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Erwin Schrodinger. {Courresy of the
Niels Bohr Libram, American Insti-

rute of Phvsics.|

‘Max Born i

| (1882-1970, German—British)

Born is best known for his work
on the mathematical structure of
| quantum mechanics and the inter-
pretation of the wave function
After gewing his doctorate, he
| worked with | {. Thomson at Cam-
i bridge and lectured in Chicago for
| Michelson. He subsequently be-
| came professor at Berlin and then
I Gotungen. When Hitler came to
power. Born left Germany and be-
came a professor at Edinburgh
University. He won the Nobel
Prize in physics in 1954 for his

contributions te quantum theory, |
|
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rwin Schrédinger was an Aus-

wian theoretical physicist best
known as~the creator of wave
mechanics. As a young man he was a
good student who liked mathematics
and physics, but also Latin and Greek
for then logical grammar. He re-
ceived a doctorate in physics [rom
the Universine of Vienna. Although
hiswork in phvsies was interrupted by
Waorld Wi I, by 1920 he had pro-
duced important papers on statistical
mechanics, color vision, and general
velativiny, which he at first found
quite dithicalt 1o understand. Ex-
pressing hisfeclings abouta scientific
theory i the renmaokablv open and
he  maimcaned
lile,

lound geneval velativity initally “de-

outspoken  win

throughout  his Sclnadinge
pressing™ and “unnecessarily compli-
cated.” Other Schrodimper reniuks
in this vein, with which sone readers
will enthusiasticatly agree e as fol-
tows: ‘The Boln=Sommerield -
T theory was “unsatisfacton, even
[eel
dated. not 1o sy repelled, by wha

chsagrecahle.™ 7] M-
secm toame the vers difficalt methods
fol manix mechanics] and by the
ek of chuin.”

Shorth
duced the concept ol matier waves in

alter de Broglic into-
FOZA Schnodinger hegan o develop
anew relativistic atomic theorn based
on de Broghe's ideas, but his fatlue
o include clecton spin led o the
faihire of this theory for hvdrogen. By
Januay of 1926, by veating the clec-
ron as a nonrelativistic particle. how-
ever. Schiradinger had invoduced his
Lmmous wave cquation and success-
fullv obtained the energy values and
wavefunctions for - hvdiogen, Ay
Schradinger himself ponned ont.an
outstanding feature of his approach
wias thae the diserete energy vidues

BT OGRAPHY

ERWIN SCHRODINGER
(1887-1961)

crerged from his wave equation ina
natural wany (as i the case of stand-
ing waves on astng), and inaoway
superion to the artificial postulate ap-
proach of Boln. Another outstanding
leatune of Schrodinger’™s wave me-
chamices was that ie was casier 1o apply
to physical problems than Hleisen-
berg™s matrix mechanics, beciuse it
mvolved o partial differential equa-
ton very simibin 1o the classical wave
cquation. Inwigued by the remark-
able differences in conception and
mathematical method of wave and
matrix mechanics, Schrodinger did
much to hasten the universal accept-
ance of all of quantum theory by
demonstrating the mathematical
cquivalence ol the wo theories in
19206,

Although Schrodinger’s wave the-
o was generadly based on clear phys-
ical ideas. one ol its major problems

in 1926 was the physical interpreta-
tion of the wavefunction ¥. Schro-
dinger felt that the clectron was uld-
mately a wave, ¥ was the vibration
amplitude of this wave, and U+ was
the clectric charge densitv. As men-
tioned in Chapter 4, Born, Bohr, Hei-
senberg, and others pointed out the
problems with this interpretation
and  presented  the  currently  ac-
cepted view that ¥*W is a probabil-
ity, und that the clectron is ultimately
no morc a wave than a particle.
Schrodinger never  accepted  this
view, but registered his “concern and
disappointment™ that this “transcen-
dental, almost psychical interpreta-
ton”™ had become “untversally ac-
cepted dogma”

In 1927 Schrodinger, e the invi-
tation of Muax Planck, accepted the ]
chaiv of theoretical physics at the
Berling, where  he
{ricndship  with
Planck and experienced six stable

University of
formed o close
and productive vears, In 1933, dis-
gusted with the Nazis fike so many of
his colleagues, he left Germany. After

several moves reflecting the polit-
cal instability of Lurope, he even-
tally settded ar the Dublin Insutute
for  Advinced  Studics. Here  he
spent 17 happy, creative vears work-
ing on problems in general rela
uvity. cosmology, and the applica
ton of quantum physies to biology-
This last eftort resulied in a fascinat-
ing short book. Whar is Life?, which
mduced many young physicists 10 in-
vestigate  biological  processes with
chemical and physical methods. In
1956, he returned home 1o his be
loved Tvrolean mountains. He died
there in 1961,

CAP Eanileo Segre Viswal Arvchives)
_.—-—-".-/
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ax Born was a German
, theoretical physicist who
Au . made major contributions
In many areas of physics, including
relativity, atomic and solid-state phvs-
ics, matrix mechanics, the guantum
mechanical  treatment of  particle
scattering  ("Born approximaton”),
the foundations of quantum mechan-
ics (Born interpretation of W), op-
tics, and the kinetic theory of liguids
dorn received the doctorate in Phys-
1cs from the Universit ol Gouingen
m 1907, and he acquired an exien-
sive knowledge of mathematics as the
privite assistant 1o the grear German
mathematician David Hilbert, This
strong - mathematical  background
proved o prem asset when he was
quickly able 1o reformulaie Heisen-
berg's quantum theory in a more
Consistent wiry with nuirices.,

In 1921, Born was offered o post
athe University ol Gortmgen, where
he helped build one of the strongest
phvsics centers of the twentieth cen-

twiy, ‘This croup consisted, ar one

BI OGURAPMHY

MAX BORN
(1882-1970)

time or another, of the nuihemati-
ctans Tilhert, Courant, Klein, and
Runge and the physicists Born, Jor-
dan, Heisenberg, Franck, Pohl, Teit-
lev, Herzberg, Novdheim, and Wig-

— —_—

ner, among others. In 1926, shortly
after Schrédinger’s publication of
wave mechanics, Born applicd Schré-
dinger’s methods to atomic scatter-
ing and developed the Born approx-
imation method for carrying oul
calculations of the probability of scat-
tering of a parlicle into 2 given solid
angle. This work furnished the basis
for Born’s starding (in 1926) inter-
pretation of W12 as (he probability
density. For this so-called statisticul
imterpretation  of 112 L was
awarded the Nobel prize in 1954,
Fired by the Nazis, Born lelt Ger-
many in 1933 for Cambridge and
cventually  the University of Edin-
burgh, where he again became the
leader of & large group investigating
the statistical  meclamices o con-
densed matter, In his later vears Born
campingned against atomic weapons,
wrote an autobiography, and trans-
lated German humorists into English.
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We return now to the Schrédinger equation for the harmonic oscillator (Equa-

tion 2.39):

§= /-—ux; [2.55]

in terms of &, the Schrédinger equation reads

d*y

Frie &> - Ky, [2.56]

where X is the energy, in units of (1/2)hw:
_2E
=5
Our problem is to solve Equation 2.56, and in the process obtain the “allowed” values
of K (and hence of E).
To begin with, note that at very large & (which is to say, at very large x), £2
completely dominates over the constant K, so in this regime

[2.57]

d*y
e e [2.58]
which has the approximate solution (check it!)
YE) A~ de 8 4 BetE 2, [2.59]

The B term is clearly not normalizable (it blows up as {x| — o0); the physically
acceptable solutions, then, have the asymptotic form

YE) > (e, atlarge &, [2.60]
This suggests that we “peel off” the exponential part,
V() = hEe 7, [2.61]

in hopes that what remains [%(£)] has a simpler functional form than ¥ (£) itself."
Differentiating Equation 2.61, we have

i (@ - Sh) e 572

dg ~ \d§
and d*y d’h dh 2 29
P (d_gz_ngHE —1)h)e—f/ .
so the Schridinger equation (Equation 2.56) becomes
@ — ZSEZE + (K —-1)h=0. [2.62]
dt? dé§

[ propose to look for a solution to Equation 2.62 in the form of a power series
in £

hE) =a+aé +aE +--- =) af’. [2.63]
j=0

!“Note that although we invoked some approximations to motivate Equation 2.61, what follows is
exact. The device of stripping off the asymptotic behavior is the standard first step in the power series
method for solving differential equations—see, for example, Boas (cited in footnote 8), Chapter 12.

15 According to Taylor’s theorem, any reasonably well-behaved function can be expressed as a power
series, so Equation 2.63 involves no real loss of generality. For conditions on the applicability of the series
method, see Boas (cited in footnote 8) or George Arfken, Mathematical Methods for Physicists, 3rd ed.
(Orlando, FL: Academic Press, 1985), Section 8.5.




Differentiating the series term by term,

o0

dh R )
— =@ +2mE+3aE =) jaEl
de =
and
dh o0 ‘
g =223 43 a4 =) (4 DU+ Dt
j=0
Putting these into Equation 2.62, we find
© .
[+ DG +2ajuz ~ 2ja; + (K - Da;] €7 =0. [2.64]
j=0

It follows (from the uniqueness of power series expansions'®) that the coefficient of
each power of & must vanish,

U+ DG +2aj12—2jaj + (K — Da; =0,

and hence that )
g = 2H1-K)
T G+nG+

This recursion formula is entirely equivalent to the Schrodinger equation itself.

[2.65]

Given gy itenables us (in principle) to generate a,, aq, as, - . ., and given a) it generates
as, as,as, ... . Letus write

h(%-) = heven(f) + hodd(E)’ [266]
where

heven(g) =aqo+ (12§2 + a454 qEood

is an even function of £ (since it involves only even powers), built on ay, and
hoad(€) = ai§ + az&” +ast” + - -

is an odd function, built on g,. Thus Equation 2.65 determines 4 (&) in terms of two
arbitrary constants (ap and a;)—which is just what we would expect, for a second-

order differential equation.
However, not all the solutions so obtained are normalizable. For at very large

J, the recursion formula becomes (approximately)

a; x —-a;
J+2 Tl
J

16See, for example, Arfken (footnote 15), Section 5.7.
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with the (approximate) solution

N_C
YT G

for some constant C, and this yields (at large £, where the higher powers dominate)

~ U ia Lo o8 B B
h($)~CZ(j/2)!.§ ~czk!s Cet'. -
Now, if & goes like exp(£2), then i (remember 1 >—that’s what we re trying to calcu-
late) goes like exp(£2/2) (Equation 2.61), which is precisely the asymptotic behavior
we don't want."” There is only one way to wiggle out of this: For normalizable solu- — — -
tions the power series must terminate. There must occur some “highest” j (call it n)
such that the recursion formula spits out a,4, = 0 (this will truncate either the series _
Reven Or the series hyqq; the other one must be zero from the start). For physically S— —
acceptable solutions, then, we must have . -

K=2n+1, —
for some positive integer n, which is to say (referring to Equation 2.57) that the energy — —
must be of the form o -

1
E,,=(n+§)ha), forn=0,1,2,.... [2.67] — —

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.50.
For the allowed values of X, the recursion formula reads L =

I it
T GEDG+Y

If n = 0, there is only one term in the series (we must pick a; = 0 to kill /444, and
Jj = 0 in Equation 2.68 yields a; = 0):

ho(§) = ao,

[2.68] ' R

and hence , o
Yo(§) = ape™ 2

(which reproduces Equation 2.48). For n = 1 we pick ap = 0,'® and Equation 2.68

with j = 1 yields a3 =0, so

hi(§) = a;§, —

"It's no surprise that the ill-behaved solutions are still contained in Equation 2.65; this recursion
relation is equivalent to the Schrodinger equation, so it's got to include both the asymptotic forms we found —
in Equation 2.59.

18Note that there is a completely different set of coefficients a ; for each value of n.
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and hence

Yi(E) = ajge 57

(confirming Equation 2.51). Forn = 2, j = 0 yields a» = —2ag, and j = 2 gives
as =0, so

ha(E) = ap(1 — 2£7)

and

Va(§) = ap(1 — 262572,

and so on. (Compare Problem 2.13, where the same rcsult was obtained by algebraic
means.)

In general, h, (£) will be a polynomial of degree n in &, involving even powers
only, if n is an even integer, and odd powers only, if 7 is an odd integer. Apart from
the overall factor (ag or a;) they are the so-called Hermite polynomials, H,(£)."
The first few of them are listed in Table 2.1. By tradition, the arbitrary multiplicative
factor is chosen so that the coefficient of the highest power of & is 2. With this
convention, the normalized® stationary states for the harmonic oscillator are

mo 174 1 2
— 62
Ya(x) = (nh ) T H,(&)e . [2.69]

They are identical (of course) to the ones we obtained algebraically in Equation 2.50.
In Figure 2.5a I have plotted , (x) for the first few n’s.

The quantum oscillator is strikingly different from its classical counterpart—
not only are the energies quantized, but the position distributions have some bizarre
features. For instance, the probability of finding the particle outside the classically
allowed range (that is, with x greater than the classical amplitude for the energy
in question) is not zero (see Problem 2.15), and in all odd states the probability of

Table 2.1: The first few Hermite polynomials, H,(x).

Hy =1,

H, =2x,

Hy = 4x? -2,
Hy = 8x3 — 12x,

Hy = 16x* — 48x2 + 12,
Hs = 32x% — 160x> + 120x.

19The Hermite polynomials have been studied extensively in the mathematical literature, and there
are many tools and tricks for working with them. A few of these are explored in Problem 2.18.

20F shall not work out the normalization constant here; if you are interested in knowing how it is
done, see, for example, Leonard Schiff, Quantum Mechanics, 3rd ed. (New York: McGraw-Hill, 1968),
Section 13.

finding the particle at the center of the potential well is zero. Only at relatively large
n do we begin to see some resemblance to the classical case. In Figure 2.5b I have
superimposed the classical position distribution on the quantum one (for n = 100): if
you smoothed out the bumps in the latter, the two would fit pretty well (however, in
the classical case we are talking about the distribution of positions over time tor one
oscillator, whereas in the quantum case we are talking about the distribution over an

ensemble of identically-prepared systems).*!
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— The potential function

Vix) of a one-dimensional
harmonic oscillator. Classically, a == —

particle of energy £ oscillates
between the turning points

at x = *A.

The energy levels of

- the harmonic oscillator. Note that
the difference between adjacent
energy levels is independent of n
and equal to AE = fiwq. Transitions
corresponding to An = *1 are
indicated by arrows.
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Expanding the exponential function in terms of powers of

s and {, we see that the coefficients of the powers s™ are
polynomials in terms of ¢ — the Hermite polynomials. This
can be shown as follows: we have

B ) oo 23n+1
05 _pge=tt2b= Y Ha(€)
3{ n=0
e _ s 9HR(©)
<=0 n! 6§ ’
2 (=25 +2§)s"
95 _ (254206 ¥ = Y T HA())
Js n=0 .
— =) n—1
=3 S ——Ha0) . ®

n=0 (n - 1)'

Equating equal powers of s in the sums of these two equa-
tions, we obtain

9%%@ = 2nHo 1)

Hpy1(6) =26Hn(8) —2nHn1(5) - ©

Therefore it follows that

9H0) _ 26Hn(§) — Hp+1(8) M
o¢

and hence

2HAE) 0Hn(§) OHn1(0)
% 2Hn(6) +2¢ BE B€

= = 2£aH"§(O +2Hn(6) — 2n+ DHn(®)

—mzo !
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OHn(§)
23
This is exactly differential equation (3), proving that the
H,,(¢) appearing in the generating function (4) are indeed

Hermite polynomials.

The recurrence formulas (6) may be used to calculate
the H, and their derivatives. Another explicit expression
directly obtainable from the generating function is quite
useful; let us now establish this important relation. From
(4) it follows instantly that

=2¢ —2nHn(§) - (8)

n
GICICL) R RO ©
s s=0
Now, for an arbitrary function f(s =€), it also holds that
of ot @
Js o€
Thus
s pone 68
. = c et
os™ as™
= (=" eﬁzé%e—(s-f)’ . (11)
Comparing (11) with (9) yields the very useful formula,
— (1" = g2 0" ¢ 12
Hn(§) =(-1)"=¢ 55"6 : (12)
frm—
- mur)
. A= (2=

The H,(£) are polynomials of nth degree in € with the dominant term 27£™. The
first five H,(£) calculated from (7.22) or (12) of the foregoing example are:

Ho@®=1 , Hi©)=2¢ ,
Ho(€) =462 —2 | Hy(6) =863 —12¢ , Hy(6)=166* —482+12 . (7.23)

Th.e cigenfuncti_ons (7.21) were combined by introducing the abbreviation ¢ = v/Az and
using the Hermite polynomials in a way that holds for both even and odd n, i.e.

¥n(@) = NV F (6) |, e=VAz . (7.24)

The -consta.nt N,,, which depends on the index n, is determined by the normalization
condition

/ [pn(@|2dz=1 , (7.25)

since w;h require the position probability to be 1 for the particle in the entire configuration
space. Thus



A 1
n=0:1p(z) = N ;cxp(—?\zz) ,

n=1:Y1(x)=2 %@exp( % )\/_z

n=2:Yy(z)= cxp = -,\;, [4)«;3 =2y (7.33)

§
From (7.24) and (7.30) it follows that, for space reflection, the eigenfunctions have the
symmetry property

Pn(=2) = (=1)"¢n(z) . (7.34)

This means

n even: yY{—z) = (z) — parity +1
n odd: Y(—z)= —1(z) — parity —1

For the lowest H,,, it can easily be shown that they possess precisely n different real zeros
and n — 1 extremal values (see Fig. 7.1). With respect to (12) in Example 7.2, we have

Hppyr = —cf2di£(c—52Hn) . (7.35)
On the assumption that H, possesses n + 1 real extremal values, we can conclude the
existence of n +1 extremal values for e—¢’ H, (since e—§* 0 for ¢ — 00). The extremal
values are identical with the zeros of the derivative d/d¢; therefore H,4; has precisely
n+ 1 real zeros. This conclusion shows that the Hermite polynomials H,(£) — and, in
consequence, the wave functions 1, (€) — possess n different real zeros. This is a special
case of a universally valid theorem which states that the principal quantum number of an
cigenfunction is identical with the number of zeros.

In Fig.7.1, some of the v, are plotted together with an energy diagram.
The energy eigenvalues are represented as horizontal lines with the quantum

segments E, = (n + 3)kw. For each of the lines there is a corresponding
eigenfunction ,(z) drawn on an arbitrary scale.

o N3

(4]

Fig. 7.1. Oscillator potential, energy lev-

els and corresponding wavefunctions

Y



/lz/)n(x)|2d:c=%N,2, / e Hy(6)2de=1 . (7.26)

—00

Using relation (12) of Example 7.2 to express one of the Hermite polynomials that appears
in the integrand of the .normalization integral, the evaluation of this integral becomeg
simply

2 - n —E
/ n(@)? de = (12 / Hale) e 7.27)
By partial integration we obtain

[ o] d"’ 5
— G
_/ Hol®) g™ de

-1l _ ® % 4H, 1
(Gt )me] - [ e dmea 728

The first term is, because of (12) in Example 7.2, equal to (—1)"~1 e—¢’ H, 1()H(6).
It vanishes at infinity, due to the exponential function.
Having carried out partial integration n times, we are left with

2 % dn n 2
/ Hae) o e o d=cn %—e'ﬁ i . (1.29)

Since Hyp() is a polynomial of nth order with the dominant term 27¢™, for the nth
derivative,

dﬂ

EHn(g) =2"n! (7.30)
holds.
From this we find that
o0
/ Hn(ﬁ)df,, € de = (-1m@Mnl [ € de=1reMaVE (3D

and for the normalization constant,

/i |
Nn = 7 2n!

The stationary states of the harmonic oscillator in quantum mechanics are therefore

L \/zcxp ( - l,\rz) Ha(VAz) . (7.32)
2nn! ¥ o 2

Here we have suppressed the phase factor (—1)", since it is not essential. To discuss the
solution, we take a look at the first three eigenfunctions of the linear harmonic oscillator
(see Fig.7.1):

Ynlz) =
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