B,/B,, where By = ynl is the magnetic field of an infinite solenoid, as a
function of z/R is shown in Figure 9.4.4 for / =10Rand / =20R.

BBy

iR

{ = 208

Figure 9.4.4 Magnetic field of a finite solenoid for (a) / =10R, and (b) I=20R.

Notice that the value of the magnetic field in the region|z|<//2 s nearly uniform and
approximately equal to B, .

Examaple 9.5: Toroid

Consider a toroid which consists of NV turns, as shown in Figure 9.4.5. Find the magnetic
field everywhere.

Figure 9.4.5 A toroid with N turns
Solutions:
One can think of a toroid as a solenoid wrapped around with its ends connected. Thus, the

magnetic field is completely confined inside the toroid and the field points in the

azimuthal direction (clockwise due to the way the current flows, as shown in Figure
9.4.5.)

Applying Ampere’s law, we obtain
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dB-d5 = Bds = B ds =B(2xr) = 4, N1 (9.4.7)
or

B /;oj[W (9.4.8)
r

where r is the distance measured from the center of the toroid.. Unlike the magnetic field

of a solenoid, the magnetic field inside the toroid is non-uniform and decreases as1/r .

9.5 Magnetic Field of a Dipole

Let a magnetic dipole moment vector fi=—uk be placed at the origin (e.g., center of the
Earth) in the yz plane. What is the magnetic field at a point (e.g., MIT) a distance r away
from the origin?

Figure 9.5.1 Earth’s magnetic field components

In Figure 9.5.1 we show the magnetic field at MIT due to the dipole. The y- and z-
components of the magnetic field are given by

B, =—ﬂ3—§l—sin9cose, B, =—ﬂﬁ3(300829—1) 9.5.1)
Y 4r r : Ar r

Readers are referred to Section 9.8 for the detail of the derivation.

In spherical coordinates (7,6, ¢), the radial and the polar components of the magnetic
field can be written as
£/

B, =B, sin@ + B_cosd __to .
' . 4 r

cosd (9.5.2)
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and

B, =B, cosf-B.sind = -2 Lsing (9.5.3)
i 4z r

respectively. Thus, the magnetic field at MIT due to the dipole becomes

B:B€(§+Brf':—fi;—i(sinﬁé+20056f‘) (9.5.4)
nr

Notice the similarity between the above expression and the electric field due to an electric
dipole p (see Solved Problem 2.13.6):

E-=

L (sin@0+2cosOF)
dre, 1’
0

The negative sign in Eq. (9.5.4) is due to the fact that the magnetic dipole points in the
—z-direction. In general, the magnetic field due to a dipole moment pican be written as

B 25_23(!“:3"—" 9.5.5)

The ratio of the radial and the polar components is given by

= %%COSH 20016 (9.5.6)
L =21  =Dcot D
B, 40 £ sing

Tr

9.5.1 Earth’s Magnetic Field at MIT

The Earth’s field behaves as if there were a bar magnet in it. In Figure 9.5.2 an imaginary
magnet is drawn inside the Earth oriented to produce a magnetic field like that of the
Earth’s magnetic field. Note the South pole of such a magnet in the northern hemisphere
in order to attract the North pole of a compass.

It is most natural to represent the location of a point P on the surface of the Earth using
the spherical coordinates (r,0,¢), where r is the distance from the center of the Earth, &

is the polar angle from the z-axis, with 0<6 <, and ¢ is the azimuthal angle in the xy
plane, measured from the x-axis, with 0<¢ <27 (See Figure 9.5.3.) With the distance

fixed at r =7, , the radius of the Earth, the point P is parameterized by the two angles &
and ¢.
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Figure 9.5.2 Magnetic field of the Earth

In practice, a location on Earth is described by two numbers — latitude and longitude.
How are they related to € and ¢? The latitude of a point, denoted as & , is a measure of
the elevation from the plane of the equator. Thus, it is related to & (commonly referred to
as the colatitude) by 6 =90°-6. Using this definition, the equator has latitude 0°, and
the north and the south poles have latitude +90°, respectively.

The longitude of a location is simply represented by the azimuthal angle ¢ in the

spherical coordinates. Lines of constant longitude are generally referred to as meridians.
The value of longitude depends on where the counting begins. For historical reasons, the
meridian passing through the Royal Astronomical Observatory in Greenwich, UK, is
chosen as the “prime meridian” with zero longitude.

cquator
south pole
Figure 9.5.3 Locating a point P on the surface of the Earth using spherical coordinates.

Let the z-axis be the Earth’s rotation axis, and the x-axis passes through the prime
meridian. The corresponding magnetic dipole moment of the Earth can be written as

W = 1,(sin g, cos g, i+sin 0, sin ¢, j+cos 6, k)

= 11,(=0.062i+0.18j—0.98k) (9.5.7)
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