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The Schrodinger equation

0 K2 920
zh@\ll(x, = —%—8%2(

The Schrodinger equation governs the motion of a particle in one dimension in a
potential V' (z).

z,t) + V(z)¥(z,t) (10-1)

e, h? 02
zha\ll(x,t) = [—%@ + V(z)] U(z,t) (10-2)

The term in parentheses can be interpreted as an operator acting on the wavefunction
called the Hamiltonian.

A 2 2
p=-L 9

+V(z) (10-3)
2m

Ox?
N
kinetic energy
is associated

with curvature
of wavefunction

corresponds to classical energy
P
2m
Note. ~ indicates operator

The Schrédinger equation (SE) can be written as

ih%@(x, t) = HU(x,1) (10-5)




Properties of the SE

Unlike the wave equation for EM fields in vacuum,
o2 1 o
(w - —57> E=0 (10:0)

mi = F(z), (10-7)

or Newton’s equation

the SE is first-order in time.

e It is sufficient to specify ¥(z,t = 0) to calculate ¥(z,t) at all later times ¢. For
second-order equations we need to specify both the function and its derivative,
or equivalently, position and momentum at ¢ = 0 to determine the solution at
later times.

e The particle position and the particle momentum are simultaneously encoded
in the wave function ¥(z,t). This property is associated with the fact that
U(z,t) is complex.

e The wavefunction ¥(z,t) is complex, the SE describes how the complex wave-
function propagates in space and time.

e The SE is non-relativistic.

e The SE is linear, i.e. if ¢, 1o are solutions, so is ¢ = c19) + 2o, where c¢;,co
are arbitrary complex numbers: superposition priniciple for waves.
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Interpretation of the wave function ¥(z,t)

If we perform a measurement of the particle’s position at time ¢, the probability of
finding the particle between z and x + dx is given by |¥(z, t)|?dz. The SE is a partial
differential equation (contains both 2 and 2). Since V(z) is independent of time, it
can be simplified into two ordinary differential equations.

ansatz. |U(z,t) = T(t)y(x)
The SE becomes

() (1) = (1) {—j—mdfx(f) V(o) | (10-13)
Dividing by T'(t)y(z) where T(t)y(z) # 0 yields
L2 2, AN
ih%%f—(t) _ {‘;_md(;/x(z ) 4 V(x)w(a:)} {z)(l—x) (10-14)

Since the two sides depend on different variables, they must be constants. Call this




constant £, it will be the total energy of the system

z'h‘z—:tr(t) = ET(t) = |T(t) = Ce LR (10-15)

The time dependence is simply a phase factor that evolves in time at angular frequency
£ The equation for ¢(z) is

R o2
{——7 + V(a:)} ¥(z) = Ey(x) = time-independent (10-16)

Hi(z) = Ey(z)| = time-independent Schrédinger equation (10-17)

N
mg‘l%g = HU(z, 1) (10-19)

is called the time-dependent Schrodinger equation. The time-independent SE:
Hy(z) = Ey(z) is an eigenvalue equation (operator acting on wavefunction yields
the same wavefunction, multiplied by a constant E). This is reminiscent of matrices,
eigenvectors, eigenvalues — Heisenberg’s matrix formulation of QM in 8.05. We call
a solution () of the time-independent SE Hep, = E,n(z) an eigenstate of the
system, with eigenvalue F,,. The time-evolution of an eigenstate 1,(x) is then simply
given by

W, (z,t) = e Ertlhy (). (10-20)

Our task is to find all eigenstates 1,(x) and corresponding eigenvalues F,,. Then, as
we will show later, the problem is solved completely: An arbitrary state that solves
the SE can be written as an superposition of eigenstates. The eigenvalues FE,, may be
discrete values (as in the Bohr atom), or they may form a continuum (e.g., energies
of a free particle). More generally, a solution ¢g(x) of the SE Hip(z) = Evr(z) for
energy F is called an energy eigenstate or energy eigenfunction of the system.
We will encounter other eigenvalues equations, e.g. for momentum, position, angular
momentum etc. For now, thinks of ¥g(x) as a solution of the differential equation.

" 9m  Ox2

+V(z)ye(z) = Evp(z) (10-21)

with energy E as a parameter. Let us work out a particularly simple example.
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Figure IV: Infinite well.
Particle in a box with infinite walls

- —m71/1 + V(2)(r) = Ep(x) (10-22)

implies that ¢(z) = 0 where V' — oo (otherwise E or curvature have to by infinite)=—-
Y(x) =0for x <0 orz>a For 0 <z <awe have,

B2 d?
_ %@QZJ = Ey(x) (10-23)
or
Y= —Zle—QEw(x) (10-24)

If £ < 0, the solutions are of the form e*** with k? = 2";1—2]3‘2 We require the

wavefunction ¥ (z) to be continuous (no steps), otherwise g—f becomes infinite. To
make (0) = 0 for ¢ = Ae* + Be " we need A = —B, but then 1(a) # 0, and 1
is not continuous. = There are no solutions for negative eigenvalues E.

For E > 0, the solutions are of the form e*** with k? = ZZZE (or sin kzx, cos kx).
The allowed values of E or k are determined by the boundary conditions. Writing
Y(z) = Ae™™ + Be ™** we need A = —B for ¥(0) = A+ B = 0. Then for ¢ = 0

we need Aeh® — Ae~the = 24i(gika _ g=tkaa) — 9 Asin ka = 0. This is fulfilled only if

ka = nmor k, =nZ, n=123,... (n=0,1 =0). Therefore the eigenvalues are
th,nZ h2 2
E, = T n?| n=1,2,3,... energy eigenvalues
2m 2ma?

with corresponding eigenfunctions

. . T
Yp(z) = Cpsink,x = C, sin (mrg>

where (), is some complex constant. The above is a general feature of QM. The
boundary conditions on the wave function force the quantization of enerqgy levels, i.e.
allow only discrete energy values.
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Figure V: Most de Broglie wavelengths lead to destructive interference.

y\!

Figure VI: Eigenstates of box with infinite walls.

Reason. Constructive interference, stationary phase after one round trip, for other
energies v interferes away. In order to interpret |1, (z)|* as a probability we need to
normalize it so the probability to find the particle anywhere in space is unity

/ dz|iy(z)[* = 1| Normalization of wavefunction (10-25)

Here [ dx|v,(x)|* = |Cp)? [ dasin® (nw2) = 1a|C, > = 1
An overall global phase of the wavefunction has no physical consequences so we

choose C,, real. We obtain

/2 sin ()
U, = A/ —sin [ nT—
a a

normalized eigenstates of the square well n = 1,2,3,... (0 < z < a, u, = 0, other-
wise)

Note. The minimum energy of the particle in the box is not zero, but given by the

ground-state energy Fy; = 3;7;22 This is sometimes called the zero-point energy.
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Since V(z) = 0 in the region where the particle can be found, the zero-point
energy must be purely kinetic in this case. We could have estimated it using the

Heisenberg uncertainty relation: Confining the particle to a region Ax = a introduces
(Ap)? A2

a momentum uncertainty Ap ~ Aig ~ %, and a kinetic energy -5~ ~ Tt Since
V(z) =0 for z < x < a, and —;L—mng = E7 in this region, and £ = 7~ in CM,
it appears that momentum is associated with the derivative - of the wavefunction,
and kinetic energy with the curvature 83—52.

The eigenfunctions have the property that

/00 daw) (), (z) = /Oa dxg sin (mrf> sin <m7rz) (11-1)

oo a a a

— %/Oa dx {cos ((n - m)ﬂ%) — COos ((n + m)”g)} (11-2)

_ sin((n —m)m)  sin((n +m)m)

11-3
(n—m)m (n+m)m (11-3)
0 f

_ { or n #m, (11-4)

1 forn=m.
= Onm (11-5)

fi
Opm = 0 forn7m, — Kronecker delta (11-6)
1 forn=m.

This is a general property, not particular to this example: Eigenfunctions belonging
to different eigenvalues are orthogonal, if the eigenfunctions are normalized we call
them orthonormal.

/ daxw) () (z) = Oy | orthonormality condition (11-7)

o0

Complex conjugate not necessary for box potential, where eigenfunctions are real,
but necessary in general.

/u;undx :/|un\2d:c =1 normalization (11-8)

Eigenfunctions as basis

Why is knowing the eigenfunctions important? Consider box potential: Fourier’s
theorem states that any function ¢ (x) that satisfies that boundary conditions ¥ (0) =
0 = 1(a) can be written as a sum of sin (n7).
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Note. cos (mrf) terms do not appear since they do not satisfy the boundary condi-
tions.

Since u,, & sin (n7Z), we can also write
a )

W(x) = Z crun(x)|  expansion of arbitrary ¢(z) into eigenfunctions — (11-9)

n=0

In order to calculate the expansion coefficients ¢,,, we use the orthonormality property
of the eigenfunctions.

/_oo dzup, Y (z) = /Oa dzu’, () <§; Cnun(x)> (11-10)

= Z cn/ dxu) u,(x) = Z CnOmn (11-11)
n=0 0 n=0
= Cm (11-12)

Thus the expansion coefficient can be calculated as the integral

cm:/ dzuy, (z)(x)| expansion coefficients (11-13)

[e.9]

Again we do not need the complex conjugate here, since u,, is real, but we have
written it in the correct general form. We call the set of functions {u,(z)} complete
if an arbitrary function 1(z) can be written as a superposition of functions of the set.
A complete, orthonormal set of functions is called a basis. The above properties,
derived for the particles in the box, are true in general in QM:

1. The energy eigenfunctions u,, of a Hamiltonian

h? 02
H=———-+4V 11-14
55z TV (@) (11-14)
form a basis, an arbitrary wavefunction ¢ (z) can be expanded as superposition

of eigenstates

V() = Cnttn () (11-15)

with complex coefficients ¢,. If the spectrum of eigenvalues, or part of the
spectrum of eigenvalues is continuous, the expansion contains an integral ¢ (z) =

>, ntin(z) + [ dEc(E)ug(x).
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2. The expansion coefficients ¢,, are given by

Cp = /_oo drw) (z)(x) |, (11-16)

[e.9]

i.e., they can be calculated once the eigenfunctions u,, are known explicitly.

Analogy to vector analysis

Consider an n-dimensional vector space. A set of n mutually orthogonal unit vectors

{€;}i=1....n forms a basis, i.e. an arbitrary vector v can be expanded into unit vectors:
n

vV = C; €; 11-17

; i, G (11-17)

complex basis
number vector

with suitably chosen coefficients ¢;. The ¢; are uniquely determined, and given by
C; = éz - V. (11—18)

In vector analysis terms, the wavefunctions ¢(x) form a vector space, called the

0,

t':'"'"'.'lr
<\

Figure I: projection of v onto é;

Hilbert space, the energy eigenfunctions u,(x) form a basis. The dimension of the
Hilbert space is the number of independent energy eigenfunctions; if that number is
infinite, the Hilbert space is infinite-dimensional.

We have the following correspondences:
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Lecture XI

QM

vector analysis

wavefunction: ¥(z)
energy eigenfunction: w;(z)
# of independent w;(z)
S drui (2)Y ()
Jooo dzi(2) Y5 (x)
ffooo dxu;“(x)u;“(x) = 0;
Y(x) =, ciui(z) for any ¢(x)
Eigenvalue equation:
Hip(x) = Byp(z)

Set of eigenfunction of certain type of
operators (Hermitian operators) forms
basis. Hamiltonian is such an opera-

vector: v
basis vector: é;
dimension of vector space
dot product: é; - v
dot product: vy - va
orthonormality: é; - é; = d;;
Completeness: v = ). ¢;é; for any v
Eigenvalue equation:
Mv =mv

Set of eigenfunctions of certain types
of matrices forms basis. (self-adjoint
matrices M1 = M.)

tor.

Physical interpretation of expansion coefficients

Assume that we have prepared some arbitrary wavefunction ¢(z) (that is consistent
with the coundary conditions) inside the box.

Va /
v / / / V= oo
. N
4 PR
=0

€

Figure II: Pictorial expansion of wavefunction in a box in terms of eigenfunctions.
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e Expansion into eigenfunctions:

= Z ¢ () (11-19)
= cruq () + cous(z) + . .. (11-20)

e phase (sign) of ¢; important, detemines whether more amplitude on left /right
ete.

e The larger |¢;|, the more the wavefunction ¢ (z) is “like” w;(z), (the larger the
projection of ¢(z) onto u;, given by (analogy to é; - v) ¢; = [ dzu}(z)(x)).

e Calculate Y 7 |

Zlczl2 ZC*Q (11-21)
= ‘ cf/dmuf(w)w(aﬁ) (11-22)

_ / dap(a) 3 ciui () (11-23)

:/dmp(x) ZCZul(x)> (11-24)
— [ dwvtap @) (11-25)

:/d:c|1/1(x)|2 (11-26)
=1 (11-27)
Since Yo7, |¢;]? = 1, the quantity |¢;|? can be interpreted as the probability
to find the particle in the state ¢, if a measurement of the particle’s energy
eigenstate is made, given that the particle has been initially prepared in a state
characterized by an arbitrary wavefunction ¢ (z). How is a measurement of the

energy eigenstate of the particle made? = Measure energy of particle.
2
E,=en? e=FE =

2ma2
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0"‘"“3 Kese yoliey iUl be meswed

T~ Wi} ~|\.¢1hhii}}{u ley*
gxml,ﬁa;(:‘wr / \3\
leal®

| N

-

PR 3 :

Figure I1I: Measurement of particle energy in state W that is not an energy eigenstates
can yield different values E; with probabilities |c;|?.
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After the energy measurement

After the energy measurement with outcome F;, the particle will be in the energy
eigenstate u;, and all subsequent energy measurements will yield the energy F;.
What is the energy before measurement is made?

If ¢)(z) is not an eigenstate, the energy is “uncertain”. A measurement can yield
different energy values, only probabilities can be predicted. However, an average
value of the energy can be calculated:

(E) = Z lco|?E,| —  generally valid (12-1)

Expectation value of energy in state ¥ (z):

(E) = /dxw*(x)f[w(x) —  valid for any potential, not only box potential

(12-2)

Hamiltonian operator and energy

If we postulate that a particle of momentum p is associated with a deBroglie wave-
length \qp = %, then it is represented by a plane wave e** with a wavevector
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k = /\27” = % = 2 or p = hk. Then, since the Fourier transform ¢(k) of ¢ (z)

gives the probability amplitude for the plane wave with wavevector k —
(vt0) = = [ arotire) (12:3)
Tr) = — e , -
V2T
the expectation value of momentum is given by
) = [ dibilo)P (124
() = [ antmb?loi (129

Note. In PS5 you show using the properties of Fourier transforms that these expec-
tation values can also be expressed as

(p) = / dw*(x)%%w(x) (12-6)
() :/da:¢*(x) G%) () (12-7)

It follows that the expectation value of the KE is

() = <§—m> = [ drv@ (—j—m;—) e (12:8)

How large is the expectation value of the potential energy?

Potential V() should be weighted by probability to find particle between z and
T + dz, hence

V) = / dxV (@) (x)? = / dr (2)V (z))(x) (12-9)

Since (E) = (V) 4+ (T) it follows that
() = [an@ (—f—m% n vm) b(a) (12-10)
- /dw*(:c)lf.rw(x) (12-11)

This is the so-called “sandwich form” for calculating the mean value (expectation
value) of the energy. If ¢(z) is an energy eigenfunction with eigenvalue Ey, i.e. if

Massachusetts Institute of Technology XII-2



8.04 Quantum Physics Lecture XII

HwEo (iL‘) = EowEo (iL‘), then

= E, (12-12)

where we have used the fact that the wavefunction is normalized. This shows that
the constant Fj appearing when we make the product ansatz U(z,t) = T'(t)i(z) to

~

solve the SE is really the energy of the system. We define the expectation value <O

of an operator O acting on a wavefunction v () via the sandwich form

<O> - / dr* (£)Ob(x) (12-13)

Then we have
(B) = <H> - / dra* () Hop () (12-14)

The mean energy of the state described by the wave-function ¢ (z) is the expectation
value of the Hamiltonian operator H. We say that the Hamiltonian H is the operator
associated with the measurable quantity energy. The operator T associated with the
kinetic energy is

A n® 2

with (T') = <T> = [ daip*(x)Ty(x), while the operator V for the potential energy is

simply a multiplicative factor

V=V(z) (12-16)

with (V) = <v> = [ dey* () V()

Why is potential energy associated with a simple multiplica-
tive factor while kinetic energy is associated with a second
derivative?

Because we are working with wavefunctions in real space ¥(z). We say that we
are working with wavefunctions in position space or in the position representation.
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Another possibility is to work in momentum space (the momentum representation).
Then the wavefunction should be the probability amplitude in momentum space,
which is just the Fourier transform ¢(p) of ¢(x). Then to calculate the KE we have

to weigh % for each p with the probability to find the particle momentum between

p and p + dp:
2 2
p p 2
— )= [ dp— 12-17
(2)= [ 1o (1217)
P
= [ dpo*(p)— 12-18
[ v )50(0) (12-18)
We see that in momentum space the KE operator is simply a multiplicative factor
. PP
T=-—=-—| — in momentum space (12-19)
2m  2m

How to calculate the potential energy V(z) in terms of the
wavefunctions in momentum space ¢(p)?

Note. In PS5, you have shown that

0
() = / dpg*(p) (iha—p) o(p) (12-20)
a n
(z") = / dp¢* (p) (iha—p> o(p) (12-21)
Consequently, for any potential function
V(z) = ianx" (12-22)
n=0

we can calculate the expectation value (V') as

vy = [a o)V (ha—p> o)
_ / ap6* (0)V(p) (12-23)

Consequently, the representation of the operator for the PE in momentum space is

(12-24)

<

I

<
//~

~.

>t
Il
~—
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where a function V' of an operator is defined in terms of its Taylor expansion, Eq.
(12-22). It follows that the Hamiltonian is

H=T+V (12-25)
1 (ho) o
=5 (;%) + V(x) in position space (12-26)
P’ 0
=—+4+V |ih— in momentum space (12-27)
2m dp

The SE equation is always the same:

zh%\lf(x, t) = HU(z,1) time-dependent SE (12-28)
ih%@(p, t) = Hd(p,1) time-dependent SE (12-29)
Hi(z) = Ey(x) time-independent SE (12-30)
Ho(p) = Ed(p) time-independent SE (12-31)

Ezample. For the harmonic oscillator, the SE (in appropriately chosen units) looks
the same in position and momentum space:

1. linear potential V' (z) = Az

2
—;—m¢,/($) + Az (x) = E(z) in position space
(12-32)
2
2p—m¢(P) +1ihA¢' (p) = E¢(p)  simpler equation in momentum space
(12-33)
2. harmonic oscillator: V(z) = tmw?a?
R L 59
—%w (x) + Smwe W(x) = EY(x) (12-34)
p? Ly 9w
5,7 0(p) = Shmw e’ (p) = Eo(p) (12-35)

If we know the solutions in one space, we know the solutions in the other. The
HO is symmetric in position and momentum.
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Time evolution of the wave function

Consider a particle in the infinite box with a wavefunction at t = 0, U(z,t = 0).
Expansion into eigenstates V(z,t = 0) = ciui(z) + coug(x) + -+ = D07 | ¢y ().
Since each eigenstate u,(z,t) evolves at a rate given by its eigenenergy £,

U (2, 1) = up (x,t = 0)e Bt/ (12-36)
= () Ent/M (12-37)

the wavefunction W(x,t) at later time ¢ is simply given by the linear superposition

U, t) = coup(x)e Fmt/h (12-38)
n=1

where the expansion coefficients ¢,, are calculated at ¢t = 0:

Cn = /OO druy (x)¥(z,t = 0) (12-39)

[e.e]

Hence the importance of energy eigenstates and eigenvalues: The eigenvalues rep-
resent not only the only possible outcomes of individual energy measurements, but
the combination of eigenstates and eigenvalues allows one to write down the time
evolution of an arbitrary initial state.

How does a particle move?

Ezample. ¥(z,t =0) = \/Li(ul(x) + uy(z)). Particle in equal superposition of ground
and first excited state.

1 , A
U(x, t) = 7 [ul(x)e_ZElt/h + u2(x)e_ZE2t/h} (12-40)
L i t/h {(E2—E1)t/h
= —e " g (x) + ug(x)e 2 12-41
1 )
V() = Sl (w) + ug ()12 (12-42)

At any fixed position, interference term between u; and us oscillates from constructive

to destructive interference with angular frequency

Ey — Ey
h

The energy difference determines the oscillation of the particle between the halves of
the box.

(12-43)

Wo1 =
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Figure I: A particle in a superposition of the ground state an the first excited state
oscillates from left to right at the frequency corresponding to the energy difference
between the two states.

Note. If U(x,t = 0) is an eigenstate, ¥(x,t = 0) = u, (), then |¥(z,t)|? = [¥(x,0)]?,
i.e. the probability density does not change in time: Bohr’s stationary states are
energy eigenstates.

An oscillating electron (particle) is in a superposition of at least two energy eigen-
states. An electron in a Bohr atom that emits a Lyman « photon is in a superposition
of the ground (E;) and the first excited state (Es). It oscillates in space at the fre-

2—Fy

quency ET, exactly the frequency of the emitted Lyman « photon.

Our box example also shows: The more localized the initial spatial distribution
U(z,0), the more eigenstates are involved, and the more complicated the time evolu-
tion will be (there will be interference terms oscillating at (Fy — E)/h, (Es — E1)/h,
(E5 — E5)/h, ...) All motion of particles involves oscillating interference.

What is the relation between the SE and CM

QM should reproduce CM as limiting case

° CMp:mU:mfl—f

e We expect this (and other) classical equation(s) to hold for the QM expectation
values (average position, momentum), at least in some limiting case.

e Calculate m <‘Zl—f>: the only time variation arises from the time variation of wave
function, z is coordinate, not particle position in the SE.
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dx d
m <E> =mo (x) (12-44)
= mi/d:tlll*(x,t)mlll(x,t) (12-45)
A ., OV
:m/dac{ tx\lf—i-\l’ 8t} (12-46)
n* 9>+ L1 n* 9%
= m/dx [—_zh { D + V(x)U* }x\IJ + U T {_%W + V(as)\IJH
(12-47)
h [ 0*W , 0% 1 .
=5 Oodac {WI\I/ -Vv xw] o /dx V"V (2)xV — U2V (z) V]
(12-48)
The second term is zero, the first term can be integrated by parts:
0?0+ 0 [0V~ ov* 9
U=_— v — —
oa? Ox ( oz ) Ox Ox (=)
0 [o0v* ov* ov* oV
= — v — v — — -
Oz ( oz " ) Oz 0z " Oz (12-49)
Similarly,
., 0% 0? i
Y T oy = ( 527 x\I!) (12-50)
o [ov* ov ov* ov
= — U —Ur—| — U+ U — 12-
Oz { Oz x@x} Oz Oz (12-51)
0 8¢* - ov 0 L0V
oV n 9?

For the wavefunction to be normalizable, it has to vanish at +oo faster than \/LE

Consequently, the integral over the first two terms in A yields zero and we are left
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with
d WOt ow
o B o
_ /_ ¥ (a) (;%) U (z, 1) (12-55)
- / 0oV (2, DU (a2, 1) = (p) (12-56)

So it follows from the SE that the expectation value of momentum is equal to the
particle mass times the rate of change of the expectation value of particle position:

m % (x) = ) (12:57)

This equation follows from the SE in combination with the position representation of
the momentum operator p = %a%' Does the appearance of % mean that momentum is
complex (imaginary)? Let us calculate the complex conjugate (p)” of the expectation
values of (p) in some arbitrary state U(z,t) ...
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(p)" = () (13-1)
e () .
B i Ox

= —g /_Z da L% (U0*) — xp*a%xp] (13-4)
- /dx\IJ* (?(%) v (13-5)
= (D) (13-6)

where again we have used integration by parts and the fact that U vanishes at +oo.
Consequently, (p) = (p)”, i.e. all expectation values of p are real. Since an eigenvalue
is the expectation value for the corresponding stationary state, all eigenvalues of
the momentum operator must be real. An operator whose eigenvaluse are real (or
equivalently, whose expectation value for all admissible wavefunctions is real) is called
a Hermitian operator.

Physically measurable quantities are represented by Hermitian operators. ‘

Similarly, one can show that (E)* = (F) for any state, so all energy eigenvalue are
real: The Hamiltonian operator H is a Hermitian operator.

Can we “derive” Newton’s F' = ma from the SE?

CM: F = —% =ma = 2% Let us calculate the expectation value of %:
()= 50 (137
_ % 0 (5, 1) G@%) (. 1) (13-8)
- %/dm (8;*2—3 + w*%%) (13-9)
:/dm\[—%a;f:g—f+‘/\lf*g—i —u? (-%%’+vw)l (13-10)
A
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The integrand is

h? 0?W* oW /\U/@){r o [ 0%
A= oo Y 7*%%(%—)
K2 OU* 920 L [(OV /Va)lr
B et el <%>\If—qf o (13-11)

RO [, 0¥  OU* Qv L (OV

Again the integral over the first term vanishes since ¥ — 0 for z — +00, and we are
left with

<%> _ /da:\I/*(x,t) (—Z—Z(m)) U(z, 1) = <—%> (13-13)

Ly = - <%> (13-14)

It follows from the SE that the expectation values obey the classical equations
of motion.

d

m (x) = (p) (13-15)
%(Ig) - _ <%> (13-16)

Average momentum changes due to average force

. <Z_V> - [ (g—v) v [@rE) e, 30)

i.e. position-dependent force F(x) is weighted by probability density |¥(z,t)|? for

finding the particle at position  at time ¢. Note, however, that (22) # #‘%V ((x))

Example 1. Double-peaked distribution. The probability to find the particle at the
average position (z) is small, so the force there cannot be of much consequence for
the particle’s motion.

Ezample 2. Force varying quickly on wavepacket scale. Classical calculation —ﬁv ((x))
would predict very large (and quickly varying force as (x) changes), actual QM force
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Figure I: Double-peaked particle distribution with vanishing probability to find par-
ticle at average position.

(xj I/[k}

Figure II: Particle wavepacket large compared to spatial variation of the force. The
time evolution of the wavepacket will depend on the value of the force averaged over
the wavepacket, not just on the force at the average particle location.

<—%> experienced by particle is much smaller. However, if the force varies slowly

compared to the size of a single wavepacket, then

Cdr

(-5 ) = F@) ~ F(la) = =57V () (13-15)

This is the reason why we can treat particles in macroscopic potential usually as
classical particles.

4 (p) = — <(2—V> —  always true (13-19)
T
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—(p) ~ — d? >V((a:>) —  Ehrenfest’s theorem for slowly varying potentials
x

(13-20)

Eigenfunctions of the momentum operator

What are the eigenfunctions u, of the momentum operator, i.e. the eigenfunctions
satisfying

pup = plp, (13-21)

where p is some (fixed) particular eigenvalue of p. We know that the operator p is
Hermitian, so all eigenvalues p are real. In position space, we have p = %a% and
B9 uy(z) = puy(z), up(z) = Ae?/™. The momentum eigenfunctions are (of course)
just the plane waves. Let us check the orthonormality condition for eigenstates:

/ dru,*(z)uy(x) = Ay* A, / dze=P'e/heipa/h (13-22)
— A %A, / dze! PP/ (13-23)
= hA A, / dye' @7 (13-24)
=hA, A (p—p')2m (13-25)
= h2rA, A(p— 1) (13-26)

The momentum eigenfunction are orthogonal for p # p/, but we have a normalization
problem for p = p’: The Dirac delta function diverfes, or equivalently, the integral

/dx]up(a:)|2 = |Ap]2/ dx | /|2 (13-27)
——

—00
=1

diverges. Before looking at possibilities to deal with normalization problem, let us
calculate the expansion coefficients ¢(p)

c(p) = /dxAp*e_ipx/hw(x) = Ap*/dm/)(x)e_ipwh (13-28)

J

V2rhé(p)
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We see that if we make the normalization choice A, = \/ﬁ’ then the expansion

coefficients ¢(p) into momentum eigenstates are just given by the Fourier transform

upy(z) = \/%em/ " —  ”normalized” momentum eigenstates (13-29)

o= [ dete (o (13-30)
expansi;n into momentum eigJenstates

- ﬂlﬁ_h / )" (13-31)

Fourier transformation

The expansion into momentum eigenstates and Fourier tranformation are one and
the same. Since 1(x) and ¢(p) contain the same information about the particle, we
can use either one to characterize the position and motion of the particle. A more
fundamental motion is the state of the particle (a state is a vector in Hilbert
space), the state can be expressed (written down) in various representations (like
position representation ¥ (x), momentum representation ¢(p), energy representation
cg) associated with Hermitian operators (position &, momentum p, energy H ). We
call ¢(p) the momentum representation of a particular state, and interpret it as
the wavefunction in momentum space. The SE governs the time evolution of
the wavefunction, or equivalently, the time evolution of the state of the particle in
Hilbert space.

For one particle in one (three) dimensions, the Hilbert space is one- (three-) dimen-
sional, but for N particles in three dimensions the Hilbert space is 3/N-dimensional.
In general, it cannot be factored into a tensor product of N three-dimensional vector
space Vigstem 7 Vi ® Vo ® - -+ ® Vly, or equivalently, the wavefunction for NV particles
does not factor into a product of wavefunctions for each particle,

U(ry,ra,...,r1,t) # Uyi(ry)Ws(re) ... ¥y(rn) (13-32)

In this case, when the wavefunction for an N-particle system cannot be written as a
product of wavefunctions for the individual particles, i.e. when the particles do not
evolve independently, we speak of an entangled state. Because of this possibility a
quantum system of N particles is vastly (exponentially in V) richer than an classical
system of N particles. However, in most cases we lose track of the particle-particle
correlations associated with entanglement, and the system behaves quasi-classically.
A quantum system that could preserve the correlations, and that could be manipu-
lated externally, would constitute a quantum computer. A quantum computer could
solve certain computation problems (only a handful have been discovered so far) ex-
ponentially faster than a classical computer. Because of the enormous size of the
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Hilbert space, certain quantum mechanical problems involving many-particle corre-
lations (e.g. high temperature superconductivity that involves correlated motion of
many electrons) are very difficult to solve or simulate on a classical computer. Now
back to a single particle in one dimension ...

Massachusetts Institute of Technology XIII-6



8.04 Quantum Physics Lecture XIV

Normalization of wavefunctions in free space

The momentum eigenstates in the position representation, u,(z) defined by

() = 0 () = puy (), (14-1)

and given by
1

up () = \/ﬁ

cannot be normalized in free space to be interpreted as a probability density since
|up(@)|* = 55, and [ dx|u,(x)]* diverges. However, they do satisfy the continuum
orthonormality condltlon

ere/h (14-2)

/00 dzuy,™ (x)uy () = d(p — ') | (14-3)

oo

This normalization corresponds to a uniform particle density (particle per meter)
given by |u,(z)|? = ;1. Let us calculate the probability current (particles moving
past a point x per second) defined by

@) = g |05 = (G ) v |~ seeps )

10 =g |2 (<) (145)
_ %% (14-6)

2= moving

which is exactly what we expect for a uniform particle density |u,(z)* = 5=

at velocity v = £

In general, choosing a wavefunction v(x) = Ce’® corresponds to particles moving
at velocity £, a particle density [psi(z)|* = |C|?, and a particle current j(z) =
|C]?£. Alternatives to deal with the normalization problem (wavefunction not square-
integrable) for momentum states are:

1. Wavepackets
A superposition of a finite number of momentum eigenstates is not normalizable,
but a wavepacket consisting of an infinite number of momentum eigenstates
(Fourier components) is.
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Figure I: A wavepacket (x) in position space or ¢(k) in momentum space whose
wavefunction for large = (or k) falls off faster than z7%/2 (k~%/2) can be directly
normalized.

2. Periodic boundary conditions
Assume box of finite length L, require periodic boundary conditions

¥(0) = ¥(L) (14-7)
For plane waves e?*/" this implies that e?X/" =1 or %L = kL = n2m, n integer,
i.e. momentum is quantized, p, = nhk, with ky = 2% The corresponding

momentum states are normalizable in the interval [0, L],

L
/ de|Cem /M2 — LC2 =1 (14-8)
0
Up, () = Leip"x/h (14-9)
Pn \/E

— normalized momentum eigenstates in box of size L with p,, = nhk,

L
/ dzuy, *(z)uy,, () = dpm —  orthonormality condition in box (14-10)
0

We perform all calculations for fixed size box, then take the limit L — oo (i.e.
ko — 0, momentum spectrum becomes continuous). All physically sensible
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—_—

o L X

Figure II: Wavefunction in box of length L with periodic boundary conditions.

results will be independent of the initially chosen box size L as long as L is
large compared to distances of interest.

Time evolution of free-particle wavepackets

In free space we often work with normalized Gaussian wavepackets

1 et
CEIOTIEHA e

U(z,t=0)=

Written in this form we have

22

2

o |U(x,0)]* = Me 2wg
o [dz|U(z,0)> =1
o ()=0

L] <JI2> = U)02

o (02)* = (2%) — ()" = wy’

Az = wy is the uncertainty or rms width (root-mean-square width) of the wavepacket.
Why do we prefer this Gaussian form of wavepacket?

1. Particularly simple and symmetric, the Fourier transform is also a Gaus-

sian wavepacket:
1 _ k2
o= (1) g 2 o (14-12)

with ko = 5. (AR)2 = (k2) — (k) = ko?

2. This is a wavepacket with the minimum uncertainty AzAk = % (AzAp = %)
allowed by QM

3. Physical system after give rise to Gaussian broadening in momentum or position,
e.g., thermal distribution of atomic momenta in a gas is a Gaussian distribution.
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How do we make a wavepacket move at velocity v;7

We displace the distribution in momentum space from (p) = (hk) = 0 to (p) = (hk) =
hki = mu; (see Fig. III).

1 _ (k—k)?

o(k) = We ko? (14-13)

The inverse Fourier transform, i.e., the spatial wavefunction

1 _% iki1x
\I/(l‘,t = 0) = W@ dwo? '™ (14—14)

1 rather than a constant phase

1z in position

is still a Gaussian, but now with a phase variation e
over the wavepacket (compare Eq. (14-11). This phase variation e

D (k)

T2,
2
1 4w0

wavefunction ¢y (x) = W"f

space “encodes” the motion of the wavepacket at velocity v, = %: The dominant de
Broglie wavelength in the wavepacket corresponds to a wavevector k1, or a momentum
hk;.
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How does a free-space Gaussian wave packet evolve in time?

In general, we expand a wavefunction ¥(z,0) into energy eigenfunctions ug(x), and
then evolve the energy eigenfunctions as e *#4/".

In free space, there is only KE. Then the momentum eigenstates u,(z) are simul-
taneous eigenstates of energy:

n2

Huy(z) = f—mup(a:) (14-15)
1 A

=— (hz%> Nor / (14-16)

- g_mup(x) (14-17)

Huy(z) = 2p—mup(x) (14-18)

= E,u,(z) (14-19)

in free space. The energy eigenstates are said to be doubly degenerate: For each
eigenvalue of energy E > 0 there are two different momentum states (namely u.,(z)
with p = v/2mh) that have the same energy. It follows that a momentum eigenstate
with eigenvalue p evolves in time as e “#»%/" so that the wavefunction in momentum
space evolves in time as

D(p,t) = B(p, 0)e~ 4t/ (14-20)

— time evolution of momentum eigenfunctions in free space. The wavefunc-
tion in real space is given by the inverse Fourier transform W(z,t), or equivalently, as
the superposition of energy eigenfunctions with their corresponding phase evolution
factors e~ Ent/:

U(x,t) dp®(p, t)e*/h (14-21)

¢—
(= / dp®(p, )y (1)) (14-22)

1 ; p?
= \/ﬂ/dpq)(p, 0)e'P*/he=2mt/h (14-23)

= /dpcb(p, 0)Up(z, 1) (14-24)

~ [ v o (14-25)
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where U,(z,t) = u,(z)e 2m 55t/ are the time- dependent momen-
tum eigenfunctions in free space. The above equatlon shows that the phases of dif-
ferent Fourier components u,(x) = \/;The”’x/ " evolve in time at different speeds, the
“running out of phase” of different Fourier components leads to a spreading of the
wavepacket in position space. In the problem sets you will show that the rms width

Ax(t) = w(t) of the wavepacket grows in time as

2
Lot/h 1 etrr/he—
V2 77,

R k2

w(t) =wu| 1+ ——7 14-26

( ) 0 meOQ ( )

Since a wavepacket contains different momentum components, it changes in time in
free space even though there are non external forces acting. For long times ¢t >
to = m%’“ the wavepacket spreads as w(t) =~ miwot, i.e. at a speed vy = miwo that
is inversely proportional to its initial size. That speed is negligible for macroscopic
wavepacket size, but can be appreciable for initially well-localized microscopic objects.
The spreading of a wavepacket in free space was early evidence that the wavepacket
size cannot be identified with the particle size. The spreading is due to the quadratic
(i.e. not linear) dependence of the energy, and hence the phase evolution rate, on
momentum. Note that the wavepacket of a massless particle, e.g. a photon, with

E = pc would not spread. (The SE is non-relativistic and does not apply to photons.)

Motion of wave packets, group velocity, and station-
ary phase

Why is it that a wavefunction
1 22

o) = (2m) Vg 1/2¢ e (14-27)

represents a particle moving at velocity v; = %? Since a crest of a single momentum

; k2 . . .
component uy, (z,t) = \/Lﬂe_’“””e_Z 2m ' moves forward a distance A = i—f in a time
2 . . . .
T = i—’lr (remember that wy = h;ﬁz and e "F1t/h — e=iit) the velocity of the crest is

A\ _ 2w _ wi _ Bk

Uph =7 = % 2r = &~ 2m

Wi Ik, y4
. . R 14-2
Uph ky 2m  2m ( 8)

This is the phase velocity of a momentum component.

The particle does not move at the phase velocity vy, = ‘]:—i at which the plane

wave associated with a single momentum moves forward. At what velocity then?
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e Look at exponent and write:
E1 = E1<k1) = hwl = hu}(k1> =

hky>
2m

2 .
. e(—w—l—zhm—zw(kl)t)

Remember Fermat’s principle of stationary phase: path is defined by region of space
. . . . . 2

where phasors point mostly in one direction, i.e. where the phase ¢(k) = —71— +

ikx + iw(k1)t does not vary between different momentum components k to lowest

order 96 3 3
. . W . W
Ozﬁzw—z<%>t—z(x—(%)), (14-29)

x(t) = (g—:) t. (14-30)

Fermat’s principle leads us to the concept of group velocity

or

hk
awk _hkr

Vgr = %( 1) = o om (14-31)

Group velocity of the wavepacket at which the wavepacket, i.e. the region of con-
structive interference, propagates. The difference between group and phase velocity

is due to the fact the g—‘]‘; Z,or %—f = % =+ %, i.e. the quadratic dependence of KE

on momentum in free space. This is in contrast to photons with a linear dispersion
relation g—‘]: = ¢ = c in vacuum, where group and phase velocity are the same.
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[#s: £ /2 |

We return now to the Schrodinger equation for the harmonic oscillator (Equa- =
tion 2.39):
Rdy 1, ., =
—_—— 4 = =Ey.
amd T TV =EY A, |

Things look a little cleaner if we introduce the dimensionless variable
E= [|—ux; [2.55]

in terms of £, the Schrodinger equation reads

&2y

d_.”,-'z = (52 - Ky, (2.56]

where K is the energy, in units of (1/2)hw: -
_2E
=g

Our problem is to solve Equation 2.56, and in the process obtain the “allowed” values

of K (and hence of E).
To begin with, note that at very large £ (which is to say, at very large x), &2
completely dominates over the constant K, so in this regime

[2.57]

d2
R, [2.58)
which has the approximate solution (check it!) =T
(&) ~ de~¥'/? + Bett'/2, [2.59]
144

The B term is clearly not normalizable (it blows up as x| — 00); the physically
acceptable solutions, then, have the asymptotic form —

YE > ()e¥72, atlargeé. [2.60]
This suggests that we “peel off” the exponential part,

YE) =hE)e 7, [2.61] —
in hopes that what remains [4(£)] has a simpler functional form than (&) itself.'* —
Differentiating Equation 2.61, we have ! -

&y = 2] —&h)e 2 .
dé d§
and X X B
d“y dh d 2 g2 -
— =(-= 26— —Dh)e* 72,
i = (G -2+ & -0 |
so the Schrddinger equation (Equation 2.56) becomes
d’h dh
— 26—+ (K—-1Dh=0. 2.62 -
a2 £ dE +( ) [2.62]
I propose to look for a solution to Equation 2.62 in the form of a power series
in &'
> n
hE) =ao+ab+ak>+--- =) ai. [2.63]
/=0

4Note that although we invoked some approximations to motivate Equation 2.61, what follows is
exact. The device of stripping off the asymptotic behavior is the standard first step in the power series
method for solving differential equations—see, for example, Boas (cited in footnote 8), Chapter 12.

13 According to Taylor’s theorem, any reasonably well-behaved function can be expressed as a power
series, so Equation 2.63 involves no real loss of generality. For conditions on the applicability of the series
method, see Boas (cited in footnote 8) or George Arfken, Mathematical Methods for Physicists, 31d ed. i 1
(Orlando, FL: Academic Press, 1985), Section 8.5. |
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Differentiating the series term by term,

dh o .
—— =ay+ 2t +3a3E =) jaEl !
dg =
and
d*h ) =N _ ;
g7 =2 +2-3a:k +3 - dask +o =3 G+ DU +Dajt’
=0

Putting these into Equation 2.62, we find
20 .
Z[(j+ D(J +2)aj2 — 2ja; + (K — 1)a;] &/ = 0. [2.64]
j=0

It follows (from the uniqueness of power series expansions'®) that the coefficient of
each power of & must vanish,

U+ D +ajyz —2ja; + (K —1a; =0,

and hence that .
e LR L2 )
MGG+

This recursion formula is entirely equivalent to the Schrédinger equation itself.

[2.65]

Given ag itenables us (in principle) to generate a,, aq, dg, . . . , and given a, it generates
as, as, az, .... Letus write

h(&) = heven(&) + hodd(E)a [266]
where

heven(§) = ao +a2!§-2 +(14§4 qpoae

is an even function of £ (since it involves only even powers), built on ag, and
hoaa(§) = ai§ +asé’ +as + -

is an odd function, built on @;. Thus Equation 2.65 determines #(£) in terms of two
arbitrary constants (ag and a;)—which is just what we would expect, for a second-

order differential equation.
However, not all the solutions so obtained are normalizable. For at very large

J» the recursion formula becomes (approximately)

~ 2
Aiin &~ —a;
j+2 LU
J

16See, for example, Arfken (footnote 15), Section 5.7.
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with the (approximate) solution

N C
Y G

for some constant C, and this yields (at large &, where the higher powers dominate)

N L 1 oo o g
hE)~CY (j/z)!g ~CY HEH~Cet
Now, if h goes like exp(£?), then { (remember y 7—that’s what we're trying to calcu-
late) goes like exp(£2/2) (Equation 2.61), which is precisely the asymptotic behavior
we don’t want.” There is only one way to wiggle out of this: For normalizable solu-
tions the power series must terminate. There must occur some “highest” j (call it n)
such that the recursion formula spits out a,, = 0 (this will truncate either the series
heven OF the series Aoqq; the other one must be zero from the start). For physically
acceptable solutions, then, we must have

K=2n+1,

for some positive integer n, which is to say (referring to Equation 2.57) that the energy
must be of the form

1
En=(nt ho, forn=0.12..... [2.67]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.50.
For the allowed values of X, the recursion formula reads

I
MGG+

If n = 0, there is only one term in the series (we must pick a; = 0 to kill /444, and
j = 0 in Equation 2.68 yields a; = 0):

ho(§) = ao,

[2.68]

and hence .
Yo (§) = aoe™ /2
(which reproduces Equation 2.48). For n = 1 we pick ap = 0,'® and Equation 2.68
with j = 1 yields a3 =0, so
hi(§) = aié,

171¢'s no surprise that the ill-behaved solutions are still contained in Equation 2.65; this recursion
relation is equivalent to the Schrédinger equation, so it’s got to include both the asymptotic forms we found
in Equation 2.59.

8Note that there is a completely different set of coefficients a; for each value of #.
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and hence
V(&) =a ke

(confirming Equation 2.51). Forn = 2, j = 0 yields a; = —2agp, and j = 2 gives
as = 0, so
ha(§) = ap(l —2§7)

and

Ya(E) = ag(l — 262672,

and so on. (Compare Problem 2.13, where the same result was obtained by algebraic
means.)

In general, £, (&) will be a polynomial of degree # in &, involving even powers
only, if n is an even integer, and odd powers only, if # is an odd integer. Apart from
the overall factor (ag or a;) they are the so-called Hermite polynomials, H, (£)."
The first few of them are listed in Table 2.1. By tradition, the arbitrary multiplicative
factor is chosen so that the coefficient of the highest power of & is 2". With this
convention, the normalized® stationary states for the harmonic oscillator are

mao

1/4 1 ,
Yn(x) = (—) H,(E)e /2. [2.69]

wh 2nn!

They are identical (of course) to the ones we obtained algebraically in Equation 2.50.
In Figure 2.5a I have plotted v, (x) for the first few n’s.

The quantum oscillator is strikingly different from its classical counterpart—
not only are the energies quantized, but the position distributions have some bizarre
features. For instance, the probability of finding the particle outside the classically
allowed range (that is, with x greater than the classical amplitude for the energy
in question) is not zero (see Problem 2.15), and in all odd states the probability of

Table 2.1: The first few Hermite polynomials, H,(x).

Hp =1,

Hy = 2x,

Hy = 4x? =2,
Hi = 8x3 — 12x,

Hy = 16x* — 48x% + 12,
Hs = 32x° — 160x> + 120x.

19The Hermite polynomials have been studied extensively in the mathematical literature, and there
are many tools and tricks for working with them. A few of these are explored in Problem 2.18

201 shall not work out the normalization constant here; if you are interested in knowing how it is
done, see, for example, Leonard Schiff, Quantum Mechanics, 3rd ed. (New York: McGraw-Hill, 1968),
Section 13.

finding the particle at the center of the potential well is zero. Only at relatively large
n do we begin to see some resemblance to the classical case. In Figure 2.5b [ have
superimposed the classical position distribution on the quantum one (for n = 100); it
you smoothed out the bumps in the latter, the two would fit pretty well (however, in
the classical case we are talking about the distribution of positions over time for one
oscillator, whereas in the quantum case we are talking about the distribution over an

ensemble of identically-prepared systems).™"
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THE HARMONIC OSCILLATOR

§ 5.1 Classical Theory
According to classical theory a harmonic oscillator is a particle, mass
m, moving under the action of a force

F = —mwiz. (5.1)
The equation of motion is then

d?x
Ez—-}-wzx = O, (52)
with solution
x = acoswt, (5.3)

which represents an oscillatory motion of angular frequency w, and
amplitude a. The potential is related to the force by

ov
F = —ﬁ-’
8o that
V(x) = ¢mw?22 (5.4)

The energy of the oscillation (5.3) is the potential energy when the
particle is at an extreme position. Therefore

E = }ma?w?. (5.5)

§ 5.2 Quantum Theory: The Eigenvalues

We now consider the quantum theory of such a system. Since the
classical motion is bound for all values, the entire quantum energy
spectrum should consist of discrete values. The energy eigenvalue
equation is (3.16) with

A= ﬁ+§mw2:f¢2. (5.6)

" 2m
In the Schrédinger representation this is

—h2 g2 +mw2
2m oJx2 2

xz] u(z) = Byu,z). (5.7)

48



A2

TOE HARMONIO OSCILLATOR 49

If this is multiplied by 2/fiw we get

-k 92 mo 2E
2 = s - -
['mw 372 + % z ]un(x) ” U () (5.8)
[ntroducing the variables
mw\ V3 -
Yy = (—ﬁa—)) x, (39)
€ = B lhw, (5.10)
the equation becomes
02 -
(@2—7 2)un<y) = 26, u,(y). (5.11)

This equation may be solved by the standard techniques, which are
employed below for angular momentum and the hydrogen atom.
Instead, we use the factorization ‘method, which is particularly
elegant for this problem and brings to the fore a new type of operator,
which in the long run plays a very important role in the theory.

Since
, d 92
(a—y+y) (a—y—y) un(y) = (W,—yz—l) Un(y),

(5.11) may be re-written

d d
(@+y) (a_y- )un(y) = [—2e,—1]ua(y)- (5.11a)

Alternatively, it may be written

0 0
(a—y— )(a—y+y)un(y) = [—2¢,+ 11 un(y). (5.11b)

Multiply (5.11a) by (2/dy —y), then

d 0 3 3
—_— —_— 1 —— ) ) — _2 _ = ‘ -. 2
(ay )(ay+J) (ay )Jn(J) [—2e, 1](8y y) u,(y). (5.12)
Then, either
a -
(a—y’ )""‘(y) = (5.13)
or

0
(@_y) un(y) = Upy 1(¥)s say, (5.14)
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and (5.12) can be written
¢ 0
(——y) (@-Fy) U 41(y) = [—2(eu+ 1)+ 1us410y). (5.15)

This is (5.11b) for u,, 4, provided
e,+1 =¢€,.1. (5.16)
The only solution to (5.13) is
uly) = etUDY,

This diverges for large y and is therefore not a possible state. Thus

given any solution u,(y), eigenvalue e,, it is always possible to

generate a new state u,,1(y) by (5.14) with eigenvalue €,+1.
Similarly, multiplying (5.11b) by (d/9y +¥),

G 0 0 0
(a—y+y) (@— )(53-/+y)un(y) = [—2en+1](5;/+y) un(y). (5.17)

Now either
0
(a—y’*'?/)un(y) = 0; (5.18)

or
0
(-az-l-y) un(y) = un_1(y), say, (5.19)
In the latter case (5.17) can be written
a-l- 2 _y)u (y) = [-2(en—=1) =1 (), (5.20)
5 N5y n-1ly) = [==len Jup_1(y), .
which is (5.11a) for u,_; provided
€n_1 = €,—1. (5.21)
Thus given any solution u,, eigenvalue ¢, it is possible to generate &

new state of lower energy, u,_(y), determined by (5.19) with eigen-
value (e, —1), unless u, is the ground state, u,. In this case it must

satisfy (5.18);

0
i = 0. D
(5+4) o) = 0 (5.22)
This determines the ground state eigenfunction to be
ugy) = LAV, (5.23)

Further, by (5.22) and (5.11b), the ground state energy is
2¢,—1 = 0. (5.24)
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Combining these results, (5.24) and (5.16), the eigenvalues are

€ = %, e =1+14,... €, =n+3,...
So that
E,=3+n)kw, n=012..., (5.25)

a discrete set for all energies, in accordance with the general argument
given above.

The expression for the energy levels is one of the most important in
quantum mechanics. It justifies Planck’s explanation of the inter-
action of radiation with matter, provided matter can be regarded as
a collection of oscillators, each one emitting or absorbing radiation of
its own frequency. The energy exchange is then restricted by the
oscillator eigenvalues to take place in units of Aw, which is just
Planck’s hypothesis.

§ 5.3 The Eigenfunctions: Annihilation and Creation Operators

The successive eigenfunctions can be generated from u,(z) by
repeated application of (5.14), so that, for example,

d
u(y) = (5@}_ )uo(y),

d
oy —(1/2)y*
(ay )e ’

= 2y, (5.26)

The ground state is an even function of ¥ with no nodes; the first
excited state is an odd function with one node. It is easy to verify by
repeated applications of (5.14), that the other successive eigenfunc-
tions have the general features derived in the previous chapter. The
functions so generated are known as Hermite polynomials.

The ground state eigenfunction is in fact a Gaussian hump of the
form considered in the discussion of the uncertainty principle, of
width, according to (5.23) and (5.9),

/2
4, = (i) - (5.2
mw

According to (5.5), this is just the amplitude of the classical oscillation
of the same energy as the ground state.

The operators
3 - i + \ (5.28)
oy * \oy y) ’ '
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~ Expanding the exponential function in terms of powers of - ) [
s and £, we see that the coefficients of the powers s™ are o

polynomials in terms of ¢ — the Hermite polynomials. This T - |
can be shown as follows: we have _ .
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o Equating equal powers of s in the sums of these two equa- —
—— tions, we obtain S _ B o T

S—); (3]
o¢

=2nHo1(8) : e
Hny1(6) = 26Hn(6) — 2nHpa1(6) - 6)
Therefore it follows that

e — a'[{ar‘;(g) =2£Hn(£)_Hn+l(§) y (7) = e e #— e
and hence N - S - - l___
— e PHE) OHn(®)  OHp11(6) e
- ser =M@+
o 0H,(§)
=2£ B€

9 SO —

+2Hn(€) = @n +2)Hn(€) o o 2 S




OHn(£)
9
This is exactly differential equation (3), proving that the
Hp(€) appearing in the generating function (4) are indeed

Hermite polynomials.

The recurrence formulas (6) may be used to calculate
the H, and their derivatives. Another explicit expression
directly obtainable from the generating function is quite
useful; let us now establish this important relation. From
(4) it follows instantly that

oS, s)
ds™

=2¢ —2nHa(€) - ®)

= Hn(6) - )

s=0

Now, for an arbitrary function f(s =€), it also holds that

of __9f (10)
0s o¢

Thus

3"5 £2 3" c—'(-"‘f)2

=5 —m
Os™ as™

Copref? I o= 11

(-)e B e ; an
Comparing (11) with (9) yields the very useful formula,

_epr e 2t 12
Ha(®) =(-1)"=¢ aen e : (12)
N B . /?n‘&'
— - = - /\':_:j;"'

The H,(£) are polynomials of nth degree in ¢ with the dominant term 2n¢n. The

Ho(9)=1 , Hi(©)=2¢ ,

first five Hp(€) calculated from (7.22) or (12) of the foregoing example are:

Hy6) =462 -2 , Hy(&) =865 —126 , Hy(€)=166* — 4862 +12

dn(@) = NueCYDE B (), £=Vz

/ [n(@)|2dz=1 ,

(7.23)

Th.e eigenfuncu’_ons {7.21) were combined by introducing the abbreviation £ = VAz and
using the Hermite polynomials in a way that holds for both even and odd n, ie.

(7.24)

Z‘:edjctpnstant N,, which depends on the index n, is determined by the normalization
ndition

(7.25)

since we require the position probability to be 1 for the particle in the entire configuration
space. Thus



(7.33)

From (7.24) and (7.30) it follows that, for space reflection, the eigenfunctions have the
symmetry property

Yn(—z) = (=1)"n(z)

This means

(7.34)

n even: P{—z) =(z)— parity +1
n odd: (—z)=—y(z)— parity — 1

For the lowest H,, it can easily be shown that they possess precisely n different real zeros
and n — 1 extremal values (see Fig.7.1). With respect to (12) in Example 7.2, we have

Hpppy = —¢& d%(e‘szn) (7.35)
On the assumption that H,, possesses n + 1 real extremal values, we can conclude the
existence of n+1 extremal values for e ¢’ H,, (since e=¢* 0 for ¢ — 00). The extremal
values are identical with the zeros of the derivative d/d¢; therefore Hy 1 has precisely
n + 1 real zeros. This conclusion shows that the Hermite polynomials H,(£) — and, in
consequence, the wave functions 1, (€) — possess n different real zeros. This is a special
case of a universally valid theorem which states that the principal quantum number of an
cigenfunction is identical with the number of zeros.

In Fig. 7.1, some of the 1, are plotted together with an energy diagram.
The energy eigenvalues are represented as horizontal lines with the quantum
segments E, = (n + 4)hw. For each of the lines there is a corresponding
eigenfunction vn(z) drawn on an arbitrary scale.

AV, E

I ————— \\/ 2
- _ S — =e======c T — 1
S R >L o

£
Fig. 7.1. Oscillator potential, energy lev-
els and corresponding wavefunctions



e e = .
el
o7 1 7 2 2 |
/ [Yn(2)|2 dz = ﬁNﬁ / e~ HL (O dE=1 . (7.26) |
-0 — 00 2= = |
Using relation (12) of Example 7.2 to express one of the Hermite polynomials that appears ——————— —
in the integrand of the .normalization integral, the evaluation of this integral becomes B |
simply |
o0 oo o TTTTITTT
N2 dn 2 |
2 -— - S — e
[ Wont@)|? da = v / Hn©) g o€ dE 7.27) =
— 00 -0 — -
By partial integration we obtain S |
oo |
d" -—
/ Hn(f)’dé—n et de !
= -
dn-—l a oo € dH dn—l o . s = gl ==
— -£ n = ‘
- [(dﬁn_l e )Hn(f)] - / e e . 1w
oo \
The first term is, because of (12) in Example 7.2, equal to (~1)"~1e=¢" H,_1(6)Hn(6). — 1
It vanishes at infinity, due to the exponential function. e
Having carried out partial integration n times, we are left with ) "
[} 0 |
dn d"H r = Mo
/ Ho(6)~— o= df = (~1)" ne—€ g . (7.29) |
d¢n dgn ST
“eo Zeo e e
Since H,(€) is a polynomial of nth order with the dominant term 27¢", for the nth e SR
derivative, L |
an |
— H,(£) =2"n! RIO) — e =
d¢n 1
holds.
From this we find that o
(e} d" ) [o o] ) — [ ! -
/ Hn(g)ﬁe_f d¢ = (=1)™2™"n! / et dg=(-1)"@"nlvx . @3y
— 00 -0 1

and for the normalization constant,

N1
Nn = \/;2"71! : : |
+ -

The stationary states of the harmonic oscillator in quantum mechanics are therefore

¥n(z) = \/ "”In' %exp (_ :1,2"}‘1‘-2) Hn(\/x:r} . (7.32) —

Here we have suppressed the phase factor (—1)", since it is not essential. To discuss the
solution, we take a look at the first three eigenfunctions of the linear harmonic oscillator

(see Fig.7.1): -
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228 Ofef ator 4. ONE-DIMENSIONAL PROBLEMS

The Hamiltonian of a particle of mass m which oscillates with frequency w under the influ-
ence of a one-dimensional harmonic potential is
. P2 .
H=—+-mao*X? (4.108)
2m 2

The problem is how to find the energy eigenvalues and eigenstates of this Hamiltonian. This
problem can be studied by two separate methods. The first consists of solving the time-
independent Schrédinger equation (TISE) for the Hamiltonian (4.108). The second method,
called the ladder method, does not deal with solving the Schrédinger equation, it deals instead
with operator algebra involving operators known as the creation and annihilation operators; this
method is an essence a matrix formulation, because it expresses the various quantities in terms
of matrices. We adopt here the second method, for it is more straightforward, more elegant
and much simpler than solving the Schrodinger equation. Unlike the examples seen up to now,
solving the Schrodinger equation for the potential V' (x) = %mcox2 is no easy job.>

Let us rewrite the Hamiltonian (4.108) in terms of the two dimensionless operators p =

P/J/mhwand § = X/ma/k:
H= %a’(ﬁ%cjz), (4.109)
and then introduce two non-Hermitian operators
1
V2

The physical meaning of the operators @ and a¥ will be examined later. Note that

a=

A |
@G +ip), aT:E(q—lp). (4.110)

I S LA L . A N l . " P .
ata = 3@ =ip)G+ip) = 5(42+p2+1qp—lpq) = §(q2+p2)+§[q, pl, (4.111)

where, using [)A( , }3] = ih, we can verify that the commutator between g and p is

U [ma - e & Il Ta =
y = —;‘K’,TP = = X,P :., 4112
[q P] {\/ h \/FH.FI(U } h [ :I ! ( )
hence d {
ala=-G2+pH-= 4.113
afa =@ +5) -3, (4.113)
or : ]
@+ =ata+s. (4.114)
Inserting (4.114) into (4.109) we obtain
2 s 1 ~ 1 . VIS PN
H=hola a+z = hw N+§ with N=ala, (4.115)

where N is known as the number operator or occupation number operator, which is clearly
Hermitian.

3See, for zxample, B. H. Bransden, and C. J. Joachain,/ntroduction to Quantum Mechanics, Longman Scientific and
Technical, London, 1994, Section 4.8, and R. W. Robinett, Quantum Mechanics: Classical Results, Modern Systems,
and Visualized Examples, Oxford University Press, New York, 1997, Chapter 10.

,an/,lc Harmonice Oscillato r
Zettele
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Let us now derive the commutator [&, &T]. Since [X, P] = ih we have[§, p] = %[)A(, P]=
i, hence
(4.116)

or

4.117)

4.8.1 Energy Eigenvalues

Note that A as given by (4.115) commutes with N, since A is linear in N. Thus, H and N can
have a set of joint eigenstates, to be denoted by | n)

Nln)y=n|n), (4.118)

and

Hn)y=E,|n); 4.119)

the states | n) are called energy eigenstates. Combining (4.115) and (4.119), we obtain the
energy eigenvalues at once:
1
En — (n + 5) hw.

We will show later that » is a positive integer.

The physical meaning of the operators a, &T, and N can now be clarified. First, we need the
following two commutators that can be extracted from (4.117) and (4.115):

(4.120)

@, Al=hoa, [a, A]=—hwat. (4.121)

These commutation relations along with (4.119) lead to
A\ n) = @H - hod) | n) = (E,—ho)(a@|n), (4.122)
A (aT | n>) = GT A + hewdl) | 1) = (En + By @T | n)). (4.123)

Thus, a | ») and at | n) are eigenstates of H with eigenvalues (E, — fiw) and (E, + Aw),
respectively. So the respective actions of @ and at on | n) generate new energy states that
are lower and higher by one unit of . As a result, & and at are respectively known as the
lowering and raising operators, or the annihilation and creation operators; they are also known
as the ladder operators.

Let us now determine how the operators @ and al act on the energy eigenstates | ). Since
& and &7 do not commute with IV, the states | ) are eigenstates neither to a nor to al. Using
(4.117) along with [AB, C1 = A[B, C] + (4, C]B, we can show that

(4.124)

[,\"", L:'_] = —L}.

BEIREABYER () HEZHiE



hence Na = a(N — 1) and Nal = at (N + 1). Combining these relations with (4.118), we
obtain

N@im) =a@-11n =@m-1(aln), (4.125)
N(aﬂn)) it +10)1n =@ +n@H . (4.126)

These relations reveal that a | ») and af | n) are eigenstates of N with eigenvalues (n — 1)

and (n + 1), respectively. This implies that when a and af operate on | n), respectively, they
decrease and increase » by one unit. That is, while the action of @ on | n) generates a new state

| n—1), (i.e, a| n) ~| n— 1)), the action ofat on | n) generates | n + 1). Hence from (4.125)

we can write
alny=cnln—1), (4.127)

where ¢, is a constant to be determined from the requirement that the states | #) be normalized
for all values of . On the one hand, (4.127) yields

(n1al)-@im)=miataim=ten=11n-1 =lesl’, (4.128)
and on the other hand, (4.118) gives
((n|aT)-(a|n>) —m|ala|n =ntnin =n (4.129)
When combined, the last two equations yield
len)? = n. (4.130)

This implies that », which is equal to the norm of a | n) (see (4.129)), cannot be negative,
n > 0, since the norm is a positive quantity. Substituting (4.130) into (4.127) we end up with

lainm=valn-1).] (4.131)
This equation shows that repeated applications of the operator @ on | n) generate a sequence of
eigenvectors | n — 1), | n —2), | n—3), .... Since n > 0 and since a | 0) = 0, this sequence

has to terminate at 7 = 0; this is true if we start with an integer value of n. But if we start with
a noninteger n, the sequence will not terminate, hence it leads to eigenvectors with negative
values of n. But as shown above, since n cannot be negative, we conclude that » has io be a
nonnegative integer.

Now, we can easily show, as we did for (4.131), that

Adim=ynrilin+). (4.132)

This implies that repeated applications of af on | n) generate an infinite sequence of eigenvec-
tors| n+ 1), | m+2), | n+3), .... Since n is a positive integer, the energy spectrum of a
harmonic oscillator as specified by (4.120) is therefore discrete:

1
Eq= (n + 5) ho, (n=0,1,2,3,...). (4.133)

HURBABYNER (AT RESALH
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As expected for bound states of one-dimensional potentials, the energy spectrum is both dis-
crete and nondegenerate. As in the case of the infinite square well potential, the lowest energy
eigenvalue of the oscillator is not zero but equal to Ey = hw/2. It is called the zero-point
energy . The zero-point energy of bound state systems cannot be zero, for it would violate the
uncertainty principle.

4.8.2 Energy Eigenstates

The operator method can also be used to determine the energy eigenvectors. First, using (4.132),
we see that the various eigenvectors can be written in terms of the ground state | 0) as follows:

1y = alo), (4.134)
R I /.12
12) = — T|1>=—2!(af) 1 0), (4.135)
! 1 /.43
13 = —a |2)=?(0T) | 0), (4.136)
1 A\
| n) = —aTln—l)=—n—!(ﬂT) | 0) (4.137)

So, to find any excited eigenstate | »), we need simply to operate al on | 0) n successive times.

Note that any set of kets | n) and |n’), corresponding to different eigenvalues, must be
orthogonal, (n’ | n) ~ v n» Since none of the eigenstates of # is degenerate. Moreover, the
states [ 0), 1 1), | 2), | 3),...,| n), ... are simultaneous eigenstates of H and ]V; the set {| n)}
constitutes an orthonormal and complete basis:

+00
(W' 1n) =0y, D Inin|= L (4.138)
=0

4.8.3 Energy Eigenstates in Position Space

Let us now determine the harmonic oscillator wave function in the position representation.
Equations (4.134) to (4.137) show that, knowing the ground state wave function, we can

determine any other eigenstate by successive applications of the operator al on the ground
state. So let us first determine the ground state wave function in the position representation.
The operator p, defined by p = P//mhcw, is given in the position space by
ih d d

— = ~ixo—,

4.13
mho dx dx ( ?)

p=-

where xo = /%/(mw) is a constant that has the dimensions of length; it sets the length scale of
the oscillator. We can easily show that the annihilation and creation operators a and &T, defined
in (4.110), can be written in the position representation as

1 ,%+ d L (542 d)
d=—= —+x0— )= —{. Xog— 1,
: V2 \ xo 0dx 2x 0 dx

(4.140)

BUREABWER (FE)W%E%E#



[
v,
b

|
EX:?
1 &8 3 i |
a' = — — —X0— = —xi— 1. . e ———
— — Va\xo  dx V2xg O dx : ]
= Using (4.140) we can write the equation a | 0) = 0 in the position space as | (|
—= . 1 A 5 d 1 zdl//o(x)) _!
xla|0) = — x| X+x5— | 0) = xwo(x) + x =0, 4.142 T i
) (x1a | 0) = ——xl X +xf - 1 0) ﬁxo(//o() = (4.142)
= hence dvo(x)
wo(x x
S =—-= ) 4.
e xg wo(x) (4.143)

where yo(x) = (x | 0) represents the ground state wave function. The solution of this differ- — — -
ential equation is

2
wol(x) = 4 eXp(—zx—z), (4.144) e =

X
0
where 4 is a constant that can be determined from the normalization condition

+00 , +00 x2 , [
1 :/ dx lyo(x))> = A‘/ dax exp - )= A° T xo, (4.145) . —

o —00 )CO

hence 4 = (mw/(xh))/* =1 /v ~/mxp. The normalized ground state wave function is then B
given by

(4.146)

This is a Gaussian function.

We can then obtain the wave function of any excited state by a series of applications of al —
on the ground state. For instance, the first excited state is obtained by one application of the SESS— —
operator al of (4.141) on the ground state:

N 1 d B o [
x| ) = <x|aT|0>=ﬁx (x—xé;)@cm)
0 - S :

1 2 x ﬁ B
T V2 (x_xﬁ(_x‘g))‘/’o(x)=Exwo(x), (4.147) —— _—_ |

V2 [ 2 b ) =
Wl(x)—xxvlo(x)— .\/—Tc—gxexp(_g)' (4.148) | _

As for the eigenstates of the second and third excited states, we can obtain them by applying
ot on the ground state twice and three times, respectively: — ————

or

2

R "2 1 I \? , d\* Y T i i
<x|2>_ﬁ<xl(a) lOFTZ‘!(ﬁxo) (x—xoa) wo(x), (4.149) D [

x]3) = — oy = . Y 24 Y’ 4.150)
(x| )—ﬁ(xl(fl) | ,—7(\/2\_0) (X_XOE) wo{x). - L e S
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Figure 4.9 Shapes of the first three wave functions of the harmonic oscillator.

Similarly, using (4.137), (4.141) and (4.146), we can easily infer the energy eigenstate for the
nth excited state:

= et (e 1oy = L (Y _21)"
) = (o] (a') '°>‘m(ﬁxo) (x x5 == ) vo), (4.151)

which in turn can be rewritten as

1 1 d\" o
2 (x) = (x—xz—) expl — ). (4.152)
. \/ﬁZ"n!xSH/Z 0 dx v 2x§

In summary, by successive applications of al = (X - xgd /dx)/(v/2x0) on wo(x), we can
find the wave function of any excited state ,(x). Figure 4.9 displays the shapes of the first few
wave functions.

Oscillator wave functions and the Hermite polynomials
In what follows, let us express ,(x) in terms of the well-known Hermite polynomials. Using
the operator identity

2 L x2/2:_i
e ( dx)e =, (4.153)

we can prove that

d\" _.22 " 22 dl _ 2,2 a2 s
(x —xga) e /70 = (=1)"xge" /0 L ¥ = e M, (G) s (4.154)
where H,(y) is an nth order polynomial called a Hermite polynomial:
" 5

2 d 2
H,(y) = (=D"e¥ d—ne—y . (4.155)
y

From this relation it is easy to calculate the first few polynomials:

Ho(y) =1, H(y) =2y,
Hy(y) =4y* =2, Hi(y) = 8y® — 12y, (4.156)
Hy(yy = 16y* —48y? + 12, Hs(y) = 32)y° — 160y° + 120p.
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Combining (4.152) and {4.154) we can write the oscillator wave function in terms of the Her-
mite polynomials as follows:

1
Wn(x) = _—e—x2/2x§ H, (—x—) . (4.157)
X0

VA/m2"nlxg

This wave function is either even or odd depending on #; in fact, w2, (x) is even and y2,41(x)
is odd since Ha,(x) is even and H>,1(x) is odd. This is expected because, as mentioned in
Section 4.2.4, the wave functions of even one-dimensional potentials have definite parity.

4.8.4 The Matrix Representation of Various Operators

Here we look at the matrix representation of several operators in the NV-space. In particular, we
focus on the representation of the operators a, aJr X, and P. First, since the states | n) are joint
orthonormal eigenstates of H and N it is easy to see from (4.118) and (4.119) that Hand N
are represented within the {| »)} basis by infinite diagonal matrices:

1 00 1 00
0 20 Y )
0 0 3 H=2 0 0 5 (4.158)

=

As for the operators a, EJT, X , f’, none of them are diagonal in the N-representation, since
they do not commute with N. The matrix elements of & and aT can be obtained from (4.131)

and (4.132):
0 /T 0 0 0 0 0 0
- 0 0 2 0 1. 0 0 0
= = a=1]10 0 0 3 , al = 0 ~2 0 0 (4.159)
0 0 0 0 0 0 /3 0

Now, let us find the N-representation of the position and momentum operators, X and P.
From (4.110) we can show that X and P are given in terms of & and al as follows:

- X = »I (a+ a'T) . P=i J@ (&T ~a). (4.160)

Their matrix elements are given by:

WX in = ‘/2 (\/‘5,1 et + A 16y n+1) (4.161)
maw
;o /mha)
P |n) = ( «/_(Sn a—1+~n+ (Sn’n+1) (4162)

in particular ) .
niX|ny=n|Pln =0. (4.163)

Note that the polynomials H2,(y) are even and H>,41(y) are odd, since H,(—y) = (=1)"H,(»).
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The matrices corresponding to X and P are thus given by

0 ~1T 0 0
J1 0 V2 0
-]l 0o V2 0o 3 , (4.164)
2mw 0 0 ﬁ 0
0 —V1 o0 0
- A R R
P=ifZ2 0 V20 —VE ] (4.165)
Z 0 0 V3 0
\ ' )

As mentioned in Chapter 2, the momentum operator is Hermitian, but not equal to its own
complex conjugate: (4.165) shows that Pt = Pand P* = —B. Asfor X , however, it is both
Hermitian and equal to its complex conjugate: from (4.164) we have that X t=k =%

4.8.5 Expectation Values of Various Operators

Let us evaluate the expectation values for X2 and P in the N -representation,

) A A

X = 5 (a +af? yaat +ata ) = (&2 +at2 4230+ 1), (4.166)
ma ma

. B A

p? = —% (52 yal? _aaf - aTa) - —% (a2 +al? _2ata 4 1) , (4.167)

where we have used the fact that a4 +ala =2ata + 1. Since the expectation values of 2
and 412 are zero, (n | 4% | n) = (n | at? | n) =0, and (n | ata | n) = n, we have

nlaal +alaim=m2aTa+11m =2m+1, (4.168)
hence
N h h
| X2 n) = niaat +ataim=——(@n+1), (4.169)
2mw 2mw
R h ¥
(n| P*|n) = 1112a) n | aal +afa [ n) = % Q2n+1). (4.170)

- Comparing (4.169) and (4.170) we sec that the expectation values of the potential and kinetic
energies are equal and are also equal to half the total energy:

-

maw~

: (n| Hn. (4.171)

l\)]»—a

N 1 ~
<n|X2|n>=7—m—<n|P21>

This result is known as the virial theorem.

We can now easily calculate the product AxAp from (4.169) and (4.170). Since (X) =
(ﬁ) = 0 we have

v = (X2) = ()2 = /(42 = 1 4.172

Ax X2) — (X2 = [1X Vz —@n+1), (4.172)
- h

Ap = /(P2) — (P)2 =/ (P) ‘/M(2n+l) 4.173)

hence . 5
AxAp = (n+ E)h = AxAp > 7 (4.174)

since n > 0; this is the Heisenberg uncertainty principle.
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130

Expanding the exponential function in terms of powcrs of
s and ¢, we see that the coefficients of the powers s are
polynomials in terms of ¢ — the Hermite polynomials. This
can be shown as follows: we have

7 ——

I

J

00 n+1
BS _gsetHuE = 3 2o
= 36 n=0 =
s" OHn(§)
= =) n!  O¢ | B
) 25 +26)s .
05 _ (Lasvapestirst= 3 EBI M
 0Os n=0 4
o n-l ) - —
e R

Equating equal powers of s in the sums of these two equa- =
. tions, we obtain

9%';@ = 2nHa 1(6)
Hpp1(6) = 26Hp(€) —2nHp—1(§) - 6
_ Therefore it follows that
0Hn(§) 7
=2{H, Hpp1(6)
T EHn(€) — Hpy1
and hence
62Hn(£) 0Hn(§) 9Hn1(6)
- =2Hn(§) +2¢ B o€ _
0Hn(6)

=2¢ B€ +2Hna(6) — 2n+2)Hn(6) .

» S .
—————
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OHn(£)
73
This is exactly differential equation (3), proving that the
H,.(£) appearing in the generating function (4) are indeed

Hermite polynomials.

The recurrence formulas (6) may be used to calculate
the H, and their derivatives. Another explicit expression
directly obtainable from the generating function is quite
useful; let us now establish this important relation. From
(4) it follows instantly that

"5, s)
as™ s=0

=2¢

—2nHa(§) - ®

= Hal®) ©)

Now, for an arbitrary function f(s — &), it also holds that

of . 9 (10)
Os a¢
Thus
oS 2 one (78
=€ B TS E———
os™ os™
= (-1)" efzgé—ne-(s—f)2 , (11)
Comparing (11) with (9) yields the very useful formula,
Ha©) = (—1)" =6 o€ (12)
n 65"
L-“
. /W
- o A= (2

The Hy,(€) are polynomials of nth degree in ¢ with the dominant term 2™¢". The
first five Hp(€) calculated from (7.22) or (12) of the foregoing example are:

Ho®)=1 , Hi(©)=2¢ ,
Hy(€)=4£% -2 |, H3(€)=863 — 126 , Hy) =166 —48¢2+12 . (723)

Th.e eigcnfunctipns (7.21) were combined by introducing the abbreviation ¢ = v/Az and
using the Hermite polynomials in a way that holds for both even and odd n, i.e.

¥n(@) = N e VD€ H (6) | =Dz . (7.24)

The Fonstant N, which depends on the index n, is determined by the normalization
condition

/|¢n(z)|2dz=1 , (7.25)

since we require the position probability to be 1 for the particle in the entire configuration
space. Thus



n=0:1/)0(x)=\4/icxp(—l/\x2> s

i 2

n=1:¢1(1)=2\/l\/§cxp(—l/\x2> iz
2V w 2

n=2 hz) = %\/gcxp (- %Aﬁ) @rz2—2) . (7.33)

From (7.24) and (7.30) it follows that, for space reflection, the eigenfunctions have the
symmetry property

Yn(—2) = (=1)"Yn(z) . (7.34)
This means

n even: ®{—z) =(z)— parity +1
n odd: ¢(—z)= —1p(z) — parity —1

For the lowest H,,, it can easily be shown that they possess precisely n different real zeros
and n — 1 extremal values (see Fig.7.1). With respect to (12) in Example 7.2, we have

Hpgy1 = —cﬁzt—idz(e‘szn) . (7.35)
On the assumption that H, possesses n + 1 real extremal values, we can conclude the
existence of n +1 extremal values for e—4’ H,, (since e~¢% 0 for £ — 00). The extremal
values are identical with the zeros of the derivative d/d¢; therefore H,,, has precisely
n + 1 real zeros. This conclusion shows that the Hermite polynoinials H,(£) — and, in
consequence, the wave functions 1,,(£) — possess n different real zeros. This is a special
case of a universally valid theorem which states that the principal quantum number of an
cigenfunction is identical with the number of zeros.

In Fig. 7.1, some of the 1, are plotted together with an energy diagram.
The energy eigenvalues are represented as horizontal lines with the quantum Y

AV,E

segments E,, = (n + %)hw. For each of the lines there is a corresponding )F_/\ i
£

eigenfunction ,(z) drawn on an arbitrary scale.

D D
;f

— 1
~/
=

I

Fig. 7.1. Oscillator potential, energy lev-
els and corresponding wavefunctions

M



/|¢,,(x)|2dz=%zv3 / e H (&) dE=1 . (7.26)

Using relation (12) of Example 7.2 to express one of the Hermite polynomials that appears
in the integrand of the .normalization integral, the evaluation of this integral becomes
simply

—00

/ Yn(@)|? dz = (~* 2z / Ha(6)2 i Tde (7.27)

By partial integration we obtain

/ Ha(6) 2 2 e~¢ de
-l €3 % dH, &1
- -£ _ [ 4 a ¢
[(dgn-l"’ )H,,({)}_oo I = de . (7.28)

The first term is, because of (12) in Example 7.2, equal to (-nHn-1? e—¢ H,_1(&)H,(§).
It vanishes at infinity, due to the exponential function.
Having carried out partial integration n times, we are left with

o0
dn 2 % d"H, 2
e g =(—" [ L n.—¢
/ Hn(ﬁ)d§" e df=(-1) g d¢ . (7.29)
oo oo
Since H,(£) is a polynomial of nth order with the dominant term 2"¢™, for the nth
derivative,

%Hn(f) =2"n! (7.30)
holds.

From this we find that

/ Hn(ﬁ) 3 ¢~¢ df = (-1)"2"n! / e de=(—)"@MnVE ., (131)

and for the normalization constant,

A1
Nn = \/;Z"n!

The stationary states of the harmonic oscillator in quantum mechanics are therefore

¥n(z) = -,/2nl : \/Ecxp ( - %,\ﬁ) Hn(VAz) . (7.32)

Here we have suppressed the phase factor (—1), since it is not essential. To discuss the
solution, we take a look at the first three eigenfunctions of the linear harmonic oscillator
(see Fig.7.1):




8.04 Quantum Physics Lecture XVIII

multiplied by uy(y) = e~2v at infinity. Consequently, we need the series to terminate,
which requires ¢, = 2m + 1 for some m. Thus,

2 2

h 1
E, = —wen = hw <n + —> —  HO energy levels (18-1)

Quantized energy levels of a harmonic oscillator. The ground state (zero-
point) energy is Fy = %hw, the energy levels are equidistant.

Note. This feature allows us to identify the HO not only with a particle in potential
V(z) = %mwaQ, but also with a system of noninteracting (bosonic) particles.
Therefore, a mode of an electromagnetic field of frequency w can be viewed as a HO
with frequency w; n photons in that mode correspond to the n-th occupied state
of the HO. The uncertainty in x and p of the HO ground state corresponds to the
“vacuum fluctuations” of the electromagnetic field (z) = 0, (x*) # 0 corresponds to

(E) =0, (E?) # 0 etc.

For given € = 2n + 1, the recursion relation (x)

(m+1)(m+2)cmia = 2m — €, + 1)c, = (2m — 2n)cy, (18-2)
yields
o o =—2g
N

and in general

gn(n—2)---(n—2k+4)(n — 2k +2)

o, = (—2) (2k)! ‘o,

0<2k<mn, neven (18-3)

for the even coeflicients.
For the odd coefficients we have

_ (2=2n) n—1
® C3 = 23 C1 = (_2) 2.3 C1

® Cy = 6_2n63 = (—2)77;1—_5303 — (_2)2 (nl_g)g(zgl)cl

and in general

n—1)(n—3)-(n—2k+3)(n —2k+1)
(2k +1)!

Cok+1 = (—2)k( C1,

0<2k+1<n, nodd. (184)

Massachusetts Institute of Technology XVIII-1



8.04 Quantum Physics Lecture XVIII

The eigenfunction u,(z) for energy level n with energy E,, = hiw (n + 3) is given
by

n/2
un(y) = e~ 2V Z cory* for even n, (18-5)

n=0

| (/2
un(y) = e 2Y Z Copgry?m T for odd n, (18-6)
n=0

The coefficient ¢q or ¢; has to be chosen such that the wavefunction is normalized,
and y is related to the position coordinate z via y = /%*x. The quantity 4/ %

has units of length and defines the natural quantum length scale for the harmonic
oscillator. Apart from the normalization, the polynomials

n/2
ha(y) = Z Cory™" (18-7)
k=0
(n+1)/2
hi(y) = Z Copry™ ! (18-8)
k=0

are the Hermite polynomials H,(y). The Hermite polynomials obey the following
relations:

H,"(y) —2yH,'(y) + 2nH,(y) =0 — (defining equation) (18-9)
Hpi1(y) — 2yHn(y) + 2nHp1(y) = 0 (18-10)
Hyi1(y) — Ha'(y) + 2yH,(y) = 0 (18-11)
- z" 2zy—2°
S Ho(y) s = e (18-12)
— n!
o (d\ _.» alternative definition
— 1y [ ) v .
Haly) = (=1)" (dy) ¢ - (of Hermite polynomials (18-13)
Since the wavefunction belonging to level n is u,(y) = Ceféan(y), in order to
normalize it, we need to calculate
| e = [ alcper B (15-14)

The Hermite polynomials are real. One can show that

/ dye V" H,2(y) = 2"nl/7 (18-15)

o0
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> = 1, but since  and y = |/™&x are

Normalization actually requires [ dx|u, ()

related by a constant factor, [*_dz|u,(z)]* = /= [T dy|u.(y)|.

Figure I: HO eigenfunctions.

HO look the same in momentum space, since the Hamiltonian is symmetric in x and
p, and

h
T =z, p= —,ﬁ in position space ¥(x) (18-22)
1 Ox
T = @h§7 p=np in momentum space ¢(p) (18-23)
P
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The harmonic oscillator ground state, being a Gaussian function with no spatial de-
pendence of the complex phase, has minimum uncertainty allowed by the Heisenberg
relation:

h

AxAp = 3 for the ground state (18-24)
h

AxAp > B for any excited state (18-25)

e Show Bose-Einstein condensate expansion
e Thermal cloud

e isotropic expansion for anistropic trap

(5 = 4K1)

2m

e condensate:

i x -5 oc ™ _ anisotropic expansion
2m 02 h p p

HO: operator method

There is an elegant and instructive way to derive the HO eigenstates without directly
solving the SE. Instead, we use commutation relation between operators. We start
by writing the Hamiltonian in dimensionless form

r2
D mw
H— g 18-2
e _2mhw+ 2hx} (18-26)

@) (wm) | e

() ()] e

with po? = 2mfiw, z¢? = 2. Classically we can write,

Hy = hw (ﬁ - i£> (3 + i£> , (18-29)
Zo DPo Zo Po

N R . R N N
(o) (o) () ()
Lo Do Lo Po Zo Po
N LN 2 .
= <£> +(£) +——[&,9]. (18-31)
Lo Po ZoPo
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Using the commutator [z, p] = iha%p — pz’ha% = ih and ﬁpo = ’g—%’ﬁ = % we
have

2 AN\ 2
H = hw ((3) + <£> ) (18-32)
Zo Do
P PN\ [E .p 1
— hw ((ﬁ - z’ﬁ) (ﬁ + z’ﬁ) —i [:%,ﬁ]) (18-33)
o Po Zo Po ZoPo

T D % D 1
— hw ((1 . z‘ﬁ) (ﬁ + z‘ﬁ) + —) (18-34)
To Do To Do 2

We can define a new, non-Hermitian operator by

A A

Q== 4+iLl (18-35)

Zo DPo

Consequently, the Hermitian conjugate operator is
(& P\ & b
a'=—4+i—| =——1— (18-36)

since pl = p, 2 = 2
Note. The Hermitian conjugate operator O of any operator is defined by the relation

/ " gy (2) 0" (x) = / " da (O ()" v () (18-37)

o0 —00

for any well-behaved wavefunctions 1 (x), 1s(z).

Consequently, for any operator O = 0101 + 6202, where ¢; and ¢y are complex
numbers,

N

~ AN\ T o ~
Of = (0101 + CQOQ) — "0l + ¢, O} (18-38)

~

A A A A A N\T A
and for any operator O = 0105 we have Of = <0102> = OEOJ{
Proof. See problem set. m

Using the operators a,af, we can write the Hamiltonian for the HO in the partic-
ularly simple form

. 1
H = hw <a*a + 5) (18-39)
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Rather than being explicitly defined in terms of Z, p, ..., and operator can be defined
through its commutation relations with other operators. Let us look at a, a':

[, 41] = { il zﬁ} (18-40)
Lo Po’ Zo Po
— {3,1} — {ﬁ,ﬁ} (18-41)
Po To Zo Po
)
- 5, 7] — [2,p 18-42
poo (Ip, 2] = [2, ) (18-42)
t A
1 h
= —— 18-44
~ 1, (18-45)
where we have used [Z,2] = 0 = [p, p|. So we have
[a,a'] =1 (18-46)
[a,a] = [a',aT] =0 (18-47)

As will be elaborated on in 8.06, this defines a commutation relation for bosonic
(quasi)-particles, i.e. particles whose wavefunction is symmetric under the exchange
of two particles. For the commutators with the Hamiltonian, we have

11,a] = nw [a'a, a) 18-48

)

= hw (a'aa — aa'a) 18-49)
)

)

(
(
(
(

= hw (a'aa — (1+a'a) a) 18-50
= —hwa 18-51
and
,at] = e [afa,a] (18-52)
= hw (a'aa" — a'a’a) (18-53)
= hw (a'aa" — a' (aa' — 1)) (18-54)
= hwa' (18-55)

We are now in the situation to calculate the spectrum of eigenenergies of the HO
simply using those commutation relations. Let us first note that since H is quadratic
in x and p, all eigenvalues must be positive:

(E) = <H> (T) + (V) (18-56)

— _/ dpo*(p ) + mw /dxw*(x)wa(x) >0 (18-57)
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for any wavefunction v (z) and its Fourier transform ¢(p). Before determining the
eigenspectrum, let us define a convenient notation.

State vector notation (Dirac notation)

We have already argued that a physical state, (i.e., a physical system whose initial
conditions have been prepared to the maximum extent allowed by QM), is described
by a vector in an abstract vector space (Hilbert space), and that a wavefunction
in position space is only one possible representation of the state. Alternatively, the
state can be described in the momentum representation (wavefunction in momentum
space), or by specifying the expansion coefficients when expanding the basis of energy
eigenstates. Using a notation introduced by Paul Dirac, one of the creators of QM,
we write the state as

1) (18-58)
and define

0l) = [ dag @)i(o) (15-59)
for any two states [¢), |¢) whose wavefunctions are by ¥ (z), ¢(x). Dirac introduced

(o | ¥ (18-60)
~ N~

bra  -c- ket

So |¢) is called a “ket”, and (4| a “bra”. You can think of the “bra” as the transpose
of the “ket” vector

wh

(U1 s ) | wy | = c-number (complex number), (18-61)

but possibly for infinite-dimensional vectors. In this sandwich or Dirac notation, the
expectation value of any operator A is given by

(4) = (vldw) = [ dov(@)di(a) (18-62)
In Dirac notation,
(W1¢) = [ dwv* (@)o(e) = ( / dm*@)w(:c))* — (8lo)" (15-63)

An operator A acting on a state produces another state, symbolically

Alg) = |Aw) (18-64)

Massachusetts Institute of Technology XVIII-7



8.04 Quantum Physics Lecture XVIII

Consequently,
(olAw) = (8140} = [ doo(@) (A0@) = [dagr@Av(@) (1869

The Hermitian conjugate operator Al is defined by

(d10) = [ s aotoy o) = ([ aven) (6

= (]A9)" (18-67)
= (Ag|y) (18-68)
In Dirac notation, the orthonormality condition for eigenstates |n), |m) reads
(n|m) = / Ay ()t (2) = So, (18-69)
where the expansion coefficients are
— [ dwu,vle) = Gl (18-70)

A bracket like (a|b) is a complex number, but a ketbra like |b) (a| is an operator since
acting on a state it produces another state

b) (al) . (18-71)
state c- b

One can show that the sum over all eigenstates ) |n) (n| of a Hermitian operator is
the unity operator
Z In) (n| = (18-72)

and

— i) = Z In) (n|) = ch ) — ( expansion into ) (18.73)

elgenstates
Back to the operator treatment of the HO: Let us assume that we have found an
energy eigenstate with eigenenergy E and let us denote that state by |E). Let us

define a new state [¢)) by having the operator a act on |E), [¢) := a|E). What
happens if we act with the Hamiltonian [¢)?

H|y) = Ha |E) (18-74)
- <[H a} + dH) IE) (18-75)

— (—hwa + aE) |E) (18-76)

= (E — hw)a |E) (18-77)

(B — hw) [¥) (18-78)
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Here we have used the previously calculated result []:I , &} = —hwa for the commu-

tator, and the fact that complex (here real) numbers commute with everything. The
above formula signifies that |¢) is also an energy eigenstate, but with lower energy
E = —hw. Since starting from any eigenstate |E) we can repeat the procedure any
number of times,

a"|E) = |E — nhw) , (18-79)
and the eigenenergy has to remain positive, (we have shown <w|f[ W> > 0 for any

state), there must exist a state |0) such that
al0) =0 (18-80)

i.e., a state whose energy cannot be lowered further.

Note. Tt is important to distinguish between |0) (lowest energy eigenstate, vector in
Hilbert space) and 0 (zero of the Hilbert space, vector of zero length).

Note. Nothing implies that the state |0) has zero energy. in fact,

N 1 1
H |0> = hw (&T& + 5) |O> d\: ihw |0> s (18—81)

so the ground state has eigenenergy Ey = %hw, this is the zero-point energy. In the
context of identifying a HO at frequency w with an electromagnetic mode at frequency
w, the ground state |0) is also called the vacuum (ground state has no excitations,
photon number is zero): the vacuum has finite vacuum energy Ey = %hwo.

What happens if a' acts on ground state? Let us define
1) :=a'|0). (18-82)

The tilde ~ 1s there to remind us that this state is not necessarily normalized, even
if |0) is chosen to be normalized.
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We then have
H|1) = Ha'|o) (19-1)

_ ([ﬁ,gﬁ] + a*ﬁ) 10) (19-2)

1
— (hwaT + aféhwo) 0) (19-3)
3,
= 5hwa* |0) (19-4)
_ gnwm, (19-5)

i.e., |1) = af|0) is also an energy eigenstate, but with eigenenergy %hw instead of %hw
for |0). Similarly, we can show that [2) = af|1) is also an energy eigenstate, but with
energy ghw etc. Consequently, we can construct a ladder of (yet to be normalized)
energy eigenstates |n) by

7) = (a)"10) (19-6)
with

E, - <n + %) he. (19-7)

a (a) is called the lowering (raising) operator, it lowers (raises) the energy by Aw.

£-0

Figure I: @, a' are sometimes called “ladder operators” since they take us up and
down the ladder of energy eigenstates.

When describing a monochromatic electromagnetic field quantum mechanically, we
can associate the frequency w with a harmonic oscillator of that frequency. For non-
interacting particles (such as photons) a state with n photons can be associated with
the n-th eigenstate of the HO with n. The ground state then corresponds to an
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empty mode (no photons, n = 0), however there is still a finite energy %hw that
we associate with vacuum fluctuations of the electromagnetic field. In this context,
a' and @ are called creation and annihilation operators, respectively, since they
create and annihilate photons, or more generally, arbitrary non-interacting bosonic
particles.

Normalization of HO energy eigenstates

Let us assume that the ground state |0) is already chosen to be properly normalized:
(0|0) = 1.

Note. Remember that (0]0) denotes (0]0) = [ dzuf(z)uy(x).

How long is the state |1) = af|0)?

(1|11) = (a'oja’o) (19-8)
= (0]ala’o) (19-9)
= (0laa'|o) (19-10)
= (0|[a,a'] + a'alo) (19-11)
= (0|1 +a%al0) — (al0) =0) (19-12)
=1 (19-13)
The state |1) is already normalized, so we can write:
1) =a'|0) —  normalized eigenstate (19-14)
What about [2) = af|1) = af|1)?
(212) = (a'1|a’1) (19-15)
= (1laa'|1) (19-16)
= (1)(a’a+1)|1) (19-17)
= (1a’loy +1  — (a|1) =10)) (19-18)
= (1]1) + 1 (19-19)
=2 (19-20)
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Then the properly normalized second excited state is

1 = 1 2
= —[2) = —(a")"|0). 19-21
\/5| ) \/5( )10) (19-21)
We can show, in general, (see PS) that the length squared of the state |7) = (a)"|0)
is (n|n) = nl. Consequently, the n-th normalized eigenstate is

2)

In) = ﬁ(a’f)"m) : (19-22)

We can also show (see PS) that
aln) = v/nln — 1), (19-23)
a'ln) = vn+ 1n + 1). (19-24)
From operators back to spatial wavefunctions

The condition on the ground state |0), a|0) = 0, reads in position space using our
definition of the annihilation operator,

N T Y mw 7 R

CL:_+Z_: x_|_ , 19-25
Zo  Po 2h 2hmwp ( )

mw ¢t ho
a = -—— =0 19-26
aug(x) ( o7, & + NoTTmE 8x)u0($) ( )

0
(mwx + h%) up(z) = 0. (19-27)
The simple DE has the solution ug(z) = ce” 2 *° with normalization 1 = Ak

Consequently, the normalized ground-state wavefunction is

wol(z) = (ﬁyew . (19-28)

The normalized n-th eigenstate can be obtained from

In) = \/%(eﬁ)"m (19-29)

1 mw i hao\"
un(x):m( 2hx_\/m;%> uo(x). (19-30)

or
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Commutators, Heisenberg uncertainty, and simul-
taneous eigenfunctions

The fact that p = %5~ in the position representation (or z = ih5- ‘9 in the momentum
representation) 1mphes

piv(z) = p(xy(x)) # ipp(z) = 2 (py()), (19-31)

i.e., T and p do not commute. Define the difference between pz and Zp as the com-
mutator

[, 4] = pi — &p. (19-32)
Here: "
b, 2] = P (c-number) (19-33)
In general, [fl, lf)’} — AB — BAis an operator. The commutator is linear.
[ClAl + CQAQ, é:| = C [Ala B] + Co [142, B] (19—34)
Other useful relations
[B,A] = -[A, B (19-35)
[AB,C] = A[B,C] + [A,C]B (19-36)

Simultaneous eigenfunctions

Consider a free particle. The plane waves (x) = e*ike

hk

are simultaneous eigenfunc-
tions of energy with eigenvalue

. n? o kL
Fetike — _ 9 etk — 2 ks (19-37)

2m Oz 2m

and of momentum with eigenvalue +hk,

, ho . ;
ﬁeizkx _ _._eizk:x _ ihkeilkx. (19_38)
i Oz

Note. If we had chosen cos(kx) sin(kx), these would have also been energy eigen-

functions with elgenvalue , but not momentum eigenfunctions.

2
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However, since cos(kz) and sin(kz) are degenerate (i.e., have the same energy
eigenvalue), it is possible to choose linear combinations of degenerate eigenstates
et* = cos(kz) £ isin(kx) that are simultaneous eigenstates of momentum. In the
potential well, on the other hand, the energy eigenstates were not simultaneous eigen-
states of momentum. In general, we have:

Theorem 19.1. Two Hermitian operators A, B have a set of simultaneous eigen-
functions if and only if they commute.

Proof. "=" Assume a complete set {uq} of simultaneous eigenfunctions is found,
ie.,

Atgy = atig, 19-39)

Bligy = g 19-40)

(
(
a, b, eigenvalues. Then [A, Blug, = (ab— ba)ug, = 0 for all eigenfunctions — [A, B] =
0.

"«<" See Gastorowicz, 5-4. O

Since only an eigenstate of A will have a definite outcome when a measurement
of A is made, this means that AA and AB can always be simultaneously made zero
only when A and B commute.

Theorem 19.2. One can prove that in any chosen state 1,
(AA)(ABY, > (i[A, B))?, (19-41)

for any two Hermitian operators fl, B.
Proof. see Gasiorowicz, online supplement SA. O

For z, p, we have

h2
Z?
where the RHS does not depend on the state 1. This is another derivation of the
Heisenberg uncertainty relation AzAp > %

(Ax)(Ap)2 > %(z’ih)i _ (19-42)

The Schrodinger equation in three dimensions

~

Hy(r) = By(r)] — SEin 3D (19-43)

with
p* = pi + P, + b’ (19-44)
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. (h@ ho ho

p= o ;8_y’ ;82) — in the position representation (19-45)

The SE then reads <V2 = 6‘9—; -+ 53—; + g—;),

[—%VQ + V(r)] P(r)=Wi(r)] — SEin 3D (19-46)

Spherically symmetric potential

If the potential is spherically symmetric, V' (r) = V(r), then it is convenient to work
in spherical coordinates, where we can write

”? 20 1/ 0? 0 1 02
2 O 20 L [0 o L o :
V= or? * rOor +r2 <86’2 +C0t0@9 +sin268q52) (16-47)
We define an operator via
R 0? o) I
L?=-r*( = — 4+ ——— . 19-4
h (392+00t989+sin208¢2) (19-48)
L will be the operator associated with angular momentum.
? 20 L2
B s 19-4
v or? + ror  h*r2 (19-49)
Since V (r) does not depend on 6, ¢, we try an
ansatz.
¥(r) = R(r)Y (6, 0) (19-50)
Then,
o, R [ 9*20
{—%V + V(T)li/}(r) = {—% (W;E) + V(T)} R(r)Y (0,¢) (19-51)
2
+ 52 R(r)Y (0, ¢) (19-52)
= ER(r)Y (9, ¢) (19-53)

As before, when deriving the time-indepenedent SE, we divide by R(r)Y (6, ¢) # 0.

o= [—h— (% + %%) + V(r)] R(r) + m#m)yw, ¢)  (19-54)

2m
- F (19-55)
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The LHS can only be a constant for all #, ¢ if the second term does not depend on
0, ¢. We arrive at two equations:

A~

L? const
LY (0,0) = Sy (6,6) = By(r)Y (0,0) (19-56)
1 R0 20 const
— |- =+ -= Vi(r)|R =F 19-57
R(r) { 2m (87"2 * r@r) * (7“)} (r)+ 2mr? ( )
0> 20 const
—— | =+ -= Vv R(r)=ER 19-58
{ 2m (87°2 + r 87") Vi) + 2mr2] (r) (r) ( )
where Fj = ;gf;f‘; is the energy associated with the angular dependence of the wave-
function.
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