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Degrees of freedom (physics and chemistry)

From Wikipedia, the free encyclopedia

A degree of freedom is an independent physical parameter, often called a dimension, in the
formal description of the state of a physical system. The set of all dimensions of a system is
known as a phase space.
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Definition

In physics, a degree of freedom of a system is a formal description of a parameter that
contributes to the state of a physical system.

It can also be defined as the minimum number of coordinates required to specify the position
of a particle or system of particles.

In mechanics, a point particle can move independently in the three directions of space. Thus,
the momentum of a particle consists of three components, each called a degree of fieedom.
A system of N independent particles, therefore, has the total of 3N degrees of freedom.

Similarly in statistical mechanics, a degree of freedom is a single scalar number describing the
microstate of a system. The specification of all microstates of a system is a point in the
system's phase space.

A degree of freedom may be any useful property that is not dependent on other variables.
For example, in the 3D ideal chain model, two angles are necessary to describe each
monomer's orientation.

Example: diatomic gas

In three-dimensional space, three degrees of freedom are associated with the movement of a



mechanical particle. A diatomic gas molecule thus has 6 degrees of freedom. This set may be
decomposed in terms of translations, rotations, and

vibrations of the molecule. The center of mass motion of _
the entire molecule accounts for 3 degrees of freedom. In [
addition, the molecule has one vibrational mode and two I .
rotational degrees of motion. The rotations occur around

the two axes perpendicular to the line between the two _
atoms. The rotation around the atom-atom bond is not o o o
counted. This yields, for a diatomic molecule, a '
decomposition of: [ B

IN=6=3+1+2. . m; °

Different ways of visualizing the 3
degrees of freedom of a dumbbell-
shaped diatomic molecule. (CM:

L]

& Llea

For a general molecule with N > 2 atoms, all 3 rotational
degrees of freedom are considered, resulting in the

decomposition:
center of mass of the system, T:

3N=3+3+3N-6) translational motion, R: rotational
_ motion, V: vibrational motion.)
which means that an N-atom molecule has 3N - 6
vibrational degrees of freedom for N > 2.

As defined above one can also count degrees of freedom using the minimum number of
coordinates required to specify a position. This is done as follows: 1. For a single particle we
need 2 coordinates in a 2-D plane to specify its position and 3 coordinates in 3-D plane. Thus
its degree of freedom in a 3-D plane is 3. 2. For a body consisting of 2 particles (ex. a
diatomic molecule) in a 3-D plane with constant distance between them (let's say d) we can
show (below) its degree of freedom to be 5. Let's say one particle in this body has
coordinates (X1,y1,21) and the other has x-coordinate(x,) and y-coordinate(y,). Application of
the formula for distance between two coordinates (

= \;'( T2 — 1)+ (ya — y1)? + (29 — z)?) results in one equation with one unknown,

, K

in which we can solve for z,. (Note:Here any one of Xy, Xy, y1, Y2, Z], OF Z; can be
unknown.)

Contrary to the classical equipartition theorem, at room temperature, the vibrational motion
of molecules typically makes negligible contributions to the heat capacity. This is because
these degrees of freedom are frozen because the spacing between the energy eigenvalues
exceeds the energy corresponding to ambient temperatures (k7). In the following table such
degrees of freedom are disregarded because of their low effect on total energy. However, at
very high temperatures they cannot be neglected.



Monatomic Linear molecules Non-Linear molecules

Position (x, y and z) 3 3 3
Rotation (x, y and z) 0 2 3
Vibration 0 3N-5 3N-6
Total 3 3N 3N

Independent degrees of freedom

The set of degrees of freedom X . ..., Xy of a system is independent if the energy
associated with the set can be written in the following form:

N
i=1

where F; is a function of the sole variable X;.
example: if X'} and X', are two degrees of freedom, and F is the associated energy:

w If B = \1‘ + Xé‘, then the two degrees of freedom are independent.
= If ' = Xf + XX+ X;, then the two degrees of freedom are not

independent. The term involving the product of X'| and X, is a coupling term,
that describes an interaction between the two degrees of freedom.

At thermodynamic equilibrium, X, ..., X, are all statistically independent of each other.

For i from 1 to N, the value of the ith degree of freedom Y is distributed according to the
Boltzmann distribution. Its probability density function is the following:

il X)) = ————
[dX;e ksT

In this section, and throughout the article the brackets {} denote the mean of the quantity they
enclose.

The internal energy of the system is the sum of the average energies associated to each of the
degrees of freedom:

N
(B} =) (E;).
i=1
Demonstrations

A system exchanges energy in the form of heat with its surroundings and the number of



particles in the system remains fixed. This corresponds to studying the system in the
canonical ensemble. Note that in statistical mechanics, a result that is demonstrated for a
system in a particular ensemble remains true for this system at the thermodynamic limit in
any ensemble. In the canonical ensemble, at thermodynamic equilibrium, the state of the
system is distributed among all micro-states according to the Boltzmann distribution. If T is
the system's temperature and /-, is Boltzmann's constant, then the probability density
function associated to each micro-state is the following:

£F

e ¢ FET
PI: _\. fo vin oy \ N } — _ E
JdX dXs . . dX e FAT

The denominator in the above expression plays an important role.l!] This expression
immediately breaks down into a product of terms depending of a single degree of freedom:

P(;Yl, C ey .X;\:} =M (.X” a- .]),\:(;X;\:}

The existence of such a breakdown of the multidimensional probability density function into
a product of functions of one variable is enough by itself to demonstrate that X, . .. X' are
statistically independent from each other.

Since each function p; is normalized, it follows immediately that p; is the probability density
function of the degree of freedom X, for i from 1 to M.

Finally, the internal energy of the system is its mean energy. The energy of a degree of
freedom F; is a function of the sole variable X;. Since X, ..., X y are independent from
each other, the energies F, ( Xi)ooon Ey (f\\) are also statistically independent from each

other. The total internal energy of the system can thus be written as:

Quadratic degrees of freedom

A degree of freedom X is quadratic if the energy terms associated to this degree of freedom
can be written as

E=a; X] +3 XY,
where Y is a linear combination of other quadratic degrees of freedom.
example: if X| and X, are two degrees of freedom, and £ is the associated energy:

w If = '\11 + Xf Xy + \2‘, then the two degrees of freedom are not

independent and non-quadratic.
 IfF = \14 + ,\;, then the two degrees of freedom are independent and non-



quadratic.
 IfF = \f + X1 Xo+ 2\5, then the two degrees of freedom are not

independent but are quadratic.
» If F' = \12 + ‘_ZX;_;’, then the two degrees of freedom are independent and

quadratic.

For example, in Newtonian mechanics, the dynamics of a system of quadratic degrees of
freedom are controlled by a set of homogeneous linear differential equations with constant

coefficients.

Quadratic and independent degree of freedom

X{..... Xy are quadratic and independent degrees of freedom if the energy associated to a
microstate of the system they represent can be written as:

i

N

. 9

E = Z (Y; AT
i=1

Equipartition theorem

In the classical limit of statistical mechanics, at thermodynamic equilibrium, the internal
energy of a system of N quadratic and independent degrees of freedom is:

. ]"B

U=(E)=N=

Here, the mean energy associated with a degree of freedom is:

-2
0, X
—_—r

[dX; o X2 Tt

2 ! d ‘)"i c i::—i,; —
iy BT L2 % kT
l’ Z ’ (. C‘_# 2

(E) = / dX; a: X2 pi( Xi)

Since the degrees of freedom are independent, the internal energy of the system is equal to
the sum of the mean energy associated with each degree of freedom, which demonstrates the
result.
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BINOMIAL AND MULTINOMIAL DISTRIBUTION

During the course of our discussion of the canonical ensemble, we shall encounter
the problem of determining how many ways it is possible to divide N distinguishable
systems into groups such that there are n, systems in the first group, n; Systems n
the second group, and so on, and such that ny + 7, + -~ = N, that is, all the svsten.s
are accounted for. This is actually one of the easiest problems in combinatoria
analysis. To solve this, we first calculate the number of permutations of N distin-
guishable objects, that is, the number of possible differeat arrangements or ways 10
order N distinguishable objects. Let us choose one of the N objects and place it in
the first position, one of the N — | remaining objects and place it in the second posi-
tion. and so on, until all N objects are ordered. Clearly there are N choices for the first

nosition. NV — 1 choices for the second position, and so on, until finally there is only
one object left for the Nth position. The total number of ways of doing this is then the
product of all the choices,

NN = DN =2)-- (2D = N! (distinguishable objects)

Next we calculate the number of ways of dividing N distinguishable objects into
two groups, one group containing N, objects. say. and the other containing the remain-
ing N — N,. There are N(N — - (N — N4 1)waysto form the first group, and
N,!=(N — Nt ways 10 form the second group. The total number 15, then, the
product

N
NN = 1)+ (N=N +1)x(N-= N = (TJ:NI)_! x (N =N)!=N!
But this has overcounted the situation drastically, since the order in which we place
N, members in the first group and N, in the second group is immaterial to the problem
as stated. All N, ! orders of the first group and N,! orders of the second group corre-
spond to just one division of N objects into N, objects and N, objects. Therefore the
desired result is

N1 NI
— = (1-75)
NN — NDU NyIN,!

Since the combination of factorials in Eq. (1-75) occurs in the binomial expansion,

N ONIxNTyn o NixNyt

(x+)"= 3

NIy e 2 Y 1-786)
Ni=0 A’Vl‘.(N_NI)! N(N2 I\/YI!N2! ( /

NYNMN = N is called 2 binomial coefficient. The asterisk on the second summa-
tion in Eq. (1-76) signifies the restriction N, + N, = N.
The generalization of Eq (1-73) to the division of N into r groups, the first con-

taining N . and so on. is easily seen 1o be
N! Nt
——— T T T N (1-77)
7 1... N r 7
N,IN,t--N.! IT5=1 Nt

where Ny + N, + -+ N, = N. This is known as a multinomial coefficient, since it
occurs in the expansion

X F X+ XY = R e o
L P NEo iz o 5= N (1-78)

where this time the asterisk signifies the restriction N, + N, + -+ N, =N.

There are a number of other combinatorial formulas that are useful in statistical
thermodynamics, but Eq. (1-77) is the most useful for our purposes. Combinatorial

formulas can become rather demandin i /
! g to derive. We refer t i
Mayer and Mayer* which contains a collection of formulas P Appendr AV of
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STIRLING'S APPROXIMATION

In statistical thermodynamics we often encounter factorials of very large numbers,
such as Avogadro’s number. The calculation and®mathematical manipulation of
factorials become awkward for large N. Therefore it is desirable to find an approxima-
tion for N! for large N. Problems of this sort occur often in mathematics and are
called asymptotic approximations, that is, an approximation to a function which
improves as the argument of that function increases. Since N! is actually a product, it
is convenient to deal with In V! because this is a sum. The asymptotic approximation
to In N! is called Stirling’s approximation, which we now derive.

Since N! = N(N = I}(N —=2) - (2)(1),In Ntis

N
InN!=) Inm (1-73)
m=1

Figure {—3 shows In x plotied versus x The sum of the areas under these rectangles
upto N isln NI Figure 1-5 also shows the continuous curve In x plotted on the same
graph. Thus In x is seen to form an envelope to the rectangles, and this envelope
beconies a steadily smoother approximation to the rectangles as x increases. We can
approximate the area under these rectangles by the integral of In x. The area under
in x will poorly approximate the rectangles only in the beginning. If N is large enough
(we are deriving an asymptotic expansion), this area will make a negligible contribu-
tion to the total area. We may write, then.

N N
InN!'= ) lnmzf Inxdx=NInN-—-N (N large) (1-74)
m=1 1

which is Stirling’s approximation to In N!. The lower limit could just as well have
been taken as 0 in Eq. (1-74), since N is large. (Remember that x In x —» 0 as x — 0.)

A more refined derivation of Stirling’s approximation gives InN!'~NInN-N
+ In(2zN)!/?, but this additional term is seldom necessary. (See Problem 1-59.)

| ;
3 l—.‘_ .-1-1""1T 1

| ,-i"r
|

| Il | \I A \ U L s

g x
Fiyure 1-5. A plot of In x versus x, showing how the summation of In m can be approximated by the
integral of In x.
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METHOD OF LAGRANGE MULTIPLIERS

It will be necessary, later, to maximize Eq. (I-77) with the constraint
N, + N, + -+ + N, = constant. This brings us to the mathematical problem of
maximizing a function of several (or many) variables f(x;, x3, ..., x,) when the
variables are connected by other equations, say g,(xy, ..., x)=0,g,0x4,....%,)=0,
and so on. This type of problem is readily handled by the method of Lagrange un-
determined multipliers.

Ifit were not for the constraints, g;(x;, x,, ..., x,) = 0, the maximum of f(x, ..., x.)
would be given by
r C:f
of = (—) ox; =0 (1-79)
: ng axl 0 / H

where the zero subscript indicates that this equation equals zero only when the r
partial derivatives are evaluated at the maximum (or minimum) of /. Denote these
values of x; by xjo. If there were no constraints, each of the dx; would be able to be
varied independently and arbitrarily, and so we would conclude that (¢f/ox;) = 0 for
every j, since df must equal zero. This would give r equations from which the values
of the rx;° could be obtained.

On the other hand, if there is some other relation between the x’s, such as

g(x,, X3, .., x,) =0, we have the additional equation
r (0
dg =7, (—g) ox; =0 (1-80)
i=1\0X;/ o

This equation serves as a constraint that the dx; must satisfy, thus making one of them
depend upon the other  — 1. In the Lagrange method, one multiplies Eq. (1-80) by
some parameter, say 4, and adds the result to Eq. (1-79) to get

(o a9
j;(éxj an)o(ij -0 S
The dx; are still not independent. because of Eq. (1-80), and so they cannot be varied
independently. Equation (1-80), however, can be treated as an equation giving one
of the éx; in terms of the other r — 1 independent ones. Pick any one of the r dx;
as the dependent one. Let this be dx,,.

The trick now is that we have not specified 4 yet. We set it equal to (3f/0x,)o/
(8g/0x,)o, making the coefficient of ox, in Eq. (1-81) vanish. The subscript zero
here indicates that (9f/dx,) and (Jg/dx,) are to be evaluated at values of the x,
such that f'is at its maximum (or minimum) under the constraint of Eq. (1-80). Of
course, we do not know these values of x; yet, but we can nevertheless formally define
J in this manner. This leaves a sum of terms in Eq. (1-81) involving only the inde-
pendent 6x;, which can be varied independently, yielding that

) d
(—f) —i(—g) =0 Frm Yy Py it = Lkl seosit
0x;/ o 0x;/ o

* See Mayer and Mayer, Statistical Mechanics (New York: Wiley, 1940).

If we combine these r — 1 equations with our choice for 1, we have

(5), - 152), -0
ax;) \ox;)o (1-82)

for all j.

As we said above, the choice of J here is certainly formal, since both (éf/dx,), and
(0g/0x,)o must be evaluated at these values of x ; which maximizes £, but thgs(f): are
knov:n faoldeq. (1-82) only in terms of A. But this presents no difficulty, since in
practice 4 1s determined by physical requirements. Exampl is wi ot
ST mples of this will occur in the

Lagrange’s method becomes no more difficult in the case in which there are several

constraints. Let g_l(’fl’ s X%, ga(X1. ..., x,), ... be a set of constraints. We introduce
a Lagrange multiplier for each g;(x,. ..., x,) and proceed as above to get

_@f -2 % - 99 .

ox; “ax, Ma, =0 Y
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This is a proper density distribution (the integral from zero to infinity equals 1), and the mean value
of e with this distribution over the range from zero to infinity is kT, regardless of the frequency of
the mode, so this implies the equipartition of energy (which we know leads to non-sensical
results). This distribution can be derived classically in several different ways, but in general it
corresponds to the proposition that states with higher energy are less probable (or less populated),
and the weight factors of any two states are inversely proportional to the exponentials of their
energy levels. In tum this is related to the idea that the weight factor for a given region on the
constant energy surface in phase space equals the volume swept out by that region as the total
energy changes mcrementally from € to e+de. For a certain mode with high energy, the change in
the corresponding coordinate and momenta necessary to increment the energy by de is less than
for modes with low energy — just as the increase in speed needed to give a certain increase in
kinetic energy is less for a particle that is already moving rapidly than for one that is moving slowly
(because the kinetic energy is quadratic in speed). Therefore, the volume of phase space swept
out near a high-energy mode on the energy surface is less than near a low-energy mode, so the
weight factors are correspondingly less.

Classically it was assumed that every energy mode is capable of possessing any amount of energy,
from zero to infinity, so the phase space was continuous and had no natural scale, which presents
some subtle problems when trying to decide how to count states. However, following Planck, we
could hypothesize that energy modes are actually capable only of possessing integer multiples of a
certain fundamental irreducible quantum of energy, and we could suppose that this quantity
depends on the frequency of the energy mode. The simplest supposition is that the energy € ofa
mode with frequency v can only take on one of the discrete values

g=nhv , n=012.. (4)

where h is a fundamental constant of nature (now called Planck’s constant). We still assert that the
weight factors to be assigned to the energy levels are related according to the exponential formula
(3), but we simply restrict the values of ¢ to the appropriate set of discrete values depending on
the frequency.

The task now is to determine the mean value of energy for a mode with frequency n. Recall that if
energy is treated continuously with the distribution (3) we get a mean value of kT for the energy,
regardless of frequency. However, using the same exponential relation for the weight factors, but
restricting the energy levels to the discrete values given by (4), the mean value of energy is

o e-nhv /KT
— Z T
fv = ®  —nhv/kT
Y —

n=_

If' v is small, this approaches the continuous case, so the mean energy approaches kT, but for
larger v the weight factor for the n= 0 term (which is constant) begins to predominate over the



weight factors for n> 0. The denominator can never be smaller than 1/kT, whereas the numerator
goes to zero. Making use of the geometric series identities

Y xh= — . nxn=
n=0 n=0

(1-x)*

we can evaluate the summations to give the mean energy level for the frequency v

— hv
®v T AT ()

Multiplying this by the spectral density (1) gives Planck’s formula for the energy density per unit
volume of cavity radiation as a function of frequency

V3 1
plv) = BT — TR 1 (6)

This replaces the classical Rayleigh-Jeans law given by equation (2). A normalized plot of this
function is shown below.

2 |J | | | I
|
| Rayleigh-Jeans Energy Spectrum for
U2 J,/ Cavity Radiation
f
f )
1 If 4 . |
[ 7
i
j - o Planck
/) e -1 g,
/ | | | | -
o 2 4 6 8 10

The usual derivation of Planck’s law, as described above, simply assumes that the Boltzmann
distribution (3) gives the correct weight factors for discrete energy levels, even though that
distribution was derived classically from the dynamics ofa continuous distribution, There are
actually several different classical derivations of Boltzmann’s distribution for various circumstances,
but they all involve continuously distributed energy levels, and some of them explicitly rely on the
continuity. For a discrete set of energy levels one might have expected, a prior, something like a
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A Simple Problem simply done

Consider two equal masses m connected by springs of equal
strength k connected as shown.

k . kT2 k
I-—”ESZSESZSE‘S — 80— @ T
The Newton's equations are

mZ; = —kx1 — k(z1 — z2),

mZy = k(1 — x2) — kxo .

mi) = —2kxy + kxg,

mi'z == kiL‘l - 2](:.’1‘2 .



These are two coupled differential equations and call for some
ingenuity to make them separable. Adding and subtracting, we get

m(dv'l + fi‘g) = —k(xl + .’L‘Q) ,
m(ﬁv'l - .fz) = —3k($1 — .’L‘2) a

So by using a good combination of the co-ordinates, the equations
of motion separate into two uncoupled oscillations with their
specific frequencies.

1+ x2 = Acos(w_t + 671),
1 — o3 = Bcos(wyt + d2),

where w? = k/m and w? = 3k/m.
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Chapter 6

HEAT CAPACITIES

The importance of heat capacities in thermodynamic discussions can scarcely
be over-estimated. At constant volume, the heat capacity measures quan-
titatively the ability of the system to take energy into its internal degrees
of freedom. These are, in turn, intimately related to the atomic and molec-
ular characteristics of the particular system. The heat capacity can thus
provide an important link between the observed, macroscopic behaviour of
a system and its detailed atomic or molecular structure.

Before we consider specific examples, let us look at the general way in
which the energy-level ladder of an aspect of the system influences the abil-
ity of that aspect to take in energy, i.e. its heat capacity. When the levels

are closely spaced and the energy gap between them is small, application
of the distribution law in the form

n; = nopieXP(—Ei/kT)

shows that it will be easy for particles to leave the ground state. In order
to raise the temperature it is necessary to promote many particles to upper
energy levels. There will be a large intake of energy and a heat capacity near
the classical value which was deduced without considering quantization of
energy. Conversely, when the energy levels are widely spaced and the energy
gaps large, a rise in temperature promotes rather few particles and the heat
capacity is low. Now the description ‘large’ or ‘small’ for the spacings of
the energy levels are of necessity comparative; any quantity or object is



66 An Introduction to Statistical Thermodynamics

only large or small compared with something else. In this discussion, the
comparison is with thermal energy, kT. We can illustrate this with two
important physical situations:

¢ < kT (when the heat capacity has its classical value)
and

¢ > kT (when the heat capacity tends to zero)

_

kT l____“(T

t Energy levels Energy levels
r << kT ¢ »>> kT
Heal capacity classical Heat capacity =0

t

€

Fig. 6.1. Effect of energy-level spacing on heat capacities.

as shown in Fig. 6.1. Put another way, when the energy separation is much
less than kT it is as though the effect of quantization were not noticed by
the thermal energy. The classical result, which is based on a continuous
distribution of energy levels, is then obtained. But once the energy becomes
of the order of or greater than kT, quantization effects become important.
We shall now consider two important systems, the study of which can
help greatly in understanding the effect of quantization of energy on the
thermodynamic properties of substance.

Heat Capacities of Gases

When a simple gas is heated at constant volume the energy is taken
up by the modes of the molecule: translation, rotation, and vibration.
Although translation energy is quantized, the quanta are so small (Eyrans K
kT) that under all experimentally accessible conditions the translational
partition function can be evaluated explicitly by integration. As we saw in
Chapter 4, the energy of translation motion calculated from the partition
function, is:

3
Utrans = iRT .
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Therefore
dUt rans

dT

No deviations from this formula due to quantization effects have been
detected.

The energy levels of a linear rotating molecule are given by the formula
discussed in Chapter 4

3
Crans: =—-R.
' 2

h2
Erot ES mJ(J-{- 1)
where J is a positive integer or zero. From this we deduced in Chapter 4
that, for diatomic molecules other than the isotopes of hydrogen, to a very
good approximation:

B 8m2IkT
Grot = W-
For a linear molecule:
d In qot
Uro - RT2 ——X = .
t T RT
Therefore,
dUrot
C'ro - = .
v=ar B

(This result is identical with the classical formula in which the two
degrees of rotational freedom of a linear molecule each contribute 1R to
Crot-) In practice we find that for all diatomic gases, except hydrogen
and its isotopes, the experimental value is indeed R and quantization does
not affect the rotational heat capacity. That quantization of rotation has
the greatest effect for hydrogen should not be surprising. The spacing of
rotational energy levels is inversely proportional to the moment of inertia,
with the result that the energy separation of J = 0 and J = 1 is greatest for
hydrogen. For example, this spacing is 30 times as large in hydrogen as it
is in nitrogen. Thus, whilst quantization effects are noticeable for hydrogen
between 20 K and 300 K, the temperature would need to be lowered by a
factor of 30 to produce similar effects in nitrogen. The highest temperature
at which non-classical behaviour could be expected from nitrogen is thus
10 K, at which temperature it is frozen.

The vibrational energy levels of a diatomic simple harmonic oscillator
are given the formula:

1
Eiy = hv(v + 5)
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where v is the frequency of the vibration and v is the vibrational quantum
number, a position integer or zero. As we saw in Chapter 4 this leads to
the vibrational partition function

Quib = (1 o e—hu/kT)—l
In gip = —In(l — e"“’/kT)
dlingu) _ hv e MAT
dT kT2 1—e h/kT
d(In gyip) hv e~ hw/kT
— pr2 _pr.Ww. &
Ui, = RT aT RT T 1 — e—hv/kT

When the substitution u = hv/kT is made, this equation is of the form
quoted in Appendix 3. If this equation is rearranged we can obtain:

Rhv 1
Uvib = L et /KT) — 1 _
|
2
hv/kT
o R [ (6.1)
KT | (ehv/FT —1)2 |

With the substitution w = hv/kT, this equation is also quoted in

Appendix 3. '
The vibrational heat capacity of a diatomic molecule, calculated from

Eq. (6.1), can vary between zero and R, depending upon the value of the

ratio hv/kT (see Appendix 3). At high temperatures when hv/kT is small,

we can expand (1 — e "/*¥T)~1 as a power series and neglect terms in

(hv/kT)? and beyond. We then get:

Qvib = ’;l—T(high temperature)
14

d 2d In guip
Cvib = E:F(RT dT ) ’
whence
Cvib = R.

—hv/kT _, 0 and qup — 1.

At low temperatures where hv/kT is large, e
Hence

Cyvibr = 0asT — 0.
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The frequency v is related to the mass and bond strength of the molecule by
the equation v = 2L \/(k/u), where k is the force-constant of the bond and
p the reduced mass of the molecule. Thus light (low 1) strongly bonded
(high k) molecules have high vibration frequencies and low vibrational
heat capacities at room temperature. Conversely, heavy, weakly-bonded
molecules have near-classical vibration heat capacities, e.g. at 300 K Cuib
~0J K~'mol™" for Hy; ~ 4.2 J K~'mol ! for Cly, and ~ 8.4 J K~'mol~}
for I,. ﬂ

It is interesting to note that a ten-fold change in the ratio hv/kT from
a low-temperature value of, say 6 to a high-temperature value of 0.6 has
the effect of changing the heat capacity from 0.09R to 0.97R.

The temperature dependence of the heat capacity of a diatomic gas can
be illustrated schematically (Fig. 6.2).

4R~
3R|
Cy
2R

R

Temperature

Fig. 6.2. Variation of heat capacity of a diatomic gas with temperature (only
hydrogen isotopes give purely translation heat capacities).

Heat Capacity of Simple Solids

One consequence of the third law is a prediction that the heat capacity
of a solid tends to zero at very low temperatures. We can see how this
happens if we note that the only way in which a monatomic solid can take
in heat is by increasing the vibrational excitation of its constituent atoms.
This excitation naturally increases the entropy of the system. When the
temperature is lowered sufficiently all the particles fall back to the lowest
available level, thus reducing the entropy to zero. As we have seen for
the diatomic molecule, when there is no vibrational excitation (hv < kT
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the vibrational heat capacity tends to zero. This result can be expressed
mathematically for the heat capacity at constant pressure as follows:
o0H

Cp= (—8—7:)}) by definition

:(—g—;{) (since only P — V work is done by the system)
P

:(T%%)P (a reversible process)

B ( S )

“\olnT/pP’
Now as T tends to zero, the third law predicts that the entropy tends to
zero. Since In T tends to minus infinity as T — 0, the bracket tends to zero,

i.e. Cp — 0. Similarly Cy — 0 as — T — 0. The temperature dependence
of Cy of for some monatomic solids is shown in Fig. 6.3.

m 5 it 3
Fig. 6.3. Heat capacities of some monatomic solids.

The high temperature limiting value of Cy for a monatomic solid is
3R, about 25 J K-'mol~!. This is, of course, Dulong and Petit’s Law.
Classically it was derived by assuming each atom could vibrate in th‘ree
directions, with each mode of vibration contributing R to the heat capacity.
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This approach, however, could provide no explanation for a heat capacity
which goes to zero.

In order to understand the behaviour of solids, we need to find a model
for the system which seems physically reasonable and whose thermody-
namic properties are in accord with the experimental results. There have

been two particularly important approaches to this problem, first by Ein-
stein and then by Debye.

The Einstein Theory of Heat Capacities

In this treatment, the model is of a solid which consists of N indepen-
dent simple harmonic oscillators whose energy is quantized according to
the equation E = nhv, where v is the fundamental frequency of the oscil-
lators and n is a positive integer or zero, i.e. an oscillator may only have
discrete energies E,2F, 3E . .. above the zero-point level. It is at this point
that the model differs from the classical treatment, in which the oscillating
atoms can have any frequency and, therefore, any energy. When there is no
constraint on the vibrations the solid has a temperature-independent heat
capacity of 3R.

The problem we now face is one of finding the energy of a system of
solid-state simple harmonic oscillators. It can be solved by the same math-
ematical procedure as that we have already used earlier in this Chapter for
the vibrations of a diatomic molecule. The only point of difference arises
because a gaseous diatomic molecule has but a single mode of vibration,
along the internuclear axis, while the motion of a solid-state oscillator can
be resolved into three components, one along each of the Cartesian coordi-
nates. Thus from our earlier equation for a vibrating diatomic molecule:

Rhv 1

Usib = k  ehv/FT _1

we can calculate the average energy of an oscillator £ using the relation

E=

2| <

Hence
hv
ehv/kT _ 1

esfl
Il

(R =kN).
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Since each solid-state oscillator has 3 directions of vibration or ‘degrees of
freedom’ the total vibrational energy 3N E. We can now reach the Einstein
value of the heat capacity of differentiation:

= hv
2
hv hv/kT
o (W 3Nk(25) e/
" _<6_T>v T (eh/RT —1)F

At high temperature (hv < kT') the upper limit of Cg can be obtained by
the same method as the one used for a gas. The result is

(Ce)uigh T = 3.
At low temperature (hv > /kT) the energy is:
Ug = 3Nhve "/FT.

Therefore N
o . { 7hu/kT.
(C)Lowr = 3Nk( kT) e

As T — 0 the exponential term controls the equation and Cy — 0. This
again is the correct limit. However, the exponential decrease at the lowest
temperature is more rapid than the experimental results, which generally
have a limiting T® dependence.

In the equation for Cy the only unknown parameter is the frequency
of the oscillators, v. Thus, by fitting the equation as well as possible to
the experimental results, a value of this characteristic frequency of any
particular solid can be obtained. It is sometimes more convenient to use
temperature than frequency as the characteristic parameter. The two are
related by the equation

hl/E = kGE

where O is the Einstein temperature.

For many common inorganic crystals 0 ~ 200K, so that vg ~ 4 X
10'2Hz. Tt is usually possible to get good agreement between theory and
experiment down to a temperature of about 0.26g. Below this temperature
the exponential factor causes too rapid a fall in the heat capacity.
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It is useful to consider the shortcoming of the Einstein model. The
postulate of a single vibration frequency for the particles appears to be a
good approximation at intermediate and high temperatures (T' > 0.260g).
But at low temperatures the spacing of the lowest energy levels, which is
hvg, is too large. The result is that the heat capacity falls too rapidly. This
conclusion illustrates our general observation that widely spaced energy
levels, or large quanta, lead to a small heat capacity. In choosing a new
model, therefore, we should seek one in which there are some, but not too
many, low-lying energy levels, which can be populated at low temperatures.
The improvement at low temperatures which the Debye treatment offers
over the Einstein model arises from this feature.

The Debye theory of heat capacities

Instead of treating the particles as though the motions were independent
of one another, the Debye approach recognizes that the particles do interact.
In this model the solid is treated as a homogeneous continuum, and the
allowed vibrational energy levels become those of the crystal as a whole.
The vibrational motion can be thought of as the three dimensional analogue
of the familiar vibrations of a violin string. The quantization of energy is
then governed by the condition that the vibrations have a node at the edge
of the solid, i.e. I = n)\/2 where [ is the length of the side of the solid and
A the wavelength of the vibration. n is a positive integer.

In order to calculate the total energy of vibration we need to know
how many oscillations there are at each allowed frequency. We will call the
mathematical function which gives us this result f(v). The elastic theory
of solids can be used to calculate f(v), with the result f(r) x v2. Over
any small range of frequency, at any particular frequency v;, the number

of vibrations is f(v;)év. Since we still have N atoms, the overall number
of allowed vibrations remains at 31V, i.e.

Zf(l/)él/ =3N.

An important consequence of this equation is that f(v) and, therefore, v
cannot go on increasing indefinitely but must reach a limiting value. This
limiting frequency is called the Debye cut-off frequency, vp. In this model
the energy levels of the vibrating solid are closely spaced, so that no serious
mathematical error is introduced if we integrate instead of summating the
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equation for f(v), i.e.
VD
f avidv = 3N
0

where a is a constant of proportionality.
Hence we get

a=9N/W, fv)= INvZ /1.

We are now ready to write down the total vibrational energy of the
crystal. This energy is the product of the average energy of an oscillator
of frequency v and the number of oscillators at that frequency, summed or
integrated over all the allowed frequencies. This latter range is effectively
0 to vp. The average energy of an oscillator we have calculated previously
in the Einstein treatment; it is

hv

B ehv/kT _1°

Thus

U= /OVD Ef(v)dv

B = hv 9Nv2dv
- o ehv/kT — 1 V]3) :

Once again we can express the characteristic frequency vp as a temper-
ature, fp, by means of the equation hvp = kbp. If we let u = hv/kT and
differentiate U to get Cy the result is:

T\3 /T yletdu
CD‘QR(%) [ &=

This integral can be calculated and is tabulated in standard works; at low
temperatures the limit 6p/T" on the integral may be replaced by oo, the
value of the integral becomes independent of T, and so the heat capacity
varies as T3/63,. Once again Cy depends on the ratio of the temperature
of a characteristic temperature, this time fp. This latter quantity is the
only parameter specific to any particular monatomic solid. It follows that
if 6pis chosen correctly and Cy is plotted against T/6p all solids should fall
on the same curve. This should also be true of the Einstein model if Cy is
plotted against T'/6g. The experimental results show that this expectation
is rather accurately fulfilled but that, as we have seen, the Einstein heat

P O T A
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Fig. 6.4. Comparison of Einstein and Debye theories of heat capacities.

capacity falls off too fast at low temperatures. The Debye and Einstein
curves are shown in Fig. 6.4.

Having obtained fp from the curve it is possible to make a further test
of the Debye theory, because the elastic theory of solids allows a quite
independent calculation of p to be made, using only the independently
measured elastic properties of the solid. The relation is:

bp = % -%(6#25)%

where Vj is the velocity of sound in the solid of volume V. There is good
though not perfect, agreement between the two results. The discrepancies,
arise because the distribution of allowed vibration frequencies chosen in
the Debye treatment is something of a simplification. A more elaborate
treatment gives better agreement but a less useful formula.

A particularly valuable feature of the Debye equation is the simple form
of the low-temperature region. This T3 temperature dependence can be
used to extrapolate the experimental results from the lowest accessible tem-
perature to the absolute zero. As we shall see, this extrapolation is required
for the experimental determination of the third-law entropies.
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Effects of Electron on Heat Capacities

One distinctive property of metals is their electrical conductivity. This
property results from the ability of the conduction electrons to move freely
through the lattice. It might have been expected, therefore, that these
electrons would make a significant contribution to the heat capacity of
the metal. However, at room temperature the difference between the heat
capacity of a metal and of a dielectric is hardly significant. By contrast,
at very low temperatures, where the lattice heat capacity is low and falling
rapidly (Debye T region), the contribution of the electrons does become
important and it can be measured. The equation for the total heat capacity
in the Debye T2 region is

Chetal = aT3 + ’YT -
(lattice) (electrons)

Thus at low temperatures the electrons make an appreciable contribution
to the heat capacity. This is most clearly seen plotting C/T against T? for
a metal and an insulator as in Fig. 6.5.

/T

(T8

Fig. 6.5. Comparison of low-temperature heat capacities of a metal and an
insulator.

The reason why the electrons have a heat capacity which is so much less
that the classical value can be understood from our earlier discussions of

Heat Capacities 77

the effect of the quantization of energy levels on heat capacities. We have
seen that when the characteristic energy is large compared with kT the
associated heat capacity is small. The elementary band theory of metals
can be used to show how it comes about that the energy of the electrons is
indeed much greater than k7.

If we imagine that the metal consists of a regular crystalline array of
atoms with the electrons free to move throughout the lattice then we find
that there are groups of contiguous energy levels, ‘bands’, and that these
may be separated from neighbouring bands by an energy gap. Within
each band, the electrons (being Fermi-Dirac particles) occupy the lowest
energy levels consistent with the Pauli principle, i.e. only two electrons,
with opposed spins, can occupy each energy level. Thus, as electrons are
fed in to the lattice, higher and higher energy states must be occupied. The
energy-level diagram for this process usually drawn by plotting the number
of states with a particular energy, N (E), against energy. The resulting
curve is the band. Electrons then occupy the N, /2 lowest energy levels,
where N, is the number of conduction electrons. The resulting situation
at absolute zero is shown in Fig. 6.6. The area shown shaded represents
energy levels occupied by electrons, the clear area represents empty levels
and the vertical line Er marks the boundary. Ff is called the Fermi level.

N(E)

Fig. 6.6. A simple band diagram for a metal.

As the diagram shows, it is the electrons at the Fermi level and these
alone which have unoccupied energy levels adjacent to them. Excitation
to these empty levels may be achieved thermally or by the application of
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Heat capacity ar constant volume as a function of temperature. The
solid curve is the Debve function (eq. 8-17). The curve was fitted 1o
the data points for each metal in order 10 determine the Debve
temperature @ for the metal, and then the data were replotted as a
function of 7/©. (From F. Seitz, Modern Theory of Solids, McGraw-
Hill, New York, 1940.)
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The Photoelectric Effect

Michael Fowler
University of Virginia

Hertz Finds Maxwell's Waves: and Something Else

The most dramatic prediction of Maxwell's theory of electromagnetism,
published in 1865, was the existence of electromagnetic waves moving at the
speed of light, and the conclusion that light itself was just such a wave. This
challenged experimentalists to generate and detect electromagnetic radiation
using some form of electrical apparatus. The first clearly successful attempt was
by Heimrich Hertz in 1886. He used a high voltage induction coil to cause a
spark discharge between two pieces of brass, to quote him, "Imagine a
cylindrical brass body, 3 cm in diameter and 26 cm long, interrupted
midway along its length by a spark gap whose poles on either side are
formed by spheres of 2 cm radius." The idea was that once a spark formed a
conducting path between the two brass conductors, charge would rapidly
oscillate back and forth, emitting electromagnetic radiation of a wavelength
similar to the size of the conductors themselves.

To prove there really was radiation emitted, it had to be detected. Hertz used a
piece of copper wire 1 mm thick bent into a circle of diameter 7.5 cms, with a
small brass sphere on one end, and the other end of the wire was pomted, with
the point near the sphere. He added a screw mechanism so that the point could
be moved very close to the sphere in a controlled fashion. This "receiver" was
designed so that current oscillating back and forth in the wire would have a
natural period close to that of the "transmitter" described above. The presence of
oscillating charge in the recever would be signaled by a spark across the (tiny)
gap between the point and the sphere (typically, this gap was hundredths of a
millimeter). (It was suggested to Hertz that this spark gap could be replaced as a
detector by a suitably prepared frog's leg, but that apparently didn't work.)

The experiment was very successful - Hertz was able to detect the radiation up
to fifty feet away, and in a series of ingenious experiments established that the
radiation was reflected and refracted as expected, and that it was polarized. The
main problem - the limiting factor in detection -- was being able to see the tiny
spark i the receiver. In trying to improve the spark's visibility, he came upon
something very mysterious. To quote from Hertz again (he called the transmitter
spark A, the receiver B): "I occasionally enclosed the spark B in a dark case
so as to more easily make the observations; and in so doing I observed that

galileo.phys.virginia.edw/classes/252/photoelectric_ellecthiml
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the maximum spark-length became decidedly smaller in the case than it
was before. On removing in succession the various parts of the case, it was
seen that the only portion of it which exercised this prejudicial effect was
that which screened the spark B from the spark A. The partition on that
side exhibited this effect, not only when it was in the immediate
neighbourhood of the spark B, but also when it was interposed at greater
distances from B between A and B. A phenomenon so remarkable called for
closer investigation."

Hertz then embarked on a very thorough investigation. He found that the small
receiver spark was more vigorous if it was exposed to ultraviolet light from the
transmitter spark. It took a long time to figure this out - he first checked for
some kind of electromagnetic effect, but found a sheet of glass effectively
shielded the spark. He then found a slab of quartz did not shield the spark,
whereupon he used a quartz prism to break up the light from the big spark mto
its components, and discovered that the wavelength which made the little spark
more powerful was beyond the visible, n the ultraviolet.

In 1887, Hertz concluded what must have been months of investigation: ... 7
confine myself at present to communicating the results obtained, without
attempting any theory respecting the manner in which the observed
phenomena are brought about."

Hallwachs' Simpler Approach

The next year, 1888, another German physicist, Wilhelm Hallwachs, in Dresden,
wrote:

"In a recent publication Hertz has described investigations on the
dependence of the maximum length of an induction spark on the radiation
received by it from another induction spark. He proved that the
phenomenon observed is an action of the ultraviolet light. No further light
on the nature of the phenomenon could be obtained, because of the
complicated conditions of the research in which it appeared. I have
endeavored to obtain related phenomena which would occur under simpler
conditions, in order to make the explanation of the phenomena easier.
Success was obtained by investigating the action of the electric light on
electrically charged bodies."

He then describes his very simple experiment: a clean circular plate of znc was
mounted on an insulating stand and attached by a wire to a gold leaf
electroscope, which was then charged negatively. The electroscope lost its
charge very slowly. However, if the zinc plate was exposed to ultraviolet light
from an arc lamp, or from burning magnesium, charge leaked away quickly. If
the plate was positively charged, there was no fast charge leakage. (We showed
this as a lecture demo, using a UV lanp as source.)

Questions for the reader: Could it be that the ultraviolet light somehow spoiled
the insulating properties of the stand the zinc plate was on? Could it be that
electric or magnetic effects from the large current in the arc lamp somehow

galileo.phys.virginia.edw/classes/252photoelectric_elfecthtml
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caused the charge leakage?

Although Hallwach's experiment certainly clarified the situation, he did not offer
any theory of what was gomng on.

J.J. Thomson ldentifies the Particles

In fact, the situation remained unclear until 1899, when Thomson established that
the ultraviolet light caused electrons to be emitted, the same particles found n
cathode rays. His method was to enclose the metallic surface to be exposed to
radiation in a vacuum tube, in other words to make it the cathode in a cathode
ray tube. The new feature was that electrons were to be ejected from the
cathode by the radiation, rather than by the strong electric field used previously.

By this time, there was a plausible picture of what was going on. Atoms in the
cathode contained electrons, which were shaken and caused to vibrate by the
oscillating electric field of the incident radiation. Eventually some of them would
be shaken loose, and would be ejected from the cathode. It is worthwhile
considering carefully how the number and speed of electrons emitted would be
expected to vary with the intensity and color of the incident radiation.
Increasing the intensity of radiation would shake the electrons more violently, so
one would expect more to be emitted, and they would shoot out at greater
speed, on average. Increasing the frequency of the radiation would shake the
electrons faster, so might cause the electrons to come out faster. For very dim
light, it would take some time for an electron to work up to a sufficient amplitude
of vibration to shake loose.

Lenard Finds Some Surprises

In 1902, Lenard studied how the energy of the emitted photoelectrons varied
with the intensity of the light. He used a carbon arc light, and could increase the
mtensity a thousand-fold. The ejected electrons hit another metal plate, the
collector, which was connected to the cathode by a wire with a sensitive
ammeter, to measure the current produced by the illummation. To measure the
energy of the ejected electrons, Lenard charged the collector plate negatively, to
repel the electrons coming towards it. Thus, only electrons ejected with enough
kinetic energy to get up this potential hill would contribute to the current. Lenard
discovered that there was a well defined minimum voltage that stopped any
electrons getting through, we'll call it V. To his surprise, he found that V.,
did not depend at all on the mtensity of the light! Doubling the light mtensity
doubled the number of electrons emitted, but did not affect the energies of the
emitted electrons. The more powerful oscillating field ejected more electrons, but
the maximum individual energy of the ejected electrons was the same as for the
weaker field.

But Lenard did something else. With his very powerful arc lamp, there was
sufficient mtensity to separate out the colors and check the photoelectric effect
using light of different colors. He found that the maximum energy of the ejected
electrons did depend on the color --- the shorter wavelength, higher frequency
light caused electrons to be ejected with more energy. This was, however, a
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fairly qualitative conclusion --- the energy measurements were not very
reproducible, because they were extremely sensitive to the condition of the
surface, in particular its state of partial oxidation. In the best vacua available at
that time, significant oxidation of a fresh surface took place in tens of minutes.
(The details of the surface are crucial because the fastest electrons emitted are
those from right at the surface, and their binding to the solid depends strongly on
the nature of the surface --- is it pure metal or a mixture of metal and oxygen
atoms?)
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Question: Tn the above figure, the battery represents the potential Lenard used
to charge the collector plate negatively, which would actually be a variable
voltage source. Since the electrons ejected by the biue light are getting to the
collector plate, evidently the potential supplied by the battery is less than Vo
for blue light. Show with an arrow on the wire the direction of the electric current
in the wire.
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Einstein Suggests an Explanation

In 1905 Einstein gave a very simple interpretation of Lenard's results. He just
assumed that the incoming radiation should be thought of as quanta of frequency
hf, with f the frequency. In photoemission, one such quantum is absorbed by
one electron. If the electron is some distance mto the material of the cathode,
some energy will be lost as it moves towards the surface. There will always be
some electrostatic cost as the electron leaves the surface, this is usually called the
work function, 7. The most energetic electrons emitted will be those very close
to the surface, and they will leave the cathode with kinetic energy

E=hf-W.

On cranking up the negative voltage on the collector plate until the current just
stops, that is, to Vg, the highest kinetic energy electrons must have had energy

eVstop ON leaving the cathode. Thus,
eVstop=h - W

Thus Einstein's theory makes a very definite quantitative prediction: if the
frequency of the incident light is varied, and Vy,,, plotted as a function of

frequency, the slope of the line should be 4/e.

It is also clear that there is a minimum light frequency for a given metal, that for
which the quantum of energy is equal to the work function. Light below that
frequency , no matter how bright, will not cause photoemission.

Millikan's Attempts to Disprove Einstein's Theory

If we accept Emnstein's theory, then, this is a completely different way to measure
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Planck's constant. The American experimental physicist Robert Millikan, who
did not accept Einstein's theory, which he saw as an attack on the wave theory
of light, worked for ten years, until 1916, on the photoelectric effect. He even
devised techniques for scraping clean the metal surfaces inside the vacuum tube.
For all his efforts he found disappointing results: he confirmed Einstemn's theory,
measuring Planck's constant to within 0.5% by this method. One consolation
was that he did get a Nobel prize for this series of experiments.
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Before collision

Molybdenum X, line

Wavelength, X

Compton scattering of a photon from an electron at rest. The graphs at
the right show the shift in the K. radiation from molybdenum scattered

from carbon.
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where, as a result of the periodic conditions, we have

2mn

be= 5 n= 0,12,
kyzm; m=0,+1,42,...

I

92l
k, = %; 1=0,+1,42,... (1.25)

The wave solutions fill up the entire space but once again the k-vectors are quantized
due to the boundary conditions.

The quantization aspect discussed above is a feature quite unique to waves.
As we noted in the previous section, it does not occur when we discuss the classical
behavior of particles. Another unique feature of waves is discussed In the next

section.

1.6 WAVES, WAVEPACKETS, AND UNCERTAINTY

In classical physics when we deal with wave phenomena we are aware of a little
“fuzziness” in the description of certain features of the wave. For example, let us
imagine a child creating a wave on the surface of a pond by throwing a stone into
the pond. We know from experience that a “wavepacket” or wave “pulse” intially
localized around the point where the stone hit the water surface is produced. This
wave then propagates toward the edges of the pond. Can we, at any time, precisely
define the location of the wave and its wavelength? We know from experience and
from classical physics that this is not possible. If we try to create a wavepacket
highly localized in space we lose the knowledge of the wave’s wavelength. On the
other hand, if we try to create a “plane wave” with a well-defined wavelength, we
lose the knowledge regarding the spatial position of the wave.

The uncertainty described above is not of concern in classical physics when
we deal with particles. For example, we have no problem defining precisely any
combinations of physical observables of a particle. However, a wave description will
inevitably bring in an uncertainty in the precision with which we can simultaneously
define certain physical observables. To see how this occurs, we examine the uncer-
tainty arising in the wavelength or, for convenience, the wavevector k (k =2m/X),
and the position of waves.

To describe the wavepacket, let us begin from a plane wave given by

Yr(z) = e'*® (1.26)

The position of the wave is completely undefined (as shown in Fig. 1.7a). To create
a wavepacket localized at some point zo in space, we have to combine several plane
waves. One example is to use an equal amplitude combination of waves centered
around ko with a spread £Ak. The resulting function, say ko, but from a spread
+Ak, then the function

ko+AFk .
F(2,0) = f gk ¢iH(E=20)
ko—Ak
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AMPLITUDE

(a)

Y (x-L) Vi(x+L)

(b)

Figure 1.6: A schematic showing (a) the stationary boundary conditions applicable to a
string clamped at £ = 0 and z = L; and (b) periodic boundary conditions leading to plane

wave solutions.
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_ 2sin(Ak (z — z))

I — g

g*Fo(z=20) (1.27)

is centered around the point zo and the probability (| F'|?) decays from its maximum
value at zg to a very small value within a distance 7/Ak, as shown in Fig. 1.7b.

A more useful wavepacket is constructed by multiplying the integrand in
the wavepacket by a Gaussian weighting factor:

(k — ko)?
k—ko) = - 1.28

and extending the range of integration from —oo to +00. This wave packet has the
form

Y(z,z0) = /00 exp [—M] exp [tk(z — zo)] dk

oo 2(Ak)?
= exp [iko(x — xg) — (i%o)z(Ak)z]
X /_: exp [—% + i(k — ko)(z — zo) + M(AW]

= V27 Ak exp [ik’o(x —2g) — %(:c - xo)Q(Ak)Z] (1.29)

¥(z, zo) represents a Gaussian wavepacket in space which decays rapidly away from
zo. We note that when we considered the original state exp(ikoz), the wave was
spread infinitely in space, but has a precise k-value. By constructing a wavepacket,
we sacrificed its precision in k-space by Ak and gained a precision Az in real space.
In general, the width of the wavepacket in real and k-space can be seen to have the
relation

Ak Az =1 (1.30)

This “uncertainty relation” which exists for waves is quite important. In
the next chapter we will see that under some conditions, particles behave as waves.
Similar uncertainty relations then exist in their properties. These relations are then
called Heisenberg uncertainty relations.

1.6.1 Propagation of a Wavepacket

In classical wave propagation we are often interested in the question: How does a
wave signal or pulse propagate in a medium? For example, we may create an optical
pulse by switching a laser and this pulse may move down an optical fiber. We may
be interested in the velocity at which the pulse moves and whether it distorts as it
moves.

The simplest solution to wave equations have the form

Y (r) ~ AelKT (1.31)
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Real part of a
plane wave

v /\ /\\ ......... e e

(a)

> I |‘ Real part of the
Ak ‘I 1 "wavepacket"

(b) A=y

Figure 1.7: (a) A schematic description of a one-dimensional wave e** which is extended
over all space; (b) a wavepacket produced by combining several waves produces a packet
that is localized in space with a finite spread. The wavepacket is shown centered at z,
and having a spread Az. The spread is such that Ak - Az ~ 1. This is an “uncertainty
relation” in classical physics for waves. No such uncertainty exists in classical physics for
particles.

In such a plane wave the probability density of the the wave, 9™, is the same in all
regions of space. Such a description is not useful if one wants to discuss transport of
an optical pulse or of a particle from one point to another. For example, in describing
electron transport we wish to describe an electron which moves from one point to
another. Thus the wavefunction must be peaked at a particular place in space for
such a description. This physical picture is realized by constructing a wavepacket
picture.

Construction of a Wavepacket

Let us examine a one-dimensional plane wave state with a wave vector kg

Yro(z) = €07 (1.32)
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We note that if a state was constructed not from a single ky component, but from
a spread Ak, then the function

ko+Ak .
Paag)= [ dbees
k

o—Ak
_ 2sin(Ak (z — z0)) eiko(z~20) (1.33)
(z — o)

is centered around the point zo and the probability (]F|?) decays from its maximum
value at zo to a very small value within a distance 7/Ak.

If Ak is small, this new “wavepacket” has essentially the same properties
as ¥ at kg, but is localized in space and is thus very useful to describe motion of
the particle. A more useful wavepacket is constructed by multiplying the integrand
in the wavepacket by a Gaussian weighting factor

2
f(k — ko) = exp [—(I;—(A%] (1.34)

Y(z,z0) = [_: exp [—%ﬁ + ik(z — a:o)] dk

— exp [iko(x — 2g) — £a%)—rz—(Ak)Z]

= V2rAk exp [iko(x —zp) — %(x - xo)z(Ak)z] (1.35)

¥(z, zo) represents a Gaussian wavepacket in space which decays rapidly away from
zo. We note that when we considered the original state exp(tkoz), the wave was
spread infinitely in space, but has a precise k-value. By constructing a wavepacket,
we sacrificed its precision in k-space by Ak and gained a precision Az in real space.
In general, the width of the wavepacket in real and k-space can be seen to have the
relation

Ak Az =~ 1 (1.36)
We can repeat this procedure for a wave of the form
P~ et (1.37)

and also obtain a wavepacket which is localized in time and frequency, the widths
again being related by
Aw At = 1 (1.38)

Let us now consider how a wavepacket moves through space and time. For
this we need to bring in the time dependence of the wavefunction, i.e., the term
exp(—tEt/h) or exp(—iwt).

Y(z,t) = /_00 f(k — ko) exp {i[k(z — xo) — wt]} dk (1.39)
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If w has a simple dependence on k

w=ck (1.40)
we can write
o0
¥(z,t) = / f(k — ko) exp [ik(z — zo — ct)] dk (1.41)
which means that the wavepacket simply moves with its center at
z—zg=ct (1.42)

and its shape is unchanged with time. If, however, we have a dispersive media and
the w vs. k relation is more complex, we can, in general, write

Ow 1 f%w
w(k) = w(ke) + = (k—ko)+ = == (k — ko) + -+ (1.43)
( ) ( Ok k=ko 2 6":2 k=kg
Setting
w(ko) = Wy
Ow _
8w
W - = (144)
we get

#(z,0) = exp kol —20) ~wo] [ (k= ko)
X exp [z(k — ko)(z — o — vgt) — %(k — k0)2t] dk (1.45)

If & were zero, the wavepacket would move with its peak centered at
T —zg=v,t (\1.46)

i.e., with a velocity

_ o

However, for nonzero a, we show that the shape of the wavepacket also changes. To
see this, let us again assume that

flk — ko) = f(k')

k2

(1.47)

v
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Then
P(z,t) = exp {i[ko(z — z0) — wot]}

© !
x/ exp [tk (z — 20 — vyt)

— 00
k'2

-5 (zat+ (Allc)2>} dk’ (1.49)

To evaluate this integral we complete the square in the integrand by adding and
subtracting terms

¥(z,t) = exp {z [ko(z — 20) — wot] — & ;[fi:::(tilg)%]k) }

Joon {3 ]

» o (z—zo —v,t) (AR,
X [k S (BF)? dk (1.50)
The integral has a value
27 (Ak)?
1+ tat (Ak)?

Further multiplying and dividing the right-hand side exponent by (1 — iat (Ak)?)
we get

27 (Ak)?
’(b(l' t) eXp {1 [ko(x - .’L‘o) WQt]} \/m
(Ak)? (z —zo — v,t)?
> S [ 9 1+12 (Ak)ia?
iot (Ak)* (z — zo — v,t)?
* Sxp [ 5 1+ {%a? (Ak)?
The probability |1|2 has the dependence on space and time given by

e T—To— Yy 2
[¥(z, )" = exp [—(A’Cl)+(a2t2 AR ) ] (1.52)

This is a Gaussian distribution centered around z = z¢ + vyt and the mean width
in real space is given by

(1.51)

bz —1—\/1 + a?t? (Ak)*

a2t?
= éz(t =0) \['1- [5 =0 (1.53)
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For short times such that
o?t? (Ak)* <« 1 (1.54)

the width does not change appreciably from its starting value, but as time passes,
if a # 0, the wavepacket will start spreading.

1.7 SYSTEMS WITH LARGE NUMBER OF PARTICLES

We have seen in Section 1.4 that the principles of mechanics given by Newton’s
equations are capable of describing the behavior of particles. What happens when
the number of particles, all interacting with each other via collisions and mutual
interactions, starts to increase? If the particle number is small, say less than a
hundred or so, it is possible to use a powerful computer to find how each particle
will behave in time and space. However, as the particle number increases, it becomes
impossible to use Newtonian mechanics to describe how the system will behave. For
example, if we were to examine the air in a room, we would find a mixture of oxygen,
nitrogen, and carbon dioxide molecules. These molecules are bouncing off the wall
and interacting with each other. The number of the particles and their densities
are so large that it is simply not possible to apply the principles of mechanics
to follow their trajectories. Fortunately, to describe the measurable properties of
this and other such systems, we don’t need to know the precise trajectories of
the individual molecules. Such systems containing large number of particles are
described by statistical averages. The measurable properties we are referring to are
pressure, temperature, volume, etc.

Systems containing a large number of particles include: gases (air in a room,
gases in a combustion engine, etc.); liquids (particles suspended in a liquid, chemical
reagents, etc.); and solids (atoms and molecules in a piece of solid). Properties of
these systems are described by the field of thermodynamics.

Let us consider the molecules in the air inside a room. While we cannot
describe the individual trajectories of the molecules, we can ask and answer the
following questions:

(i) What is the relation between the pressure of the gas and its volume?
How is this relation dependent on the density of molecules?

(ii) What is the average kinetic energy of the molecules?

(iii) What is the probability that the molecules have an energy E7

(iv) Is there a difference between the average energy of oxygen molecules
and nitrogen molecules?

The field of thermodynamics gives us answers to such questions. We will
now state the important concepts of thermodynamics. The essence of thermody-
namics is contained in the laws of thermodynamics outlined in Fig. 1.8. We will
briefly review some important issues.

Thermal Equilibrium

Let us examine a system consisting of a large number of particles. If we were to
observe the system on a microscopic level, we will see a lot of activity going on. Mo-
lecules are moving helter-skelter, sometimes suffering a collision and changing their
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directions and speeds. However, under thermodynamic equilibrium the macroscopic
properties of the system will stay constant in time. There will be no net transfer of
energy between the system under observation and the rest of the universe.

An important outcome of thermodynamics is that if two systems are in
thermal equilibrium with a third system, then they are also in equilibrium with
each other. This is known as the zeroeth law of thermodynamics.

If we examine a system on a microscopic level, each particle can be assigned
certain degrees of freedom. For example, an electron moving in space has three
degrees of freedom since it can move in the z, y, and z directions. If we have a
molecule with r atoms, there are 3r degrees of freedom of which 3 correspond to
the motion of the molecule (center of mass motion) and 3(r — 1) correspond to the
internal motion (vibration and rotation).

Consider a system at thermal equilibrium containing a collection of different
specles of masses m, msy, m3, and so on. Under equilibrium we have the following

equality:
myv? _ mov3 _ mav3 (1.55)
2 B 2 N 2 '

1.e., the average kinetic energy of the species is equal. Thus the mean kinetic energy
is not a function of the particle masses but is a property of the system. This allows
us to use the mean kinetic energy of a particle in a system with a large number of
particles to define the temperature of the material.

The mean kinetic energy per degree of freedom k has a value (see Example

1.7)
1
(Ek) == §]CBT
In 3-dimensional space we have
3
(E) = §kBT (1.56)

The definition of temperature given here creates what is known as the absolute
temperature and T is measured in the units of Kelvin (K).

Internal Energy, Free Energy, and Entropy
An important question that thermodynamics answers for us is the following: If
we have a system in thermodynamic equilibrium at a temperature 7', what is the
probability that a particle has an energy E'?7 The equilibrium state is given by the
state in which the free energy of the system is minimum. The free energy is different
from the internal energy which is simply given by

U=3;E; (1.57)

where E; is the energy of the i** particle. The difference between the free energy
and the internal energy arises from the quantity known as entropy of the system.
A thermodynamic system is described not only by its internal energy but also by
another property related to the heat contained in the system and the temperature.
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A macroscopic definition of the entropy S is

S = - (1.58)
where () is the heat contained in the system and 7' is the temperature. The entropy
of the system is zero at 7' = 0. (This is the third law of thermodynamics.)

There is another definition of entropy that is very useful in defining the
distribution function, i.e., the function that gives us the probability of finding a
particle at an energy E. The entropy is defined as

S = kplnW (1.59)

where W is the degeneracy of the system, i.e., the number of different ways in which
particles can be arranged in the system to create the same total energy.
The free energy F' of a system is given by

F=U-TS (1.60)

As noted above, the equilibrium state is that where the free energy of the system is a
minimum. Note that if we simply minimize the internal energy of the system, all the
particles would occupy the lowest energy of the system. In this case, the degeneracy
of the system is just unity and S = 0. At finite temperature there is a competition
between the internal energy and entropy. The entropy term —7'S, decreases as the
particles are arranged in higher energy states where the degeneracy is large, but the
internal energy term increases. At any given temperature one has to find the minima
of F to find the actual distribution of particles. We will carry out this exercise in
Chapter 3.

An important manifestation of the classical thermodynamics is the distri-
bution function, which is called the Maxwell-Boltzmann distribution. Consider an
ideal gas consisting of non-interacting particles of density N, mass m at equilibrium
at a temperature 7. The distribution of these particles in energy E or speed w is
given by the following expressions:

dN 4N m \%? 2 1 mw?
" Jr <m) w” exp (*ﬂﬁ) (1.61)
15 = ﬁE (kgT) exp EnT (1.62)

Fig. 1.9 shows the distribution of particles as a function of speed at various
temperatures. As the temperature increases, the average particle speed increases,
as one expects intuitively.

EXAMPLE 1.7 Show that the average of the square of the molecular speeds in an ideal
gas is 3kgT/m.
The average of the square of the speeds is given by

= (p) [t (207
~ Vx \2sT/) P\72%sT
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[LLAwS OF THERMODYNAMICS

FirsT LAaw:

SECOND LAw:

THIRD LAW:

ZEROTH LAaw:

Two systems in thermal equilibrium with a third system are in

‘thermal equilibrium with each other. ‘,

Represents the law of conservation of energy =3> Heat put into a
system, dQ + Work done on a system, dW = Increase in internal
energy of the system, dU:

dQ +dW=dU

A process whose only effect on all systems is to take heat from a L
reservoir and convert it to work is impossible =3>  This law in '
its mathematical form places limits on the most efficient heat

engine, i.e., it says that no heat engine taking heat 6, from a \
system at temperature 7} and delivering heat 6, to a system at 7, |
can do more work than a reversible engine for which

_ T\ -T
W=0,-6,=0 ( e

The second law is also stated in terms of entropy: The entropy of
the universe is always 1ncreasmg In a reversible process the
entropy is unchanged. - .

The entropy of a system is zero at T=0 _ i

Figure 1.8: Laws of thermodynamics.
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dx'V‘ "
dw

Figure 1.9: Distribution of particle speeds for different temperatures.

The integral has a value 2/7 (2ksT/m)*/*. Thus

3kgT
< w? >===2

m

This is, of course, consistent with the observations that the average energy is

<E>= %m<w2 >= %kBT

1.8 CHAPTER SUMMARY

Summary table 1.1 covers key findings and topics studied in this chapter.

1.9 PROBLEMS

Problem 1.1 A child is swinging a 100 gm mass attached to a 1 m string at a rate
of two swings per second. Express the angular momentum of the mass in units of
h =1.05x 10734 J.s. How small does the string have to be for the angular momen-
tum to be 100 A7

Problem 1.2 Consider a pendulum made from a string of length 1 m and mass
100 gm. What is the amplitude of the pendulum (displacement from equilibrium)
if the energy of the pendulum is to be 10 Aw where A = 1.05 x 1073* J.s and w is
the angular frequency of the pendulum.

Problem 1.3 Calculate the speed of a satellite so that it orbits the earth. How
does this speed compare to the speed at which a rocket must be fired in order to
leave the earth completely?

Problem 1.4 The separation of the nuclei in a silicon crystal is 2.35 A. Calculate
the gravitational potential energy due to the attraction between the nuclei. Assume
that a Si atom is surrounded by four neighbors.

Problem 1.5 In Bohr’s model of the hydrogen atom an electron movesin a circular
orbit of radius 0.53 A with an angular momentum of 1.05 x10~3* J.s. Calculate the
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The scientific method depends upon
observation, theoretical models, and
predictions. Experimental evidence is the final
arbiter of all theories.

Scientific method

* Newtonian mechanics for particles

* Wave equations for waves

« Statistical thermodynamics for collection of
large number of particles

["

Newtonian mechanics depends upon Newton's |
equations of motion. The position-momentum 2
trajectories of particles can be exactly predicted |
if the forces are known.

Newtonian mechanics

» Wave equations describe properties of waves
in media.

* Maxwell equations describe the most
important wave phenomena—that of
electromagnetic radiation.

* All waves have an uncertainty relation .
between their wavevector and position.

Classical thermodynamics | ——] Properties of systems with very large number of |
particles are described by thermodynamics. The |

laws of thermodynamics describe the properties |
of such systems. .
Thermodynamic equilibrium is determined by |
i

s e e e e e e S

the minimization of the free energy which is
equal to the total internal energy—entropy times |
temperature. :

Table 1.1: Summary table
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speed of the electron.

Problem 1.6 The optical power density impinging upon a detector has a value of
10~% mW/cm?. Calculate the electric field amplitude associated with this power.
Problem 1.7 A detector is designed to detect a minimum electric field of 2.0 mV/
cm. Calculate the minimum power density level this detector can detect.
Problem 1.8 A microwave oven is designed to produce a maximum electric field
(rms) of 1 kV/em. Calculate the maximum electromagnetic power density produced
by this oven.

Problem 1.9 A typical silicon MOSFET “breaks down” when the electric field
reaches 2 x 10° V/cm. Calculate the optical power density needed to cause break-
down. Assume that the field needed for breakdown is the rms field of the radiation.
Problem 1.10 A calibrated tuning fork is used to determine the frequency of an
instrument by observing the beat frequencies. How long will the observation time
have to be to have an accuracy of 0.01 Hz?

Problem 1.11 Consider a diffraction grating with n lines. Show that the resolving
power for an m** order beam is

Problem 1.12 A gas cylinder contains n molecules of mass 4.7 x 1072 kg. The
temperature is changed from 273 K to 200 K. Calculate the change in the average
kinetic energy of the molecules. Also calculate how much the height of the cylinder
will have to be altered with respect to the earth’s surface to produce the same
change in potential energy.

Problem 1.13 Estimate the average speeds of oxygen, nitrogen, and carbon dioxide
molecules in air at room temperature.

Problem 1.14 Calculate the probability of the density of atoms of a species in air
as a function of height from earth’s surface.

Problem 1.15 Calculate the ratio of the density of oxygen molecules at earth’s
surface to their density at 40 km from the surface. Repeat this problem for hydrogen

molecules.
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QUANTUM
MECHANICS AND THE
UNIVERSE

CHAPTER AT A GLANCE
- Experiments suggesting electromagnetic radiation behaves
as particles and experiments suggesting that particles
behave as waves Section 2.2
- The wave-particle duality: Some lessons from optics Section 2.3
- The Schréodinger equation for particles Section 2.4

- Wave amplitude of particles: What does it mean? Section 2.5

- The uncertainty relation and the Ehrenfest theorem:
Connection to classical Newton's equation Section 2.6

- Solving the Schrodinger equation Sections 2.7-2.8
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