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8 Dyereracy

Show that, in one-dimension.

al problems, the energy spectrum of the bound states is
always non-degenerate.

For the sake of argument let us suppose that the opposite is true. L.et #1(x) and.ps(x)
then be two linearly independent eigenfunctions with the same energy eigenvalue E. From
the equations

2m
W+ (E=VIp=0, i+ g (E=V)pa=0,
H2
we obtain

wo_ v _ 2—m(V—E),

ooy B

ie. L o
Yi'ye—y2'yr = (piya) —(yap)’ = 0.

After integrating this equation we find that
Y1z — sy = a constant.
Since, at infinity, ¥; = . = 0 (bound states), we must have the constant = 0 and hence

v_ v

1 Y2 ’

Integrating once more we have Iny; = In y,+1In ¢, ie. y; = cy,, which contradicts the
assumed linear independence of the two functions.



C 4 ,J/bread / e Wave Aaction

Assume that, at time ¢ = 0, the wavefunction w(x, 7 of a particle i
(cf. problem 16, Chapter III): v pectice i of the form

1 x2
¥(x, 0) = W exp (—W)’ 6% = (dx).

Investigate the change in time of this wave-packet if, for 2 > 0, no forces act on the particle.
It is necessary to determine the wavefunction y(x, #) which satisfies the Schrodinger
equation
2D by,
ot
and which, at time ¢ = 0, is the given function y(x, 0). With that end in view we expand

y(x, 0) in terms of the set of orthonormal time-independent eigenfunctions y,(x),
(Hy(x) = Ep,(x)) (see p. 204, footnote), thus:

¥, 0 = Tawx). 6= [vi0Iv(x 0)ax. S

The function ) a,y,(x) exp (——;-E,,t) then satisfies the Schré dinger equation, and, at

time ¢ = 0, coincides with y(x, 0). Hence

i
v ) =Y aapa(x)e A,

ie.

v(x, ) = [ G x, Ny, O dE

G, x, ) =Y w5 yu(®) e_h_, [ Green :f /””Cf “0/7 )

where

Since, in the case of free motion, the eigenfunctions are

» ) = _l_ e ‘_ Yl
"fp(x - (2.’!'1)1/2 Xp (h P- ),9
the Green’s function (8.4) becomes (with p continuous)

1 i . 2¢
GG, x, 1) = j o €D {T,[p(x—a—%]}dp

_ m \’1/28__,"% (x—3
=\ 2mift ‘

From (8.3) and (8a) it follows that

_ m \¥2 1 2 im e e
yx, ) = I(Zmﬁt) (2.162)1/4 exp {_4_‘(52+m(-\ 5 }d’s,
whence we obtain finally, for the wave function,
1 “x?

iht
wx, 1) = ~ oy ST AL & #e (l 2:n62) ’
(2nd2)L/4 (1 +W) 462(1 +W)

and for the probability density

[9(x, BF = [2n6’(1+%)]_mexp l——z—;’f(l—fh’—tz)l .
Am25t

This expression has the same form as the initial probability density

1 x2
[w(x, 0)[* = a—nai)_m‘em{‘ﬁ},
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8.04 Quantum Physics Lecture XIV

Normalization of wavefunctions in free space

The momentum eigenstates in the position representation, up(x) defined by

(@) = -2y (z) = pugla), (14-1)

and given by
1 .
up(z) = eiPa/h (14-2)
2m
cannot be normalized in free space to be interpreted as a probability density since
lup(z)[? = 5%, and [ dx|up,(z)[? diverges. However, they do satisfy the continuum
orthonormality condition

y

|/—°° dzu,* (2)uy (x) = 8(p — p) | (14-3)

This normalization corresponds to a uniform particle density (particle per meter)
given by |u,(z)|?> = 5. Let us calculate the probability current (particles moving
past a point = per second), defined by

@) = g [ @50 - (Gotw)) w(xmesee PS (149)

~ 2im

For ¢(z) = u,(z) we find

, h 1 |ip ip
- - E (== 14-
i) 2im27rh[ﬁ < h)} (14-5)
I p
__- P 14-
2rhm’ (L)

which is exactly what we expect for a uniform particle density |up(z)|? = 55 moving

at velocity v = £.

In general, choosing a wavefunction ¥ (z) = Ce'P® corresponds to particles moving
at velocity Z, a particle density |psi(z)]> = |C|?, and a particle current j(z) =
|C|?Z. Alternatives to deal with the normalization problem (wavefunction not square-
integrable) for momentum states are:

1. Wavepackets
A superposition of a finite number of momentum eigenstates is not normalizable,
but a wavepacket consisting of an infinite number of momentum eigenstates
(Fourier components) is.

Massachusetts Institute of Technology XIV-1



8.04 Quantum Physics Lecture XIV
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Figure I: A wavepacket (x) in position space or ¢(k) in momentum space whose
wavefunction for large = (or k) falls off faster than z7%/2 (k~%/2) can be directly
normalized.

2. Periodic boundary conditions
Assume box of finite length L, require periodic boundary conditions

¥(0) = ¥(L) (14-7)
For plane waves e?*/" this implies that e?X/" =1 or %L = kL = n2m, n integer,
i.e. momentum is quantized, p, = nhk, with ky = 2% The corresponding

momentum states are normalizable in the interval [0, L],

L
/ de|Cem /M2 — LC2 =1 (14-8)
0
Up, () = Leip"x/h (14-9)
Pn \/E

— normalized momentum eigenstates in box of size L with p,, = nhk,

L
/ dzuy, *(z)uy,, () = dpm —  orthonormality condition in box (14-10)
0

We perform all calculations for fixed size box, then take the limit L — oo (i.e.
ko — 0, momentum spectrum becomes continuous). All physically sensible

Massachusetts Institute of Technology XIV-2



8.04 Quantum Physics Lecture XIV

—_—

o L X

Figure II: Wavefunction in box of length L with periodic boundary conditions.

results will be independent of the initially chosen box size L as long as L is
large compared to distances of interest.

Time evolution of free-particle wavepackets

In free space we often work with normalized Gaussian wavepackets

1 et
CEIOTIEHA e

U(z,t=0)=

Written in this form we have

22

2

o |U(x,0)]* = Me 2wg
o [dz|U(z,0)> =1
o ()=0

L] <JI2> = U)02

o (02)* = (2%) — ()" = wy’

Az = wy is the uncertainty or rms width (root-mean-square width) of the wavepacket.
Why do we prefer this Gaussian form of wavepacket?

1. Particularly simple and symmetric, the Fourier transform is also a Gaus-

sian wavepacket:
1 _ k2
o= (1) g 2 o (14-12)

with ko = 5. (AR)2 = (k2) — (k) = ko?

2. This is a wavepacket with the minimum uncertainty AzAk = % (AzAp = %)
allowed by QM

3. Physical system after give rise to Gaussian broadening in momentum or position,
e.g., thermal distribution of atomic momenta in a gas is a Gaussian distribution.

Massachusetts Institute of Technology XIV-3



8.04 Quantum Physics Lecture XIV

How do we make a wavepacket move at velocity v;7

We displace the distribution in momentum space from (p) = (hk) = 0 to (p) = (hk) =
hki = mu; (see Fig. III).

1 _ (k—k)?

o(k) = We ko? (14-13)

The inverse Fourier transform, i.e., the spatial wavefunction

1 _% iki1x
\I/(l‘,t = 0) = W@ dwo? '™ (14—14)

1 rather than a constant phase

1z in position

is still a Gaussian, but now with a phase variation e
over the wavepacket (compare Eq. (14-11). This phase variation e

D (k)

T2,
2
1 4w0

wavefunction ¢y (x) = W"f

space “encodes” the motion of the wavepacket at velocity v, = %: The dominant de
Broglie wavelength in the wavepacket corresponds to a wavevector k1, or a momentum
hk;.

Massachusetts Institute of Technology XIV-4



8.04 Quantum Physics Lecture XIV

How does a free-space Gaussian wave packet evolve in time?

In general, we expand a wavefunction ¥(z,0) into energy eigenfunctions ug(x), and
then evolve the energy eigenfunctions as e *#4/".

In free space, there is only KE. Then the momentum eigenstates u,(z) are simul-
taneous eigenstates of energy:

n2

Huy(z) = f—mup(a:) (14-15)
1 A

=— (hz%> Nor / (14-16)

- g_mup(x) (14-17)

Huy(z) = 2p—mup(x) (14-18)

= E,u,(z) (14-19)

in free space. The energy eigenstates are said to be doubly degenerate: For each
eigenvalue of energy E > 0 there are two different momentum states (namely u.,(z)
with p = v/2mh) that have the same energy. It follows that a momentum eigenstate
with eigenvalue p evolves in time as e “#»%/" so that the wavefunction in momentum
space evolves in time as

D(p,t) = B(p, 0)e~ 4t/ (14-20)

— time evolution of momentum eigenfunctions in free space. The wavefunc-
tion in real space is given by the inverse Fourier transform W(z,t), or equivalently, as
the superposition of energy eigenfunctions with their corresponding phase evolution
factors e~ Ent/:

U(x,t) dp®(p, t)e*/h (14-21)

¢—
(= / dp®(p, )y (1)) (14-22)

1 ; p?
= \/ﬂ/dpq)(p, 0)e'P*/he=2mt/h (14-23)

= /dpcb(p, 0)Up(z, 1) (14-24)

~ [ v o (14-25)

Massachusetts Institute of Technology XIV-5



8.04 Quantum Physics Lecture XIV

where U,(z,t) = u,(z)e 2m 55t/ are the time- dependent momen-
tum eigenfunctions in free space. The above equatlon shows that the phases of dif-
ferent Fourier components u,(x) = \/;The”’x/ " evolve in time at different speeds, the
“running out of phase” of different Fourier components leads to a spreading of the
wavepacket in position space. In the problem sets you will show that the rms width

Ax(t) = w(t) of the wavepacket grows in time as

2
Lot/h 1 etrr/he—
V2 77,

R k2

w(t) =wu| 1+ ——7 14-26

( ) 0 meOQ ( )

Since a wavepacket contains different momentum components, it changes in time in
free space even though there are non external forces acting. For long times ¢t >
to = m%’“ the wavepacket spreads as w(t) =~ miwot, i.e. at a speed vy = miwo that
is inversely proportional to its initial size. That speed is negligible for macroscopic
wavepacket size, but can be appreciable for initially well-localized microscopic objects.
The spreading of a wavepacket in free space was early evidence that the wavepacket
size cannot be identified with the particle size. The spreading is due to the quadratic
(i.e. not linear) dependence of the energy, and hence the phase evolution rate, on
momentum. Note that the wavepacket of a massless particle, e.g. a photon, with

E = pc would not spread. (The SE is non-relativistic and does not apply to photons.)

Motion of wave packets, group velocity, and station-
ary phase

Why is it that a wavefunction
1 22

o) = (2m) Vg 1/2¢ e (14-27)

represents a particle moving at velocity v; = %? Since a crest of a single momentum

; k2 . . .
component uy, (z,t) = \/Lﬂe_’“””e_Z 2m ' moves forward a distance A = i—f in a time
2 . . . .
T = i—’lr (remember that wy = h;ﬁz and e "F1t/h — e=iit) the velocity of the crest is

A\ _ 2w _ wi _ Bk

Uph =7 = % 2r = &~ 2m

Wi Ik, y4
. . R 14-2
Uph ky 2m  2m ( 8)

This is the phase velocity of a momentum component.

The particle does not move at the phase velocity vy, = ‘]:—i at which the plane

wave associated with a single momentum moves forward. At what velocity then?

Massachusetts Institute of Technology XIV-6
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e Look at exponent and write:
E1 = E1<k1) = hwl = hu}(k1> =

hky>
2m

2 .
. e(—w—l—zhm—zw(kl)t)

Remember Fermat’s principle of stationary phase: path is defined by region of space
. . . . . 2

where phasors point mostly in one direction, i.e. where the phase ¢(k) = —71— +

ikx + iw(k1)t does not vary between different momentum components k to lowest

order 96 3 3
. . W . W
Ozﬁzw—z<%>t—z(x—(%)), (14-29)

x(t) = (g—:) t. (14-30)

Fermat’s principle leads us to the concept of group velocity

or

hk
awk _hkr

Vgr = %( 1) = o om (14-31)

Group velocity of the wavepacket at which the wavepacket, i.e. the region of con-
structive interference, propagates. The difference between group and phase velocity

is due to the fact the g—‘]‘; Z,or %—f = % =+ %, i.e. the quadratic dependence of KE

on momentum in free space. This is in contrast to photons with a linear dispersion
relation g—‘]: = ¢ = c in vacuum, where group and phase velocity are the same.

Massachusetts Institute of Technology XIV-7



Supplement 2-A

The Fourier Integral
and Delta Functions

Consider a function f{x) that is periodic, with period 2L, so that
Sx) = flx +20) (2A-1)

Such a function can be expanded in a Fourier series in the interval (—L, L), and the series
has the form

fo = A, cos % + 3 B, sin %’f (2A-2)
n=0 n=1

We can rewrite the series in the form

ﬂx) — 2 aneim'r.r/L (2A-3)
which is certainly possible, since
nmx — l inmx/L —inmx/L
cos — 5 (e +e )

nix L( UL _ g =inmlLy

The coefficients can be determined with the help of the orthonormality relation

L
1 inmll ,—immdL _ _ )1 m=n )
2Ljdxe e S {O m % n (2A-4)
“L
Thus
L
a, =3 f dx fix)e " (24-5)
2L

-L

Let us now rewrite (2A-3) by introducing An, the difference between two successive
integers. Since this 1s unity, we have

ﬂx) — E a"einﬂ'x/L An
i (2A-6)

3t~

i

3 w An
2 anemﬂx/L
n
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The Fourier Integral and Delta Functions W-7

Let us change the notation by writing

™! _
T= k (2A-7)
and
AR _ Ak (2A-8)
/L
We also write
La, Al
= —= (2A-9)
7'r V21
Hence (2A-6) becomes
Ak) 4,
x) =), —=¢" Ak 2A-10
=2 Vo (2A-10)

If we now let L — o, then k approaches a continuous variable, since Ak becomes infini-
tesimally small. If we recall the Riemann definition of an integral, we see that in the limit
(2A-10) can be written in the form

1 ikx
flx)y=——=— f dk Ak)e (2A-11)
\X
The coefficient A(k) is given by

L
L 1 —inT.
Ay = V2mr 2 - o f dx flx)e™ "L
ot (2A-12)

1 — ik
——)midxf(x)e

Equations (2A-11) and (2A-12) define the Fourier integral transformations. If we insert
the second equation into the first we get

fx) = ﬁ I dk ™ j dy fiy)e™® (2A-13)
Suppose now that we interchange, without question, the order of integrations. We then get
mpj@m%#}&ﬂw] (2A-14)

For this to be true, the quantity §(x — y) defined by
su—w=ﬁjduWﬂ 2A-15)

and called the Dirac delta function must be a very peculiar kind of function; it must vanish
when x # y, and it must tend to infinity in an appropriate way when x — y = 0, since the
range of integration is infinitesimally small. It is therefore not a function of the usual




W-8  Supplement 2-A  The Fourier Integral and Delta Functions

mathematical sense, but it is rather a “generalized function” or a “distribution.” It does not
have any meaning by itself, but it can be defined provided it always appears in the form

f dx fix) 6(x ~ a)

with the function fx) sufficiently smooth in the range of values that the argument of the
delta function takes. We will take that for granted and manipulate the delta function by it-
self, with the understanding that at the end all the relations that we write down only occur
under the integral sign.

The following properties of the delta function can be demonstrated:

¢}
8(ax) = - 8(x) (2A-16)
|al
This can be seen to follow from
floy = f dy fy) 6(x — y) (2A-17)

If we write x = a¢ and y and an, then this reads
M@ﬂﬂfmmmm@—w
On the other hand,
fiat) = | dn flam) 866 — )

which implies our result.
(i1) A relation that follows from (2A-16) 1s

502 — @) = ﬁ [5(x ~ a) + 8(x + a)] (2A-18)

This follows from the fact that the argument of the delta function vanishes at x = g and

x = —a. Thus there are two contributions:

802 — a*) = 8[(x — a)(x + a)]

1
= S(x—a) + 8(x +
FE T AR TR
=L [6(x — a) + 6(x + a)]
2|al
More generally, one can show that
8{x — x;)
S =y = v 2A-1
(An] thﬁh& (2A-19)

where the x; are the roots of f{x) in the interval of integration.

"The theory of distributions was developed by the mathematician Laurent Schwartz. An introductory treatment
may be found in M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambndge
University Press, Cambridge, England, 1958.
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The Fourier Integral and Delta Functions W-9
In addition to the representation (2A-15) of the delta function, there are other repre-
sentations that may prove useful, We discuss several of them.

(a) Consider the form (2A-15), which we write in the form
L
_ 1. ik }
8(x) 5 Lim | dke (2A-20)

L=

The integral can be done, and we get

ilx _ —ilx
5(x) = Lim sefmaz &
L—x 2 X
) (2A-21)
= Lim S Lx
e TX
(b) Consider the function A(x, a) defined by
A(x,a)=0 x< —a
= ﬁ 12 22 (2A-22)
=0 a<x
Then
8(x) = Lim A(x, a) (2A-23)
a0

It is clear that an integral of a product of A(x, a) and a function f{x) that is smooth
near the origin will pick out the value at the origin

Lim | dxfix) A(x, a) = A0) Lim f dx A(x, a)
a—0 a—0

=f0)

(c) By the same token, any peaked function, normalized to unit area under it, will
approach a delta function in the limit that the width of the peak goes to zero. We
will leave it to the reader to show that the following are representations of the

delta function:
8(x) = Lim & —2 (2A-24)
a0 T2+ a?
and
8(x) = Lim 3= ¢ (2A-25)
N

(d) We will have occasion to deal with orthonormal polynomials, which we denote
by the general symbol P,(x). These have the property that

J’ dx P ()P (x)w(x) = 8, (2A-26)

where w(x) may be unity or some simple function, called the weight function.

For functions that may be expanded in a series of these orthogonal polynomials,
we can write

fix) = 2 a,Pyx) (2A-27)
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If we multiply both sides by w(x)P,,(x) and integrate over x, we find that

a, = f dy wyY )P n(y) (2A-28)

We can insert this into (2A-27) and, prepared to deal with “generalized func-
tions,” we freely interchange sum and integral. We get

fx) = Py(x) f dy w(y)fO)P.0)

(2A-29)
= f dyﬂy)(E Pn(x)wchn(y))

Thus we get still another representation of the delta function. Examples of the

P,(x) are Legendre polynomials, Hermite polynomials, and Laguerre polynomi-
als, all of which make their appearance in quantumn mechanical problems.

Since the delta function always appears multiplied by a smooth function under an in-
tegral sign, we can give meaning to its derivatives. For example,

f dx fix) 2; o(x) = j dx — [f(x) 8(x)] - f dx —— 5( )

f dx—8( ) (2A-30)

(&)
- E x=0

and so on. The delta function is an extremely useful tool, and the student will encounter it
in every part of mathematical physics.
The integral of a delta function is

fdyé(y—a)=0 x<a

(2A-31)
=1 x>a

=6(x — a)

which is the standard notation for this discontinuous function. Conversely, the derivative
of the so-called step function is the Dirac delta function:

d o — o) = 8(x — .
zx-e(x a) = 8(x — a) (2A-32)
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g particie is initially (f < 0) in the ground state of an infinite, one-dimensional potential well
\ with walls atx =0 and x = a.

k- (a) If the wall at x = a is moved slowly to x = 8a, find the energy and wave function of the

particle in the new well. Calculate the work done in this process.

.~ (b) If the wall at x = a is now suddenly moved (at t = 0) to x = 8a, calculate the
. probability of finding the particle in (i) the ground state, (ii) the first excited state, and (iii) the

" second excited state of the new potential well.

" Solution
" For¢ < O the particle was in a potential well with walls at x = 0 and x = a, and hence
2 2h2 D
En=2"0 )=/ sin (E_x_) 0 < x < a). (10.76)
2ma a a

F (2) When the wall is moved slowly, the adiabatic theorem dictates that the particle will be
* found at time ¢ in the ground state of the new potential well (the well with walls at x = 0 and
. x = 8a). Thus, we have

2h2

232
B = — rh vl () = \/gsin (%) ©<x<a) (1077

2m8a)?  128ma?’

The work needed to move the wallis AW = E; — E\(f) = n2h*/(2ma®) —n*h?/(2m 8a)?) =
63m2h%/(128ma?).

(b) When the wall is moved rapidly, the particle will find itself instantly (at ¢ > 0) in the
new potential well; its energy levels and wave function are now given by

22 222

na’h n°h 2 nx

E = _ oy - |2 | |
"= om@aR ~ 2sma " TV Sm( % ) 0 <x<8a). (10.78)

The probability of finding the particle in the ground state of the new box potential can be
obtained from (10.73): Pyy = [{y] | w1)|* where

a 2 a TX 16
P | — ¥ i, . 4 2[
(v | w1) A y) ()yix)d «/§aA sm(ga)sm( , )dx — ( )
10.79

hence

Pn=yi ) = (613_) (4 — 2v/2) = 0.0077 =~ 0.7%. (10.80)

The probability of finding the particle in the first excited state of the new box potential is given
by Pi2 = (v} | y1)|* where

a 2 a TX Tx 8
4 = ,* —_— ——— 1 —— T —
(Wzly/l)—A Wy (x)w1(x)dx—ﬁa%) s1n(4a)s1n(a)dx— T5n”

* hence ,
: / 2 8 0
h P2 = (w5 Lwn)|" = (o) =01699 =17%.

A similar calculation leads to

] 2 a
P = [t Lyoff = | —= ["sin (32X 16 -
] V8a Jo o 8a = ( dx ’ = JSS;{ 4422

These calculations show that the particle is most likely to be found in higher excited 7

probability of finding it in the ground state is very small.
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. . . _—
Since the general solution of the equation of motion of a classical oscillator, X +©“x
= 0, is of the form x = C sin (0t +¢), the total energy

mx2  mow?

_ mxT | e
E.=T+V = 2+ 2x

of such an oscillator is given by E; = mw?c/2. .
Since T = 0, we have E; =V, which means that, classically,
only in the range —a=x=+a. At the ends of this inter.val,” where El‘ = ts kinetic
energy vanishes; the points x = +a are called “turning pomts. . Accorc.imgly, C:=a d——)
2E;/mo?* = 3fi/mo. The classical probability of finding the particle in the interval (x, X +dx

the particle can be found
V, its kinetic

is proportional to the time @ which it takes to pass through this interval. If the period of
oscillation is T = 2n/w, then

L4

o dx o dx 1 /. x2\-12
114 dx=2—==— — = 7:—(1—— dx,
alx) T a2 X 7 am cos (wi+¢) maal g
which is the required expression.
wix)
el 3 w
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FiG. 11.23.

It can be seen that this probability is greatest at the turning points x = + a (Fig. 11.23).
According to quantum mechanics the probability of finding the particle in the interval
(x, x+dx)is

2
Wau(x) dx = 21-12x53x? exp (— ;2—) dx.

0

It should be noted that W, (x) has maxima near the classical turning points (a = \/ 3n/mow,
a=v M), but, in contrast with the classical case, it does not vanish beyond these points.
This phenomenon, of the penetration of a particle into regions with “negative kinetic energy”
(x| = a), does not lead to any contradiction because the equality £ = 7+ ¥ in quantum
mechanics is not a simple relation between numbers, but between operators; the kinetic and
the potential energies cannot in fact be determined simultaneously.

For higher levels, it is found that the curve 2 4(x) becomes the envelope of the peaks of
Wau(x) in the classical limit n - <o (cf. Fig. 11.24, which represents W (x) = |yp10(x) 1%,

1= V20Hjme).
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