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This Time:
Faraday’s Law

Fourth (Final) Maxwell’s Equation

(but we still have to go back and add
another term to Ampere s Lawl!)

Underpmnlng of Much Technology

P20- 8



Electromagnetic Induction
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Galvanometer
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Movie and Visualization
Induction

Lenz’s Law says that the flux tries to ‘remaln the
same, so the fie’ld_hnes get hung up” at the coil,




Faraday’s Law of Induction

A changing magnetic flux
Induces an EMF

B0y



What is EMF?
e j E -ds
Looks like potential. It's a
“driving force” for current
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Faraday’s Law of Induction

A changing magnetic flux
iInduces an EMF
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Magnetic Flux Thru Wire Loop

Analogous to Electric Flux (Gauss’ Law)
B |

(1) Uniform B
®, =B, A=BAcosf=B-A

(2) Non-Uniform B

(I)B:J‘E.d;& ’

My



Faraday’s Law of Induction

A changing magnetic flux
Induces an EMF



Minus Sign? Lenz’s Law

Induced EMF is in direction that opposes
the change in flux that caused it

.
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Faraday’s Law of Induction

A changing magnetic flux
induces an ENIE =
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Ways to Induce EMF

=—Ni(BAcosé’)
o

Quantities which can vary with time:

* Magnitude of B
* Area A enclosed by the loop ;
- Angle 6 between B and Ioop normal
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Ways to Induce EMF

i —Nﬁ (BAcos 6’)
at

Quantities which can vary with time:

* Magnitude of B
* Area A enclosed by the Ioop
. Angle 6 between B and Ioop normal

P26



Ways to Induce EMF

g:—Nﬁ(BAcos 0)
dlt

Quantities which can vary with time:

 Magnitude of B  e.g. Falling Magnet
* Area A enclosed by the loop
~ » Angle 0 between B and loop normal

P20-29



Group Problem: Changing Area

Conducting rod pulled along two conducting rails in a
uniform magnetic field B at constant velocity v

B, 1. Direction of induced
X current?

2. Direction of resultant
force?

3. Magnitude of EMF?
Y. 4. Magnitude of current?

5. Power externally
supplied to move at
constantv?

£ &

P20-30



Ways to Induce EMF

E= —Ng—’-(BAcos 0)
at

Quantities which can vary with time:

 Magnitude of B  e.g. Moving Coil & Dipole
 Area A enclosed e.g. Sliding bar
~+ Angle 6 between B and Ioop normal

P 31; 



Changing Angle




Applets that show these 3 cases

B up  decreasing




Faraday’s Law
The last of the Maxwell’s
Equations (Kind of, still need
one more term in Ampere’s
Law)

P20-34



Technology

Many Applications of
Faraday’s Law



DC Motor (magnetostatics)

Normal

P20-37



Maxwell’s Equations
Creating Electric Fields

E-dA = O (Gauss's Law)
S gO
E-ds=— dj’)B (Faraday's Law)
[

Creatlng Magnetic Fields
Cﬁ;B dA =0 - (Magnetic Gauss's Law)

C;f B.ds— 1]  (Ampere's Law)
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Faraday’s Law of Induction

10.1 Faraday’s Law of Induction

The electric fields and magnetic fields considered up to now have been produced by
stationary charges and moving charges (currents), respectively. Imposing an electric field
on a conductor gives rise to a current which in turn generates a magnetic field. One could
then inquire whether or not an electric field could be produced by a magnetic field. In
1831, Michael Faraday discovered that, by varying magnetic field with time, an electric
field could be generated. The phenomenon is known as electromagnetic induction. Figure
10.1.1 illustrates one of Faraday’s experiments.

Figure 10.1.1 Electromagnetic induction

Faraday showed that no current is registered in the galvanometer when bar magnet is
stationary with respect to the loop. However, a current is induced in the loop when a
relative motion exists between the bar magnet and the loop. In particular, the
galvanometer deflects in one direction as the magnet approaches the loop, and the
opposite direction as it moves away.

Faraday’s experiment demonstrates that an electric current is induced in the loop by
changing the magnetic field. The coil behaves as if it were connected to an emf source.
Experimentally it is found that the induced emf depends on the rate of change of
magnetic flux through the coil.



10.1.1 Magnetic Flux

Consider a uniform magnetic field passing through a surface S, as shown in Figure 10.1.2
below:

Figure 10.1.2 Magnetic flux through a surface

Let the area vector be A = An, where 4 is the area of the surface and A its unit normal.
The magnetic flux through the surface is given by

®,=B-A=BAcosO (10.1.1)
where @is the angle between B and A . If the field is non-uniform, @ » then becomes
®, = [[B-dA (10.1.2)
%
The SI unit of magnetic flux is the weber (Wb):

1 Wb=1T-m?

Faraday’s law of induction may be stated as follows:

The induced emf & in a coil is proportional to the negative of the rate of change of
magnetic flux:

dod,

10.1.3
= ( )

£==

For a coil that consists of N loops, the total induced emf would be N times as large:

dd,
d

£=-N (10.1.4)

Combining Eqgs. (10.1.3) and (10.1.1), we obtain, for a spatially uniform field B,




gz—i(BAcosﬁ)z— a8 Acos&—B(@— cos@+BAsin6’(ﬁ) (10.1.5)
dt dt dt dt

Thus, we see that an emf may be induced in the following ways:

(i) by varying the magnitude of B with time (illustrated in Figure 10.1.3.)

B

/

T

BB

Figure 10.1.3 Inducing emf by varying the magnetic field strength

(ii) by varying the magnitude of A, ie., the area enclosed by the loop with time

(illustrated in Figure 10.1.4.)

Arca

A< A

Figure 10.1.4 Inducing emf by changing the area of the loop

(iii) varying the angle between B and the area vector A with time (illustrated in Figure

10.1.5.)

B

¢

Figure 10.1.5 Inducing emf by varying the angle between Band A .



10.1.2 Lenz’s Law

The direction of the induced current is determined by Lenz’s law:

The induced current produces magnetic fields which tend to oppose the change in
magnetic flux that induces such currents.

To illustrate how Lenz’s law works, let’s consider a conducting loop placed in a magnetic
field. We follow the procedure below:

1. Define a positive direction for the area vector A.

2. Assuming that B is uniform, take the dot product of Band A . This allows for the
determination of the sign of the magnetic flux @, .

3. Obtain the rate of flux change d®,, /dr by differentiation. There are three possibilities:

>0 = induced emf e<0

dd,
dr ,
=0 = inducedemfe=0

<0 = inducedemfe>0

4. Determine the direction of the induced current using the right-hand rule. With your

thumb pointing in the direction of A , curl the fingers around the closed loop. The
induced current flows in the same direction as the way your fingers curl if £ >0, and the
opposite direction if £ <0, as shown in Figure 10.1.6.

e ® N,
/ "7
Figure 10.1.6 Determination of the direction of induced current by the right-hand rule

In Figure 10.1.7 we illustrate the four possible scenarios of time-varying magnetic flux
and show how Lenz’s law is used to determine the direction of the induced current 7 .




ds X8

"

df

B dr

dthy
< {) (]}K < {}

deby; i
i () dr (d)

Figure 10.1.7 Direction of the induced current using Lenz’s law

By

The above situations can be summarized with the following sign convention:

D, dd, / dr £ /
+ — —_
+
- + -
—_— + = —
- 1 +

The positive and negative signs of / correspond to a counterclockwise and clockwise
currents, respectively.

As an example to illustrate how Lenz’s law may be applied, consider the situation where
a bar magnet is moving toward a conducting loop with its north pole down, as shown in
Figure 10.1.8(a). With the magnetic field pointing downward and the area vector

A pointing upward, the magnetic flux is negative, i.e., @ 5 =—BA <0, where 4 is the area

of the loop. As the magnet moves closer to the loop, the magnetic field at a point on the
loop increases (dB/ dt > 0), producing more flux through the plane of the loop. Therefore,
d®,/dt =-A(dB/dt) <0 , implying a positive induced emf, £ >0, and the induced
current flows in the counterclockwise direction. The current then sets up an induced
magnetic field and produces a positive flux to counteract the change. The situation
described here corresponds to that illustrated in Figure 10.1 (R,

Alternatively, the direction of the induced current can also be determined from the point
of view of magnetic force. Lenz’s law states that the induced emf must be in the direction
that opposes the change. Therefore, as the bar magnet approaches the loop, it experiences



a repulsive force due to the induced emf. Since like poles repel, the loop must behave as
if it were a bar magnet with its north pole pointing up. Using the right-hand rule, the
direction of the induced current is counterclockwise, as view from above. F igure 10.1.8(b)
illustrates how this alternative approach is used.

5

Figure 10.1.8 (a) A bar magnet moving toward a current loop. (b) Determination of the
direction of induced current by considering the magnetic force between the bar magnet
and the loop

10.2 Motional EMF

Consider a conducting bar of length / moving through a uniform magnetic field which
points into the page, as shown in Figure 10.2.1. Particles with charge ¢ >0 inside

experience a magnetic force F,),:q?fxﬁ which tends to push them upward, leaving
negative charges on the lower end.

Figure 10.2.1 A conducting bar moving through a uniform magnetic field

The separation of charge gives rise to an electric field E inside the bar, which in turn
produces a downward electric force F, =gE . At equilibrium where the two forces cancel,



we have qvB=gFE , or E=vB. Between the two ends of the conductor, there exists a
potential difference given by

%

ab

Since ¢ arises from the motion of the conductor, this potential difference is called the
motional emf. In general, motional emf around a closed conducting loop can be written as

g:q@xﬁ)-d’s’ (10.2.2)
where d's is a differential length element.

Now suppose the conducting bar moves through a region of uniform magnetic field

B =-Bk (pointing into the page) by sliding along two frictionless conducting rails that
are at a distance / apart and connected together by a resistor with resistance R, as shown
in Figure 10.2.2.

B

Figure 10.2.2 A conducting bar sliding along two conducting rails

Let an external force F. be applied so that the conductor moves to the right with a

ext

constant velocity v = vi. The magnetic flux through the closed loop formed by the bar
and the rails is given by

@, = BA = Blx (10.2.3)

Thus, according to Faraday’s law, the induced emf is

L :_i(le) T (10.2.4)
dr dr dr

£=-

where dx/dt =v is simply the speed of the bar. The corresponding induced current is

=181 (10.2.5)



and its direction is counterclockwise, according to Lenz’s law. The equivalent circuit
diagram is shown in Figure 10.2.3:

|
ey = lel =Bl

Figure 10.2.3 Equivalent circuit diagram for the moving bar

The magnetic force experienced by the bar as it moves to the right is

(10.2.6)

F,=1( j)x(-B 12):—1133:—[3_#”]%

which is in the opposite direction of V. For the bar to move at a constant velocity, the net
force acting on it must be zero. This means that the external agent must supply a force

€

F, =-F, =+(B;-V]f (10.2.7)

The power delivered by F_ is equal to the power dissipated in the resistor:

ext

272 2 2
P=F_5-Fv=| BV |, B & _pp (10.2.8)
/ R R R

as required by energy conservation.

From the analysis above, in order for the bar to move at a constant speed, an external
agent must constantly supply a force f?ext. What happens if at =0, the speed of the rod

is v,, and the external agent stops pushing? In this case, the bar will slow down because
of the magnetic force directed to the left. From Newton’s second law, we have

272
FB=—Blv=ma:mﬂ (10.2.9)
R dt
or
272
@=—Bl a’Z:—ﬂ (10.2.10)
v mR T



where 7 =mR/B’I’. Upon integration, we obtain
v(£) = ve™" (10.2.11)

Thus, we see that the speed decreases exponentially in the absence of an external agent
doing work. In principle, the bar never stops moving. However, one may verify that the
total distance traveled is finite.

10.3 Induced Electric Field

In Chapter 3, we have seen that the electric potential difference between two points 4 and
B in an electric field E can be written as

AV =V,~V,==[E-ds (10.3.1)

When the electric field is conservative, as is the case of electrostatics, the line integral of
E - d5 is path-independent, which implies C_f E-ds=0.

Faraday’s law shows that as magnetic flux changes with time, an induced current begins
to flow. What causes the charges to move? It is the induced emf which is the work done
per unit charge. However, since magnetic field can do not work, as we have shown in
Chapter 8, the work done on the mobile charges must be electric, and the electric field in
this situation cannot be conservative because the line integral of a conservative field must
vanish. Therefore, we conclude that there is a non-conservative electric field

—

E, associated with an induced emf:
e=qE,, -ds (10.3.2)

Combining with Faraday’s law then yields

do,

10.3.3
p ( )

q(fgm.dgz_

The above expression implies that a changing magnetic flux will induce a non-
conservative electric field which can vary with time. It is important to distinguish
between the induced, non-conservative electric field and the conservative electric field
which arises from electric charges.

As an example, let’s consider a uniform magnetic field which points info the page and is
confined to a circular region with radius R, as shown in Figure 10.3.1. Suppose the



magnitude of B increases with time, i.e., dB/dt>0. Let’s find the induced electric field
everywhere due to the changing magnetic field.

Since the magnetic field is confined to a circular region, from symmetry arguments we
choose the integration path to be a circle of radius ». The magnitude of the induced field

E_ at all points on a circle is the same. According to Lenz’s law, the direction of

nc

E, must be such that it would drive the induced current to produce a magnetic field

opposing the change in magnetic flux. With the area vector Kpointing out of the page,
the magnetic flux is negative or inward. With dB/dt >0, the inward magnetic flux is
increasing. Therefore, to counteract this change the induced current must flow

counterclockwise to produce more outward flux. The direction of Enc is shown in Figure
1031,

Figure 10.3.1 Induced electric field due to changing magnetic flux

Let’s proceed to find the magnitude of E_. In the region r < R, the rate of change of

magnetic flux is

40, 4 (ﬁ-ﬁ):i(—BA):—(d—B)ﬂrZ (10.3.4)

Using Eq. (10.3.3), we have

dE, -ds=E, (277r):—d®”’ :(.dﬁ]mz (10.3.5)
dt dt
which implies
o L (10.3.6)
2 dt
Similarly, for » > R, the induced electric field may be obtained as
E (22r)=-2%s (5@} 7R (103.7)
dt dt

10



or

R a8

= = 10.3.8
2 dt ( )

Aplot of E  as a function of 7 is shown in Figure 10.3.2.

Ene

R

Figure 10.3.2 Induced electric field as a function of »

10.4 Generators

One of the most important applications of Faraday’s law of induction is to generators and
motors. A generator converts mechanical energy into electric energy, while a motor
converts electrical energy into mechanical energy.

N S _ w

Figure 10.4.1 (a) A simple generator. (b) The rotating loop as seen from above.
Figure 10.4.1(a) is a simple illustration of a generator. It consists of an N-turn loop
rotating in a magnetic field which is assumed to be uniform. The magnetic flux varies

with time, thereby inducing an emf. From Figure 10.4.1(b), we see that the magnetic flux
through the loop may be written as

®, =B-A = BAcosd = BAcos ot (10.4.1)

The rate of change of magnetic flux is

11



do,

=—BAwsin ot (10.4.2)
dt

Since there are N turns in the loop, the total induced emf across the two ends of the loop
is

do,

g=-N 7 = NBAwsin ot (10.4.3)

If we connect the generator to a circuit which has a resistance R, then the current
generated in the circuit is given by

p=lBl_NBAG o (10.4.4)
R R

The current is an alternating current which oscillates in sign and has an amplitude
I, = NBAw/ R . The power delivered to this circuit is

_ (VBAw)® .,

P=1I|¢]| ol (10.4.5)

On the other hand, the torque exerted on the loop is
T = puBsin@ = uBsin wt (10.4.6)

Thus, the mechanical power supplied to rotate the loop is

P =10 = puBosin ot (10.4.7)

Since the dipole moment for the N-turn current loop is

*A’Bo
MU =NIA= —]%—wsm ot (10.4.8)
the above expression becomes
2 42 2
B = (N—ARE sin a)tj Bwsin ot = (NA%)—sin2 ot (10.4.9)

As expected, the mechanical power put in is equal to the electrical power output.

12



10.5 Eddy Currents

We have seen that when a conducting loop moves through a magnetic field, current is
induced as the result of changing magnetic flux. If a solid conductor were used instead of
a loop, as shown in Figure 10.5.1, current can also be induced. The induced current
appears to be circulating and is called an eddy current.

Figure 10.5.1 Appearance of an eddy current when a solid conductor moves through a
magnetic field.

The induced eddy currents also generate a magnetic force that opposes the motion,
making it more difficult to move the conductor across the magnetic field (Figure 10.5.2).

B

Figure 10.5.2 Magnetic force arising from the eddy current that opposes the motion of
the conducting slab.

Since the conductor has non-vanishing resistance R, Joule heating causes a loss of power

by an amount P=¢?/R. Therefore, by increasing the value of R , power loss can be
reduced. One way to increase R is to laminate the conducting slab, or construct the slab
by using gluing together thin strips that are insulated from one another (see Figure
10.5.3a). Another way is to make cuts in the slab, thereby disrupting the conducting path
(Figure 10.5.3b).

Figure 10.5.3 Eddy currents can be reduced by (a) laminating the slab, or (b) making cuts
on the slab.

13



There are important applications of eddy currents. For example, the currents can be used
to suppress unwanted mechanical oscillations. Another application is the magnetic
braking systems in high-speed transit cars.

10.6 Summary

* The magnetic flux through a surface S is given by
®, = [[B-dA
S
e Faraday’s law of induction states that the induced emf ¢ in a coil is proportional to
the negative of the rate of change of magnetic flux:

do,
dr

g=—-N

 The direction of the induced current is determined by Lenz’s law which states that
the induced current produces magnetic fields which tend to oppose the changes in
magnetic flux that induces such currents.

* A motional emf ¢ is induced if a conductor moves in a magnetic field. The general
expression forg is

€= q (VxB)-ds
In the case of a conducting bar of length / moving with constant velocity v through a
magnetic field which points in the direction perpendicular to the bar and v, the

induced emfis £ = —Bv/ .

* An induced emf in a stationary conductor is associated with a non-conservative
electric field E__ :

5=(§Em-d§=——

10.7 Appendix: Induced Emf and Reference Frames

In Section 10.2, we have stated that the general equation of motional emf is given by

g:q(vxﬁ)-ﬁ

14



where V is the velocity of the length element d's of the moving conductor. In addition,

we have also shown in Section 10.4 that induced emf associated with a stationary
conductor may be written as the line integral of the non-conservative electric field:

gzcjﬁ ds

nc

However, whether an object is moving or stationary actually depends on the reference
frame. As an example, let’s examine the situation where a bar magnet is approaching a
conducting loop. An observer O in the rest frame of the loop sees the bar magnet moving

toward the loop. An electric field Enc is induced to drive the current around the loop, and

a charge on the loop experiences an electric force ﬁ‘e = qﬁnc' Since the charge is at rest
according to observer O, no magnetic force is present. On the other hand, an observer
O'in the rest frame of the bar magnet sees the loop moving toward the magnet. Since the
conducting loop is moving with a velocity v, a motional emf is induced. In this frame,
O' sees the charge ¢ moving with a velocity v, and concludes that the charge

experiences a magnetic force F,=¢gvxB.

Figure 10.7.1 Induction observed in different reference frames. In (a) the bar magnet is
moving, while in (b) the conducting loop is moving.

Since the event seen by the two observer is the same except the choice of reference
frames, the force acting on the charge must be the same, 136 =F,, which implies

E_=vxB (10.7.1)

In general, as a consequence of relativity, an electric phenomenon observed in a reference
frame Omay appear to be a magnetic phenomenon in a frame O'that moves at a speed v
relative to O.

10.8  Problem-Solving Tips: Faraday’s Law and Lenz’s Law

In this chapter we have seen that a changing magnetic flux induces an emf:
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dd,
d

e=-N

according to Faraday’s law of induction. For a conductor which forms a closed loop, the
emf sets up an induced current / =| £|/R, where Ris the resistance of the loop. To

compute the induced current and its direction, we follow the procedure below:

1. For the closed loop of area 4 on a plane, define an area vector A and let it point in
the direction of your thumb, for the convenience of applying the right-hand rule later.
Compute the magnetic flux through the loop using

& B-A (ﬁ is uniform)
’ J‘J‘ﬁdfx (ﬁ is non-uniform)

Determine the sign of @,,.

2. Evaluate the rate of change of magnetic flux d®, /dr . Keep in mind that the change
could be caused by

(1) changing the magnetic field dB/dr # 0 ,
(i) changing the loop area if the conductor is moving (dA/dt #0), or
(iii) changing the orientation of the loop with respect to the magnetic field (dé/dt+#0).

Determine the sign of d®, /dr .

3. The sign of the induced emf is the opposite of that of d®, /dr . The direction of the
induced current can be found by using Lenz’s law discussed in Section 10.1.2.

10.9  Solved Problems
10.9.1 Rectangular Loop Near a Wire

An infinite straight wire carries a current / is placed to the left of a rectangular loop of
wire with widthw and length /, as shown in the F igure 10.9.1.
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Figure 10.9.1 Rectangular loop near a wire
(a) Determine the magnetic flux through the rectangular loop due to the current /.

(b) Suppose that the current is a function of time with / (t)=a+bt, where g and b are

positive constants. What is the induced emf in the loop and the direction of the induced
current?

Solutions:
(a) Using Ampere’s law:

g(ﬁ-d§=ﬂof (10.9.1)

enc

the magnetic field due to a current-carrying wire at a distance » away is

B= % (10.9.2)

The total magnetic flux ®, through the loop can be obtained by summing over
contributions from all differential area elements d4 =/ dy-

s Wl wdr ol (s + w)
O,=|dD,=|B-dA="0 | =00, 10.9.3
P f ? -[ 2r -[ r 2r s ( )
Note that we have chosen the area vector to point info the page, so that ®, >0.

(b) According to Faraday’s law, the induced emf is

S A0y _dl el (swd gl (s4w) dl L pbly (s+w (10.9.4)
dr dar| 2x K 27 S dr 27 K

where we have used dI/df=5.
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The straight wire carrying a current / produces a magnetic flux into the page through the
rectangular loop. By Lenz’s law, the induced current in the loop must be flowing
counterclockwise in order to produce a magnetic field out of the page to counteract the
increase in inward flux.

10.9.2 Loop Changing Area

A square loop with length / on each side is placed in a uniform magnetic field pointing
into the page. During a time interval Az, the loop is pulled from its two edges and turned
into a thombus, as shown in the Figure 10.9.2. Assuming that the total resistance of the
loop is R, find the average induced current in the loop and its direction.

Figure 10.9.2 Conducting loop changing areca
Solution:

Using Faraday’s law, we have

£=—A(DB :—B(ﬁj (10.9.5)
At
Since the initial and the final areas of the loop are 4, =/”and 4, =1 ? sin @, respectively

(recall that the area of a parallelogram defined by two vectors l: and l: is

A4 l: ><lﬁ2 |=1l, sin @), the average rate of change of area is

A —A4 2(1-si
%: ; ,:_l(l s1n6?)<0

10.9.6
At At At ( )

which gives
oo Bl (1-sin 6) 50

10.9.7
e ( )

Thus, the average induced current is
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& _BI’(1-sin 6)

10.9.8
R AR ( )

J=

Since (A4/At) <0, the magnetic flux into the page decreases. Hence, the current flows
in the clockwise direction to compensate the loss of flux.

10.9.3 Sliding Rod

A conducting rod of length / is free to slide on two parallel conducting bars as in Figure
10.9.3.

™ O

, B :
/\] §. %mm\ 1: §/\"x

Figure 10.9.3 Sliding rod

In addition, two resistors R, and R, are connected across the ends of the bars. There is a

uniform magnetic field pointing into the page. Suppose an external agent pulls the bar to
the left at a constant speed v. Evaluate the following quantities:

(a) The currents through both resistors;

(b) The total power delivered to the resistors;

(¢) The applied force needed for the rod to maintain a constant velocity.
Solutions:

(a) The emf induced between the ends of the moving rod is

gz—d(DB =—Blv (10.9.9)
dt
The currents through the resistors are
p=lel o _lel (10.9.10)
Rl i RZ

Since the flux into the page for the left loop is decreasing, /; flows clockwise to produce a
magnetic field pointing into the page. On the other hand, the flux into the page for the
right loop is increasing. To compensate the change, according to Lenz’s law, I, must flow
counterclockwise to produce a magnetic field pointing out of the page.

(b) The total power dissipated in the two resistors is
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2 l 1 2 1 1
P, =1 |e|+1L | ¢l=(], +12)|gy=g~(E+R—]:B W(—HTJ (10.9.11)

1 2 1 2

(c) The total current flowing through the rod is /=1, +/,. Thus, the magnetic force

acting on the rod is

F,=1IB=|¢|IB 1 opp| Lel (10.9.12)
R R R R

1 2

and the direction is to the right. Thus, an external agent must apply an equal but opposite
force F,,, = —F, to the left in order to maintain a constant speed.

Alternatively, we note that since the power dissipated in the resistors must be equal to
P_ . the mechanical power supplied by the external agent. The same result is obtained

ext °

since

P. .= v=F v (10.9.13)

10.9.4 Moving Bar
A conducting rod of length / moves with a constant velocity v perpendicular to an

infinitely long, straight wire carrying a current /, as shown in the Figure 10.9.4. What is
the emf generated between the ends of the rod?

Figure 10.9.4 A bar moving away from a current-carrying wire
Solution:

From Faraday’s law, the motional emf is

|&|= Blv (10.9.14)
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where v is the speed of the rod. However, the magnetic field due to the straight current-
carrying wire at a distance » away is, using Ampere’s law:

B:fﬁ- (10.9.15)
nr

Thus, the emf between the ends of the rod is given by

jqz(”J)w (10.9.16)

2rr

10.9.5 Time-Varying Magnetic Field

A circular loop of wire of radius a is placed in a uniform magnetic field, with the plane of
the loop perpendicular to the direction of the field, as shown in Figure 10.9.5.

Figure 10.9.5 Circular loop in a time-varying magnetic field

The magnetic field varies with time according to B(r)= B, + bt , where By and b are

positive constants.
(a) Calculate the magnetic flux through the loop at 1 =0.
(b) Calculate the induced emf in the loop.

(c) What is the induced current and its direction of flow if the overall resistance of the
loop is R?

(d) Find the power dissipated due to the resistance of the loop.

Solution:

(a) The magnetic flux at time ¢ is given by
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D, = BA=(B, +bt)(ra’ )= (B, +bt)a’ (10.9.17)

where we have chosen the area vector to point into the page, so that @ ;>0 At =0,
we have

D, =1B,d" (10.9.18)

(b) Using Faraday’s Law, the induced emf is

d(B,+bt
e=-9%s__ B __ A Brb) (10.9.19)
dt dt dt
(¢) The induced current is
2
y=lel_7ba (10.9.20)
R R
and its direction is counterclockwise by Lenz’s law.
(d) The power dissipated due to the resistance R is
5N 252
P:PR:(@j g= %) (10.9.21)
R R

10.9.6 Moving Loop
A rectangular loop of dimensions / and w moves with a constant velocity v away from an
infinitely long straight wire carrying a current / in the plane of the loop, as shown in

Figure 10.9.6. Let the total resistance of the loop be R. What is the current in the loop at
the instant the near side is a distance r from the wire?

Figure 10.9.6 A rectangular loop moving away from a current-carrying wire
Solution:

The magnetic field at a distance s from the straight wire is, using Ampere’s law:
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p =l (10.9.22)
27s

The magnetic flux through a differential area element dA = [ds of the loop is

d®, =B-dA = ol | g (10.9.23)

where we have chosen the area vector to point info the page, so that @, > 0. Integrating

over the entire area of the loop, the total flux is

(DH _ ,UOH J<‘+w£[§: :UOH ln(l’-l—wj (10924)
2r s 27 7

Differentiating with respect to #, we obtain the induced emf as

g:_&z_ﬁo_]zi(lnr“ij:_”OH( 1 _lJﬂzﬂLﬂ_wv__ (10.9.25)
dt 2 dt r 2x \r+w r)dt 2m r(r+w)

where v = dr / dr . Notice that the induced emf can also be obtained by using Eq. (10.2.2):

5ch(VXE)'dg=vl[B(r)—B(r+w)]=V1 ,Uo]_ Hol
2nr 27m(r+w)
(10.9.26)
— Holl — vw
27 r(r+w)
The induced current is
Ll (10.9.27)

R 27R r(r+w)

10.10 Conceptual Questions

1. A bar magnet falls through a circular loop, as shown in Figure 10.10.1
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Figure 10.10.1

(a) Describe qualitatively the change in magnetic flux through the loop when the bar
magnet is above and below the loop.

(b) Make a qualitative sketch of the graph of the induced current in the loop as a function
of time, choosing / to be positive when its direction is counterclockwise as viewed from

above.

2. Two circular loops 4 and B have their planes parallel to each other, as shown in Figure
10.10.2.

Figure 10.10.2
Loop 4 has a current moving in the counterclockwise direction, viewed from above.

(a) If the current in loop 4 decreases with time, what is the direction of the induced
current in loop B? Will the two loops attract or repel each other?

(b) If the current in loop A increases with time, what is the direction of the induced
current in loop B? Will the two loops attract or repel each other?

3. A spherical conducting shell is placed in a time-varying magnetic field. Is there an
induced current along the equator?

4. A rectangular loop moves across a uniform magnetic field but the induced current is
zero. How is this possible?
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