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Single-Slit Diffraction
“Derivation” (Motivation) by Division:
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Intensity Distribution
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 Two Slits With Finite Width a

With more than one slit having finite width a, we must consider
1. Diffraction due to the individual slit
2. Interference of waves from different slits




Two Slits With Finite width a
Zero Order Maximum

First Diff. Minimum First Order Maximum
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Babinet’s Principle

Case I: Put in a slit, get diffraction

Case II: Fill up slit, get nothing

Case lll: Remove slit, get diffraction

By superposition, the E field with the slit and the E

field with just the filling must be exact oppOSItes In
order to cancel:
E, E

illing — — Lslit
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FIGURE 26.21. Diffraction of water waves by a single
slit.

FIGURE 26.22. Photograph illustrating the diffraction "
of light by a safety pin. Courtesy of Professor T. A.
Wiggins, Pennsylvania State University.

FIGURE 26.23. Photograph showing the diffraction of
light by a needle. Courtesy of Professor T. A. Wiggins,
Pennsylvania State University.
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FIGURE 26.24. (a) General case of Fresnel diffraction,
in which wavefronts at the diffracting aperture are
spherical. (b) Simpier case of Fraunhofer diffraction, in
which wavefronts at the diffracting aperture are planes,

‘ corresponding to source and screen at an infinite ~
distance. (c) Arrangement of lenses used to produce the

conditions of Fraunhofer diffraction with finite source .
and screen distances. ; ‘
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Geometry of Fraunhofer diffraction, as arranged in Fig. 26.24c,
showing ray paths and wavefronts.
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FIGURE 26.26. Subdivision of diffracting aperture into
N equal parts, each of width Ax. In the drawing, N = 5.

aperture up into N parts, each of width Ax. We may
theit superpose the wavesichat originate from each of
these sources, assigning to each of these contributions
a phase angle ¢ that corresponds to the phase appro-
priate to the center of each of the N intervals. Finally,
we shall let N become infinite while Ax approaches
zero in such a way that the product

NAx =d (26.6.2)

which represents the width of the slit, remains con-
stant. The situation is illustrated in Fig. 26.26 for the
case where N = 5; in this case, the points A, B, C, D,
and E are regarded as point sources that contribute
Husgens wavelets forming plane wavefronts that
travel in the direction specified by the angle 6. It is
apparent that there must be a phase difference A¢
between each of the rays AA”, BB”, CC”, DD”, and
EE” due to the successively greater path distances
BB', CC’, DD, and EE’' that each ray must cover.®

The fields produced at P by each of these con-

% It is important to note that according to Fermat's principle, the
distances 4"P, B"P. C"P, D"P, and E"P are traversed in the same
time by all the rays, even though the lens happens to be there. There
is. therefore, no difference in the effective optical paths between
those points even though a lens is interposed to focus the light. The
path diflerences BB, . .. EE" are, therefore, the only ones that need
be discussed.

26.6 Single-8lit Fraunhofer Diffraction

tributions are harmonically varying quantities of the
same frequency each of which has a different phase.
We have already shown in section 9.4 that the mag-
nitude and phase of the sum of harmonically varying
quantities such as this can be obtained by regarding
each of the individual quantities as a vector whose
length represents the amplitude and whose direction
represents the phase of the individual quantity. Their
vector sum then represents the result of superposing
all the individual harmonically varying components,
its amplitude giving the amplitude of the resultant su-
perposition and its phase angle giving the appropriate
phase. We have found these rules for superposing
sinusoidally varying quantities useful in discussing the
voltages and currents in ac circuits, and they are
equally useful in the present situation. The result of
superposing the five amplitudes discussed in Fig. 26.26
1s illustrated in Fig. 26.27a. Had we chosen to sub-
divide the aperture more finely into many more con-
stitutent parts, the diagram would be as shown in

=240+ Ad+ Ap+ Ad
=4A¢

= /6= (N—1) Ap = N(Ag)

(b)

FIGURE 26.27. Superposition of harmonically varying
fields at the screen using the laws of vector addition
(a) for N =5 and (b) for more minute subdivision,
corresponding to a large value of N.
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FIGURE 26.28. Limiting case of infinitesimal
subdivision, in which the AE vectors describe a circular
arc.

Fig. 26.27b. It is evident that as the number of sub-
divisions N ‘increases without limit, the constituent
vectors will describe the arc of a circle, since a circle
is the curve whose direction changes at a uniform rate
as you traverse its arc.” From Fig. 26.27, it is also
apparent that the total phase difference ¢ given by
(26.6.1) will be ¢ = (N — 1) A¢. But in the limit where
the number of subdivisions N becomes infinitely large
and the phase difference A¢ between adjacent sub-
divisions infinitesimally small, this may just as well
be written

b =N Ag

Suppose now that we denote the magnitude of
the electric field arising from each of the subdivisions
AE. Tt is evident, then, from Fig. 26.27b that in the
limit of large N, the arc length of the circular segment
AZ will approach N AE. At the same time, the vector
AZ, representing the resultant of all the individual
vectors AE, will represent the electric field of the light
wave reaching P in amplitude and phase. The total
phase difference ¢ of Eq. (26.6.1) is represented by the
direction of the last AE vector; whose head rests on
Z. In the limit, this is the direction of the tangent to
the circular arc at Z. The limiting situation, therefore,
is as represented in Fig. 26.28. In that diagram, it is
apparent that the angles ¢ and « are related by

(26.6.3)

7 In other words, you can drive a car around a perfectly circular
track without touching the steering wheel once you have it properly
aimed. This is clearly the situation illustrated by the vector diagrams
in Fig. 26.27.
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E,=NAE

¢ + 20 = 180°

: (26.6.4)
o=90— ;—5

Since OS;Q and OS,Q are both right triangles, this
means that the vertex angles S;0Q and S,0Q are
both equal to ¢/2, as illustrated.

Since the 1e.ngth of the circular arc connecting
S, and S, is N AE, we may write

R = N AE (26.6.5)

Also, from elementary trigonometry, the half-length
of the vector E, that represents the amplitude of the
resultant wave at the point P on the screen is
E, .. ¢

P _Rsin 2

2~y

Expressing the radius R in terms of ¢ and AE by
(26.6.5), this can be written

sin(¢/2)

¢/2
Now, as the number of parts N into whici the aperture
is subdivided increases, it is evident that the strength
AE associated with each of them must decrease pro-
portionally. This means that AE is inversely pro-
portional to N, or that the quantity N AE remains
constant as N is varied. If we denote this constant
quantity, which ultimately governs the total intensity
of the observed diffraction pattern, as E,, (26.6.7)
takes the form

(26.6.6)

(26.6.7)

= By sin(¢/2) (26.6.8)
o/2

In this equation, the quantity E, refers to the ampli-
tude of a harmonically varying electric field at the
point P. The time variation of this field can be ex-
pressed by incorporating a factor cos(wt + 0) on the
right side of the equation. Since the intensity S is
proportional to the time average of the square of the
amplitude, it can be represented as

In this expression, the quantity S, represents the
time average of E,? cos*(wt + 6), which turns out to
be 1E,% since the time average of cos*(wt + 6) is 7.
The trigonometric functions that appear in (26.6.8)
and (26.6.9) above are plotted in Fig. 26.29. The
angle ¢ represents the total difference in phase for
light arriving at P between waves starting at the upper
and lower ends of the slit, S; and S,, in Fig. 26.25.
This phase difference may be expressed in terms of
the slit width d, the wavelength A, and the angle 0
(in terms of which the location of point P can be

(26.6.9)



26.6 Single-Slit Fraunhofer Diffraction
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(b)

FIGURE 26.29. Plot of (a) the field amplitude and (b) the light intensity at the screen,
as a function of the variable ¢ = (2nd/4) sin 0, for the case of single-slit Fraunhofer

diffraction.

expressed) by (26.6.1).% Since ¢ increases as the angular
displacement 6 of point P from the center of the
screen increases, there will be a pattern of intensity
maxima and minima on the screen, whose locations
correspond to the maxima and minima of the func-
tion sin?(¢/2)/(¢/2)% as plotted in Fig. 26.29b. This
pattern has a number of important and rather unusual
features which we shall now examine in detail.
First, from Fig. 26.29b, it is easy to see that the
maximum intensity occurs at ¢ = 0, corresponding to
6 =0 from (26.6.1). At this point, which is at the
center of the screen, directly opposite the slit, the
" intensity is S,, since the limiting value of the function
sin(¢/2)/(¢/2) is unity as ¢ approaches zero. As the
angle 6 increases, ¢ becomes larger also, and when
sin § = J/d, ¢ attains the value 2z radians, and the
intensity as given by (26.6.9) is zero. Under these
conditions, the phase difference between S; and S, in
Figure 26.25 is 360°. The phase difference between S;

8 In this discussion, it is assumed for convenience that the silt width
d is considerably larger than the wavelength, so that the quantity

2nd/} is quite a large number. This condition need not always ‘

be satisfied, of course. We shall see later what happens under those
circumstances.

and O is, therefore just half this value or 180°. Light
entering the slit at S; and arriving at P now interferes
destructively with light entering the slit at O and
arriving at P. In fact, light entering anywhere above O
will interfere destructively with light entering at a
point a half-slit width lower along S;S,, since the
phase difference between any two such points is 180°.
In this way, we can easily see that when sin 6 = A,
light entering the upper half of the slit interferes
destructively with light coming through the lower
half. For this value of 6, therefore, the light intensity
on the screen is zero.

If the angle @ is increased further, the inter-
ference of light entering various parts of the slit is no
longer totally destructive, and there is, therefore, a re-
sultant intensity given by (26.6.9). When sin 0 = 27/d,
however, the total phase difference ¢ between S; and
S, is 47, and, under these circumstances, total destruc-
tive interference again oecurs. Now, if we divide the slit
into four quarters, we find that all the light entering
the first and third quarters interferes destructively, as
does all the light entering the second and fourth
quarters. As 0 increases still further, a series of alter-
nating intensity maxima and minima are observed,

871
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corresponding, respectively, to

$ =2m 4m6m 8. |

or 1
(26.6.10)

sin fl = 2,}?‘,?,7, o |

for the intensity minima, and, approximately,
| ¢ =3m 5%, 7%, 97, ... |

| or

i ‘ (26.6.11)
f sin 0 34 54 74 94 ‘

isinf =, — —, —, ...

| 22424 24"

for the maxima.

One of the more unexpected features of diffrac-
tion can be exhibited by calculating the angle 0,
between the mth minimum of intensity and the center
of the pattern. From (26.6.10), this is

(26.6.12)

In this expression, the slit width d is in the denomi-
nator. Therefore, when the slit is very wide, 8,, will be
an extremely small angle, and the diffraction pattern
will occupy only a very narrow region near the center
of the screen at O' in Fig. 26.25. Under such circum-
stances, the intensity minima and maxima may be so
closely spaced that they are not readily observed, and
the only light that is easily seen is the large central
maximum at ¢ = 0, as illustrated in Fig. 26.30a. The

~pattern then looks very much like the geometric
shadow image of the slit, since there is a lot of light
hitting the screen at 0 = 0 and very little anywhere
else. This result is not unexpected and certainly not
very exciting.

ts I’

But now, suppose we make the slit width 4
smaller and smaller. Then according to (26.6.12), the’
angle 0,, will become increasingly larger, the diffrac-
tion pattern spreading out to occupy an appreciable
area of the screen, as shown at (b) in Fig. 26.30. Under
these conditions, the intensity maxima and minima
are rather easily observed, although the pattern is
much less bright becausé there is now less total energy
coming through the slit and it is spread over a larger
part of the screen.

Finally, if d becomes less than mA, mi/d will
exceed unity, and there will be no real value of 6,, for
which Eq. (26.6.12) is satisfied. The mth minimum
then disappears, leaving only a pattern in which there
are m — 1 minima between the center of the pattern
and the edge of the screen. As the slit becomes nar-
rower still, the pattern spreads out more and more
and successive minima disappear from the screen
until, finally, when d becomes smaller than 1, the
first minimum vanishes also. Then, only a small part
of the pattern near the central maximum of intensity
remains, but it is spread out all over the screen, from
0= —=90" to 0= +90° as shown in Fig. 26.30c.
Ultimately, when the slit width is very much less than
the wavelength, only a small region in the neighbor-
hood of the central maximum fills the whole screen,
which is then practically uniformly, though very
dimly, illuminated. You will recall, that when we
studied double-slit interference in section 26.3, we
assumed that each of our two slits was very narrow
In comparison with the light wavelength. The reason
for that assumption is now understandable, since if
that condition is not satisfied, the intensity variations
on the screen will result not only from interference
between the two slits but also from the diffraction of
light passing through each of them.

This curious effect, in which the diffraction
pattern spreads out to occupy an increasingly large
area on the screen as the slit width is reduced, is

o

FIGURE 26.30. Successive stages in the appearance of the single-slit Fraunhofer
diffraction pattern as the slit width is decreased. Note that as the slit becomes

narrower, the pattern becomes wider.
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characteristic of diffraction in general. It occurs not
only for light diffracted by a slit but also for light
diffracted by an aperture of any shape or for light dif-
fracted by an opaque obstacle rather than an aperture.
It is this effect that eventually frustrates our attempts
to improve the sharpness of fuzzy pinhole images by
making the pinhole size smaller and smaller.

In concluding the discussion of the diffraction
of light by a single slit, it is appropriate to examine
the difference between this situation and the double-
slit interference phenomena discussed in section 26.3
in connection with Young’s experiment. In the former
case, we were concerned with the interference of light
coming from two separate coherent sources. These
sources were required to be so small that the diffrac-
tion effects arising from light emitted by different

- parts of each source would not be observable. In the’

present case, only a single slit source is involved, but
its dimensions are such that light coming through
different parts of the slit may interfere differently at
each point on the screen. In both cases a series of
alternating maxima and minima of light intensity is
observed. In the case of double slit interference, how-
ever, the maxima all have essentially the same inten-
sity, while for single-slit diffraction, the intensity of
the maxima fall off rapidly as the distance from the
central maximum increases, as illustrated in Fig.

26.29b. Also, for double-slit interference, the spacing

of the fringes is determined by the distance between
the two slit sources, while in the case of diffraction,
the distance between the striations is determined by
the width of the single slit source. It is important to
remember that although diffraction is 2 phenomenon
that arises from interference, it is not synonymous
with interference. Diffraction of light is the interfer-
ence of light rays that originate from different parts
of an aperture or that come from different locations
in the neighborhood of an opaque obstacle. It can,
therefore, be regarded as a special case of the more
general phenomenon of interference.

EXAMPLE 26.6.1
A Fraunhofer diffraction pattern is observed using
light of wavelength 5500 A. If the slit width is 2.5 x
10™* cm, find the angles for which maximum and
minimum intensity occurs. Find the ratio of the inten-
sities of the fourth and first maxima beyond the
central maximum.

The zero-order or central maximum occurs for
0 = 0. The other maxima are found, according to
(26.6.11), for

<in 0 3250 72
it B = = =iy e o
2d°2d°2d°
corresponding to q‘). = 3m, 5n, Tm, . ... From this, we

find

sin 0, =

266 Single-Slit Fraunhofer Diffraction

(3,3,7,.-)58 2 1077 - :

sin 6 = =(3,5,7,...)0.110)

(2)2.5 x 107%)

The possible values of f corresponding to maxima are,
therefore, '

sin 6, = (3)(0.110) = 0.330 0= 19.27°

sin 6, = (5)(0.110) = 0.550 6, = 33.37°

sin 05 = (7)(0.110) = 0.770 0, = 50.35°

sin 6, = (9)(0.110) = 0.990 0, = 81.89° -

F or minima, (26.6.10) tells us that we must have
Lo A 24 34

sin 6’ = PR

corresponding to ¢ = 2x, 4z, 67, . ... The possible

values of 0 for minimum intensity are, therefore,

(1,2,3,..)(55 x 107%) _

sin 0’ = T (1,2,3,...)(0.220)
or

sin 0, = (1)(0.220)= 0220 6, = 12.71°

sin 6,' = (2)(0.220) = 0.440 6, = 26.10°

sin 03 = (3)(0.220) = 0.660 04 = 41.30°

sin 0, = (4)(0.220) = 0.880 0, = 61.64°

For the first maximum, corresponding to 0 = 0; =

19.27°, the -total phase difference ¢ is 3n; for the

fourth maximum, at § = 6, = 81.89°, it is 9n. From
Eq. (26.6.9), the intensities at these two points must be

_ in(3n/2) I?
5,= S, FM} — (2/37)2S,

(3n/2)
and
—_ sinOn/2) P o,
Si=8, [——(%/2) J = (2/97)*S,

The intensity ratio for the two maxima is, therefore,

EXAMPLE 26.6.2

. The sodium D; and sodium D, spectral lines have

wavelengths of approximately 5896 and 5890 A. A
sodium lamp sends incident plane waves onto a slit
of width 2 x 10™* cm. A screen is located 3 meters
from the slit. Find the spacing between the first
maxima of the two sodium lines, as measured on the
screen.

Using Eq. (26.6.11) for each of the two wave-
lengths, we find

(3)(5.896 x 1077)

= 0.44220
2)2 x 1079
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(3)(5.890 x 1077)

sin Ul/:m 09 = 044175
From which

0, = 0.45805 rad or 26.2443
0, = 0:45755 rad or 262156

The vertical distances h, and h,’ from the central
maximum are approximately given by
h; =3tan b, = 14791 m = 14791 cm
h/=3tan 0, = 14772 m = 147.72 cm

i

Therefore,

Ah=h, —h,/ =019 cm

The Na lines, which are in the yellow portion of

the visible spectrum, were first resolved by Josefl
Fraunhofer.

26.7 Multiple-Slit Diffraction

We have now studied interference due to two very
narrow slits and also diffraction due to a single slit.
In this section, we shall study the interference pattern
established by two slits each of which produces a
diffraction pattern. We shall also extend the discussion
to a multiple-slit system known as a diffraction
grating. The double-slit pattern will be derived ex-
plicitly, but the case of a grating will be discussed only
in a qualitative way.

In Fig. 26.31, a plane wave with wavelength /7
is incident on a two-slit system. The slits have widths a
and are separated by a distance d. To determine
the electric vector at a point P on a distant screen,
we assume that every point on the wavefront acts
as a source of secondary waves, and we superpose

7

all of these using graphical methods. Let Eg be the
clectric vector which would be present at 6 = 0 if
one of the slits were covered. In Fig. 26.28, we showed
how to superpose graphically the field vectors due
to a single slit. For a double slit, we simply continue
the addition process. However, referring to Fig. 26.31,
we must realize that the wave sent out from point A
differs in phase from that at point B by the amount
(2n/4)(AB) sin 0, where the distance AB is d —a.
Referring now to Fig. 26.32, we first obtain the re-
sultant electric field E, from the lower slit by vector
addition. as in Fig. 26.28. This vector makes an angle
of ¢/2 with the horizontal. To obtain the second
vector E,, we again begin the process of adding in-
finitesimal vectors, but the first small vector (emitted
at A) now has a phase of
2n

5=""Ad —a)sin 0
A

(26.7.1)

with respect to the small vector from B. The length
of E, is the same as that of E,, but according to the
figure, the angle between the two vectors is seento be
$+95. Letp=¢/2andy = (¢ + 6)/2. Then, since the
vectors E; and E, both have the same magnitude E,,
from Fig. 26.32b it is evident that

. . ¢ o
L, =2E, cos s +3 (26.7.2)

But since E, can be expressed in terms of E, by (26.6.8),
1 R
just as in the preceding section, this can be written as

. _sin(¢/2) ¢ 0
EI’ = 2L0 ’7/)*7* ~- COS (2‘ + ,)>

X ¥

or, more simply.

3 (26.7.3)

FIGURE 26.31. Ray geometry for double-slit Fraunhofer diffraction.
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£, = 1Eyl cos 3(6+5)

(b)

FIGURE 26.32.

where, from (26.6.1),

B = ¢/2 = (n//)asin O (26.7.4)
0
Y= % + 7= (n/A)d sin 0 (26.7.5)

The factor (sin B)/B characterizes single-slit diffrac-
tion, while cos 7 occurs in double slit interference. In
the present case, both factors are present. Therefore,
the relative intensity, which we may write as

o 2
S =4S, <s11[13 ﬂ> cos? y

contains variations typical of both. Figure 26.33
illustrates the resulting pattern for the case in which

(26.7.6)

1/41,

Phase diagram for double-slit Fraunhofer diffraction.

d = 4a, which implies that y = 4. The cos” function

has a maximum whenever y =0, m; 2%, .... These
occur whenever
d sin 6 = mJ m=20,1,2,3,4,... (26.7.7)

At these angles, we have so-called principal maxima n
the intensity pattern. The integer m denotes the or der
of the pattern, and m = 0, 1, 2, 3, etc,, corresponds to
the zeroth, first, second, third maxima, etc. For double-
slit interference, which involves extremely narrow
slits, for which (sin? 8)/f* = 1, these maxima would
all be of uniform intensity. However, when the slit
width is nonzero, additional changes in intensity can
occur due to the. (sin? f§)/B? factor. For example,
whenever, as in (26.6.10), ¢/2 = f ==, 2=, 37, . ..

—37 =27 - 0

—12n —8r —41

27 3 B
an 127 7

FIGURE 26.33.
d = 4a, corresponding to y = 4f.

Double-slit Fraunhofer diffraction intensity pattern-for the case where
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we will have an intensity minimum, since sin 8 then

vanishes. From (26.7.4), it is seen that this occurs for

asin 0 = nl n=1273,... | (26.7.8)

The pattern may be described by saying that the
(sin® B)/p* factor modulates the cos®y variations.
Thus, we see in Fig. 26.33 that the various interference
maxima are contained within an envelope corre-
sponding to the diffraction factor (sin? §)/f>

EXAMPLE 26.7.1
A double slit is illuminated by light for which 4 =
4500 A. If the two slits are each 9000 A in width and
are separated by a distance of 27,000 A, find all
angles 0 at which the intensity is zero. Find also the
angles at which an intensity maximum occurs.

Apart from the central maximum, the intensity
will be zero when either sin f8 or cos y vanishes. Since
a =24 and d = 64, this will occur for

B =(na/2)sin @ =2x sin 0 = x, 27, 37, . ..

and for

Y = (nd/A) sin 0 = 67 sin 0 = n/2, 3n/2, 57/2, . ..
Thus, there are minima when

sinf =050r1.0 0 = 30° and 90°

and

1 3 5 7 9 1%

sin 0 = 15, 13, 73, 13- 12> 12

0 =4.78", 14.48°, 24.62°, 35.69°, 48.59°, 66.44°
The maxima will occur whenever cos® y = 1 unless
sin f§ vanishes at one of these maxima. If this happens,
we say that a maximum has been suppressed. Since
cos? y = 1 implies that
y=(nd/A)sin 0 =6xsinf =0, x, 2m,.. ..
we have
sin0=0,4,%,4,%.3, 1

0 = 0°, 9.59°,19.47°, 30°, 41.81°, 56.44°, 90°

We see that the maxima at § = 30° and 90° are

indeed suppressed since there are minima of sin b at
these angles. More generally, we have

dsin 0 = mAi m=0,1,2, ...
giving the mth maximum. But
asin 0 = ni n=12 ...

gives a minimum of zero. Thus, wheneves

(-

a maximum of the two slit interference pattern is
eliminated. In the present case, for which d/a = 3, the
third and sixth orders are missing. .-

Let us now-study in a qualitative way the inter-
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ference pattern produced by a multiple-slit system, also
known as a diffraction grating. Figure 26.34a is a
schematic representation of a grating. We assume that
there are N narrow slits, each of width d and separated
by a distance a. A typical grating might have 6000 or
more slits per centimeter. It is no smal{ accomplish-
ment to construct such a grating. Fraunhofer made
some early gratings by winding fine wire very closely
on two fine screws. He was also able to rule gratings
on glass, although this could then not be done with
great accuracy. Sixty years after Fraunhofer’s pio-
neering work, the American physicist Henry Rowland
constructed a “ruling engine” for cutting gratings on
an aluminum coating deposited on glass. A diamond
cutting edge was used to produce very straight
grooves. In this way, successful and practical diffrac-
tion gratings were first obtained. '

To understand the physical principles that gov-
ern the behavior of a diffraction grating, let us first
consider the simple system shown in Fig. 26.34b. In
this system, there are a very large number of very
narrow regularly spaced slits. The distance between
neighboring slits, as shown in the diagram, is d. The
slit width in this particular example is assumed to be
very much less than the light wavelength, so that diffrac-
tion effects arising from the passage of light through
apertures of finite width are unimportant. We are,
therefore, concerned in this specific case with what
might be more accurately referred to as an interference
grating. The grating is illuminated with normally in-
cident plane mdnochromatic light waves of wave-
length 1. We may then regard each slit as a point
source of cylindrical Huygens wavelets whose wave-
fronts are illustrated in the diagram.

Let us now consider how outgoing plane wave-
fronts might be formed from the system of Huygens
wavelets on the far side of the grating. It is, of course,
possible to draw a set of tangent planes parallel to the
incoming waves and to the grating which represent

plane waves that propagate horizontally to the right

beyond the grating. These wavefronts do actually exist
but contribute only to a continuation of the incident
wave. It 1s possible also to draw a set of wavefronts
that are tangent to Huygens wavelets from neigh-
boring slits whose phase differs by an entire wave-
length, as shown by the dashed lines in the lower part
of the figure. These wavefronts propagate at'an angle
6, to the horizontal. Since the path difference PP’
between succeeding wavefronts is d sin 0, and since
this must be an entire wavelength, we may determine
the direction of propagation, 0,, from the condition

dsinf, = A

In much the same way, a series of wavefronts propa-
gating at a larger angle 6, to the horizontal may be
constructed by drawing tangents connecting wavelets
from neighboring slits that are out of phase by two

. (26.7.9)



26.7 Multiple-Slit Diffraction

2\

dsin 02

QQ' =

dsinf =n\

PP’ =

(b)

(a) Ray diagram for Fraunhofer diffraction by a diffraction grating.

(b) Geometry of rays and wavefronts for diffraction by a grating.

FIGURE 26.34.
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wavelengths. These wavefronts are shown as the set
of dashed lines in the upper part of Fig. 26.34b. Since
the path difference QQ' between successive wavelets is
now twice the wavelength, and since QQ' = d sin 0,
we may write for this set of outgoing waves

dsin 8, = 24 (26.7.10)

We can in the same manner find outgoing waves in
other directions, 05, 04, 0s,..., corresponding to
larger integral path differences between neighboring
slits. Their propagation directions are clearly given by

| dsin 0, = ni |

co]

(26.7.11)

where the integer n identifies the so-called order of the
outgoing diffracted wave.

These outgoing “diffracted” beams strike a dis-
tant screen at various distances above the axis OO’
of the grating. They can, in fact, be focused into sharp
lines of light by a converging lens placed between
grating and- screen, as shown in Fig. 26.25. By mea-
suring these distances, or by measuring the angles 0,
0,, 85, . .., it is possible to measure the wavelength 4
of the incoming light very accurately, provided that
the distance d between slits  precisely known. Also,
since light of different wavelength will be diffracted at
different angles, a grating acts to produce a spatial
separation between light of different colors, in some-
what the same way as a dispersive prism.

In this example, we have assumed that the slit
width is very much smaller than the light wavelen gth
so that the effects that we observe are really those of
interference rather than diffraction. In actual gratings,
this assumption is hardly ever justified; and for this
reason, though the outgoing beams propagate in pre-
cisely the same directions, as defined by (26.7.11), their
intensities may be strongly affected by effects of diffrac-
tion associated with slits of finite width.

To derive the intensity pattern due to a grating
with finite slits of width a, we would follow the pre-
vious procedure of superposing infinitesimal electric
fields to find the field due to each slit. Then we would

add vectorially the fields due to each slit, taking into

account the phase differences between each of these
fields. For a double slit, we found that the intensity
could be expressed by (26.8.3). This can be rewritten as

i ? i 2 ; N 2
(57 sl (23
. s 7y

(26.7.12)

since
sin 2y = 2 sin y cos y

) The generalization of this expression to the case.of N
slits is a complex mathematical task which we shall
not attempt here. The result, however, is simple
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enough and is obtained simpfy by replacing sin 2y by
sin Ny in Eq. (26.7.12). Thus, for a diffraction grating
having N:slits, the intensity is given by

T_s sin B\? [sin Ny\?
] sin y

where S, is the intensity at 6 = 0 and where 8 and y
are defined by (26.7.4) and (26.7.5), respectively. The
factor (sin? B)/p? is due to single-slit diffraction, while
(sin Ny/sin 7)* is present due to the interference of N
slits.

Let us now discuss the principal features of
(26.7.13) to establish fhe dependence of the intensity
on the angle 0. We shall first examine the interference
factor. Whenever sin N7y vanishes, it appears, at first
sight, that the intensity I should be zero. There is an
exception to this, however; for if sin y-also vanishes,
we have an indeterminate ratio. In fact, it turns out
that when both of these factors vanish, (sin Ny/sin 7)?
attains a maximum rather than a minimum. To see
this, we note that whenever y = nr, sin , and sin Ny
will both vanish. Let us, therefore, take the limit of
sin Ny/siny as y—nn. We can do this by using
I’Hopital’s rule from calculus to obtain

(26.7.13)

d
. sin Ny
sin Ny Ly N cos Ny
Iim — /:hm_————: ____l:iN
yonn SI 7 nn . yonn © COSY
—sin vy
dy
(26.7.14)

Thus, whenever 7 is an integral multiple of 7, we have
a so-called principal maximum of the pattern, and a
factor of N% coming from the N-slit interference factor
is present. It might happen, of course, that sin f§ van-
ishes or is small at such a principal maximum. In this
event, the principal maximum will be suppressed due
to the diffraction term.

Whenever Ny is an integral multiple of 7 but y
is not a multiple of 7, the intensity will vanish since
sin Ny is zero and sin 7 is nonzero. For angles which
satisfy this condition, a minimum intensity is observed.
For large N, this implies a very large number of sub-
sidiary maxima and minima between any two princi-
pal maxima because of the rapid variation of the
function sin Ny in Eq. (26.7.13). These subsidiary
maxima, in gratings with many slits, are of very low
intensity in comparison to the principal maxima and
ordinarily are not even visible.

The effect of all this is that when the number of
slits becomes very large, the principal maxima become
very intense and the subsidiary maxima very weak.
Since the principal maxima occur when y = nn and

- since y is defined by (26.7.5), the principal maxima

occur when

nn = (nd/2)sin ¢
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through the primary slit affects the phase of the light
emitted by the two secondary slits in exactly the same
way and at exactly the same time.
" If the two secondary slits are illuminated by two
"independent sources, even though they are “mono-
chromatic” in the sense described above, there is no
phase relationship between the wavefronts emitted
by the two secondary slits that persists for any appre-
ciable length of time. There is, accordingly, no stable
interference pattern, and the screen appears to be
more or less evenly illuminated.

3. SLITS ARE NO LONGER NARROW
"IN COMPARISON WITH THE LIGHT
WAVELENGTH

If the slit width is not narrow, there will be not only
interference of light waves from the two separate slits,
but also interference of light coming from different
portions of a single slit. When this happens, the inter-
ference pattern becomes much more complicated, and
will be discussed in a subsequent section under. the
subject of diffraction.

4. THE SECONDARY SLITS ARE CLOSE
TO THE SCREEN ON WHICH THE PATTERN
IS OBSERVED

The interference pattern is still present, but the geom-
etry is now such that the spacing of the fringes must
be determined from Egs. (26.3.14) and (26.3.15) rather
than from the approximations which follow from the
condition d « D used earlier. Also, the approximations
that the two fields E, and E, from the two separate
slits are the same in both magnitude and direction
may no longer be justified.

In all the discussioff above, the entire analysis
is based on the underlying notion that light must be
described as a wave. We have, of course, made use of
the harmonically oscillating electric field as the un-
derlying entity used to determine the intensity of light
at any point. But when Young carried out his experi-
ments, he did not know thatsuch a connection existed
between light and electricity and magnetism. Indeed,
Maxwell had not yet beén born! It is very much to
Young’s credit that he was. able to advance the bold
hypothesis that light is a wave phenomenon and to
assert that the effect of interference provided the proof.

In spite of Young’s remarkable success, most of
his contemporaries publicly ridiculed his ideas, for
English physicists were biased in favor of the corpus-
cular views advanced by Newton a century earlier.
Even though Newton himself had suggested that the
true nature of light must ultimately be decided by
experiment, the critics of Young were apparently not
convinced by his accomplishments. This seems strange
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FIGURE 26.12. Photograph of Newtor.'s rings. Photo
courtesy of Professor T. A. Wiggins, Parasylvania
State University.

now, because if we assume that light consists of a
stream of particles that travel in straight lines along
the direction of the light rays of geometrical optics,
in the experimental arrangement illustrated in Fig.
26.4 there could be no interference pattern at all, and
the entire screen would be dark. In 1815, however,
fourteen years after Thomas Young discovered the
interference of light, the French engineer Fresnel ex-
plained diffraction patterns on the basis of a wave
theory of light by using Huygens'’s principle. He also
made some theoretical predictions which were experi-
mentally confirmed by the French physicist Domi-
nique Arago. Arago became a convert to the ideas of
Young and Fresnel, -and the wave theory of light
became generally accepted soon thereafter.

26.4 Interference in Thin Films

The subject of thin-film optics dates back to the work
of Isaac Newton, who observed fringes produced by
the thin air film between a convex lens and a plane
surface. These .Newton rings, shown In Fig. 26.12,
provide an early example of thin-film interference. Oof
course, Newton was unaware of the wave character
of light, but Thomas Young was able to explain these
rings on the basis of his ideas about wave interference.’
There are many naturally occurring examples of thin-

"3 1p a strict sense, the observation of Newton’s rings could be held

to justify the point of view that it was Newton rather than Young
who really discovered the interference of light.



FIGURE 26.13. Ray diagram for thin-film interference.

film interference of this type. All of us have, at some
time or other, seen the beautiful colors reflected from
an oil film on water or from a soap bubble, or the
colored reflections from the “coated” lenses of cameras
or binoculars. These are also illustrations of thin-film
interference.

Let us consider an example in which a source
of light with a dominant wavelength 4 in air illumi-
nates a reflecting surface upon which a thin trans-
parent film, with index of refraction n, has been
deposited. We shall further assume that the incident
light rays are almost normal to the surface, as are the
reflected rays arriving at an observer located at O,
as illustrated in Fig. 26.13. Upon reflection, such rays
are split into two beams; one is reflected directly from
the surface of the film at Q, and one enters the film
and is reflected from the underlying substrate, emerg-
ing at Q,. It is the interference between two such
light beams that leads to the observed thin-film opti-
cal effects. If the light has a wavelength 4 in air, the
wavelength in the film will be 4" = J/n. To determine
whether or not the two light rays interfere-construc-

_tively or destructively at O, we must consider the
-phase difference between the two rays arriving there.
There are two factors that can lead to phase dif-
ferences. First, there is a path difference Q;RQ, be-
tween the two rays. Assuming that the incident and
outgoing' rays are normal to the surface, the phase
change associated with this path difference is '

2n 2n
7 Q1RQ, = —~ Q:RQ, (26.4.1)

Aln
Also, there are possible phase changes that take place
upon reflection at the reflecting surfaces, as discussed
in Chapter 24. If light is incident upon a reflecting
surface from a medium of refractive index ny and if
the refractive index of the material beyond the re-
flecting surface is n,, then, if n, > n,, the reflected
wave changes phase by 7, while, if n; > n, no phase
change occurs. The above statement is summarized

26.4 Interference in Thin Films

in the short verse* by F. K. du Pre, which goes...

Low to High

Phase Change n

High to Low

Phase Change? No. -

In this illustration, we are led to conclude that there
is a phase change © upon reflection from the upper
surface but none for the reflection from the lower
surface. ‘

Now, whenever the total phase difference be-
tween two waves is given by 6 = 0,2n, 4w, 67, . . -,
the waves will reinforce to produce a- maximum
intensity. On the other hand, if the difference is
§=m,3m, 57, ..., the waves will interfere destruc-
tively to produce minimum intensity. In the present
case, assuming normal incidence, the ray SQ;RQ,0
undergoes a phase change 47nd/A in passing through-
the film as a result of the optical path difference, while
the ray SQ,O experiences-a phase change of = as a
consequence of reflection from the optically denser
medium. The total phase difference between waves is,
therefore, (4nnd/2) — 7, and hence the conditions for
maxima and minima are, respectively,

Maxima
4mnd
5= —0,2m4n,. .. .
AL
(26.4.2)
Minima .
5=47md—7t= —n, 7, 3m, 57, . . .
A
or
Maxima
A 354
k-t AT
4n’ 4n 4n
(26.4.3)
Minima-
A 24 3
d=0,—, —, = .-
“on’2n’ 2

We see, therefore, that for any given wavelength
there are many possible film thicknesses which could
give rise to maximum OT minimum reflected inten-
sities. Since energy must be conserved, we are forced
to conclude that under circumstances leading to a
minimum in the reflected light, there will be a maximum
in the transmitted light. S '

Now suppose that instead of using incident
monochromatic light we use white light, which con-
sists of all optical frequencies. Then, for a given
film thickness, some wavelengths may interfere con-
structively on reflection while others may interfere
destructively. As a consequence, the reflected light

4F. K. du Pré, Appl. Optics 10, 2345 (1371).
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FIGURE 26.14. Interference fringes from a soap film,
produced using a monochromatic source. Photo by the
authors.

- corresponding to wavelengths for which constructive
interference oceurs will be quite intense, while light
of wavelength corresponding to destructive interfer-
ence will be essentially absent. For this reason, the
reflécted light appears to be colored, the precise shade
depending upon the film thickness and the index of
sefraction.

' Figures 26.14 and 26.15 show photographs of a
soap film suspended on a wire ring. The soap film
has a variable thickness since it is held in a vertical
position and, therefore, drains downward. As a con-
sequense, certain portions of the film satisfy the condi-
tion for constructive interference while other portions
satisfy the destructive interference criteria. In Fig.
26.14, the soapy film is illuminated with monochro-
matic light, and a pattern of light and dark bands
shows the effect of interference. If white light is used,
as in Fig. 26.15, we expect to see constructive inter-
ference of various frequencies occurring at different
locations. In this way, the soap film separates different

spectral hues spatially and exhibits bands of inter-

ference colors.

In the example just above, we considered the
case of a thin film suspended in air, in which case it
is bounded both above and below by a less highly
refractive medium. It'is also important, however, to
examine the case illustrated in Fig. 26.16, where the
film is supported upon a more highly refractive solid
transparent substrate, such as optical glass. Such thin
films have been found to be very useful in a number
of important practical situations. They can drastically
reduce the reflectivity of the underlying transparent
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FIGURE 26.15. White light interference fringes from a
soap-film. Photo courtesy of Proiessor T. A. Wiggins,
Pennsylvania State University.

medium and can, under certain conditions, even re-
duce it to zero. They can also make it highly reflecting,
if that is what is wanted. Let us now study some of
the problems involved in making “coated” lenses and
other optical components by applying thin films to
their surfaces so as to reduce their reflectivity as much
as possible.

As we learned in Chapter 24, the reflection coef-
ficient of a typical glass—air interface for light at

A C 4
fF

[ 1
/|
I 1
/

/

] Reflectivity R
/ n.=n

Airn =1

BY E

FIGURE 26.16. Ray diagram for light reflected from a
coated lens. '



normal incidence is about 5 percent. In optical sys-
tems such as complex photographic lenses, there may
be 10 or even 20 such interfaces. Clearly, if we had to
put up with a 5 percent reflection loss at each lens
surface, we would end ‘up with a lens’ that would
transmit only a small percentage of the light incident
on its front surface. For a lens having 10 glass—air
surfaces, we would expect a transmission of 0.951° =
0.5987, or 59.9 percent, since only 95 percent of the
light survives reflection at each surface. For a zoom
lens having 20 such interfaces, the figure would be
only 35.8 percent. It is desirable to reduce this reflec-
tion loss by optical coating, not only because of the
light loss itself but also because much of the reflected
light ends up on the film, or in the .eyepiece, in the
form of “ghost images.” The ghost images reduce
image contrast and sometimes produce annoying visi-
ble spots and haloes when the lens is aimed in the
direction of bright point sources of light. It is, there-
fore, very desirable to reduce the reflectivity of the
glass—air surfaces to the lowest possible value, or to
eliminate it completely where that can be done. These
objéctives are usually realized in practice by applying
a thin refracting layer to the glass in such a way that
the reflected light from its top and bottom surfaces
interferes destructively, as shown in Fig. 26.16.

Let us assume that the film has an index of
refraction which is greater than that of air but less
than that of glass. Under these conditions, the light

“rays reflected at the upper and lower surfaces both
experience a phase: change of = radians, since the
reflection occurs from an optically denser underlying
medium. Thus, the two light rays ABDEF and ABC
will have a phase difference which results only from
their path difference. For approximately normal in-
cidence, the phase difference will, therefore, be 4nnd/ /..
If this difference is =, the two waves arrive out of
phase. This will happen if the film thickness is chosen
to be A/4n, in other words, if it is one fourth of the
wavelength in the medium.

Now, if the intensities of the beams reflected at
the upper and lower surfaces are not equal, their
destructive interference will be partial rather than
complete, and the total reflected intensity will be
lowered but not entirely eliminated. If we can some-
how arrange to have them exactly equal in intensity,
however, there will be complete destructive cancella-
tion and no reflected intensity at all. In Example
24.4.4, we saw that the reflectivity of a glass surface,
defined as the ratio of reflected to incident intensity,
is given for normal incidence by Eq. (24.4.54). In the
present example, there are rwo interfaces whose re-
flectivity must, according to these results, be

= n, — 1\? i R n' — 1\?
v an == (26.4.4)

26.4 Interference in Thin Films

for the upper and lower surfaces, respectively. For
most transparent substances, these reflectivities are
relatively small, and only a few percent of the incident
light is reflected at each. interface. Under these cir-
cumstances, the intensities of the incident ray AB
and the transmitted ray BD are practically equal. In
such a situation, if we make the reflectivities R and R’
the same, the reflected rays BC and DEF that inter-
fere destructively will have practically the same inten-
sities, and there will be no significant reflected light.
at all. But R and R’ will be equal only if the relative
indices n, = n’ and n,’ = n/n" are the san, and this,
in turn, requires that®

j n
n = —
n
or
n =+n (26.4.5)

We, must, therefore seek a coating film whose
index of refraction is approximately the same as the
square root of the index of the glass. For optical glass
of refractive index 1.75, we would, therefore, look for
a film of refractive index 1.32. It is not easy, in practice,
to find materials that have the required refractive
index along with all the other desired characteristics
of transparency, durability, and ease of deposition.
Magnesium fluoride, Mgk, whose refractive index is
1.38, comes reasonably close to satisfying all the re-
quirements mentioned above. A quarter-wave film
of MgF, will reduce the reflectivity of most optical
glasses in the visible light range to under 1 percent. If
the coating is designed to minimize reflection of green
light to which the eye is most sensitive (4 ~ 5500 A),
there will be, of necessity, some residual reflectance
for the red and violet regions of the spectrum, since
for these colors the film thickness is no longer very
close to //4n. This small residual reflection of red and
violet light gives rise to the familiar purplish hue of
light reflected from coated lenses. The technology of
optical coating is now very highly developed. By coat-
ing glass with a number of films whose thicknesses
and refractive indices are appropriately chosen, it is
possible to reduce the reflectivity of optical glass to
very small values over the whole visible spectrum.

In the processes of reflection and refraction, -
there is no loss of light energy at all. Therefore, all

5 If a significant fraction of the incident light is reflected, of course,

as it would be if n’ and n were very large, then the transmitted beam’s

intensity would be much reduced; and simply making the reflec-

tivities R and R’ the same no longer suffices, even approximately,

to produce complete destructive interference. Under these circum-

stances, the multiple reflection of beams within the film, shown by

dotted lines in Fig. 26.16, also becomes important. Fortunately,
most of the optical glasses and coating films used in practice have

reflectivities of less than 10 percent.
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light that isnot reflected from a transparent substance
must be transmitted. In the present example, there-
fore, the process of coating a transparent substance
with a film a quarter-wavelength thick not only re-
duces the reflectivity of the substance but actually
increases the amount of light that is transmitted.
Although the physical details of the processes that
act to accomplish this increase in transmission are
not easily understood, there is no question that it
‘must take place. In the examples mentioned pre-
viously, of a lens with 10 glass—air surfaces and a
zoom lens with 20 such surfaces, the application of
a quarter-wave film that reduces the reflectivity to
1 percent at each interface increases the fraction of
light transmitted to 0.99'° = 0.9043 and 0.997% =
0.8179, respectively. Comparison of these figures with
the ones given previously for uncoated lenses reveals
that there is a significant increase in the transmission
properties of the lenses. For the zoom lens, the fraction
of light transmitted is more than doubled by the
coating process. Indeed, the manufacture of zoom
lenses, which are often comprised of 15 or 20 separate
elements, would be quite out of the question without
optical coating.-

XAMPLE 26.4.1
A film 10,000 A thick is used to coat 2 certain type of
glass. At what wavelengths in the visible spectrum
will the reflected light interfere destructively? The
index of refraction of the film is assumed to be 1.40,
which is less than that of the glass.

In the present example, the condition of a mini-
mum in reflected intensity is that the path difference
between the two reflected light rays is an odd multiple
of one half the wavelength in the medium. Compen-
sating phase changes occur upon reflection from the
air_film and film—glass interfaces. Since the index of
the film is not specified to be equal to the square root
of the index of the glass, those light wavelengths for
which the reflected light is a minimum will be reduced
in intensity but not necessarily extinguished. Since the
path difference is twice the film thickness d and since
this must equal an odd number of half-wavelengths
in the medium, we may write

14 342 54
=W 2w 2
or

4n' 'd 4n'd
= and n'd 4n'd 4n

Substituting the numerical values given above for n'
and d, we find

1 = 56,000 A, 18,667 A, 11,200 A, 8,000 A, 6222 A
5091 A, 4,308 A, 3,733 A, ...
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Of these wavelengths, only 6222 &, 5091 A, and
4308 A are in the visible spectrum, and, therefore,
these optical wavelengths are those for which mini-
mum reflectivity is observed. Other wavelengths are
more or less strongly reflected.

EXAMPLE 26.4.2

A soap film is formed on a wire frame as shown in
Fig. 26.17. The film drains downward due to gravity
and is, therefore, thicker at the bottom than at the
very top, where it might be only a few molecular
layers thick. At a particular instant of time, the film
has a thickness of 50 A near the top, 1500 A some-
where in the middle, and 4000 A near the bottom.
When the film is viewed with reflected light, what
colors would be eliminated at the top, middle, and
bottom? Assume the film has an index of refraction
of 1.35.

Let us find out which wavelengths will be absent
from the reflected light due to destructive interference.
From (26.4.3), we should expect intensity minima
when d = 2/2n, 22/2n, 342n, ..., from which

Now. near the top of the film, where the thickness is
only 50 A. the phase difference between rays reflected
from the two surfaces of the film is nearly = for all
visible wavelengths. The phase difference resulting
from the optical path difference is negligible in this
case since the film is very thin. The top of the film then
will reflect very little light of any color and will, there-
fore, appear quite dark.

Near the middle of the film, the thickness is
1500 A. and, therefore, destructive interference can
occur at wavelength 4 for which

J = 2nd = (1500)(2)(1.35) = 4050 A

This is in the violet part of the visible spectrum, and.
therefore, violet is not reflected. The other wavelengths
for which destructive interference occurs are not n
the visible spectrum. Constructive interference occurs,

Y4
\i

FIGURE 26.17." Interfering beams reflected from the
surfaces of a soap film.
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FIGURE 26.18. Interference geometry for Newton's
rings.

according to (26.4.3), for wavelengths 8100 A, 2700 A,
and smaller values, none of which is in the visible
region. ‘

In the region where the thickness is 4000 A,
destructive interference occurs at

) = (4000)(2)(1.35) = 10,800 A

which is not in the visible range, but also at 10,800/2 =
5400 A, which is in the green part of the spectrum.
None of the other wavelengths at which the re-
flected waves are canceled .is visible. At 4000 A
thickness, maxima- can occur at 21,600/1, 21,600/3,
21,600/5, . .. A. Only one of these, the wavelength
4400 A, is in the visible spectrum. Therefore, light of
this wavelength, which is violet, will be strongly
visible on reflection. In general, the exact colors that
are seen on reflection depend on the composition of
the incoming light, the amount of each wavelength.
that is reflected, and also the sensitivity of the human
eye.

EXAMPLE 26.4.3

NEWTON’S RINGS

An air film is formed between a convex lens and a
plane reflecting surface, as shown in Fig. 26.18. The
lens is assumed to have a radius of curvature R.
Interference rings are observed when light of wave-
length A is viewed at normal incidence. Find an ex-
‘pression which can be used to determine the location
of the circular fringes.

26.4 Interference in Thin Films

A photograph of these Newton rings is shown in '
Figure 26.12. To analyze this problem, consider the
twor light rays designated in Fig. 26.18 as 1 and 2.
Since the thickness d of the air film is very small,
the circular and plane surfaces are almost parallel,
and we-may therefore assume that the two reflected
rays are also parallel. Ray 2 undergoes a phase change
of 7 radians at P,, but ray 1 has no phase change at
P,. The phase difference between the rays is therefore
(2n/2)(2d) + =, and therefore the conditions for mi-
nima in the reflected light are

4nd
A | b =, S, 5 s o

Let us now write this condition as

A
=N <
=3
where N =0, 1,2, 3,. ... Now, referring to Fig. 26.18,
the properties of the similar trigngles OSP; and P;SQ
lead us to conclude that OS/SP; = SP,/SQ, hence
that

(26.4.6)

d_ r

r 2R —d
or

r? = 2Rd — d*

But since d « R,

"

A
r’ = 2Rd = 2RN 3

r=+/NRJ (26.4.7)

We see from this that the radii of the destructive
interference fringes are proportional to the square
root of the fringe order N. A formula such as this
can be used to find the wavelength of the light if the
radius R can be found by measuring the diameter of
the rings. Alternatively, if / is known, it may be used
to determine R.

If the fringes are not circular, this would indicate
that the lens surface is not spherical or perhaps that
the plane surface is not perfectly flat. Interference
fringes are often used to test whether a given optical
surface has been ground to the desired curvature. For
example, if we are certain that the plane surface is
completely flat, then any departure from circular
Newton -rings would indicate that-the lens was not
spherical. )

In Fig. 26.19, a method for testing whether a
surface has been ground optically flat is suggested. If
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description of the effects that are observed is much

. simpler than in the more general instance of Fresnel
diffraction. Of course, it is inconvenient from an ex-
perimental point of view to have both source and
observing ‘screen infinitely far from the diffracting
system. This is easily remedied, however, by using
lenses to convert the diverging rays from a point
source at a finite distance into a parallel beam and to
focus parallel outgoing rays onto an observing screen
‘at a finite distance, as shown in Fig. 26.24c. In this
arrangement, the source must be placed at the focal
point of the first lens and the screen at the focal point
of the second. The rays that enter the diffracting aper-
ture have no way of “knowing” that they did not
originate from an infinitely distant point source. In the
same way, a set of parallel rays that leave the aperture
headed in a given direction do not know that they are
not headed for an infinitely distant screen. This scheme
enables us to observe the simpler Fraunhofer diffrac-
tion effects very easily. Though Fresnel diffraction is
important in many situations, we shall confine our-
selves in this book to a discussion of the much easier
case of Fraunhofer diffraction.

26.6 Single-Slit Fraunhofer Diffraction

The simplest case of Fraunhofer diffraction occurs
when a single, narrow slit of width d is illuminated
normally by plane monochromatic light waves, as

illustrated in Fig. 26.25. We shall try to find the
intensity of light leaving the slit and traveling in a
direction that makes an angle 6 to the incoming light, '
as shown in the figure. This light is eventually focused
at point P on the screen by the lens. Each point along
the line S;S, can be regarded as a source of waves,
according to Huygens’s principle, whose fronts may
propagate in the direction specified by 6 and which
eventually arrive at P. Unfortunately, however, the
path length from source to screen is different for each
point along S;S,;.for example, the path difference
between points S; and S, is d sin 0. For this reason,
the light that originates from each part of the slit
arrives at P with a-different phase. It is necessary,
therefore, to account properly for these phase rela-
tionships in superposing the contribution from each
source point. Another way of expressing the essential
facts is to observe that light entering different parts of
the slits interferes as it arrives at the screen and that
this interfere.ce may be constructive or destructive.
Since from Fig. 26.25 the path length between the two
sides of the slit is d sin 6, the total phase difference ¢
between these points must be '

(26.6.1)

To calculate the intensity at point P, we shall
find the electric field amplitude E, associated with the
light that arrives there. To do this, we shall split the

Screen\

FIGURE 26.25. Geometry of Fraunhofer diffraction, as arranged in Fig. 26.24c,

showing ray paths and wavefronts.
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26.7 Multiple-Slit Diffraction
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FIGURE 26.35. Plots of interference function (sin Ny/siny)? for multislit array with

(a)N =2, (b) N =4, (c)N=6 and(d)N =8

or
—
| nd=dsin @
This is identical o (26.7.11), which defines the beams
diffracted by a grating having an infinite number of
_very narrow slits. The principal maxima, therefore,
are formed as in the earlier case, except that now their
intensity is modulated by the diffraction factor (sin? B)/
g% in (26.7.13). In Fig. 26.35, the function (sin Nvy/
sin y)? is plotted for several values of N to demonstrate
- the predominance of the principal maxima and the
weakness of the subsidiary maxima that develops. as
N increases. The same effect is shown in Fig. 26.36,
in which the diffraction pattern arising from arrays
of various numbers of slits has been photographed. It
should be noted that the effect of the diffraction factor
(sin? B)/B% is to cause an overall decrease in the in-
tensity of the pattern with increasing values of the

(26.7.15)

angle 0. Also, if this factor should happen to be zero
at a value of § that coincides with one of the principal
interference maxima defined by (26.7.15), that par-
ticular principal ‘maximum will be suppressed and
there will be a “missing order of interference” in the
resulting pattern. These effects are illustrated in Fig.
26.37.

The plane diffraction grating we have been dis-
cussing has been, -and still is, an extremely valuable
tool for studying the spectrum of light radiated by
atoms and molecules. It has also been used extensively

in astronomy to identify the composition of planets

and stars, and has been very useful in a wide variety
of other laboratory situations.

We have so far discussed the pattern produced
by a single wavelength. If more than one wavelength
is present in the incident light, each wavelength will
be diffracted through different sets of angles as defined
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