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1.6 WAVES, WAVEPACKETS, AND UNCERTAINTY

In classical physics when we deal with wave phenomena we are aware of a little
“fuzziness” in the description of certain features of the wave. For example, let us
imagine a child creating a wave on the surface of a pond by throwing a stone into
the pond. We know from experience that a “wavepacket” or wave “pulse” intially
localized around the point where the stone hit the water surface is produced. This
wave then propagates toward the edges of the pond. Can we, at any time, precisely
define the location of the wave and its wavelength? We know from experience and
from classical physics that this is not possible. If we try to create a wavepacket
highly localized in space we lose the knowledge of the wave’s wavelength. On the
other hand, if we try to create a “plane wave” with a well-defined wavelength, we
lose the knowledge regarding the spatial position of the wave.

The uncertainty described above is not of concern in classical physics when
we deal with particles. For example, we have no problem defining precisely any
combinations of physical observables of a particle. However, a wave description will
inevitably bring in an uncertainty in the precision with which we can simultaneously
define certain physical observables. To see how this occurs, we examine the uncer-
tainty arising in the wavelength or, for convenience, the wavevector k (k = 27/2),
and the position of waves.

To describe the wavepacket, let us begin from a plane wave given by

Yi(z) = €*° (1.26)

The position of the wave is completely undefined (as shown in Fig. 1.7a). To create
a wavepacket localized at some point zg in space, we have to combine several plane
waves. One example is to use an equal amplitude combination of waves centered
around ko with a spread +Ak. The resulting function, say kg, but from a spread
+Ak, then the function

kotAE
Pa,ag) = [ dkeikemeo
ko—Ak
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Figure 1.7: (2) A schematic description of a one-dimensional wave e** which is extended
over all space; (b) a wavepacket produced by combining several waves produces a packet
that is localized in space with a finite spread. The wavepacket is shown centered at z,
and having a spread Az. The spread is such that Ak . Az ~ 1. This is an “uncertainty
relation” in classical physics for waves. No such uncertainty exists in classical physics for
particles.

In such a plane wave the probability density of the the wave, 1*, is the same in all
regions of space. Such a description is not useful if one wants to discuss transport of
an optical pulse or of a particle from one point to another. For example, in describing
electron transport we wish to describe an electron which moves from one point to
another. Thus the wavefunction must be peaked at a particular place in space for
such a description. This physical picture is realized by constructing a wavepacket
picture.

Construction of a Wavepacket

Let us examine a one-dimensional plane wave state with a wave vector kg

Yro () = etFo (1.32)
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We note that if a state was constructed not from a single kg component, but from
a spread +Ak, then the function

kotdk
P, o) = / dk ¢*(a=20)
k

o—Ak
_ 2sin(Ak (17 - 55’0)) iko(z—z0)
_ s ¢ (1.33)

is centered around the point 2o and the probability (|F|?) decays from its maximum
value at zg to a very small value within a distance =w/Ak.

If Ak is small, this new “wavepacket” has essentially the same properties
as 1 at kg, but is localized in space and is thus very useful to describe motion of
the particle. A more useful wavepacket is constructed by multiplying the integrand
in the wavepacket by a Gaussian weighting factor

f(k — ko) = exp [-%} (1.34)

(=, 20) = /: . [—%Hk(m_m)] dk

= exp [iko(e - 20) - T2 (k]

(z — z0)?

22l (any]

X /_Z exp [—(I;T_A:;—Z— + i(k — ko)(x — zo) +

= V27Ak exp [iko(:c —z9) — %(m - xg)z(Ak)z] (1.35)

Y(z, zo) represents a Gaussian wavepacket in space which decays rapidly away from
ro. We note that when we considered the original state exp(ikoz), the wave was
spread infinitely in space, but has a precise k-value. By constructing a wavepacket,
we sacrificed its precision in k-space by Ak and gained a precision Az in real space.
In general, the width of the wavepacket in real and k-space can be seen to have the
relation

Ak Az~ 1 (1.36)
We can repeat this procedure for a wave of the form
Y~ et (1.37)

and also obtain a wavepacket which is localized in time and frequency, the widths
again being related by
Aw At =~ 1 (1.38)
Let us now consider how a wavepacket moves through space and time. For
this we need to bring in the time dependence of the wavefunction, i.e., the term
exp(—iEt/h) or exp(—iwt).

¥(a,t) = /_oo F(k — ko) exp {i[k(z — o) — wi]} dk (1.39)
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If w has a simple dependence on k
w=ck (1.40)
we can write
)= / " Pk — ko) exp [ik(z — 20 — ct)] dk (1.41)
—co
which means that the wavepacket simply moves with its center at
r—zg=ct (1.42)

and its shape is unchanged with time. If, however, we have a dispersive media and
the w vs. k relation is more complex, we can, in general, write

Ow 1 8%w 2
w(k) = w(ko) + E - - (k — ko) + 5 5k2 - (k—ko)*+--- (1.43)
Setting
w(ko) = Wy
Ok |y =, g
0w
— =« (1.44)
akz k:ko
we get

Y(z,t) = exp [i(ko(x — z0) — wot)] /—00 F(k — ko)
X exp [z(k — ko)(z — zo — vgt) — %(k — ko)zt] dk (1.45)

If « were zero, the wavepacket would move with its peak centered at

r— 2z = vyt ({i.46)

i.e., with a velocity

0w

V, = —

However, for nonzero «, we show that the shape of the wavepacket also changes. To
see this, let us again assume that

f(k — ko) = f(k')

—k'2
= exp (m) (1.48)

(1.47)




Then
Y(z,t) = exp {i[ko(z — z0) — wot]}

0 7
x/ exp | ik (z — zg — v,t)

-~ 00

k' ,
- 5 (jae+ —mlk)z)} #* s

To evaluate this integral we complete the square in the integrand by adding and
subtracting terms

T—Tp— v g 2
¥(z,1) = exp {i[’“o(”‘“)“""ﬂ"( 2[11ia:(21§)A2]k ) }

/D"ex -1[1+z‘az(Ak)’-’J
e P2 [T R

X [k P Gl k7)) (A")z] 2} dk’ (1.50)

b4

1+ iat (Ak)?

The integral has a value

27 (Ak)?
1+ iat (Ak)?
Further multiplying and dividing the right-hand side exponent by (1 —iat (Ak)?)
we get

¥(z,t) = exp {i[ko(z — zo) — wot]} \/T%
(Ak)? (z — 2o — v,t)?
o exp [‘ 2 1+82 (Alc)4a2]

iat (Ak)* (z — z — vyt)?
P [T 1+ 2a? (OAIc)“g ] . (1.51)

The probability ||? has the dependence on space and time given by

2 Ak)? (z - To — vt 2
Al =G [—( 1)+(a2t2 (Ak)4g ! ]

This is a Gaussian distribution centered around z = zq + vyt and the mean width
in real space is given by

1
— 242 4
bz = k\/1+at (Ak)

(1.52)

a2t2

For short times such that
ot (Ak)* k1 (1.54)

the width does not change appreciably from its starting value, but as time passes,
if @ # 0, the wavepacket will start spreading.
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quotation from Davisson’s Nobel lecture, (X From observations with diffraction apparatus;
® same, particularly reliable; (] same, grazing beams. © From observations with reflection
R . _ . apparatus.) [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier, —
© Nobel Foundation, 1964).]
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Fig. 5-8 (a) Schematic
arrangement used for produc-
ing a diffraction pattern from
a polycrystalline aluminum
target. (b) Diffraction pattern
produced by x rays of
wavelength 0.071 nm and

an aluminum foil target,

(c) Diffraction pattern pro-
duced by 600-eV electrons
(de Broglie wavelength of
about 0.05 nm) and an alu-
minum foil target. The pat-
tern has been enlarged by 1.6
times to facilitate comparison
with (b). [Courtesy of Film
Studio, Education
Development Center.}

Fig. 5-10 Diffraction pattern produced by 0.0568-eV
neutrons (de Broglie wavelength of 0.120 nm)A anfl a tar-
get of polycrystalline copper. Nate the similarity in the
patterns produced by x rays, electrons, and neutrons.
[Courtesy af C. G- Shull.}

E. 0. Wollan and C. G. Shull.}

Fig. 5-11 Neutron Laue pattern of NaCL Compare th
with the x-ray Laue pattern in Figure 3-14. [Co

urtesy
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Nuclei provide scatterers whose dimensions are of the order of 10-'5 m. Here the
diffraction of 1-GeV protons from oxygen nuclei results in a pattern similar to that of a

—single slit
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30 CHAPTER 2. QUANTUM MECHANICS AND THE UNIVERSE

T e S et e e G bsratis oot st A MR S A

Wilhelm Con Rdéntgen discovers X-rays:
Mysterious radiation that can penetrate cardboard and
human flesh —=> Whatis the origin?

Henri Becquerel discovers radioactivity

It was discovered that specific heat of metals was not
explained by classical thermodynamics

Detailed measurements of thermal radiation from
blackbodies could not be understood on the basis of
classical thermodynamics

Heinrich Hertz observes photoelectric effect —>
could not be understood on the basis of classical
electromagnetic theory which treats light as waves

Albert Einstein introduces the concept of a photon to explain
the photoelectric effect

Heike Kamerlingh-Onnes discovers superconductivity:
Resistance of some materials goes to zero at low :
temperatures =——> completely stumped classical physics

William H. Bragg and Willaim L. Bragg study X-ray diffraction
from crystals ——> showed that X-rays have wave-like .
properties |

James Franck and Gustav Hertz show evidence for
quantized energy levels in atoms: Electrons in atoms do not
behave as classical particles

Otto Stern and Walter Gerlach show the need to introduce
an intrinsic magnetic moment of electron

T

E e R e

Figure 2.1: Some of the key experiments that ushered in the quantum physics age.
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Wave-Corpuscles

1. Wave Theory of Light. Interference and Diffraction.

The ideas which we have arrived at in the preceding chapters with
regard to the structure of matter all rest on the possibility of demon-
strating the existence of fast-moving particles by direct experiment,
and indeed of making their tracks immediately visible, as in the Wilson
cloud chamber. These experiments put it beyond doubt that matter
is composed of corpuscles. We are now to learn of experiments which
just as definitely seem to be only reconcilable with the idea that a
molecular or electronic beam is a wave train. Before we enter upon
this, however, we shall briefly recall the main facts of wave motion
in general, using the phenomena of optical diffraction as & concrete
example,

' While in the eighteenth century physicists almost universally adhered
to Newton’s emission theory (about 1680), according to which light con-
sists of an aggregate of very small corpuscles, which are sent out by the
source of light, and the wave theory of Huygens (1690) could claim only
a few supporters (among them the great mathematician Euler), the"
state of matters changed completely when at the beginning of -the
nineteenth century Young made the discovery that in certain circum-
stances two beams of light can enfeeble each other, a phenomenon
quite incapable of explaration on the corpuscular theory. The results
of the further investigations of Young and Fresnel spoke unequivo-
cally in favour of the wave conception of Huygens, for it is impossible
to explain interference phenomena except by a wave theory.

We give here a short discussion of Young’s inferference experiment
(fig. ). The source of monochromatic light Q illuminates the double
slit in the diaphragm B with parallel light by means of the lens L.
On the screen S behind the diaphragm a system of equidistant bright
and dark strips (fringes) appears. How this comes about may be
explained as follows. From the two openings in the diaphragm spherical

waves spread outwards; these are “ coherent ”, i.e. they are capable
78
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of mutual interference. The two wave motions become superimposed,
and reinforce each other at those places where a crest of the one wave
coincides with a crest of the

other; on the contrary, they de- g
stroy each other where a crest

of the one wave is superimposed L

on a hollow of the other. Hence o
we can tell at once at what b= —afl = /
places on the screen there will =

Fig. 1.—Diffraction at two narrow slits
close to each other. The diffraction pattern
_ Consists of a system of equidistant bright and
dark bands (fringes).

be brightness; they are the points whose distances from the two
openings in the diaphragm differ exactly by an integral multiple
of the wave-length. From fig. 1 we see that the difference of the
distances is d sin ¢; there is therefore on the screen

brightness, if dsingg = nA |
. ) _ ! =0,41,+42...),
darkness, 1f dsing = (n+ 3) A} (n +1, 4+ )

where d is the distance between the two openings, and ¢ is the angle
of deflection.

A similar diffraction pattern is also obtained when light passes
through one slit. We can picture it roughly as due to the mutual
interference of the elementary Huygens waves spreading out from
the individual points of the slit. There are two essential diﬂex:enées,
however, as compared with the previous case. In the first place, we
easily see that the relation

dsing = nA n=4142...),

where @ is the slit-width, does not now give the places at which there
i8 brightness; but those where there is darkness. For in the packet of
wave trains which spread out from the slit in the direction given by
the equation, all * phases” are in this case represented exactly the
same number of times; i.e. we find in the packet exactly as many
wave trains which reach the screen with a crest, as trains which arrive
at it with a hollow; the trains will therefore extinguish each other.
We find, further, that the diffraction maxima are not, as before, almost
equally bright, but that their intensity falls off very strongly from
the middle maximum outwards, in the way indicated in fig. 2 by the
wavy line shown at the side. It should also be specially emphasized
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that when the slit-width s reduced the diffraction pattern widens oul.
as may eusily be deduced either from the above equation defining the
position of the diffraction
minima, or directly from
fig. 2.

The fact that the form
of the diffraction pattern
depends essentially on the

vy

Fig. 2.—Diffraction at a slit. The
‘diffraction pattern shows a strong
maximum of intensity for the angle of
diffraction @ = o, and also a series of
equidistant maxima which-become pro-
gressively weaker as the angle of

. diffraction increases.

wave-length of the light makes it possible to carry out spectral
investigations by means of interferenee phenomena (ruled - grating,
echelon grating, Perot-Fabry plate, Lummer plate). For diffrac-
tion patterns to show themselves, it is necessary that the width of
the slit employed should be of the order of magnitude of the wave-
length of the light. If then we wish to obtain interference pheno-
mena with X-rays, we have to use a grating in which the distance
between the rulings is of the order of magnitude of 1 A.= 10-8 cm.
Such gratings are put into our hands by nature,

as von Laue (1912) has shown, in the shape of

- crystals, in which the lattice distances-are just
of this order of magnitude. If a beam of X-rays

is passed through a crystal, we do in fact obtain

Fig. 3.—Diffraction of X-rays at a crystal. As explained by

Bragg, the rays are reflected at the lattice planes of the crystal, and
thus made to interfere.

interference phenomena. Following Bragg (1913), we can interpret
these as due to interference of the rays reflected at different lattice
planes of the crystal (fig. 3). Moreover, Compton (1925) and others
succeeded in producing X-ray interference in artificial gratings also,
this being found possible at grazing incidence of the rays.

Interference of X-rays supplies a powerful weapon for investigating
the structure of crystals. For this purpose we do not even require large
pieces of the crystal, but can use it in the form of powder (Debye-
Scherrer, 1915;. Hull, 1917). The interference figures in the latter case
are rmgs round the direction of the incident beam. Indeed, the powder
grains may be of molecular size even. What is more, it is found that
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the interference phenomena due to the individual atoms of the mole-
cule are by no means completely obliterated by the irregular setting
and motion of the molecules in liquids and gases. Circular interference
rings are observed, from the intensity distribution of which we can
draw conclusions with regard to the distances of the atoms in the mole-
cule (Debye, 1929). However, we shall not enter further into these
methods of investigating how matter is built up from atoms.-

We add here, in the form of a scale, a summary of the wave-lengths
of the types of radiation at present known (fig. 4). The scale is

_ Vistble
Yerap Xrays Violet za Infra-red Radio
L i : A L : 1 |/;‘| 1 A 1 ;l 1 | ¢ 1 L | ]
1) ) -5 (1) s

Fig. 4.—Logarithmic scale of wave-lengths; the numbers shown refer to
a unit of length A\g = 1 cm., and represent log;o(A/Ao)

logarithmic; the numbers shown are therefore indices of powers of
10. As unit Ay =1 cm. is taken. Next to the wide range of wave-
lengths employed in wireless communication comes the region of
infra-red waves, which affect our senses as radiant heat. Then comes
the relatively narrow stretch of the visible region (7700 to 3900 A),
followed by the ultra-violet and Schumann regions, which in turn-
lead into the domain of X-rays (10 to 0-05 .&) The radioactive
y-radiation reaches to about 0001 A. The cosmic radiation contains
y-rays of very short wave-length (10-5 A.) which wotld lie beyond
the scale of our figure.

2. Light Quanta.

Great as has been the success of classical ideas in the interpretation
of interference phenomena, their incapacity to account for the pro-
cesses of absorption and emission of radiation is no less striking. Here
classical electrodynamics and classical mechanics absolutely fail.

To give a few examples of this failure, we recall the experimental
fact that a hydrogen atom, for example, emits an infinite series of sharp
spectral lines (p. 105). Now the hydrogen atom possesses only a single
electron, which revolves round the nucleus. By the rules of electro-
dynamics, an electron accelerated like this sends out radiation con-
tinuously, and so loses energy; in its orbit it would therefore neces
sarily get nearer and nearer the nucleus, into which it waquld finally
plunge. The electron, which initially revolved with a definite fre-
quency, will radiate light of this frequency; in the case when the
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frequency of revolution changes (continuously) during the radiation
process, it will also emit frequencies close to the ground frequency;
but how then the spectrum of hydrogen should consist of a discrete
series of sharply separated lines, it is qulte impossible to understand.

Further, the sta.blhty of the atom is inexplicable. We may think
- by way of comparison of the system of planets circling round the sun,
ail, when undisturbed, moving in their fixed orbits. Suppose, however,
that the whole solar system arrived in the neighbourhood of Sirius,
for example; the mere propinquity would suffice to deflect all the
planets out of their courses. If then the solar system moved away
again to a distance from Sirius, the planets would now revolve round
the sun in new orbits with new velocities and periods of revolution.
_ If the electrons in the atom obeyed the same mechanical laws as the
planets in the solar system, the necessary consequence of a collision
of the atom with another atom would be that the ground frequencies
of all the electrons would be completely changed, so that after the
collision the atom would radiate iight of wave-lengths also entirely
different. In direct opposition to this, we have the expenmental fact
that an atom of a gas, which by the kinetic theory of gases is subjected
to something like 100 million collisions per second, nevertheless, after
these as before, sends out the same sharp spectral lines.

Finally, classical mechanics and statistics fail with the explanation
of the laws of radiation of heat (or energy). We shall not go into this
complex question in detail until later (Chap. VII, p. 204), and here
merely quote the result to which Planck (1900) was led by the above
considerations. To make the laws of radiation intelligible he found
the following hypothesis to be: necessary: emission and absm'ptwn
of radiant energy by matter does not take place continuously, but in finite
“ quanta of energy” hv (h = Planck’s constant 6-62 X 10-%" erg sec.,
v = frequency). On the other hand, the connexion with the electro-
magnetic theory of light is to be maintained to this extent, that
the classical laws are'to hold for the propagation of the radiation
(diffraction, interference).

Einstein (1905), however, went even-further than Planck. He not

merely postulated quantum properties for the processes of a.bsorptlon
and emission of radiation, but also maintained such properties as in-

herent in the nature of radiation itself. According to the hypothesis
of light quanta (photons) which’ he advanced, light consists of quanta
(corpuscles) of energy Aw, which fly through space like a hail of shot,
with the velocity of light. Daring as at first saght this hypothesis
appears to be, there is nevertheless a whole series of experiments,
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which seem scarcely possible to explain on the wave theory, but which
can be understood at once if we accept the hypothesis of the light
quantum. Some account of these experiments, which were cited by
Einstein himself in proof of his hypothesis, will now be given.

The most direct transformation of light into mechanical energy oceurs
in the photoelectric effect (rHertz (1887), Hallwachs, Elster and Geitel,
Ladenburg). If short-wave (ultra-violet) light falls on a metal surface
(alkalies) in & high vacuum, it is observed in the first place that the .
surface becomes positively charged (fig. b); it is therefore giving off
negative electricity, which issues from it -~ - :
in the form of electrons. We can now 5 Light
on the one hand, by capture of the elec- - '
trons, measure the total current issuing

Fig. s.—Production of photoelectrons (after Lenard).
Light entering by the window F strikes the cathode C, and
there- liberates photoelectrons, which are accelerated (or R
retarded) in the field between C and A. =

from the metal surface, and on the other hand determine the velocity
of the electrons by deflection experiments or by a counter field.
Exact experiments have shown that the velocity of the emergent
electrons does .not depend, &s one might at first expect, on the
intensity of the light; but that only their number increases as
the light becomes stronger, the number being in fact proportional to
the intensity of the light. The velocity of the photoelectrons depends
only on the frequency v of the light; for the energy E of the electrons

the following relation is found: . s

E=hv— A,

where 4 is a constant characteristic of the metal. S

- From the standpoint of the light quantum hypothesis; both these
results can be understood at.once. Every light quantum striking the
metal and colliding with one of its electrons hands over its whole energy
to the electron, and so knocks it out of the metal; before it emerges
however, the electron loses a part of this energy equal in amount to
the work, A, required to remove it from the metal. The number of
electrons expelled is equal to the number of incident light quanta,
and this is given by the intensity of the light falling on the
metal.

Evidence even more patent for the existence of light quanta is

given by the classic experiments of E. Meyer and W= Gerlach (1914)

on the photoelectric effect with the small particles of metal dust; by
e T : : T (& 908)
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irradiation of these with ultra-violet light-photoelectrons are again
liberated, so that the metallic particles become positively charged.
The advance on the prevmus case consists in this, that we can now
observe the time relations in the process of charging the particles,
by causing them to become suspended in an electric field, as in Milli-
kan’s droplet method for determining e, the elementary electric charge;
a fresh emission of a photoelectron is then shown by the acceleration
caused. by the increase of charge.

I we start from the hypothesis that the incident hght actually
represents an electromagnetic. alternating field, we can deduce from
the size of the particles the time that must elapse before a particle
of metal can have taken from this field by absorption the quantity of
~ energy which is required. for. the release of an electron. These times
are of the order of magnitude of some seconds; if the classical theory
of light were correct, a photoelectron could in no case be emitted
before the expiry of this time after starting the irradiation. But the
experiment when carried out -proVed on the contrary that the emission
of photoelectrons set in immediate Y the irradiation began—a result
which is clearly unintelligible except ‘on the basis of the idea that light
consists of a hail of light quanta, which can knock out an electron
the moment they strike a metal particle.

8. Quantum Theory of the Atom.

Planck’s original qua.ntum hypothesis was that to every spectral
line there corresponds a harmonic oscillator of definite frequency v
which cannot, as in the classical theory, absorb or emit an arbitrary
quantity of energy, but only integral multiples of ~v. Niels Bohr (1913)
made the great advance of elucidating the connexion of these “ oscil-
lators ” with one another and with the structure of the atom. He
dropped . the idea that the electrons actually behave like oscillators,
ie. that they are quasi-elastically bound. His leading thought was
something like this. The atom does not behave like a classical
mechanical system, Wh.lch can absorb energy in portions which are
arbitrarily small. From the fact.of the existence of sharp emission
and absorption lines on the one hand, and from Einstein’s light quantum
hypothesis on the other, it seems preferable to infer that the atom can
exist only in definite discrete stationary states, with energies E,, E,,
E,, ... . Thus only those spectral lines can be absorbed for which
hv has exactly such a value that it can raise the atom from one
stationary. state to a higher one; the absorption lines are therefore
deﬁned by the equatlons E, — E' = hv;, B, — Ey = hv,, . .., Where
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E, is the energy of the lowest state in which the atom exists in the
absence of specla.l excitation.

If the atom is excited by any process, 1.e. if it is raised to a state
with energy E, > E'o, it can give np this energy again in the form
of radiation. It can in fact radiate all those quanta whose energy is
equal to the difference of the energies of two stationary states. The
emission lines are therefore given by the ‘equation

E,. = E,,. = hl'.,,'m.

A direct confirmation of this theory can be seen in the following fact.
If Bohr’s hypothesis is correct, an excited atom has open to it" various
possible ways of falling back to the ground state by giving up energy
as radiation. For example, an atom in the third excited state can
either give up its excess of gnergy relative to the ground state in one
elementary process by radiating & line of. the }

frequency v;,; or it-can begin with a transition -
into the first excited state with the energy E, . r
and surrender of the energy quantum hvg, and Loz
then in a second radiation process (frequency | %
.vy9) Tall back into the ground state; and so

Fig. 6.—Ritz’s Combination Principle. An atom in the third
excited state can radiate its energy either in the form of a single
light quantum of frequency vy, or as two quanta, the sum of whose ]
‘frequencies must be exactly vy, . g

on (fig. 6). Since the total energy radiated must always be. the
same, viz. E; — E,, the following relation must always exist between
the radiated frequencies:

Vgo = V31 + Vg = V3p + Vg0 = V3 + ¥y F e

This combination principle must of course hold in all cases, and is
a deduction from the theory which can e;,sﬂy be put to the test of
experiment. Historically, it is true, the order of these two aspects of
the matter was reversed; for Ritz, eight years before Bohr’s theory
was propounded deduced this combination principle from collected
spectroscopic material which had been obtained by experiment. It
is by no means the case, however, ‘that all possible ‘ combination
lines ” do actually occur with perceptlble intensity. |
Further direct confirmation of Bohr’s theory on the existence of dis-
crete energy levels in the-atom was given by the experiments of Franck
and Hertz (1914). If the atoms are supplied with energy in any way,
e.g. by electronic collision, i.e. by bembarding the atom with electrons,
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then the atoms can only take up such portions of energy as exactly
correspond to an excitation energy of the atoms.

Thus, if we bombard the atoms with electrons whose kinetic energy
is less than the first excitation energy of the atoms, no communi-
cation of energy from the colliding electron to the atom takes place
at all (beyond the trifiing amount of energy which is transferred in
accordance with the laws of elastic collision, and shows itself only in
the kinetic energy of the relative motion of the partners in the col-
‘lision). With respect to collisions of no great strength the atoms are
therefore stable in the ground state. Among such slight collisions are
those which a gas atom is subjected to in consequence of the-thermal
motion of the particles of the gas. This is easily verified, roughly, as’
follows. The mean kinetic energy of a gas particle, by the results of
the first chapter, is given by B = $kT', where k = R/N, = 1-37 x 10-18
-erg/degree; if the whole of this energy were converted at a collision
into excitation energy, the energy quantum Ay = 2kT would be
transferred to the, particle struck; where, if we take 7'= 300° K.
(room- temperature), v will be 10'® sec! approximately. On the other
hand, frequencies of absorption lides in the visible or even in the
infra-red part of the spectrum have values about 104 to 10'® sec—1.
Higher temperatures will therefore be necessary before ‘ thermal
excitation >’ of the atoms of the gas becomes possible.

We return now to the collision experiments of Franck and Hertz.
We see that if the energy E of the electrons is less than the first
excitation energy E, — E,, the atoms remain in the ground state.
If E becomes greater than B, — E,, but remains less than E, — E,,
the atom can be brought by the collision into the first excited state, and
consequently when it falls back into the ground state radiates only
the line »; = 1y, If E + E, lies between E, and Eg, the atom which
is struck can pass into either the first or the second excited state, and
- 80 can radiate the lines v,g, vy, and v;g; and similarly in other cases
(figs. 7a, T, Plate VIII opposite). But we can also measure the energies
of the electrons after the collision, by causing them to enter an opposing
field of known potential difference, and observing the number of elec-
‘trons which pass through it. In this way also the energy relation was
found to be fulfilled exactly to-this extent, that the energy loss of the
electron due to the collision with an atom was just equal to an excita-
- tion energy E, — K, of the atom.
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Ch. IV. Fig. 9.—Diffraction of electrons
by thin silver foil. (After H. Mark and R.
Wierl.) The velocity of the electrons (ac-
celerating potential 36 kilovolts) corresponds

to a de Broglie wave-length of 0.0645 A.
(Exposure % sec.) (See p. 93.)

Ch. I1I, Fig. 11.—Transmutation of lithium on
bombardment with protons. Pairs of a-particles
are shot out in opposite directions (see p. 71).
(From Proc. Roy. Soc. A, Vol, 141.)
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Ch. TV, Figs. 7a, 7b.—Excitation of spectral lines by electronic collision (after Herfz). Only
those lines appear in the spectrum whose excitation potential (the number in brackets) is smaller
than the energy of the electrons (given under the spectra). F 1g. 7a refers to mercury, 76 to helium,

The wave-lengths are stated in A (see p. 86).

E go8 Facing p. 86
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4, Compton Eftect.

- The phenomena described up to this point prove only that energy
exchange between light and atoms, or between electrons and atoms,
takes place by quanta. The corpuscular nature of light itself is proved
in the most obvious way by the laws of frequency change in the scatter-
wng of X-rays. We have in an earlier chapter (Chap. III, p. 59) dis-
cussed the classical theory of the scattering of X-rays at compara-
tively weakly bound (nearly. free) electrons, and reached the result
that the scattered radiation has always the same frequency » as the
primary radiation; for the electron vibrates in the same rhythm as
the electric vector of the incident wave and, like every oscillating
dipole, generates a secondary wave of equal frequency.

Compton (1922) investigated the scattering of X-rays by a block of
paraffin, and found that the radiation scattered at an angle of less
than 90° possesses a greater Wave-length than
the primary radiation, so that the 3’ of the
scattered wave, contrary to the prediction of the
classical theory, is smaller .than the » of the

Fig. 8.—Compton Effect. A light quantum on colliding with

an electron transfers part of its energy to the latter, and its wave-
length becomes greater after the scattering.

incident radiation. On the principles of the wave theory, this pheno-
menon is unintelligible. -

The result, however, can be explained at once (Compton and Debye)
if, taking the corpuscular point of view, we regard the process as one
of elastic collision of two particles, the electron and the light quantum
(fig. 8). For if the light quantum Av strikes an electron, it will com-
municate kinetic energy to the electron, and therefore will itself lose
energy. The scattered light quantum will therefore have a smaller
energy hv'. The exact calculation of the energy loss proceeds as in
the case of the collision of two elastic spheres; the total momentum
must be the same after the collision as before, likewise the total energy.
The full calculation is given in Appendix X, p. 380; here we merely
quote the result. The Compton formula for the change of Wa.ve-length of
the light quantum due to the scattering process runs:

AX = 22, sin? 2,
, 2

'(Xo = " = 00242 A., the Compton wave-length).
me
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~ The increase in the wave-length is accordingly independent of the

wave- length itself, and depends only on ¢, the angle of scattering.
The theory is found to be thoroughly in accord with the facts. In the
first place, Compton himself confirmed that the change of wave-length
'is correctly given by the Compton formula. The recoil electrons, which
according to the theory. are necessarily produced in the scattering pro-
cess, and take over the energy loss hv — kv’ of the light quanta in the
7 form of kinetie energy, were successfully demonstrated by Compton;

- and that not only in scattering by solid bodies, but also in the
Wilson chamber, where the tracks of the recoil electrons can be seen
directly.

* But, as has been shown by Compton and Simon, we can take a
. further step and test experlmentally the relation between the angles .
- of scattering ¢ and i of the light quantum and the electron. Certainly
a light quantum shows no track in the cloud chamber, but all the same
we can determine the direction of the scattered quantum, provided
it is scattered a second time and again liberates a recoil electron, the
“direction of the scattered quantum being found as that of the line
joining the initial points of the tracks of the two recoil electrons.
Although there is a considerable amount of uncertainty in the inter-
pretation of the experiment, owing to the fact that several tracks
" may be present, and it is not always possible to determine a pair -
uniquely- as corresponding to each other in the foregoing sense (i.e. pro-
' .duced by one and the same quantum), still. Compton and Simon were
able to establish agreement between theory and experiment with a
fair amount of certainty. |

~ Further confirmation of our ideas about the mechanism of the
Compton effect was produced by. Bothe and Geiger. They caused
X-rays to be scattered in hydrogen, and with a Geiger counter re-
corded when recoil electrons made: their appearance; by means of a
gecond counter they determined the instants at which scattered light
quanta appeared. They succeeded in this way in estabhsh.mg that the
emission of the recoil electrons took place at the same moment a8 the
scattering of the light quantum.

Investigations by Bothe, Jacobsen and others (1936) first deﬁmtely
confirmed. the simultaneous appearance of the recoiling light quantum
and electron. ’

In the Compton scattering we have therefore a typical example
of a process in which radiation behaves like a corpuscle of well-defined
energy and momentum; an explanation by the wave theory of the
experimental results which we have described seems absolutely im-
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possible. On the other hand, interference phenomena are quite irre-
concilable with the corpuscular view of radiation.

9. Wave Nature of Matter, De Broglie’s Theory.

The dilemma was still further intensified when in 1925 de Broglie
propounded the hypothes1s that the same duahsm of wave and cor-
puscle as is present in light may also occur in matter A materlal
particle will have a matter wave correspondmg to it, ]ust as_a light
quantum has a hght wave; and in fact the connexion between the
two opposmg aspects must again be given by the. rela,tlon E = .
Further, since from the standpomt of the theory of rela.tlwty energy
and momentum are entities of the same kind (momentum is the spatial
_ part of a relativistic four-vector, whose time component is energy),
1t is obviously suggested that for consistency we should write p = hx;
if v “denotes the number of vibrations per unit time, « must signify
the number of waves per unit length, and therefore be equal to
the reclprocal of the wave-length A of the wave motion; hence

, h
P=x

. The extension of the wave idea from optics to mechanics can be
ca,rned through consistently. Before we go into this, however, we
should like once more to point out the “ irrationality ” (s Bohr called.
it) involved in thus eonnectmg the corpuscular and wave conceptions:
E and p refer to a point mass of Vanlshlngly small dimensions; »and «,
on the contrary, to a wave which is mﬁmtely extended in space and-
time. The imagination can scarcely conceive two ideas which appear
less capable of being united than these two, which the quantum theory
proposes to bring into such close connexion. The solution of this -
- paradox will occupy us later.

We shall first develop de Broglie’s theory further from a formal
point of view. A particle of momentum p ir the direction of the z-axis
and emergy £ is to be associated, then, with an infinitely extended
wave of the form u(@, 1) = Ae2*=d by means of the two relations

E = hv, p=kk.

This wave advances through space with a definite velocity, the phase
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velocity u The value of u we can find at once, by considering the
(plane) surfaces of constant phase, viz.

. 14
¢ = vt — kx = const., or x = —{ -+ const.;
K

it follows that

-y

xlw

o= (7)
dt ) p—const. B

Since v is In genei‘al a function of A, and conversely, this equation
f.embodles the law of dispersion of the waves.

~ But it must be remarked that the phase ve1001ty is a purely artl-
ﬁclal concept, inasmuch as it cannot be determined experimentally.
In fact, to measure this velocity. it would be necessary to affix a mark
to the infinitely extended smooth wave, and to measure the velocity
of the mark. 'But the only Way in which we can make a mark on the
“wave ‘train is by superimposing other wave trains upon it, which
mutually reinforce each other at a definite place, and so create a hump
in the smooth wave functlon We have now to determine the velocity
- with which this hump moves; it is called the group-veloczty

A general method is given in Appendix X1 (p 382); here we.con-
fine ourselves to a simple special case, which gives the same result,
and brings out the difference between phase-velocity and group-
velocity with particular clearness. On the primary wave, which we
suppose to have the form of wu(z, f) above, we superimpose a
wave with the same amplitude and-a shghtly different frequency »’
and Wave-length X. In this case, as we know, * beat ” phenomena
‘occur, and we make use of one of the beat maxima as the mark in our
wave train. What we are interested in, then, is the velocity with
which the beat maximum moves.

The superposition of the two wave trains gives us mathematically
a wbratlon of the form

U(w ) _ eznl(v:—lcz) + 62nz(vt—x ) ’
b
This expression can be Wntten

, +v _x+ A
. 'M(x, t) _ 621'51(1, 21" s 2Kx) {6271.’1, Y Vl"'x K

’
2 v—v K—K
2ﬂz —_—— z) ’

9L, 2

I4 L. ’ : ) 0
v — vy K — K vty k+x :
= 2 cos 27 ( 2‘ { — 5 x) 62"‘( =)

It therefore represents a vibration of frequency (v + +')/2 and wave-



IV, 5] " WAVE NATURE OF MATTER | o1

length 2/(x ), the amplitude of which varies slowly (beats) relative
to the v1brat10n itself. The phase, as we deduce at once from the
formula, moves with the velocity (v + #')/(x 4 «’). . On the other
hand, the maximum of the amplitude moves with the wvelocity
(v —V)[(k — «’).  In the limit when »' tends to », and therefore
k' 16 w, we find from this the value already found for. the phase-
velocity - .

U= - = VA,
K -,

while the group-velocity is given by the limiting valué
v—v -

U= lim

Vesy K — K

But this is simply, by definition, the derlvatlve (dlﬂerentlal coefﬁclent) .
of the frequency v with reference to the wave-number «, if we regard
v as a function of « (la,w of dlspersmn) hence we have

_dv . dy

T de A1)

As is shown in Appendix XI (p. 382), this expression for the gro'ulp-
“velocity holds perfectly generally. .

We now apply these formule to the case of a free pa’rtwle with

velocity v. Writing 8 for v/c, and employing the relativistic formulee
for energy and momentum (see p. 372), we have here

B mc ¢ Tp mg P
TRET R NA—p TR R VA= BY
The phase-velocity is given by

v ¢

U= == B=

and is therefore greater than the velocity of light ¢, if the particle’s

velocity is less than c. The phaqes of the matter wave are therefore

propagated with a Velocfoy exceeding that of light—another mdlcatlon

that the phase-velocity has no:physical mgmﬁcance For the group-
velocity we find

02
™
()]

dv. dy di.

V==l
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1t-18 exactly equal to the particle’s velocity, for

dv _me  of
B h (11— P
dr MoC 1

g b (1—BPY
and therefore U = ¢ = v.

The relatlonshlp thus brought out is very attrac tlve An particular
it terpts us to try to interpret a particle of matter as a wave packet
due to the superposition of & number of wave trains. This tentative
interpretation, however, comes up against insurmountable difficulties,
~ since a wave packet of this kind is in general very soon dismipated.
We need only consider the corresponding case in water waves. TIf
we produce a wave crest at any point of an otherwise smooth suriace,
it is not long before it spreads out and disappears.

6. Experimental Demonstratiorn of Matter Waves.

In view of the boldness of de Broglie’s hypothesis, that matter is
to be regarded as a wave process, the question of course at once sug-
gested itself, whether and in what way the hypOthesis could be put to
the test of experiment, The first answer was given by Einstein (1925),
who pointed out that the wave idea gives a sumple explanation of the
degeneracy of electrons in metals, which expresses itself in the abnormal
behaviour of metals in regard to their specific heat, and as an experi-
mental fact was known to theoretical physicists before de Broglie.
The subiect will be discussed in detail in Chapter VII (§ 7, p. 237)

Further, it was known from the investigations of Davisson and
Germer (1927) that in the reflection of beams of electrons by metals
deviations occurred from the result to be expected on classical prin-
ciples, more electrons being reflected in certain directions than in others,
so that at certain angles a sort of selective reflection took place. The
conjecture was first propounded by Elsasser (1925) that we have before
us here a diffraction effect of electronic waves in the metallic lattice,
similar to that which occurs in X-ray interference in crystals (p.30).
The exact investigations which were then undertaken by Davisson and
Germer actually gave interference phenomena in precisely the same
form as the known Laue interference with X-rays.

Further experiments by G. P. Thomson, Rupp and others showed
that when beams of electrons are made to pass through thin foils
(metals, mica), diffraction phenomena are obtained, of the same kind
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as the Debye-Scherrer rings in X-ray interferences (fig. 9, Plate VIII,
_P-86). Moreover, when the conditions of interference and the known
lattice distances were used as data, it was found that de Broglie’s
relation between wave-length and the momentum of the electrons was
completely confirmed. ' |

The following rough, caleulation gives an indication of the kind
of wave-lengths we have to deal with in beams of electrons, Accord-
ing to de Broglie, we have \ = h/p or, if we confine ourselves to elec-
trons of not too high speed, so that we can leave relativistic corrections
out of account, A = k/mv. On the other hand, the velocity of the
electrons is determined by the potential V. applied to the cathode
bube: Zmv®=eV. Hence A= h/y/(2meV), o, on’ inserting the
-numerical values (¢ = 480 X 10-Yes.u., m.= 91 x 10-28 gm., b=
6:62 X 1027 erg. sec.), A =1/(150/V) A., when V is expressed in volts.
Thus, to an accelerating potential of 10,000 volts thers corresponds a
wave-length of 0-122 A.: the wavelengths of the electronic beams em-
ployed in practice therefore lie in approximately the same region as
those of hard X-rays.. e ' —

Although it is astonishing that the discovery of the diffraction of
electrons was not made earlier, the fact must nevertheless be con--
sidered a piece of great good fortune for the development of atomic
theory. What confusion there would have been if, soon after the dis-
covery of cathode rays, .experiments had been undertaken _simul-
 taneously ‘on their charge and capability of deflection, aid on their
possibilities in regard to interference! Again, Bohr’s theory of the
atom, which later was to serve as the foundation of the expansion of
atomic theory into wave mechanics, was .essentially based on the
assumption that the electron is an electrically charged corpuscle.

- To-day the technique of electronic diffraction is so far advanced
that it is employed in industry instead of the earlier ‘methods with .
X-rays for the purposes of research on materials. One advantage.of
using’ electrons is that decidedly higher intensities are avallable than
there are with X-rays. Thus, for example, an interference photograph
which may require an expostire of many hours with X-rays can be pro-
duced by means of electrons, with the same working data, in some-
thing like one second. Another advantage is that the wave-length of
the beams of electrons can be varied at will by changing the tube
potential; if the setting of the potentiometer is changed, it can be
seen at once on the screen how the whole diffraction image contracts
or expands according as the wave-length is ‘made shorter or longer.
The third and miost important advantage of electronic rays is their
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deflectability by electric and magnetic fields.. There is no known method
.of constructing lenses for X-rays; but by proper arrangement of
"condensers and magnetic coils one can focus electronic beams (Busch,
1927), and construct lenses and microscopes. Owing to the short wave-
length the resolving power is much higher than for optlcal instruments;
and the theoretical limit is much higher still.

Similarly the wave nature of matter can be demonstrated for the case
of slow neutrons and the diffraction patterns resulting from the scatter-

+ ing of neutrons can give considerable information about the crystalline
structure of solids. Neutrons have a magnetic moment, so that the
scattering is sensitive to the magnetm structure of the scattermo mater-
jal. For thermal neutrons (i.e. neutrons with an energy correspondmg
to a temperature of 300° K.), the de Broglie wavelength is A = 1-81 A

- Very important and impressive was the discovery of Stern and his
collaborators (1932) that molecular rays (of H, and He) also show

‘diffraction phenomena when they are: reﬂected at the surfaces of
crystals. Tt was even possible to separate a beam of molecules of nearly
uniform veloclty with the help of a deviee similar to the arrangement
for mea.surmg the velocity of light: ‘two toothed wheels rotating on the
same axis. De Broglie’s equation was confirmed for these particles
with an accuracy of about 1 per cent. Here, surely, we are dealing
with material particles, which must be regarded as the elememtary
constituents not only of gases but also of liquids and solids. If we

.intercept the molecular ray after its diffraction at the crystal lattice,
and collect it in a receiving vessel, we find in the vessel a gas which has

still the ordinary properties.

These diffracticn experiments on whole atoms show that the wave
structure is not a property peculiar to beams of electrons, but that there
is a general principle in questlon .classical mechanics is replaced by a
new wave mechanics. For, in the case of an atom, it is clearly the
centroid of all its particles (nucleus and electrons), i.e. an abstract point,

" which satisfies the same wave laws as the individual free electron. Wave

mechanics in its developed form does actually render an account of this.

7. The Contradiction between the Wave Theory and the Corpuscular
" Theory, and its Removal.

) In ‘the preceding sections we have had a series of facts brought

before us which seem to indicate unequivocally that not only light,
* but also electrons and matter, behave in some cases like & wave pro-
cess. in other cases like pure corpuscles. How are these contradictory

‘aspects to be reconciled ?
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To begin with, Schrédinger attempted to interpret corpuscles,
and particularly electrons, as wave packets. Although his formulse are
entirely correct, his interpretation cannot be maintained, since on the
* one hand, as we have already explained above, the wave packets must
in course of time become dissipated, and on the other hand the de-
scription of the interaction of two electrons as a collision of two wave

packets in ordinary three-dimensional space lands us in grave difficulties.
- The interpretation generally accepted at present was put forward

by ‘Born.. According to this view, the whole course of events is
determined by the laws of probablhty, to a state in space there cor-

responds a definite probability, which is given by the de Broglie wave
associated with the state. A mechanical process is therefore accom-
_panied by a wave process, the gmdmg wave, described by Schrodinger’s
equation, the significance of which is that it gives the probability of a
definite course of the mechamcal process. If, for example, the amph-
tude of the guiding wave is zero at a.certain point in space, this means
- that the probability of ﬁndmg the electron a.t this point is. vamshmgly
small. -

~ The physmal justification for this hypothesas is denved ﬁ‘om the
consideration of scattering processes from the two points of view, the.
corpuscular and the undulatory. The problem of the scattering of
light by small particles of dust or by molecules, from the standpoint
of the classical wave theory, was worked out long ago. If the idea of
light quanta is to be applied, we see at once that the number of incident
light quanta must be put proportional to the intensity of the light at
the place concerned, as calculated by the wave theory. . This suggests
. that we should attempt (Born, 1926) to calculate the scattering of elec-
trons by atoms, by means of wave mechanics. ‘We think of an incident
beam of electrons as having a de Broglie wave associated with: it.
When it passes over the atom this wave generates a secondary spherical
wave; and analogy with optics suggests that a certain quadratic
expression formed from the wave amplitude should be interpreted
as the current strength, or as the number of scattered electrons. On
_carrying out the calculation (Wentzel, Gordon) it has been found that
for scattering by a nucleus we get exactly Rutherford’s formula

(p- 62; Appendix IX, p. 377, and XX, p. 406). Many other scattering

processes were afterwards subjected to calculation in this way, and

the results found in good agreement with observation (Born, Bethe, -
Mott, Massey). These are the grounds for the conviction of the correct-

ness of the principle of associating wave amplitude with number of

particles (or probability).
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In this picture the particles are regarded as indépendent of ome

‘another. If we take their mutual action into account, the pictorial

view is to some extent lost again. We have then two possibilities.
Either we use waves in spaces of more than three dimensions (with

‘two interacting particles we would have 2 X 3 = 6 co-ordinates),

or we remain in three-dimensional space, but give up the simple picture
of the wave amplitude as an ordinary physical magnitude, and replace
it by a purely abstract mathematical concept (the second quantisation
of Dirac, Jordan) into which we cannot enter. - Neither can we discuss
the extensive formalism of the quantum theory which has arisen from
this theory of scattering processes, and has been developed so far that
every problem with physical meaning can in principle be so_lved by
the theory (Appendix XXV, p. 426). What, then, is a problem with

-physical meaning? This is for us the really important question, for

clearly enough the corpuscular and wave ideas cannot be fitted to-
gether in a homogeneous theoretical formalism, without giving up
some fundamental principles of the classical theory. The unifying
concept is that of probability; this is here much more closely inter-
woven with physwal principles than in the older. physics (e.g. the
kinetic theory of gases, § 2,°p. 3; § 6, p. 9). The elucidation of these
relatlonshlps we owe to Helsenberg and Bohr (1927). According to them
we must ask ourselves what after all it means when we speak of the
description of a process in terms of corpuscles or in terms of waves.
Hitherto we have always spoken of waves and corpuscles as given
facts, without gmng any consideration at all to the question whether
we are justified in assuming that such things actually exist. The
position -has some similarity to that which existed at the time the
theory of relativity was brought forward. Before Einstein, no one
ever hesitated to speak of the stmultaneous occurrence of two events,
or ever stopped to consider whether the assertion of the simultaneity

. of two events at different places can be established physically, or

whether the concept of simultaneity has any meaning at all. In point
of fact Einstein proved that this concept must be * relativized ”, since
two events may be simultaneous in one system of reference, but take
place at different times in another. In a similar way, according to
Heisenberg, the concepts corpuscle and wave must also be subjected
to close scrutmy With the concept of corpuscle, the idea is necessarily
bound up that the "thing in question possesses a perfectly definite
momentum, and that it is at a definite place at the time considered.
But the question arises: can we actually determine exactly both the
position and the velocity of the * particle ” at a given moment? If
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we cannot do so—and as a matter of fact we cannot—i.e. if we can
never actually determine more than one of the two properties (pos-
session of a definite position and of a definite momentum), and if
when one is determined we can make no assertion at all about the
other property for the same moment, so far as our experiment goes,
then we are not justified in concluding that the “ thing” under
examination can actually be described as a particle in the usval
sense of the term. We are equally unjustified in drawing this con-
clusion even if we can determine both properties simultaneously, if
neither can then be determined exactly, that is tc say, if from our
experiment we can only infer that this ““ thing ”’ is somewhere within
a certain definite volume and is moving in some way with a velocity
- which lies within a certain definite interval. We shall show later by
means of examples that the simultaneous determination of position
“and velocity is actually impossible, being inconsistent with quantum
laws securely founded on experiment.

The ultimate origin of the difficulty lies in the fact (or philosophical
principle) that we are compelled to use the words of common language
when we wish to describe a phenomenon, not by logical or mathema-
tical analysis, but by a picture appealing to the imagination. Common
language has grown by everyday experience and can never surpass
these limits. Classical physics has restricted itself to the use of con-
cepts of this kind;" by analysing visible motions it has developed two
ways of representing them by elementary processes: moving particles
and waves. There is no other way of giving a pictorial description of
motions—we have to.apply it even in the region of atomic processes,
where classical physics breaks down. .

" Every process can be mterpreted elther in terms of corpuscles or in
terms of waves, but on the other hand it is beyond our power to produce
proof that it is actually corpuscles or waves with which we-are dealing,
for we cannot simultanecusly determine all the other properties which
are distinctive of a corpuscle or of a wave, as the case may be. We
can therefore say that the wave and corpuscular descriptions are
only to be regarded as complementary ways of viewing one and the
same objective process, a process which only in definite limiting
cases admits of complete pictorial interpretation. It is just the
limited feasibility of measurements that defines thé boundaries
between our concepts of a particle and a wave.. The corpuscular
description means at bottom that we carry out the measurements
with the.object of getting exact information about momentum and
energy relations (e.g. in the Compton effect), while experiments which
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amount to determinations of place and time we can always picture to
" ourselves in terms of the wave representation (e.g. passage of electrons
through thin feils and observations of the deflected beam).

We shall now give the proof of the assertion that posutlon and
momentum (of an electron, for instance) cannot be exactly determined
gsimultaneously. ~We illustrate this by the ‘example of diffraction
through a slit (fig. 10). If we propose to regard the passage of an electron
through a glit and_the observation of the diffraction pattern as simul-
taneous measurement of position and momentum from the standpomt
of the corpuscle concept, then the breadth of the slit gives the °

certamty 7 Az, m the specrﬁca.tmn of position perpendicular to the
direction of flight. For the

‘ fact that a .diffraction pat-

> tern appears: merely - allows
us to assert that-the elec-

tron has passed -through the
glit; at what place in the
sht the passage took place
.. remains quite - indefinite.
> " 'Again, from the. standpoint

~ of the corpuscular theory,
the’ occurrence of the dif-
Fig. xo.—Diffraction of .electrons at a slit raction pattern on the
| screen must be understood
in the sense tha.t the md.1v1dual electron suﬂers deflection at the
slit, upwards or downwards. It a¢quires component momentum
perpend.lcular to its original direction of flight, of amount Ap (the
resultant momentum p remalmng constant) The mean value of Ap,
by fig. 10, is given by Ap ~ psina, if a is the mean angle of deflection.
We know that the experimental results can be explained satlsfactonly
on the basis of the wave fepresentation, according to which a« is
connected with the slit-width Az and the wave-length” A= A/p
by the equatlon Azsina ~ A= hf/p. Thus the mesn added mo-
menturh in the direction parallel to the slit is given by the relation
Ap ~1p A/A:c = h/Az, or

Az ApN k.

_This relation, for which a more rigorous derivatiori will begiven in
Appendix XTI, p. 383, is called Hetsenberg’s uncertainty relatton. In our
example, therefore, it signifies that, as the result of the definition of the
electron’s position by means of the slit, which involves the uncertainty {or
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possible error) Az, the particle acquires ‘momentum parallel to the
slit of the order of magnitude stated (i.e. with the indicated degree
of uncertainty). Only subject to this uncertainty is its momentum
known from the diffraction pattern. According to the uncertainty
relation, therefore, b represents an absolute limit to the simullaneous
 measurement of co-ordinate and momentum, a limit which in the most
favourable case we may get down to, but which we can never
get beneath. In' quantum mechanics, moreover, the uncertainty
‘relation holds generally for any arbitrary ‘pair of conjugated
variables ” (p. 389). S

A second example of the uncertainty relation is the definition of
‘position by a microscope (fig. 11). Here the order of ideas is as follows.
If we wish to determine the position of an electron in the optical way
by illuminating it and observing the scattesed light, then it is clear,
and known as a general rule in optics, that the wave-length of . the
- light employed forms a lower limit to the resolution and accordingly
to the exactness of the determination of position. If we wish to define
the position as accurately as possible, we will employ light of the
“ghortest possible wave-length (y-rays). The employment of short-.
wave radiation implies, however, the -occurrence of a Compton scatter-
ing process when the electron is irradiated, so that the electron ex-
periences a recoil, which to a certain extent is
indeterminate. We may investigate the circum-
stances mathematically. = Let the. electron under
- the miscroscope be irradiated in any direction with

_ Fig. 11.—Determination of the poaition of an electron by means of the
y-Isy micrescope. :

light of frequency v. Then by the rules of optics (resolving power

of the microscope) its position can only be determined subject to
the possible .error ‘

Az o

. ’
sina

where a is the angular aperture. Now, according to the corpuscular
view, the particle in the radiation process suffers a ‘Compton recoil
of the order of magnitude kv/c, the direction of which is undetermined
to the same extent as is the direction in which the light quantum flies
off after the process. Since the light quantum ig actually observed
in the micréscope, this indeterminateness of direction is giver by the
angular aperture a. The component momentum of the electron per-
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pendicular to the axis of the microscope is therefore after the process
undetermined to the extent Ap, where approximately

Ap - }%} sina.

Thus the order of magnitude relation

Az Ap ~k
holds good here also.

Just as every determination of posmon carries with it an un-
certainty in the momentum, and every determination of time an
uncertainty in the energy (although we have not yet proved the latter
statement), so the converse is also true. The more sacurately we
determine momentum and energy, the more latitude we introduce
into the position of the particle and the time of an event. We give an
example of this also, viz. the so-called resonance fluorescence. We have
seen above (p. 85) that the atoms of a gas which 28 irradiated with light
of frequency v,,, corresponding to the energy difference between the,
ground state and the first excited state, are raised to the latter state.
They then fall back again to the lower state, at the same time emitting
the frequency v,,; and if the pressure of the gas is sufficiently low,
so that the number of gas-kmetlc collisions which occur while the
atom remains in the excited state is negligible, then the whole energy
which was absorbed will again be emitted. Thus the atom behaves
like a classical resonator which is in resonance with the incident light
wave, and we speak of resonance fluorescence.

But the energy of excitation of the atoms can also be utilized, not
for re-emission of light, but for other actions, by introducing anothey
gas as an indicator. If the latter consists, say, of not too rigidly
bound diatomic molecules, the energy transferred in collisions with
the excited atoms of the first gas can be utilized for dissociation
(Franck, 1922). Again, if the added gas is monatomic, and has a lower
excitation level than the first gas, it is itself caused to radiate by the
collisions; this is called sensitized fluorescence (Franck). In any
case wo see that a fraction of the atoms of the first gas is certainly
thrown into the excited state by the incident light. We may take
the fo]lowmg view of the matter. Lxcitation by monochromatic light
means communication of exact quanta hv,, to the atom. We there-
fore know the emergy of the excited atoms exactly. Consequently,
by Heisenberg’s relation AEA¢ ~ h, the time at which the absorp-
tion takes place must be absolutely indeterminate. We can satisfy
ourselves that this is so, by considering that any experiment to de-
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termine the moment in question would necessarily require a mark
in the original wave train—an interruption of the train, for example.
But that means disturbing the monochromatic character of the light
wave, and so contradicts the hypothesis. A rigorous discussion of the
circumstances shows that, if the light is kept monochromatic, the
moment at which the elementary act happens does actually altogether
elude observation.

The uncertainty relation can also be deduced from the following
general idea. If we propose to build up a wave packet, extending for
a finite distance in the z-direction, from separate wave trains, we
need for the purpose a definite finite frequency-range in the mono-
chromatic waves, i.e., since A= %/p, a finite momentum-range in the
particles. But it can be proved generally (Appendix XII) that the
length of the wave packet is connected with the requisite range of
momenta by the relation -
| ApAz.~ h.
The analogous relation

AEAt ~ b

can be derived in a similar way.:

. Bohr is in the habit of saying: ~the. wave and corpuscular views
are complementary. By this he means: if we prove the corpuscular

character of an experiment, then it is impossible at the same time to

prove its wave character, and converse) 7. Let us illustrate this further

by an example.

Consider, say, Young’s interference experiment with the two slits
(p. 78) ; then we have on the screen a system of interference fringes.
By replacing the screen by a photoelectric cell, we can demonstrate
the corpuscular character of the light even in the fringes. It there-
. fore appears as if we had here an experiment in which waves and

.particles are demonstrated simultaneously. Really, however, it is
not so; for, to speak of a particle means nothing unless at least two
points of its path can be specified experlmentally, and sm:r_larly with
a wave, unless at least two interference maxima are observed. If then
we propose to carry out the ‘ demonstration of a corpuscle ’, we must
settle the question whether its path has gone through the upper or
the lower of the two slits to the receiver. We therefore repeat the
experiment; not only setting up a photoelectrically sensitive instru-
ment as receiver, but also providing some contrivance which shows
whether the light has passed through the upper slit (say a thin photo-
graphic film or the like). This contrivance in the slit, however, neces
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sarily throws the light quantum out of its undisturbed path; the
probability of getting it in the receiver (the screen) is therefore not
the same as it was originally, i.e. the prehmmary calculation by wave
theory of the interference phenomenon is illusory. Thus, if pure
interference is to be observed, we are necessarily precluded from
making an observation of any point of the path of the light quantum
before it strikes the screen.

We add in cenclusion a few general remarks on the philosophical
gside of the question. In the first place it is clear that the dualism,
wave-corpuscle, and the indeterminateness essentially involved therein,
compel us to abandon any attempt to-set up a deterministic theory.
The law of causality, according to which the course of events i au
isolated system is completely determined by the state of the system
at time t = 0, loses its validity, at any rate in the sense of classical
physics. In reply to the question whether a law of causation still holds
good in the new theory, two standpoints are possible. Kither we may
look upon processes from the pictorial side, holding fast to the wave-
corpuscle picture—in this case the law of causality certainly ceases
to hold; or, as is done in' the further development of the theory, we
describe the instantaneous state of the system by a (complex) quantity
"4, which satisfies a differential equation, and therefore changes with
the time in a way which is completely determined by its form at time
t =0, so that its-behaviour is rigorously causal. Since," however
physical significance is confined to the quantity | | (the square of
the amplitude), and to other similarly constructed quadratic expres-
sions (matrix elements), which only partially define ¢, it follows that,
even when the physically determinable quantities are completely
known at time ¢ = 0, the initial value of the i-function is necessarily
not completely definable. ~ This view of the matter is equivalent to
the assertion that events happen indeed in a strictly causal way, but
that we do not know the initial state exactly. In this sense the law
of causality is therefore empty; physics is in the nature of the case
indeterminate, and - therefore the affair of statistics.



__ Phase Velocity and Group Velocity (p. 90.)

In order to give a strict proof of the relationship U = 9v/0x given
in the text, we in the first instance consider the most general form of a
- group of waves; it must have the form of a Fourier integral

wz, t) — / afk)e>™ M Ek,

- where v = v(k) is to be regarded as a function &f the wave-number «.

We now assume that the group is very narrow, so that in the
integral there occur only those waves of finite amplitude whose wave-
numbers differ from the mean wave-number «, by a very small amount.
If we put k = Ky + x5, V() = vg + v4(Ky), and a(k, + k;) = b(x;), the
‘wave-group may be written in the form :

u(z, t) = A(z, )",
Where

Az, t) = / (1) e,

Hence the wave-group may be regarded as a single wave of frequency
vy, Wave-number «, and amplitude A(z, ) varying from point to -
point and moment to moment. This assumption is justified, as accord-
ing to our assumption A(, ¢) is'a function which varies only slowly

compared with the exponential function ™™, to a first
approximation it varies m the rhythm of 'a mean of the beat
frequencies v;, which are very small compared.with vy '

The velocity with which a definite value of the amplitude A(z, t,L



e.g. its maximum, advances with the wave is called the group velocity.
This is accordingly found from the relation

04 dz A 04

i A
obtained by differentiating the equation A(z, ¢) = const. with respect
to the time. If we call the group velocity U to distinguish it from the

phase velocity, we have

U_<M) N oA
7 \dt/ a=const. 04 [0~

Now obviously

24

—— = 2t | b(scy v T My,

7 - WiV ¢

% = — 27r’i/b(K1)K16" = ey
or

As we have assumed that the group is confined to & very narrow range
of wave-length, we can expand v(x,) In powers of «;:

- fdy
vi(Kq) = v(K) — vy = (a—()okl +....
Hence
04 (dv) 04

a  \dc)ooa’

and for the group velocity we accordingly have

dv
U=;l7c,

while the phase velocity is given by

U = —.
K



Elementary Derivation of Heisenberg’s Uncertainty Relation (p. 98).
We consider a wave packet of finite width. For the sake of simplicity
we represent its amplitude at any moment by a Gauss error function
(such as actually occurs in the ground state of the harmonic oscillator,
Appendices XVI, p. 396, and XXXIX, p. 471):
fiz) = e~
then Az the half-width is given by

Az = /(a¥) = VU2 @)de/[fH)de] = fa

The Fourier representation of f(x) is

Ha)y=| Pr)e™ " dx,
where - ‘

b) = [ fle¥ids

is the amplitude of a partial harmomec wave with the'wave number «.
Introducing the expression of f(x) in ¢(x) we have

- Blx) — A4 / mwe"(’”z/“““z”"“‘)dx

b

—_ A e—mca)’ [ e—-(x/a+nixa)2dx.

—a0

This integral is transformed by the substitution z/a 4- mika = y into
the Gauss integral

a[ eVdy = aV'.

Therefore -
$) = AV e — Aav/ e,
where 1 |
b= —.
ma

The distribution of the elementary waves composing the wave packet
f(z) is again a Gauss function with the half-width Ax =15, Hence

DY .
we have Az . Ak = }ab =, r, and introducing the momentum p = hx

(p. 89): B

- =1
Ax.Ap—iﬂ‘_zk

which is the exact expression of Heisenberg’s uncertainty law for the
special wave packet (see Appendix XL, p. 471). It is evident that
with respect to order of magnitude the relation Az . Ap~h holds for
any fo. m of the wave packet. We shall prove the inequality with an
exact r merical coefficient later (see Appendix XXVI, p. 433).
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