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Heinrich Hertz

From Wikipedia, the free encyclopedia

Heinrich Rudolf Hertz (22 February
1857 — 1 January 1894) was a German
physicist who clarified and expanded
James Clerk Maxwell's electromagnetic
theory of light, which was first
demonstrated by David Edward Hughes
using non-rigorous trial and error
procedures. Hertz is distinguished from
Maxwell and Hughes because he was the
first to conclusively prove the existence of
electromagnetic waves by engineering
instruments to transmit and receive radio
pulses using experimental procedures that
ruled out all other known wireless
phenomena.[l] The scientific unit of
frequency — cycles per second — was
named the "hertz" in his honor.!)



In 1883, Hertz took a post as a lecturer in theoretical physics at the University of Kiel. *

In 1885, Hertz became a full professor at the University of Karlsruhe where he discovered
electromagnetic waves.

The most dramatic prediction of Maxwell's theory of electromagnetism, published in 1865,
was the existence of electromagnetic waves moving at the speed of light, and the conclusion
that light itself was just such a wave. This challenged experimentalists to generate and detect
electromagnetic radiation using some form of electrical apparatus.

The first successful radio transmission was made by David Edward Hughes in 1879, but it
would not be conclusively proven to have been electromagnetic waves until the experiments
of Heinrich Hertz in 1886. For the Hertz radio wave transmitter, he used a high voltage
induction coil, a condenser (capacitor, Leyden jar) and a spark gap—whose poles on either
side are formed by spheres of 2 cm radius—to cause a spark discharge between the spark
gap’s poles oscillating at a frequency determined by the values of the capacitor and the
induction coil.

To prove there really was radiation emitted, it had to be detected. Hertz used a piece of
copper wire, 1 mm thick, bent into a circle of a diameter of 7.5 cm, with a small brass sphere
on one end, and the other end of the wire was pointed, with the point near the sphere. He
bought a screw mechanism so that the point could be moved very close to the sphere in a
controlled fashion. This "receiver" was designed so that current oscillating back and forth in
the wire would have a natural period close to that of the "transmitter" described above. The
presence of oscillating charge in the receiver would be signaled by sparks across the (tiny)
gap between the point and the sphere (typically, this gap was hundredths of a millimeter).

10 Heinrich Hertz - Wikipedia, the free encyclopedia

In more advanced experiments, Hertz measured the velocity of electromagnetic radia.ltion and,
found it to be the same as the light’s velocity. He also showed that the nature of radio waves
reflection and refraction was the same as those of light and establisheq beyond any doubt that
light is a form of electromagnetic radiation obeying the Maxwell equations.

Hertz's experiments triggered broad interest in radio research that even‘.cqally produced
commercially successful wireless telegraph, audio radio, and later telev1s'10n. In 19;’30 the
International Electrotechnical Commission (IEC) honored Hertz by naming the unit of

frequency—one cycle per second—the "hertz" [2]



28.5 STANDING ELECTROMAGNETIC WAVES

Interfersnce (and diffraction) phenomena are so
characteristic of waves that their presence has
always been accepted by physicists as conclusive
proof that a process can be interpreted as a wave
motion. For that reason, when in the seventeenth
century Young, Grimaldi, and others observed
interference (and diffraction) in their research on
light. the wave theory of light became generally
accepted. At that time electromagnetic waves were
not known, and light was assumed to be an elastic
wave in a subtle medium, called ether, that pervaded
all matter. It was not until the end of the nineteenth
century that Maxwell predicted the existence of
electromagnetic waves, and Hertz, by means of
interference experiments which gave rise to standing
electromagnetic waves, experimentally verified the
existence of electromagnetic waves in the radio-
frequency range. Later their velocity was measured
and found to be equal to that of light. The reflection,
refraction, and polarization of electromagnetic waves
was also found to be similar to those of light. The
obvious conclusion was to identify light with electro-
magnetic waves of certain frequencies. At that
time optics, to all intents and purposes, ceased to be
an independent branch of physics and became simply
a. chapter of electromagnetic theory.

To understand the formation of standing electro-
magnetic waves, assume that the waves produced
by an oscillating electric dipole are falling with
perpendicular incidence on the plane surface of a
perfect conductor (Fig. 28.21). Taking the X-axis
as the direction of propagation and the Y- and Z-axes
as being parallel to the electric and the magnetic

(b)

28.21 Standing electromagnetic waves produced by reflection
from a conducting surface,

fields, respectively, we have a wave that is plane
polarized, with the electric field oscillating in the
XY-plane. The electric field is then parallel to the
surface of the conductor. But at the surface of a
perfect conductor the electric field must be per-
pendicular to the conductor; that is, the electric
field cannot have a tangential component. The only
way to make this condition compatible with the
orientation of the electric field in the incident wave
is by requiring that the resultant electric field be
zero at the surface of the conduetor. This means
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Hertz’ experiment on interfer-
ence of electromagnetic waves.

that the electric field of the reflected wave at the
surface must be equal and opposite to that of the
incident wave, thus giving

E=8-1+8& =0

for x = 0. This condition is mathematically
equivalent to the condition for the reflection of
waves in a string with one end fixed, discussed in
Section 28.4. Since the mathematics is the same,
we may use Eq. (28.18) to write an expression for
the resultant electric field,

& = 28¢ sin kx sin wl.

The magnetic field oscillates in the XZ-plane.
Using Eq. (24.8), we find that the magnetic field is
expressed by

® = 2®p cos kz cos wl,

with ®, = 8&p/c. Therefore there is a phase differ-
ence of I\ in the space variations and of P in the
time variations of the two fields. From the mathe-
matical expression for ®, note that the magnetic
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field has maximum amplitude at the surface. This
can also be seen from the boundary condition at the
surface: referring to Fig. 28.21(b), we see that if the
electric field of the incident wave is along the —Y-
axis, the magnetic field must be along the —Z-axis,
according to the relative orientation of the two
fields with respect to the direction of propagation
of the incident waves, which is along the —X-axis.
For a zero resultant electric field to exist at the
surface, the electric field of the reflected wave must
be along the — Y-axis, and since the reflected wave
propagates along the X-axis, the magnetic field
must be along the —Z-axis. Thus, although the
electric fields interfere destructively at the surface,
the magnetic fields interfere constructively there.
The amplitudes of the electric and magnetic fields
of the resulting wave at a distance z from the surface
are 28 sin kz and 2®, cos kx. They are indicated by
the shaded linesin Fig. 28.21(a). At the points where

kx = nw or T = i\,

the electric field is zero and the magnetic field is
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of propagation

28.23  Standing waves on
a rectangular membrane.
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maximurm. At the points where

kr = (n+ )7 or z = (Zn-+4 Dr/4,

the electric field has a maximum value but the
magnetic field is zero.

Hertz" Experiment It is instructive to see how Hein-
rich Hertz, in 1888, with his primitive equipment,
verified the theoretical predictions given above. Hertz’
oscillator is shown on the left in Fig. 28.22. The trans-
former T charges the metallic plates C and C’. These
plates discharge through the gap P, which becomes
a dipole oscillator. Along the line PX, the direction of
the electric field is parallel to the Y-axis and that of the
magnetic field along the Z-axis. To obseive the waves,
Hertz used a short wire, bent in eircular shape, but with
a small gap. This device is called a resonator. The
diameter of the resonator used in this kind of experiment
must be very small compared with the wavelength of the
waves. If the resonator is placed with its plane per-
pendicular to the magnetic field of the wave, the varying
magnetic field induces an emf in the resonator, resulting
in sparks at its gap. On the other hand, if the plane of the
resonator is parallel to the magnetic field, no emf is
induced and no sparks are observed at the gap.

To preduce standing electromagnetic waves, Hertz
placed a reflecting surface (made of a good conductor) at
Q. In such a case, when the resonator is at a node of the
magneticfield, no matter what its orientation, it will show
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no induced emf (or sparks). At an antinode of the mag-
netic field, however, the sparking is greatest when the
resonator is oriented perpendicular to the magnetic field.
By moving the resonator along the line PQ, Hertz found
the position of the nodes and antinodes and the direction
of the magnetic field. The results obtained by Hertz
coincided with the theoretical analysis we have given.
By measuring the distance between two successive
nodes, Hertz could calculate the wavelength A, and since
he knew the frequency » of the oscillator, he could
calculate the velocity ¢ of the electromagnetic waves by
using the equation ¢ = Av. It was by this means that
Hertz obtained the first experimental value for the
velocity of propagation of electromagnetic waves.
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Radiators and Radiation

The energy emitted and absorbed by material objecis in the form of electromagnetic
waves is generally termed electromagnetic radiation or simply radiation.

Radiation is emitted at the expense of the energy of the radiating object, absorbed
radiation adds to the energy of the absorbing object.

Any specific distribution of electromagnetic radiation, such as the colours of the
rainbow, is termed a spectrum. If the distribution comprises a continuous region of
frequencies or wavelengths, it is a continuous spectruny; if it comprises a series or
group of discrete frequencies, it is a line spectrum.

Maxweell e?aa.tc'oﬂ

The distribution of the electromagnetic radiation emitted by a body that acts as a
source of radiation is its emission spectrum (Fig 2.1a). The rainbow is the sun’s

emission spectrum in the visible region.

The distribution of the electromagnetic radiation transmitted by an absorbing
medium placed in the path of radiation that exhibits a continuous spectrum, is called
an absorption spectrum (Fig 2.1b) When viewing a rainbow through a coloured filter,
certain colours are seen to be missing; they are the ones absorbed by the filter. The
spectrum of the transmitted light is the filter’s absorption spectrum.

Fig 2.1a Viewing an emission spectrum in
the visible range. The light emitted from the
source is dispersed into its components by a
prism or diffraction grating.  These
components (colours) illuminate the screen
or detector and constitute the source’s
emission spectrum.

Fig 2.1b Viewing an absorption spectrum 1n
the visible range. Light, such as that emitted
by an incandescent lamp which exhibits a
continuum of frequencies, is passed through
a sample of the material whese absorption
spectrum is  being investigated.  The
frequencies absorbed by the sample appear as
dark lines or bands on the continuous
spectrum projected onto the screen.
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We shall now turn to another puzzle confronting physicists at the turn of the
century (1900): just how do heated bodies radiate? There was a general
understanding of the mechanism involved—heat was known to cause the
molecules and atoms of a solid to vibrate, and the molecules and atoms were
themselves complicated patterns of electrical charges. (As usual, Newton was
on the right track.) From the experiments of Hertz and others, Maxwell’s
| predictions that oscillating charges emitted electromagnetic radiation had been
confirmed, at least for simple antennas. It was known from Maxwell’s equations
that this radiation traveled at the speed of light and from this it was realized that
light itself, and the closely related infrared heat radiation, were actually
electromagnetic waves. The picture, then, was that when a body was heated,
the consequent vibrations on a molecular and atomic scale nevitably induced
charge oscillations. Assuming then that Maxwell’s theory of electromagnetic
radiation, which worked so well in the macroscopic world, was also valid at the
molecular level, these oscillating charges would radiate, presumably giving off the
heat and light observed.

How is Radiation Absorbed?

What is meant by the phrase “black body” radiation? The point is that the
radiation from a heated body depends to some extent on the body being
heated. To see this most easily, let’s back up momentarily and consider how
different materials absorb radiation. Some, like glass, seem to absorb light
hardly at all—the light goes right through. For a shiny metallic surface, the light
isn’t absorbed either, it gets reflected. For a black material like soot, light and
heat are almost completely absorbed, and the material gets warm. How can we
understand these different behaviors in terms of light as an electromagnetic wave
interacting with charges in the material, causing these charges to oscillate and

~ absorb energy from the radiation? In the case of glass, evidently this doesn’t

E happen, at least not much. Why not? A full understanding of why needs

_body_radiation.html]




Black Body Radiation

quantum mechanics, but the general idea is as follows: there are charges—
electrons—in glass that are able to oscillate in response to an applied external
oscillating electric field, but these charges are tightly bound to atoms, and can
only oscillate at certain frequencies. (For quantum experts, these charge
oscillations take place as an electron moves from one orbit to another. Of
course, that was not understood in the 1890’s, the time of the first precision
work on black body radiation.) It happens that for ordinary glass none of these
frequencies corresponds to visible light, so there is no resonance with a light
wave, and hence little energy absorbed. That’s why glass is perfect for
windows! Duh. But glass is opaque at some frequencies outside the visible
range (in general, both in the infrared and the ultraviolet). These are the
frequencies at which the electrical charge distributions in the atoms or bonds can
naturally oscillate.

How can we understand the reflection of light by a metal surface? A piece of
metal has electrons free to move through the entire solid. This is what makes a
metal a metal: it conducts both electricity and heat easily, both are actually ;
carried by currents of these freely moving electrons. (Well, a little of the heat is !
carried by vibrations.) But metals are recognizable because they’re shiny— '
why’s that? Again, it’s those free electrons: they’re driven into large (relative to
the atoms) oscillations by the electrical field of the incoming light wave, and this
induced oscillating current radiates electromagnetically, just like a current in a
transmitting antenna. This radiation is the reflected light. For a shiny metal
surface, little of the incoming radiant energy is absorbed as heat, it’s just
reradiated, that is, reflected.

Now let’s consider a substance that absorbs light: no transmission and no
reflection. We come very close to perfect absorption with soot. Like a metal, it
will conduct an electric current, but nowhere near as efficiently. There are
unattached electrons, which can move through the whole solid, but they
constantly bump into things—they have a short mean free path. When they
bunp, they cause vibration, like balls hitting bumpers in a pinball machine, so
they give up kinetic energy into heat. Although the electrons in soot have a short
mean free path compared to those in a good metal, they move very freely
compared with electrons bound to atoms (as in glass), so they can accelerate
and pick up energy from the electric field in the light wave. They are therefore
very effective intermediaries in transferring energy from the light wave into heat.

Relating Absorption and Emission

Having seen how soot can absorb radiation and transfer the energy mto heat,
what about the reverse? Why does it radiate when heated? The pinball machine
analogy is still good: imagine now a pinball machine where the barriers, etc.,
vibrate vigorously because they are being fed energy. The balls (the electrons)
bouncing off them will be suddenly accelerated at each collision, and these
accelerating charges emit electromagnetic waves. On the other hand, the
clectrons in a metal have very long mean free paths, the lattice vibrations affect
them much less, so they are less effective in gathering and radiating away heat
energy. It is evident from considerations like this that good absorbers of



Black Body Radiation

radiation are also good emitters.

In fact, we can be much more precise: a body emits radiation at a given
temperature and frequency exactly as well as it absorbs the same
radiation. This was proved by Kirchhoff: the essential point is that if we
suppose a particular body can absorb better than it emits, then in a room full of
objects all at the same temperature, it will absorb radiation from the other bodies
better than it radiates energy back to them. This means it will get hotter, and the
| rest of the room will grow colder, contradicting the second law of
thermodynamics. (We could use such a body to construct a heat engine
extracting work as the room grows colder and colder!)

But a metal glows when it’s heated up enough: why is that? As the temperature
is raised, the lattice of atoms vibrates more and more, these vibrations scatter
and accelerate the electrons. Even glass glows at high enough temperatures, as
the electrons are loosened and vibrate.



Black-body Radiation

Common materials and objects do not absorb all the radiation incident upon them; they %
are not perfect absorbers of radiation. Nevertheless, we can imagine a perfect apsorbve.r.

an ideal body which does absorb all the electromagnetic radiation that strikes i,

whatever its wavelength or intensity. Because such a bodv would appear black in

whatever light it is illuminated, it is called a black-body.

Since, by definition, a black-body is a perfect absorber, it must also be a perfect
emitter, i.e., it must be able to emit radiation of every wavelength at any intensity. The
heat radiation emitted by a black-body is called black-body radiation.

No substance is a perfect black-body, though soot, which absorbs some 95% of the
visible and infra-red radiation incident upon it, closely approximates to one in this
range. However, by making a small hole in the wall of a hollow object we can construct
a device, which to all intents and purposes, absorbs all the radiation incident upon it.
The device works somewhat like a fly-trap. Any radiation coming upon the hole from
outside will pass through it, enter the cavity and be trapped inside (Fig 2.3). The hole
is thus a perfect absorber of radiation; it is a black-body. By definition, it will also be a
perfect emitter of radiation. Any radiation generated in the cavity that happens upon
the hole will escape without hindrance, irrespective of its wavelength? or intensity.

rayof /
radiation F

Fig 2.3 A hollow object with a small aperture in
one of its walls. Any radiation that enters through
the hole will be trapped inside.

Suppose, that a hollow object with a small aperture in one of its walls is kept at a
constant temperature. Every point on the inside surface of the cavity will be in thermal
equilibrium with all the other points on the surface and heal radiation of (he same
quality and quantity will be emitted and absorbed by <ach point, irrespective of the
material from which the inside surface of the cavity is made The cavity will be filled
by electromagnetic radiation that comprises all the wavelengths of the heat radiation
characteristic of the object’s temperature, each at its appropriate intensity. Any of this
cavity radiation that happens upon the aperture from inside will escape through it
unhindered. Viewed from outside, this representative sample of the cavity radiation
will be the black-body radiation characteristic of the particular temperature.
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The “Black Body” Spectrum: a Hole in the Oven

Any body at any temperature above absolute zero will radiate to some extent,
the intensity and frequency distribution of the radiation depending on the detailed
structure of the body. To begin analyzing heat radiation, we need to be specific
about the body doing the radiating: the simplest possible case is an idealized
body which is a perfect absorber, and therefore also (from the above
argument) a perfect emitter. For obvious reasons, this is called a “black
body”.

But we need to check our ideas experimentally: so how do we construct a
perfect absorber? OK, nothing’s perfect, but in 1859 Kirchhoff had a good
idea: a small hole in the side of a large box is an excellent absorber, smce any
radiation that goes through the hole bounces around inside, a lot getting
absorbed on each bounce, and has little chance of ever getting out again. So,
we can do this in reverse: have an oven with a tiny hole in the side, and
presumably the radiation coming out the hole is as good a representation ofa

' perfect emitter as we're going to find. Kirchhoff challenged theorists and
experimentalists to figure out and measure (respectively) the energy/frequency
curve for this “cavity radiation”, as he called it (in German, of course:
hohlraumstrahlung, where hohlraum means hollow room or cavity, strahlung is
radiation). In fact, it was Kirchhoff's challenge in 1 859 that led directly to
quantum theory forty years later!



Measurement of spectrum of thermal radiation
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Fig 2.4 The intensity, /.
of the heat radiation
emitted by a black-body
and the filament in an
incandescent lamp at a
temperature of 2000K as
a function of the
wavelength, A, of the
radiation.
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The absolute temperature, 7, of a black-body is inversely proportioilal to the
wavelength in vacuo, Ay, of the radiation it emits with the greatest intensity

(Fig 2.5):

This rule is known as Wien s Law.
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Fig 2.5 The distribution of the heat energy radiated by a black-body between the
various wavelengths at a number of temperatures. E; is defined such that £, - A4 is

the energy radiated each second at the wavelengths between A and (,1 + M) from a

unit area of the body’s surface. The area under each curve gives the total energy
radiated each second from each unit area at the particular temperature.
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BINOMIAL AND MULTINOMIAL DISTRIBUTION

During the course of our discussion of the canonical ensemble, we shall encounter
the problem of determining how many ways it is possible io divide N distinguishable
systems into groups such that there are n, systems in the first group, #, sysiems in
the second group. and so on. and such that ny + 1, + =N, that is, all the systen=
are accounted for. This is actually one of the easiest problems in combinatorial
analysis. To solve this, we first caleulate the number of permutations of N distin-
zuishable objects, that i< the number of possible differeat arrangements or ways tc
srder N distinguishable objects. Let us choose one of the N objects and place it in
the first position. one of the N — remaining objects and place it in the second posi-
tion. and so on. until all N objects are ordered. Clearly there are N choices for the first
position, N — 1 choices for the second position, and so on, until finally there is onls
one object left for the Nth position. The total number of ways of doing this is then the
product of all the choices,

NN — DN =2)---(2)) = N! (distinguishable objects)

Next we calculate the number of ways of dividing N distinguishable objects into
two groups. one group containing N, objects. say. and the other containing the remain-
ing N — N,. There are N(N — 1)+ N — N, = 1) ways to form the first group, and
N,! = (N — N ways to form the second group. The total number is, then, the
product

'

N — . (NN AY—LY\!=——"——
NN = 1) (N = Ny 1) < (N = Nt = oy

x (N = N)!I=N!

But this has overcounted the situation drastically, since the order in which we place
N, members in the first group and N, in the second group is immaterial to the problem
as stated. All N, ! orders of the first group and N,! orders of the second group corre-
spond to just one division of N objects into N, objects and N, objects. Therefore the

desired result is
Nt N1
—_— T T (1-75}
N UN = N)! N{IN,!

Since the combination of factorials in Eq. (1-75) occurs in the binomial expansion.

N NNV . N 1xNphs

(x+)"= 2

NBY 1-78)
WEo NN = ND! fv, NyIN! e

NUNUN — Nyl is called a binomial coefiicient. The asterisk on the second summa-
tion in Eq. (1-76) signifies the restriction N, + N, = N.
The generalization of Eq. (1- 75) to the division of N into r groups, the first con-
taining N,. and so on, is easily seen to be
N1 Ni
7 N T N
NN - N IT5-0 Ny

(1-77}

where Ny + N, + -+ N, =N. This is known as a multinomial coefficient, since it
occurs in the expansion

Ni,..yx Nr
N Nixgmteox,

N N
Gy +xg + 00+ %) le=o sz=o zg‘;o [T=: N (1-78)

where this time the asterisk signifies the restriction N, + N, + -+ N, =N.

There are a number of other combinatorial form
: : ulas that are useful in statisti
thermodynamics, but Eq. (1-77) is the most useful for our purposes. Combisgtsélrci:{

formulas can become rather demandin i
: g to derive. We refer to A i
Mayer and Mayer* which contains a collection of formulas o Append AV of
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STIRLING’'S APPROXIMATION

In statistical thermodynamics we often encounter factorials of very large numbers,
such as Avogadro’s number. The calculation and mathematical manipulation of
factorials become awkward for large N. Therefore it is desirable to find an approxima-
tion for N! for large N. Problems of this sort occur often in mathematics and are
called asymptotic approximations, that is, an approximation to a function which
improves as the argument of that function increases. Since N! is actually a product, it
is convenient to deal with In N'! because this is a sum. The asymptotic approximation
to In N! is called Stirling’s approximation. which we now derive.

Since N1 = N(N — I)(N —2)---(2)(1),In N1is

N
InN!=) Inm (1-73)
m=1
Figure 1-3 shows In x plotted versus x. The sum of the areas under these rectangies
up to NV is In N!. Figure 1-5 also shows the continuous curve In x plotted on the same
graph. Thus In x is seen to form an envelope to the rectangles. and this envelope
becomes & steadily smoother approximation to the rectangles as x increases. We can
approximate the area under these rectangles by the integral of In x. The area under
In x will poorly approximate the rectangles only in the beginning. If N is large enough
(we are deriving an asymptotic expansion), this area will make a negligible contribu-
tion to the total area. We may write. then.

N N
lnN!=Zlnsz Inxdx=NInhN—-—N (N large) (1-74)
m=1 1

which is Stirling’s approximation to In N!. The lower limit could just as well have
been taken as 0 in Eq. (1-74), since N is large. (Remember that x In x —» 0 as x — 0.)

A more refined derivation of Stirling’s approximation gives InN!'~NInN~-N
+ In(2N)'/2, but this additional term is seldom necessary. (See Problem 1-59.)

= ‘1ﬂ1
~ ,rd"'11

0 25 30
X

Figure 1-5. A plot of In x versus x, showing how the summation of In m can be approximated by the
integral of In x.

t
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METHOD OF LAGRANGE MULTIPLIERS

It will be necessary, later, to maximize Eq. (1-77) with the constraint
N +Ny+ - +N, = constant. This brings us to the mathematical problem of
maximizing a function of several (or many) variables f(x,, x;, ..., x,) when the
variables are connected by other equations, say g;{x;, ..., x)=0,g,(x1, ..., x)=0,
and so on. This type of problem is readily handled by the method of Lagrange un-
determined multipliers.

If it were not for the constraints, g;(x;, X5, ..., x,) = 0, the maximum of fi(xy,....: X,)
would be given by

5=

6f)
L) sx;=0 1-79
(55), . (=79

where the zero subscript indicates that this equation equals zero only when the r
partial derivatives are evaluated at the maximum (or minimum) of /. Denote these
values of x; by x;°. If there were no constraints, each of the dx; would be able to be
varied independently and arbitrarily, and so we would conclude that (¢f/0x;) = 0 for
every j, since Jf must equal zero. This would give r equations from which the values
of the rx;° could be obtained.

On the other hand, if there is some other relation between the x’s, such as

g(x,, X5, ..., x,) =0, we have the additional equation
r ag
dg=7 |=) éx;=0 (1-80)
g jzl(axj)o 29 (1-80]

This equation serves as a constraint that the dx; must satisfy, thus making one of them
depend upon the other r — 1. In the Lagrange method, one multiplies Eq. (1-80) by
some parameter, say 4, and adds the result to Eq. (1-79) to get

S '—"3_—1—) dx; =0 (1-81)
i 4]

The éx; are still not independent. because of Eq. (1-80), and so they cannot be varied
independently. Equation (1-80), however, can be treated as an equation giving one
of the éx; in terms of the other r — 1 independent ones. Pick any one of the r ox;
as the dependent one. Let this be dx,,.

The trick now is that we have not specified 4 yet. We set it equal to (gf/dx,)o/
(0g/éx,)o, making the coeflicient of 6x, in Eq. (1-81) vanish. The subscript zero
here indicates that (df/dx,) and (Jg/0x,) are to be evaluated at values of the x;
such that £ is at its maximum (or minimum) under the constraint of Eg. (1-80). Of
course, we do not know these values of x; yet, but we can nevertheless formally define
1 in this manner. This leaves a sum of terms in Eq. (1-81) involving only the inde-
pendent dx;, which can be varied independently, yielding that

of ag) . ;
) —Al—) =0 =012 ....u=l.u+1l ... :
(axj)o (axj 0 d # 4 f

* See Mayer and Mayer, Statistical Mechanics (New York: Wiley, 1940).

If we combine these » — | equations with our choice for A, we have

(7).~ H52), =
x;/ o ox;/o (1-82)

for all j.

As we said above, the choice of 1 here is certainly formal, since both (df/dx,), and
(0g/édx,)o must be evaluated at these values of x; which maximizes f, but thgsg: are
kn0\zn f;odeq. (1-82) only in terms of 1. But this presents no difficulty, since in
practice 4 1s determined by physical requirements. E is wi —

D et xamples of this will occur in the

Lagrange’s method becomes no more difficult in the case in which there are several

co;stramts. Let 9_1(?_% - X)), ga(Xyg, ... X,), ... be a set of constraints. We introduce
a Lagrange multiplier for each g,(x,, ..., x,) and proceed as above to get

if —2 % - ) 99> 0

ox; o, ek, T e

=
=)
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Heat capacity at constant volume as a function of temperature. The
solid curve is the Debve function (eq. 8-17). The curve was fitted to
the data points for each metal in order to determine the Debve
temperature © for the metal, and then the data were replotted as a
function of T/©. (From F. Seitz, Modern Theory of Solids, McGraw-
Hill, New York, 1940.)
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wavelength 1. (c) Photoelectric current versus accelerating potential to
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