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Alternating-Current Circuits

12.1 AC Sources

In Chapter 10 we learned that changing magnetic flux can induce an emf according to
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic
field, the induced emf varies sinusoidally with time and leads to an alternating current
(AC), and provides a source of AC power. The symbol for an AC voltage source is

An example of an AC source is

V(1) =V,sinot (12.1.1)

where the maximum valueV; is called the amplitude. The voltage varies between /| and
—V, since a sine function varies between +1 and —1. A graph of voltage as a function of

time is shown in Figure 12.1.1.

iy

Figure 12.1.1 Sinusoidal voltage source

The sine function is periodic in time. This means that the value of the voltage at time ¢
will be exactly the same at a later time t'=¢+7 where T is the period. The frequency,
/. defined as / =1/7, has the unit of inverse seconds (s™'), or hertz (Hz). The angular

frequency is defined to be w =27 f .

When a voltage source is connected to an RLC circuit, energy is provided to compensate
the energy dissipation in the resistor, and the oscillation will no longer damp out. The
oscillations of charge, current and potential difference are called driven or forced
oscillations.

After an initial “transient time,” an AC current will flow in the circuit as a response to the
driving voltage source. The current, written as



[(t) = I, sin(wt — §) (12.1.2)

will oscillate with the same frequency as the voltage source, with an amplitude /, and
phase ¢ that depends on the driving frequency.

12.2 Simple AC circuits

Before examining the driven RLC circuit, let’s first consider the simple cases where only
one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal
voltage source.

12.2.1 Purely Resistive load

Consider a purely resistive circuit with a resistor connected to an AC generator, as shown
in Figure 12.2.1. (As we shall see, a purely resistive circuit corresponds to infinite
capacitance (' =coand zero inductance L=0.)

Figure 12.2.1 A purely resistive circuit
Applying Kirchhoffs loop rule yields

V() =V, (t)=V ()= 1,()R =0 (12.2.1)

where V,(1)=1,(1)R is the instantaneous voltage drop across the resistor. The
instantaneous current in the resistor is given by

Vo SIn ot
R

I,(0)= V,}gz ). = I, sin ot (12.2.2)

where V,, =V, and [, =V, /R is the maximum current. Comparing Eq. (12.2.2) with

Eq. (12.1.2), we find¢ =0, which means that /,(r) and V,(¢) are in phase with each

other. meaning that they reach their maximum or minimum values at the same time. The
time dependence of the current and the voltage across the resistor is depicted in Figure
12.2.2(a).

)
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Figure 12.2.2 (a) Time dependence of I,(¢) and V,(¢) across the resistor. (b) Phasor

diagram for the resistive circuit.

The behavior of /,(f)and V,(¢) can also be represented with a phasor diagram, as shown
in Figure 12.2.2(b). A phasor is a rotating vector having the following properties:

(1) length: the length corresponds to the amplitude.
(i1) angular speed: the vector rotates counterclockwise with an angular speed w.

(iii) projection: the projection of the vector along the vertical axis corresponds to the
value of the alternating quantity at time .

We shall denote a phasor with an arrow above it. The phasor V,, has a constant

magnitude of V.

to V, (1), the voltage drop across the resistor at time 7. A similar interpretation applics

Its projection along the vertical direction is V), sin@t, which is equal

to 1"/‘,(, for the current passing through the resistor. From the phasor diagram, we readily

see that both the current and the voltage are in phase with each other.
The average value of current over one period can be obtained as:

1 o Lo, Top T 2
(1o)== [ (0t = [ 1psinor i =1 [ sm—;’f di=0  (122.3)

Similarly, one may find the following relations useful when averaging over one period:

(O8]



<cos a)t> :% f coswt df =0
<sin wi cos ol ) = 1 L/ sinwtcoswt dt =0
] (12.2.5)
<sin2 a)t> = i J;[ sin’ t dt = l LT sin’ (Z—M—J dt = l
T T T 2

<cos2 a)t> :% J:vcos2 ot dt :% L'[vcosz (—2%) dt :%

From the above, we see that the average of the square of the current is non-vanishing:
) 1 / 2 1 A 2 .2 1 ‘S ) 2ﬂ-t 1 )
YHOE - [ ride = = [ Trosin® ot di = I, - [ sin (Tj d=— T (12.2.6)

It is convenient to define the root-mean-square (rms) current as

/
= 12(z>>:ﬂ (12.2.7)
ms \/5
In a similar manner, the rms voltage can be defined as
) V
Vo= <V,g(z)>=ﬂ (12.2.8)
rms \/E

The rms voltage supplied to the domestic wall outlets in the United States is
V=120 Vata frequency f = 60 Hz.

rms
The power dissipated in the resistor is

P (=1, ")V, (1) =1, (DR (12.2.9)

from which the average over one period is obtained as:

> 1 ) V:
<])R ([>> = <[/_<’ (I)R> :-2_[12<’OR = [ansR = [m\sV;ms = ;;S (122 1 O)

12.2.2 Purely Inductive Load

Consider now a purely inductive circuit with an inductor connected to an AC generator,
as shown in Figure 12.2.3.



Figure 12.2.3 A purely inductive circuit

As we shall see below, a purely inductive circuit corresponds to infinite capacitance
C =wand zero resistance R =0 . Applying the modified Kirchhoff’s rule for inductors,
the circuit equation reads

VOV, (0 =V (-1 2E=0 (122.11)
which implies
4, VO Vo gin o (12.2.12)
a L L

where ¥, =V, . Integrating over the above equation, we find

I (/):Jd[ Vi sinwt dtf=— Vo cosmt = Vo sin| wr—= (12.2.13)
/ LL ol ol 2

where we have used the trigonometric identity

—cosa)t=sin(wt—%) (12.2.14)

for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2), we see that
the amplitude of the current through the inductor is

.
[,=—t="10 12.2.15
10 X, ( )

Vio
ol
where

X, =0l (12.2.16)

is called the inductive reactance. It has Sl units of ohms (€), just like resistance.
However, unlike resistance, X, depends linearly on the angular frequency . Thus, the

resistance to current flow increases with frequency. This is due to the fact that at higher



frequencies the current changes more rapidly than it does at lower frequencies. On the
other hand. the inductive reactance vanishes as @ approaches zero.

By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be

¢:+% (12.2.17)

The current and voltage plots and the corresponding phasor diagram are shown in the
Figure 12.2.4 below.

f.n i v
&4

Lin X

Figure 12.2.4 (a) Time dependence of 7, (1) and V, (1) across the inductor. (b) Phasor

diagram for the inductive circuit.

As can be seen from the figures, the current 7, (¢) is out of phase with V, (H)byg=7/2;

it reaches its maximum value after V, (/) does by one quarter of a cycle. Thus, we say that

The current lags voltage by 7/ 2 in a purely inductive circuit

12.2.3 Purely Capacitive Load

In the purely capacitive case, both resistance R and inductance L are zero. The circuit
diagram is shown in Figure 12.2.5.

Figure 12.2.5 A purely capacitive circuit



Again. Kirchhoff’s voltage rule implies

V(l)—V(,(Z)=V(t)-——QC(‘—t)=O (12.2.18)
which yields
o) =CV()=CV.(t)=CV,,sinwt (12.2.19)

where V., =¥, . On the other hand, the current is
d y
1.(1)= +7Q =wCV,,cosot=wCV ., sin (a)t +%) (12.2,20)
) !
where we have used the trigonometric identity

COS(O[=Sin(a)[+%) (12.2.21)

The above equation indicates that the maximum value of the current is

V.
[y =0CVy ==L (12.2.22)
X,
where
PO (12.2.23)
oC

is called the capacitance reactance. 1t also has SI units of ohms and represents the
effective resistance for a purely capacitive circuit. Note that X . is inversely proportional

to both C and @ , and diverges as o approaches zero.

By comparing Eq. (12.2.21) to Eq. (12.1.2), the phase constant is given by

=== (12.2.24)

The current and voltage plots and the corresponding phasor diagram are shown in the
Figure 12.2.6 below.



w

Figure 12.2.6 (a) Time dependence of .(¢) and V.(r)across the capacitor. (b) Phasor

diagram for the capacitive circuit.

Notice that at 7 =0, the voltage across the capacitor is zero while the current in the circuit
is at a maximum. In fact, /,.(1) reaches its maximum before V.(f) by one quarter of a

cycle (¢ =z /2). Thus, we say that

The current leads the voltage by 7/2 in a capacitive circuit

12.3 The RLC Series Circuit

Consider now the driven series RLC circuit shown in Figure 12.3.1.

4 V) .

f“ f}\'é%f

Figure 12.3.1 Driven series RLC Circuit

Applying Kirchhoff’s loop rule, we obtain

VOV, V, ()~ Vo) =V () - IR- L £ =0
dr C

which leads to the following differential equation:

(12.3.1)




Lfli+1R+—Q—=Vosma)z (12.3.2)
d C

Assuming that the capacitor is initially uncharged so that / =+dQ/dt is proportional to
the increase of charge in the capacitor, the above equation can be rewritten as

139, g% Ly sinor (12.3.3)
dt da _C
One possible solution to Eq. (12.3.3) is
O(t)=Q, cos(wt — @) (12.3.4)
where the amplitude and the phase are, respectively.,
0, = /L _ Y
0 2
JRo /LY +(0’ =1/LCY?  oR* +(@L-1/0C)’ (123.5)
3.5
— VO ’
o R +(X, —X.)
and
tanqﬁ:i(wL— ! ):X"'X“ (12.3.6)
R oC R
The corresponding current is
](t):+%:10 sin(wt — @) (12.3.7)
with an amplitude
I, =-0,® Vo (12.3.8)

JR+(X, - X))’

Notice that the current has the same amplitude and phase at all points in the series RLC
circuit. On the other hand, the instantanecous voltage across each of the three circuit
elements R. L and C has a different amplitude and phase relationship with the current, as
can be seen from the phasor diagrams shown in Figure 12.3.2.
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Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a)
the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit.

From Figure 12.3.2, the instantaneous voltages can be obtained as:
V. (t)=I,Rsinwt =V, sin ot

V.()=1X, sin(wmgj:mo cos ot (12.3.9)
. T
Vo(t)y=1,X, sm(a)t—aj =-V,., coswt

where
VRO:[ R VI‘OZIOX/J I/('():[QX(' (1231())

icte

are the amplitudes of the voltages across the circuit elements. The sum of all three
voltages is equal to the instantaneous voltage supplied by the AC source:

V)=V (D+V, (O)+V.(0) (12.3.11)
Using the phasor representation, the above expression can also be written as

Vo=V +V,o+ Ve, (12.3.12)

as shown in Figure 12.3.3 (a). Again we see that current phasor fo leads the capacitive

voltage phasor V., by 7/2 but lags the inductive voltage phasor V,, by #/2. The three
voltage phasors rotate counterclockwise as time passes, with their relative positions fixed.

10
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Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship

The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b).
From the Figure, we see that

Vo =| I70 =] I7/e0 '”7/,0 'H;('o |:\/;/e20 +(V "V('o)z
= JU R + (I X, ~1,X.)’ (12.3.13)
:]o\ﬁ22 +(XL —X(:)z

which leads to the same expression for Iy as that obtained in Eq. (12.3.7).

It is crucial to note that the maximum amplitude of the AC voltage source V; is not equal
to the sum of the maximum voltage amplitudes across the three circuit elements:

Vo Vot Vo Voo (12.3.14)

This is due to the fact that the voltages are not in phase with one another, and they reach
their maxima at different times.

12.3.1 Impedance

We have already seen that the inductive reactance X, =wL and capacitance reactance
X, =1/wC play the role of an effective resistance in the purely inductive and capacitive

circuits, respectively. In the series RLC circuit, the effective resistance is the impedance,
defined as

Z=R*+(X, - X.) (12.3.15)

The relationship between Z, X; and Xc can be represented by the diagram shown in
Figure 12.3.4:



R

Figure 12.3.4 Diagrammatic representation of the relationship between Z, X, and X .

The impedance also has SI units of ohms. In terms of Z, the current may be rewritten as

](t)z%sin(a)t—m (12.3.10)

Notice that the impedance Z also depends on the angular frequency o, as do X; and X

Using Eq. (12.3.6) for the phase ¢ and Eq. (12.3.15) for Z, we may readily recover the
limits for simple circuit (with only one element). A summary is provided in Table 12.1
below:

R
SImple R L C X, = w! X = —1— ¢ = [an_l :Y—’i Z _ RZ + X _ ‘,
Circuit o ‘ T aC R = (X, —X)
purely
resistive R |0 x 0 0 0 R
purely
inductive 01 L ® X, 0 zl2 X,
Purel)f ; 0 0 C 0 X(,, —7/2 X(i‘
capacitive

Table 12.1 Simple-circuit limits of the series RLC circuit

12.3.2 Resonance

Eq. (12.3.15) indicates that the amplitude of the current /, =,/ Z reaches a maximum
when 7 is at a minimum. This occurs when X, =X, or oL =1/wC , leading to

2 (12.3.17)

Co =
TS

The phenomenon at which /; reaches a maximum is called a resonance, and the
frequency @, is called the resonant frequency. At resonance, the impedance

becomes Z = R , the amplitude of the current is




Vi 2 1R
]O:?f (12.3.18)
and the phase 1s

$=0 (12.3.19)

as can be seen from Eq. (12.3.5). The qualitative behavior is illustrated in Figure 12.3.5.
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o
A2

[ee

Figure 12.3.5 The amplitude of the current as a function of @ in the driven RLC circuit.

12.4 Power in an AC circuit

In the series RLC circuit, the instantaneous power delivered by the AC generator is given
by

5

PH=I1t)V ()= %Sin(a)t —¢)-V,sinowt = KZO—sin(a)t —@)sin ot

= 70 (sin2 @I COS ¢ —sin @1 cOs I sin ¢)
where we have used the trigonometric identity
sin(et — ¢) = sin @t cos ¢ —cos @t sin ¢ (12.4.2)

The time average of the power is



1V, oo 1y .
P()) =— | ~2-sin” wicos¢ di —— 70 sin i coswtsing dt

T
RS .3 vy : .
———Z—cos¢<sm a)t>——Z—sm¢<sma)tcosa)t> (12.4.3)
1V}
= ———CO08
2 Z /

where Egs. (12.2.5) and (12.2.7) have been used. In terms of the rms quantities. the
average power can be rewritten as

2

<P(t)>:%%cos¢=z“zﬁ;cos¢:] V. cosd (12.4.4)

ms- ms

The quantity cos¢ is called the power factor. From F igure 12.3.4, one can readily show
that

N | =

cosg = (12.4.5)

Thus, we may rewrite <P(z‘)> as

R V ) ;
PN=1_ V. | == —ms \R=] R 12.4.6
< ()> ms nns(zj mn( Z j rms ( )

In Figure 12.4.1, we plot the average power as a function of the driving angular

frequency o.
< (1)

),

Figure 12.4.1 Average power as a function of frequency in a driven series RLC circuit.

We see that <P(t)> attains the maximum when cosg=1, or Z=R , which is the

resonance condition. At resonance. we have



(P) e = Lons¥ s =% (12.4.7)

12.4.1 Width of the Peak

The peak has a line width. One way to characterize the width is to definedo =0, —@ _,

where o, are the values of the driving angular frequency such that the power is equal to

half its maximum power at resonance. This is called full width at half maximun. as
illustrated in Figure 12.4.2. The width Ao increases with resistance R.

o or,

Figure 12.4.2 Width of the peak

To find Aw . it is instructive to first rewrite the average power<P(t)> as

1 o RN /. — (12.4.8)
2R'+(a)L—1/caC) 20 R+ (o —a)o)

(P(O)=

with <P(/ )>”m’ =¥ /2R . The condition for finding o, is

A V'R’

1
Yipa —(P(t s 12.4.9
2< (>>meL\' < ()>w, AR 20’R+ (0 —0y) |0, ( )
which gives

(@ 0y :(BLLU) (12.4.10)

Taking square roots yields two solutions, which we analyze separately.

case 1: Taking the positive root leads to



0} -0 :+RZ’+ (12.4.11)

Solving the quadratic equation, the solution with positive root 1s

R RY
=t | — | Ty 12.4.12
o (4LJ A ( )

Case 2: Taking the negative root of Eq. (12.4.10) gives

P =gt =2 (12.4.13)
L
The solution to this quadratic equation with positive root is
@_ :——R—+ (—Ii + (12.4.14)
2L 4L
The width at half maximum is then
R B,
Aa):a)+—a),:z (12.4.15)

Once the width Aw is known, the quality factor O (not to be confused with charge) can
be obtained as

@, L

Q= (12.4.16)
Comparing the above equation with Eq. (11.8.17), we see that both expressions agree
with each other in the limit where the resistance is small, and @' = Jo, —(R/ 2L =~ w,.

12.5 Transformer

A transformer is a device used to increase Or decrease the AC voltage in a circuit. A
typical device consists of two coils of wire, a primary and a secondary, wound around an
iron core, as illustrated in Figure 12.5.1. The primary coil, with N, turns, is connected (o

alternating voltage source V(7). The secondary coil has N, turns and is connected to a

“load resistance” R, . The way transformers operate is based on the principle that an



alternating current in the primary coil will induce an alternating emf on the secondary
coil due to their mutual inductance.

Figure 12.5.1 A transformer

In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of
induction implies

(12.5.1)

where @, is the magnetic flux through one turn of the primary coil. The iron core, which

extends from the primary to the secondary coils, serves to mcrease the magnetic field
produced by the current in the primary coil and ensure that nearly all the magnetic flux
through the primary coil also passes through cach turn of the secondary coil. Thus, the
voltage (or induced emf) across the secondary coil is

(12.5.2)

D
V. ==N, 80,
codt

In the case of an ideal transformer, power loss due to Joule heating can be ignored. so
that the power supplied by the primary coil is completely transferred to the secondary coil:

IV, =1LV, (12.5.3
In addition, no magnetic flux leaks out from the iron core, and the flux @, through each

turn is the same in both the primary and the secondary coils. Combining the two
expressions. we are lead to the transformer equation:

(12.5.4)

By combining the two equations above, the transformation of currents in the two coils
may be obtained as:



I :(.V;][z :( d ]12 (12.5.5)
" N,

Thus, we sec that the ratio of the output voltage to the input voltage is determined by the
turn ratio N,/ N,. If N,>N,. then V, >V,, which means that the output voltage in the

second coil is greater than the input voltage in the primary coil. A transformer with
N, >N, is called a step-up transformer. On the other hand, if N, <N, , then V, <V,, and

the output voltage is smaller than the input. A transformer with N, <N, is called a siep-

down transformer.

12.6 Parallel RLC Circuit

Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is
V(t)y=V,sinol .

Figure 12.6.1 Parallel RLC circuit.

Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements
R, L, and C are the same, and each voltage is in phase with the current through the
resistor. However, the currents through each element will be different.

In analyzing this circuit, we make use of the results discussed in Sections 12.2 — 12.4.
The current in the resistor is

v
],\,(/‘):%:%sin(ol:]msina)t (12.6.1)

where [,, =V, /R. The voltage across the inductor is

V,(/):V(t):Vosin(ot:Li%‘— (12.6.2)
4

which gives

Vy . V Vy . .
[,‘(t)zijosma)r'dr'z——”-cosa)t:—Usm(a)t—%j:],losm(a)t—%j (12.6.3)

wl X,



where I,, =V, /X, and X, = oL is the inductive reactance.

Similarly, the voltage across the capacitor is V(1) =¥, sin ot = O(t)/ C', which implies

1.(t) :d—Q =wCV,coswt = —Vo—sin(a)sz = L s sin(a)ﬂrz) (12.6.4)
di X, 2 2

where 1., =V, /X, and X, =1/wC is the capacitive reactance.

Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all
three currents.

IO =1,()+1,()+1.(t)

) . T _ P (12.6.5)
=1, sinwf+1,,sin| ot ~5 +1,,sin| ot +E
The currents can be represented with the phasor diagram shown in Figure 12.6.2.
4
Figure 12.6.2 Phasor diagram for the parallel RLC circuit
From the phasor diagram, we see that
Z) = H/eo+j/.o+j<'o (12.6.6)

and the maximum amplitude of the total current, I, can be obtained as

]o =| jo =l j/eo + im +j('o = \/Ilzeo +([('o _]/10)2

2 2 (12.6.7)
R\ oL R X X




Note however, since /, (1), 1, (f) and 1 .(f)are not in phase with one another, /; is not

equal to the sum of the maximum amplitudes of the three currents:

[o ¢]/eo*”[/‘o"'[('o (12.6.8)

With 1, =V, / Z, the (inverse) impedance of the circuit is given by

LI 17+(a)('——1—j = —17—+ L (12.6.9)
Z R ol R\ X. X,

The relationship betweenZ ., R, X, and X, is shown in Figure 12.6.3.

Figure 12.6.3 Relationship between Z . R, X, and X, in a parallel RLC circuit.

From the figure or the phasor diagram shown in Figure 12.6.2, we see that the phase can
be obtained as

tang = leo =11y :X(' X, =R L'——l— :R(a)C——l— (12.6.10)
Ly ﬁ X X, ol

The resonance condition for the parallel RLC circuit is given by ¢ =0, which implies

1 1

=— 12.6.11
e ( )
The resonant frequency is
1
o, :\/—L—C,? (12.6.12)

which is the same as for the series RLC circuit. From Eq. (12.6.9), we readily see that
1/Z is minimum (or Z is maximum) at resonance. The current in the inductor exactly



LC Circuits
Mass on a Spring:
Simple Harmonic Motion
(Demonstration)



Mass on a Spring

(1) (2)

A
0
A
v x 0

Xo: Amplitude of Motion
¢. Phase (time offset)

What is Motion?

2
F:—kx:ma:md;c
dt
2
md§+kx:0
dt

Simple Harmonic Motion
xX(2) = x, cos(w,t + ¢)

e \/E = Angular frequency
m

P25 10



Mass on a Spring: Energy

(1) Spring (2) Mass (3) Spring (4) Mass

. -
4!

w

i

x(7) = x,cos(wyt + @) x )=o) 1, SIN(w,t + ¢)

Energy has 2 parts: (Mass) Kinetic and (Spring) Potential

)
s :lm(@J :%kxoz sin” (@, + @)

3 Energy
1 1 sloshes back
[[ = /7 — Ekxozcosz(a)()t+¢) and forth

2 ‘

POy i



Simple Harmonic Motion

: 1
Petiod (7) =
tfrequency (7))
Amplitude (x,) 7
- angular frequency (o)
%ﬁ 4; &
4 *% i % ;‘? "“i U
p tme \

3= % cos(w,t . )

Phase Shift (¢) :izf_

. PBip



Electronic Analog:
LC Circuits



Analog: LC Circuit

Mass doesn't like to accelerate
Kinetic energy associated with motion

74% d*x 1

F=ma=m— —m =
dt dt "
Inductor doesn't like to have current change
Energy associated with current

E=—m’

PS- 14



Analog: LC Circuit

Spring doesn’t like to be compressed/extended
Potential energy associated with compression

Foke £ochy

2

Capacitor doesn't like to be charged (+ or -)
Energy associated with stored charge

P25- 15



o3

LC Circuit

. Set up the circuit above with capacitor, inductor,

resistor, and battery.
Let the capacitor become fully charged.
Throw the switch from ato b

. What happens?

P 16



LC Circuit

It undergoes simple harmonic motion, just like a
Mass on a spring, with trade-off between charge on
capacitor (Spring) and current in inductor (Mass)

e e



LC Circuit

e T
% & dt dt
s
- 1
z 2Q+“Q=
dt L

Simple Harmonic Motion

O) =0, cos(wyf +9) @, =

- Qp: Amplitude of Charge OSCIIIatlon
¢. Phase (time offset) |

P25- 19



Ink )
/// !/
// i [ U " S e e o o - 5 e e (/‘}
/o
U/e |
- 2
U Q— QO cos’w,t Uy e Zlﬂoz sin’ @t = & sin® @,
-0 Lo 2 2 2C
2
1
U=U,+ L= Q— Sng i Q —
, 2C D | ZC

Total energy is Conserved ” ‘

P25- 20



Resistor dissipates =
energy and system L
rings down over time %

2
Al r ' 7 R ,
~IS0O, irequency decreases: @' = ik
~ 20 P25- 22
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