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Tunneling in Nuclear Physics

Tunneling is important in nuclear physics. Nuclei are very complicated objects, but under
certain circumstances it is appropriate to view nucleons as independent particles occupy-
ing levels in a potential well. With this picture in mind, the decay of a nucleus into an a-
particle (a He nucleus with Z = 2) and a daughter nucleus can be described as the
tunneling of an a-particle through a barrier caused by the Coulomb potential between the
daughter and the a-particle (Fig. 4B-1). The a-particle is not viewed as being in a bound
state: if it were, the nucleus could not decay. Rather, the a-particle is taken to have posi-
tive energy, and its escape is only inhibited by the existence of the barrier.!
If we write

|T]P=e ¢ (4B-1)

b
_ Al 2m mf Z\Zye* _
G= 2< ﬁ2> ) dr Ameqr /3 (4B-2)

where R is the nuclear radius® and b is the turning point, determined by the vanishing of
the integrand (4B-2); Z, is the charge of the daughter nucleus, and Z, (= 2 here) is the
charge of the particle being emitted. The integral can be done exactly

b
1 1 12 R 172 R Rz 172
ldr ("': - E) = \/E [ CcOos I(E) - (E - ?) :l (4B-3)

At low energies (relative to the height of the Coulomb barrier at r = R), we have b >> R,

and then
_2(2mZ,Z,e*b\"| » R
“=% < dmre, 2V b (4B-4)

with b = Z,Z,e*/4me,E. If we write for the a-particle energy £ = mu*/2, where v is its
final velocity, then

277, Z,€>
G =052 27TaZIZl<%) (4B-5)

dareghiv

'If you find it difficult to imagine why a repuision would keep two objects from separating, think of the inverse
process, c capture. [t is clear that the barrier will tend to keep the a-particle out.

’In fact, early estimations of the nuclear radius came from the study of a-decay. Nowadays one uses the size of
the charge distribution as measured by scattering electrons off nuclei to get nuclear radii. It is not clear that the
two should be expected to give exactly the same answer.
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Virl

Figure 4B-1 Potential barrier for «
decay.

The time taken for an a-particle to get out of the nucleus may be estimated as fol-
lows: the probability of getting through the barrier on a single encounter is e~“. Thus the
number of encounters needed to get through is n = ¢, The time between encounters is of
the order of 2R/v, where R is again the nuclear radius, and v is the & velocity inside the
nucleus. Thus the lifetime is

r==%%e (4B-6)

The velocity of the « inside the nucleus is a rather fuzzy concept, and the whole picture is
very classical, so that the factor in front of the ¢% cannot really be predicted without a
much more adequate theory. Our considerations do give us an order of magnitude for it.
For a 1-MeV a-particle,

[2E | 2E g [ 2 6
1% 7 ¢ = 3 X 10 \.”4><94O 7.0 X 10° m/s

so that one predicts, for low energy a’s, the straight-line plot
Z

V E(MeV)

with the constant in front of the order of magnitude 27-28 when 7 is measured in years in-

stead of seconds. A large collection of data shows that a good fit to the lifetime data is ob-
tained with the formula

P ——— e il
)
=
Q

log,g+ = const — 1.73 (4B-7)

Z
VE

Here C, = 1.61 and G, lying between 55 and 62. The exponential part of the fit differs
slightly from our derivation, but given the simplicity of our model, the agreement has to
be rated as good.

For larger o energies, the G factor depends on R, and with R = r,A'”, one finds that
ry is a constant—that is, that the notion of a Coulomb barrier taking over the role of the
potential beyond the nuclear radius has some validity. Again, simple qualitative consider-
ations explain the data.

logoi=C,— G (4B-8)

e - T

|
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1 Periodic Potentials

Metals generally have a crystalline structure; that is, the ions are arranged in a way that
exhibits a spatial periodicity. In our one-dimensional discussion of this topic, we will see
that this periodicity has two effects on the motion of the free electrons in the metal. One is
that for a perfect lattice—that is, for ions spaced equally—the electron propagates with-
out reflection; the other is that there are restrictions on the energies allowed for the elec-
trons; that is, there are allowed and forbidden energy “bands.”

We begin with a discussion of the consequences of perfect periodicity.

The periodicity will be built into the potential, for which we require that

Vix + a) = V(x) (4C-1)

Since the kinetic energy term — (A%/2m)(d*/dx?) is unaltered by the change x — x + a, the
whole Hamiltonian is invariant under displacements by a. For the case of zero potential,
when the solution corresponding to a given energy E = #%k*/2m is

Ylx) = ™ (4C-2)
the displacement yields
! P(x + a) = 4D = e*yy(x) (4C-3)

that is, the original solution multiplied by a phase factor, so that

lp(x + @) = |y} (4C-4)

The observables will therefore be the same at x as at x + a; that is, we cannot tell whether
we are at x or at x + a. In our example we shall also insist that (x) and Y(x + a) differ
only by a phase factor, which need not, however, be of the form &%

We digress briefly to discuss this requirement more formally. The invariance of the
Hamiltonian under a displacement x — x + a can be treated formally as follows. Let D,

be an operator whose rule of operation is that
D, flx)=filx+ a) (4C-5)
The invariance implies that
(H,D,]=0 (4C-6)

We can find the eigenvalues of this operator by noting that

D,(x) = Aa(x) (4C-7)

together with
! D_,D,fix) = D,D_, fix) = fix) (4C-8)
W-19
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implies that A,A _, = 1. This then implies that A, must be of the form ¢'*. Here ¢ must be

real, because if g had an imaginary part, a succession of displacements by a would make

the wave function larger and larger with each displacement in one or the other direction.
Consider now a simultaneous eigenfunction of A and D,, and define

u(x) = e “"Y(x) (4C-9)
Then, using the fact that A, = €'%, we get
Du(x) = e” N ID h(x) = e Dy (x) = e TY(x) = u(x) (4C-10)

This means that u(x) is a periodic function obeying u(x + a) = u(x). The upshot is that a
function which is a simultaneous eigenfunction of A and D, must be of the form

(x) = e u(x) (4C-11)

with u(x) periodic. This result is known as Bloch’s Theorem.

For a free particle g = , the wave number corresponds to the energy E. More gener-
ally, the relation between ¢ and k is more complicated. In any case, it is clear that (4C-4)
holds, so that the net flux is unchanged as we go from x to x + @, and by extension to x +
na. This means that an electron propagates without a change in flux.

Let us consider a series of ions in a line, with their centers located at x = na. To
avoid having to deal with end effects, we assume that there are N ions placed on a very
large ring, so that n = 1 and n = N + 1 are the same site. We will assume that the most
loosely bound electrons—the ones that are viewed as “free”—are still sufficiently
strongly bound to the ions that their wave functions do not overlap more than one or two
nearest neighbors. We may now ask: What is the effect of this overlap on the energies of
the electrons?

To answer this question, we consider first a classical analogy. We represent the elec-
trons at the different sites by simple harmonic oscillators, all oscillating with the same an-
gular frequency w. In the absence of any coupling between the oscillators, we have the
equation of motion

d2
—F=-ol,  (1=0.12..) (4C-12)
t

If the harmonic oscillators are coupled to their nearest neighbors, then the equation is
changed to

% = —wx, = K[(%, = X,-) (%, = X0e))] (4C-13)
To solve this we write down a trial solution
x, = A, cos Qr (4C-14)
When this is substituted into (4C-13), we get
(0 = QHA, = —K(2A, — A,_ = Aup) (4C-15)
This i1s known as a difference equation. We solve it by a trial solution. Let us assume that
A, =L" (4C-16)

The identification of the sites atn = 1 and N + 1 implies A, = Ay, so that L = 1. This
means that

L = g*miN r=01,2,...,(N—- 1D (4C-17)
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The equation for the frequency {) now yields

12— _ 2mr) _ _ .2 Tr
w — 0 2K<1 cos N) 4K sin N

The result

02 = w? + 4K sin? 717—\[- (4C-18)
shows that the frequencies, which, without coupling are all w—that is, are N-fold de-
generate (which corresponds to all the pendulums moving together)—are now spread
over a range from w to Vw” + 4K. For large N there are many such frequencies, and
they can be said to form a band. If we think of electrons as undergoing harmonic oscil-
lations about their central locations, we can translate the above into a statement that in
the absence of neighbors, all electron energies are degenerate, and the interaction with
neighboring atoms spreads the energy values. We can, of course, have several funda-

mental frequencies w;, w,, ..., and different couplings to their neighbors, with
strengths K, K5, . .., which will then give rise to several bands that may or may not
overlap.

The spreading of the frequencies is the same effect as the spreading of the energy lev-
els of the most loosely bound electrons. For atoms far apart, with spacing larger than the
exponential fall-off of the wave functions, all the energies are the same so that we have an
N-fold degenerate single energy. Because the atoms are not so far apart, there is some
coupling between nearest neighbors, and the energy levels spread. The classical analogy
1s suggestive, but not exact, since for the quantum case levels are pushed up as well as
down, whereas all the frequencies above, lie above w. Later we solve the Kronig-Penney
model in which the potential takes the form

Vix) = %% 2 5(x — na) (4C-19)

The solution can be shown to lead to a condition on g, which reads

_ 1, sin ka )
cos ga = cos ka + 5 A e (4C-20)

As can be seen from Figure (4C-1), this clearly shows the energy band structure.

THE KRONIG-PENNEY MODEL

To simplify the algebra, we will take a series of repulsive delta-function potentials,

Vix) = ;—2% i 8(x — na) 4C-21)

m n=-o0

Away from the points x = na, the solution will be that of the free-particle equation—that
is, some linear combination of sin kx and cos kx (we deal with real functions for simplic-
ity). Let us assume that in the region R, defined by (n — 1) a = x = na, we have

Y(x) = A, sin k(x — na) + B, cos k(x — na) (4C-22)
and in the region R, , defined by na < x = (n + 1) a we have

P(x) = A,y sin k[x — (n+ 1)a] + B,., cos k[x — (n + 1) a] (4C-23)
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JLcosx+)‘s?i:x

Figure 4C-1 Plot of cos x + (A/2)(sin x/x) as a function of x. The horizontal lines represent the
bounds *1. The regions of x for which the curve lines outside the strip are forbidden.

Continuity of the wave function implies that (x = na)

—A,+ Sin ka + B,,, cos ka = B, 4C-24)
and the discontinuity condition (4-68) here reads
KA,., cos ka + kB,., sin ka — kA, = B, (4C-25)

A little manipulation yields

A,.; = A, cos ka + (g cos ka — sin ka) B,
B,., = (g sin ka + cos ka) B, + A, sin ka (4C-26)

where g = Alka.
The requirement from Bloch’s theorem that

Ylx + a) = 4 y(x + a) = 9T u(x) = e Y(x) (4C-27)
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implies that the wave functions in the adjacent regions R, and R, , are related, since the
wave function in (4C-22) may be written as

Y(x) = A sinfk((x+a)—(n+1)a}+B,cos k[k((x+a)—(n+ 1)a]
which is identical to that in (4C-23), provided

— Llqa
An+1 =g An

— iga
Bn+l =led Bn

(4C-28)

When this is inserted into the (4C-26), that is, into the conditions that the wave equation
obeys the Schrédinger equation with the delta function potential, we get

A (" — coska) = B,(g cos ka — sin ka)

. 4C-29
B,(e""" — (g sinka + cos ka)) = A, sin ka ( )

This leads to the condition

(e — cos ka)(e"*" — (g sin ka + cos ka)) = sin ka(g cos ka — sin ka) (4C-30)

This may be rewritten in the form

¥4 — 2(cos ka + %sin ka)e™ + 1 =0 (4C-31)

This quadratic equation can be solved, and both real and imaginary parts lead to the
condition

A sin ka

co = cos ka +
s ga s ka > ra

(4C-32)
This is a very interesting result, because the left side is always bounded by 1; that is, there
are restrictions on the possible ranges of the energy E = #%%/2m that depend on the para-
meters of our “crystal.” Figure 4C-1 shows a plot of the function cos x + A sin x/2x as a
function of x = ka. The horizontal line represents the bounds on cos ga, and the regions of
x, for which the curve lies outside the strip, are forbidden regions. Thus there are allowed

energy bands separated by regions that are forbidden. Note that the onset of a forbidden
band corresponds to the condition

qa = nw n==x1,x2 *3, ... (4C-33)

This, however, is just the condition for Bragg reflection with normal incidence. The exis-
tence of energy gaps can be understood qualitatively. In first approximation the electrons
are free, except that there will be Bragg reflection when the waves reflected from succes-
sive atoms differ in phase by an integral number of 277—that is, when (4C-33) is satisfied.
These reflections give rise to standing waves, with even and odd waves of the form cos mx/a
and sin 7rx/a, respectively. The energy levels corresponding to these standing waves are
degenerate. Once the attractive interaction between the electrons and the positively
charged ions at x = ma (m integer) is taken into account, the even states, peaked in be-
tween, will move up in energy. Thus the energy degeneracy is split at g = nm/a, and this
leads to energy gaps, as shown in Fig. 4C-1.

The Kronig-Penney model has some relevance to the theory of metals, insulators, and
semiconductors if we take into account the fact (to be studied later) that energy levels
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occupied by electrons cannot accept more electrons. Thus a metal may have an energy
band partially filled. If an external field is applied, the electrons are accelerated, and if
there are momentum states available to them, the electrons will occupy the momentum
states under the influence of the electric field. Insulators have completely filled bands, and
an electric field cannot accelerate electrons, since there are no neighboring empty states.
If the electric field is strong enough, the electrons can “jump” across a forbidden energ
gap and go into an empty allowed energy band. This corresponds to the breakdown of an
insulator. The semiconductor is an insulator with a very narrow forbidden gap. There,
small changes of conditions, such as a rise in temperature, can produce the *“jump” and the
insulator becomes a conductor.

The band structure is of great relevance in solid state physics. Fig. 4C-2 shows three
situations that can arise when energy levels are filled with electrons. We shall leamn in
Chapter 13 that only two electrons are allowed per energy level. In case (a) the electrons
fill all the energy levels below the edge of the energy gap. The application of a weak elec-
tric field will have no effect on the material. The electrons near the top of the filled band
cannot be accelerated. There are no levels with higher energy available to them. Materials
in which this occurs are insulators; that is, they do not carry currents when electric fields
are applied. In case (b) the energy levels are only partly filled. In this case the application
of an electric field accelerates the electrons at the top of the stack of levels. These electrons
have empty energy levels to move into, and they would accelerate indefinitely in a perfect
lattice, as stated in the previous section. What keeps them from doing that is dissipation.
The lattice is not perfect for two reasons: one is the presence of impurities, which destroys
the perfect periodicity; the other is the effect of thermal agitation on the position of the ions
forming the lattice, which has the same effect of destroying perfect periodicity. Materials
in which the energy levels below the gaps are only partially filled are conductors.

The width of the gaps in the energy spectrum depends on the materials. For some in-
sulators the gaps are quite narrow. When this happens, then at finite temperatures 7, there
is a calculable probability that some of the electrons are excited to the bottom of the set of
energy levels above the gap. (To good approximation the probability is proportional to the
Boltzmann factor ¢ "¥¥T). These electrons can be accelerated as in a conductor, so that the
application of an electric field will give rise to a current. The current is augmented by an-
other effect: the energy levels that had been occupied by the electrons promoted to the
higher energy band (called the conduction band) are now empty. They provide vacancies
into which electrons in the lower band (called the valence band) can be accelerated into,

MNarrow
gap

OHoles
la) (b) [ta]

Figure 4C-2 Occupation of levels in the lowest two energy bands, separated by a gap. (a) Insulator
has a completely filled band. Electrons cannot be accelerated into a nearby energy level.

(b) Conductor has a half-filled band, allowing electrons to be accelerated into nearby energy levels.
(¢) In a semiconductor, thermal effects promote some electrons into a second band. These electrons
can conduct electricity. The electrons leave behind them holes that act as positively charged
particles and also conduct electricity.
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[ Figure 4C-3 Schematic picture of
sesssse electrons and holes trapped in a well
Gap Gap Gap created by adjacent semiconductors with
[ccoocooo]| a wider gap. An example of such a
564 heterostructure is provided by a layer of
Al Ga As 55 Filled levels GaAs sandwiched between two layers of
oo AlGaAs.

when an electric field is applied. These vacancies, called holes, propagate in the direction
opposite to that of the electrons and thus add to the electric current. This is the situation
shown in Fig. 4C-2(c).

The technology of making very thin layers of compounds of materials has improved
in recent decades to such an extent that it is possible to create the analog of the infinite
wells discussed in Chapter 3. Consider a “sandwich” created by two materials. The outer
one has a larger energy gap than the inner one, as shown in Fig. 4C-3. The midpoints of
the gaps must coincide' (for equilibrium reasons). The result is that both electrons and
holes in the interior semiconductor cannot move out of the region between the outer semi-
conductors, because there are no energy levels that they can move to. Such confined re-
gions may occur in one, two, or three dimensions. In the last case we deal with quantum
dots. The study of the behavior of electrons in such confined regions is a very active field
of research in the study of materials.

In summary, one-dimensional problems give us a very important glimpse into the
physics of quantum systems in the real world of three dimensions.

‘A brief, semiquantitative discussion of this material may be found in Modern Physics by J. Bernstein,

P. M. Fishbane, and S. Gasiorowicz (Prentice Hall, 2000). See also Chapter 44 in Physics for Scientists and
Engineers, (2nd Edition) by P. M. Fishbane, S. Gasiorowicz and S. T. Thornton (Prentice Hall, 1996). There
are, of course, many textbooks on semiconductors, which discuss the many devices that use bandgap
engineering in great quantitative detail. See in particular L. Solymar and D. Walsh, Lectures on the Electrical
Properties of Materials, Oxford University Press, New York (1998).
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One-dimensional potentials: potential step

Figure I: Potential step of height Vjy. The particle is incident from the left with energy
E.

We analyze a time independent situation where a current of particles with a well-
defined energy is incident on the barrier. The time-independent SE is

Hu(z) = Eu(x) (15-1)
n? d*u
_%@(x) + V(z)u(z) = Eu(x) (15-2)
d*u 2m
o7 = 7B = V@)u(2) (15-3)

Qualitative features of solutions for regions of constant V;:
. . . 21.2
If E—V; > 0, the solutions are of the form e*™** with LE = E — V;, k; real.

h2k2

Interpretation. =~ is the KE of the particle with total energy E in a region of
potential Vi, the e**** wavefunctions correspond to particles traveling left / right.

Figure II: In a region where the particle energy is greater than the (constant) potential,
the solutions of the SE are plane waves e*** where F — V; = h?k? /2m is the kinetic
energy of the particle in that region.

If E -V, < 0, the solutions are of the form e™'* with Bm? Vi — E, k1

2m
real. These are damped exponentials with a decay length constant x; (decay length
k171), where h;’:j = Vi — E represents the “missing” kinetic energy of the particle

As E — V, the decay length ;! becomes longer and longer.

Massachusetts Institute of Technology XV-1
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Figure III: In a region where the particle energy is less than the (constant) potential,
the solutions of the SE are exponentially growing or decaying functions, e*** where
Vi — E = h®k?/2m is the "missing kinetic energy” of the particle in that region.

oty e

T X
h>| - typo ‘“""k"&? 0((.&3-'1.‘]

’f“’ - Keld . (evenescent wove )

Figure IV: When a light wave experiences total internal reflection on a glass-vacuum
interface, an evanescent (non-traveling, exponentially decaying wave) builds up inside
the vacuum. The closer we are to the critical angle for total internal reflection, the
longer the decay length of the evanescent wave. This phenomenon is analogous to a
particle entering a classically forbidden region with V; > E. The less forbidden the
region, the longer the decay length.

Note. There is a non-zero probability to find the particle with energy E in a “clas-
sically forbidden region” with E < Vj. The less the region is forbidden (the smaller
Vi — E), the further the particle penetrates into the forbidden region (the longer the
decay length ;). The phenomenon is similar to total internal reflection inside glass
at a glass-vacuum interface.

The light field has non-zero amplitude in the “forbidden region”. How do we
know? Approach with a second prism. The evanescent (decaying) field existing in
the vacuum is converted back into a traveling wave in the second prism.

Similarly, a particle can tunnel through a potential barrier even if its energy
is insufficient to surpass it.

Back to potential step Assume E > Vj: define

Massachusetts Institute of Technology XV-2
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Figure V: The light field "tunneling” through the forbidden region can be detected
as it emerges on the other side in a second prism.
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Figure VI: As a particle tunnels through a barrier and emerges from the other side,
the energy E and the Broglie wavelength 27/k remain the same. The amplitude of
the emerging wave is smaller than that of the incident wave.

Figure VII: Potential step

n*k?

o E (KE in region = < 0) (15-4)
m

h2q2

5 = E—-V, (KE in region x > 0) (15-5)
m
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The most general solution is

Ae'** 4 Beke in the region z < 0 (15-6)
Ce'* + De"* in the region x > 0 (15-7)

If we choose as the initial condition a particle incident from the left (A # 0), then
the particle can be transmitted to the RHS (C' # 0), or, as we shall see, partially
reflected by the barrier in spite of E > V4 (B # 0). However, if no particle is incident
from the right then D = 0.

Calculate the particle current (or flux)

In region x < 0:

‘ h Ldu du*

= [(A*e™™* + B*e'™™) (ikAe™ — ikBe™™) — c.c] (15-9)
im
hk , .
= 5 [P + AB"e™ — A"Be™™ — |B” — c.c] (15-10)
m
hk
= — [|JAP = |BI)] — net current for <0 (15-11)
m

We define the reflection amplitude r = %, and the reflection coefficient as R = |r|* =
B2
al
For x > 0: 5
. q
j> = —|CP (15-12)
m
Continuity of wavefunction at x = 0:

bz —0)=A+B=1x—0)=C (15-13)

In spite of the potential step, the derivative of the wavefunction must also be contin-

uous:
du du € d du
(@>“ N (%L_e = / dz— (@) (15-14)

2m [
= —?/_ dz[E — V(x)u(z) =0 (15-15)
For future applications, we note that if the potential contains a delta function term
Ad(x — a), with some magnitude of the delta function A, then the same calculation

Massachusetts Institute of Technology XV-4
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gives
du du U [ote
dx “\ 7z =— dz ) (x — a)u() 15-16
(dx)a::a+e (dx)g[;::a€ h2 ae x (IE a>u( ) ( )
2m
= gz ula) (15-17)

To summarize, we have the following rules:

Rule 1. The wavefunction u(x) is always continuous

Rule 2. The first spatial derivative of the wavefunction Z—g is continuous if the po-

tential does not contain d-function like terms. (It may contain potential steps).

Rule 2.1. if the potential contains a term Ad(z — a), the the first derivative 2* is

discontinuous at x = a amnd satisfies the relation

du du 2m
(&) (&) =5 15-15)

g Cusp

Vis):  Af(x-a)
Mg o

Figure VIII: A discontinuity in the slope of the wavefunction occurs at a delta function
potential. The difference in wavefunction slopes is proportional to the strength of the
0 potential, and to the value of the wavefunction at the cusp.

Continuity of 1: A+B=C (15-19)
Continuity of ": ik(A — B) = iqC (15-20)
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Solve for B, C in terms of A
C’:A—I—B:E(A—B) (15-21)
q
k k
A(l——)__—B(1+—) (15-22)
q q
Au — _Bﬂ (15-23)
q q
k—q
B=——A 15-24
k+q ( )
q 2
C=A+B=A+—1A=_"_ 15-25
k+q k+q ( )
B k-
Reflection amplitude Ul s a (15-26)
q
C 2k
Transmission amplitude t= o (15-27)
q
B k—q
Reflecti fficient == = 15-28
eflection coefficien |7 ‘A <k n q> ( )
24k
Transmission coefficient It]? = = (EE (15-29)
q
hk hk (k= q\’
Reflection current jo=—|BI = ( ) |AJ? (15-30)
m k+q
h hk  4kq *
Transmission current Jo >0 = _q| |> = (k +q) |AJ? (15-31)
q
hk 4k
Net current for x <0 j. = (]A\Z |B|*) = —]A\z( +q>2 (15-32)
q
: hq lik  4kq )
Net t fi 0 = — 15-33
et current for x > J> m| > = m T P 514 ( )
The current obeys the continuity equation (see problem set)
9
P WP—O (15-34)

Here we are considering stationary states, % 14|* = 0 (no change of probability density
in time), => j = const, current is continuous across the potential step,

j< = j>7

(15-35)

Massachusetts Institute of Technology

XV-6



8.04 Quantum Physics Lecture XV

or
Jine = J—z<0 = E'A‘z = Jreft + Jerans (15-36)
- j<—,x<0 + j—>,a:>0 (15-37)
hk h
= g+ Y. (15-38)
m m

Note. |r|? + |t|* # 1 because the particle velocity is different for z > 0 from that for
x < 0.

Discussion of results

In contrast to classical mechanics, there is some reflection at the potential step even
though the energy of the particle is sufficient to surpass it. This is familiar from
optics, where a step-like change in the index of refraction (e.g., air-glass interface)
leads to partial reflection. The particle reflection is a consequence of the matching of
the wavefunction and its derivative at the boundary. Again, this is similar to optics

where the matching of th electromagnetic fields at the boundary results in a reflected
field.

Note. For a very smooth change of potential (or refractive index in optics) there is
not reflection. What is smooth? A change over many wavelengths. Changes of the
potential over a distance [ short compared to a wavelength \ = 2?” result in reflection.
Slow changes of potential over many A do not result in reflection if particle energy

exceeds barrier height.
¢ |
L

Figure IX: A potential that varies smoothly over many de Broglie wavelengths does
not produce partial reflection if the particle energy is sufficient to surpass it.

Intermediate region | ~ \: we expect resonance phenomena (non-monotonic
changes of reflection probability with particle energy). For the potential step, the

Massachusetts Institute of Technology XV-7
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reflection probability

7> — 0 for k — g (E>Vy),and (15-39)
Ir|> — 1 for ¢ — 0 (E > Vi), as expected. (15-40)
(15-41)

Interestingly, the reflection probability can be written as

VE-VE-T\
VE+VE-V;

i.e. it does not depend explicitly on . However, the reflection is still inherenetly non-
classical in that the potential needs to change abruptly compared to the particle’s de
Broglie wavelength, that depends on h.

Solution for E < Vj: We define

[r?

(15-42)

hk?

o E (KE for z < 0) (15-43)

72 K2
o Vo — F (“missing KE to surpass barrier”) (15-44)

m

Most general solution

Ae™** - Bemike for x <0 (15-45)
Ce "™ + De"™ for z >0 (15-46)

The e™* term is not normalizable, D = 0

We can go through the same procedure as before using the continuity of v’
at x = 0, or use the previous calculation if we set ¢ — ix (Ce® — Ce ™ then).
Consequently,

B|? E—in|* k24 K2
2 _ |B| _ _ —1 15-47
! 'A ’k+iq k2 + K2 (15-47)
C? o | 4K+ K2
2 _ || — 15-4
i 'A 'k+m 22 7 (15-48)
(15-49)

A part of the wave penetrates the barrier, which is why the 'transmission” amplitude
does not vanish. Note, however, that there is no associated particle current: Since
Ce " does not have a spatially varying phase, the particle current

J= i (w*a—w - C.C.> (15-50)
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vanishes for z > 0,
. hk
je= 24P - |B) =0 (15-51)
J>=0 (15-52)

The net current is zerO in steady-state because all particles are reflected.

Note. The reflected wave has an energy-dependent phase shift

B k—-ik

"TA ktin (15-53)
_ —(Z;jZf (15-54)
_ K _kfi;fm (15-55)
= (15-56)
with tan ¢ = — %

The phase shift of the wave is important in 3D scattering problems.

Can we localize the particle in the forbidden region?

AL;L{ + GCE-’LY t/,

‘-L-LL 3 Va 'E
In

Figure X: The wavefunction for £ < V{ protrudes into the forbidden region x > 0.
Can the particle be observed there?

To be sure that we have measured the particle inside the barrier, and not outside,
we must measure its position at least with accuracy Az ~ x~!. Then according to
Heisenberg uncertainty, a momentum kick exceeding Ap > Aix ~ hr will be trans-

ferred onto the particle.

Massachusetts Institute of Technology XV-9
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How much energy do we transfer?

AE = E(p+ Ap) — E(p) (15-57)
(p+4Ap?*  p?
= - 2 15-
2m 2m (15-58)
2
_2op | (o) (15-59)
m 2m
p=nhk (15-60)

pAp can be positive or negative, (Ap)? is always positive. the transferred energy is
on average

(Ap)2 B h2 B h2/€2
2m  2m(Az)2 2m

According to Heisenberg uncertainty, the measurement that localizes the particle
inside the barrier transfers enough energy to allow the particle to be legitimately
there.

(AE) = =Vo-E (15-61)

Rule. A positive KE E — V] > 0 corresponds to a spatially oscillating wavefunction
e** with rate constant k (oscillation period A = 2T). A negative (“missing”) KE
E — Vi < 0 corresponds to a spatially decaying or growing wavefunction e*
decay rate constant s (decay length x71).

Kkx with

The “missing” KE is associated with the size of the region (k') that the particle
occupies in the classically forbidden space.

Massachusetts Institute of Technology XV-10
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The potential barrier: tunneling

) . Ul‘x} ;{“
At,rh ' gb-.m (e

- - _»/, | Tu-c
s >

Figure I: Tunneling through a potential barrier.

VE

Assume E < Vj (classically particle is reflected). Outside barrier solutions to the
SE are

u(z) = Ae*®  Be™** for v < —a, (16-1)
u(z) = Ce™ for x > a, (16-2)
(16-3)

where we have omitted the term De " that corresponds to an incident waveform
the right. Inside the barrier the SE is

d*u 2m

(@) = + =% - BJu(x) = ru(z) (16-4)

with k% = 28(V, — E). As before, & is the decay constant in the classically forbidden
region (k7! is the decay length) that is associated with the “missing” KE necessary

to surpass the barrier classically, % =V — E. Consequently inside the barrier
u(x) = Ee™ ™ + Fe™ for |z| < a (16-5)

As before, we need to match the solution u(z) and its derivative u/(z) at the bound-
aries.

o At x = —a:
Ae~*a - Betta — Fethe 4 [emre for u (16-6)
+ikAe™* — jkBe* = fkEe™® + kFe ™™ for v’ (16-7)
o Atz =u:
Ce't® = Fe™r 4 Fere for u (16-8)
ikAe™ = —xEe™ + kFe™ for ' (16-9)

Massachusetts Institute of Technology XVI-1
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We are interested in the reflection amplitude r = % (or the reflection probability

Ir]? = ’%!2) and the transmission amplitude ¢ = £ (or transmission probability

t]> = ‘%‘2) from the barrier. Remember that |A|?> determines the incident current,

and is a free parameter. It is useful to divide the equation for ' by the equation for

u (or alternatively, match ﬁ% = 4L (Inwu(z)) directly. Then we write

o Atz = —a:
—|—z'k:Ae*.ika — ikBe“ka _ —kFEe + kFe "¢ (16-10)
Ae—zka + Bezka Fera + Fe—ra
o Atz =a:
+ikCeke  _gEe " 4 gFete
k= - = 16-11
t Cezka Fe—ra + Fera ( )
(matching of £ (Inu(z)) = ﬁ% at boundaries).
Now we proceed to eliminate E, F' (Eq. 16-11):
itkEe " + ikFe™ = —kFEe " + kFe™ (16-12)
(k +ik)Ee " = (k — ik)Fe™ (16-13)
Kk — ik
E=——_Fe*e 16-14
K+ 1k © ( )
Substitute into Eq. 16-10:
— itk pedka 4 pe—ka
RHS = — =tk (16-15)
mFefimz + Fe—ra
i Gl ?k)e“”’”“ + H(H.—F ik)e—2ra (16.16)
(k —ik)e?re + (k + ik)e—2ra
_ —Ii2(62’w _ 6—2Ha) —|—.7:I€I€<€2Ra + 6—25(1) (16_17)
KJ(GQWI + 6—25&) _ Zl{?(GQ’W _ e—QRa)
_ k?sinh(2ma) + ikr cosh(2ka) (16.15)

k cosh(2ka) — ik sinh(2ka)
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Consequently, Eq. 16-10

[+ikAe** — ikBe™*] [k cosh(2ka) — ik sinh(2ka))

(16-19)

= [Ae** + Be™] [~k sinh(2ka) + ikk cosh(2ka)]
(16-20)

= Ae ™ (+ikk cosh(2ka) + k? sinh(2ka) + k*sinh(2ka) — ikk cosh(2ka))
(16-21)

= Be™(4-ikx cosh(2ka) + k*sinh(2ka) — k% sinh(2ka) + ikk cosh(2ka))
(16-22)

Ae™™ [(K?* + k) sinh(2ka)| = Be'* [2ikk cosh(2ka) + (k* — K?) sinh(2ka)]
(16-23)

B
r=- (16-24)
. 2 %) sinh(2

_ -2ika (k* 4+ k*) sinh(2ka) (16-25)

2ikk cosh(2ka) + (k? — k?) sinh(2ka)

reflection amplitude from barrier.

To calculate the transmission amplitude %, we use the continuity of u at x = a:

Ce'k® = Ee™r 4 Fetra (16-26)
_ : . Zk Fere + Fera (16-27)

2
= - sz' CFe (16-28)
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We find F' from the continuity of u at x = —a:

RHS = Ee™ + Fe "™ (16-29)
— ik
= BT W pedna | peha (16-30)
K+ 1k
. Ka Ka Ka 16-31
K+ ik Kk (16-31)
_ poka 2k cosh(2ka) — 22k sinh(2ka) (16-32)
K+ ik
RHS = Ae~ @ 4 Bethe (16-33)
: , k* + k) sinh(2ka)
— A —ika A —ika ( 16-34
¢ A 2ikk cosh(2ka) + (k? — Kk?) sinh(2ka) ( )
, k% + k?)sinh(2ka)
= Ae™™ |1 ( 16-35
‘ { T ik cosh(2ka) + (k% — K?) sinh(2ka) ( )
_ Aok 2ikk cosh(2ka) + 2k> sinh.(2/ia) ' (16-36)
2ikk cosh(2ka) + (k% — K?) sinh(2ka)
Then,
C 2k F ”
Z =2 rarika 16-37
A Ark+ik ( )
2k Ae~2ika (2ikr cosh(2ka) + 2k? sinh(2ka) (16.38)
A 2k cosh(2ka) — 2ik sinh(2ka) 2ikk cosh(2ka) + (k? — k2) sinh(2ka)
. 1
-9 —2ika k 16-39
S Y cosh(2ka) + (k? — k2) sinh(2ka) ( )
C
= — 16-40
< (16-40)
. 2kk
—2ika
= 16-41
‘ 2kr cosh(2ka) — i(k? — Kk?) sinh(2ka) ( )
. Vis)
b o &
A Ly +B£'Eu " v CQ.'U’ Pt
B A L 00 7
[ L‘-&L
-6 v a
Figure II: Tunneling through the potential barrier.
Consequently, we have the results for the barrier
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272
.hk — B

2m

.EQKZZ‘/O_E

2m
° _ B _ _—2ika —i(k%24k2) sinh(2ka)
r=z=¢ 2kk cosh(2ka)—i(k?—k?) sinh(2ka)
ot = ¢ _ e—Qika 2kk
A 2kk cosh(2ka)—i(k2—k2) sinh(2ka)

Since the energy and particle velocity are the same on both sides of the barrier, here
we have [r|? + [t]* = 1.

.[S.;I-;L]

Figure III: The sinh function.

Let us look at |¢|?

(2kk)?

(2]{/—{)2 -+ (kQ + /4,2)2 Sinh2(2/<,a) (16—42)

[t]* =

where we have used cosh?(z) = 1+sinh?(x). Since, sinh is a monotonically increasing
function, and k = QH—ZLm, the transmission is monotonically decreasing with
barrier height V4.

In the limit of small transmission, ka > 1 (barrier width large compared to decay
length 1), we have sinh(2ra) ~ (%62““)2 = te* and |t|? — (%)2 e~4% In this
limit the tunneling probability falls off exponentially with barrier thickness (in units
of decay length 1.

— This exponential dependence explains the extremely wide variation in, e.g.,
lifetimes of unstable nuclei (us to 10° years, corresponding to a variation by a factor
of 10%2).
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Lecture XVI

o

Figure IV: The transmission through the barrier as a function of decay wavevector k.

S —

Figure V: In the limit of large barrier height or width, the transmission falls off
exponentially because the wavefunction inside the barrier is dominated by the expo-

nentially decaying term.

Potential well: resonance phenomena

We first consider scattering (E > 0)

r< —a: Aettr 4 pTike (16-43)
—a<z<a: Eet® 4 Fe " (16-44)
T >a: Ce'ke (16-45)
] e :
I |
- — |
Figure VI: The potential well.
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21.2
.hk — F
2m
h2q2_
d 2m_‘/0+E

Instead of going through the calculation again, we note that these equations are
equivalent to those of the potential barrier (for E < V;) if we replace K — —igq.
Consequently, we obtain

: 2 k?)sin(2
r = i€_2Zka (q ) Sln( qa) : (16—46)
2kq cos(2qa) — i(q? + k?) sin(2qa)
4 2kq
t = e 2 16-47
2kq cos(2qa) — i(q? + k?) sin(2qa) ( )
For the potential well, in contrast to tunneling through the barrier, the reflection and
transmission oscillate as a function of parameter 2qa, i.e. as a function of number of
de Broglie wavelengths %’T inside the well of size a. In particular, for values

2¢qp,a =nmw  — n integer (16-48)
nm
= 16-49
=5 (16-49)
2 4
Ay = (16-50)
q n

the reflection goes to zero because of destructive interference between the waves re-
flected at —a and +a. This corresponds to the resonance condition for a Fabry-Perot
resonator in optics. the phenomenon persists in 3D, and for electrons scattering off no-
ble gas atoms is called a Ramsaner-Townsend resonance. A very similar phenomenon
has been observed in collision of ultracold atoms, where the effective depth of the
interatomic potential V; can be tuned with a magnetic field, there (and in nuclear
collisions) it is called a Feshbach resonance).

Bound states in attractive J-potential

What happens for negative energies —Vy < E < 0 in the potential well?

We expect discrete bound states, at least if potential is sufficiently deep. Particu-
larly simple mathematically is a limiting case where we shrink the size of the potential,
simultaneously making it deeper, such that the product of depth and width is con-
stant.

Let Vo — oo, a — 0 such that a -V = const = A > 0. We then obtain the
attractive delta potential V(z) = —Ad(z). We are interested in bound states: F < 0

o Define

h22
" —0-E=-E=|BE, k>0 (16-51)

2m
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Lecture XVI

VY

-V,

Figure VII: If the potential well is sufficiently deep or wide, it can support bound

states with discrete energies —Vy < E < 0.

Vi =-Adlx)

Figure VIII: Attactive delta potential.

Solutions for z < 0:

Ae"™ + B~ (16-52)
diverges for z — —o0
e Solutions for x > 0:
G 4 D (16-53)
e Continuity of wavefunction at x = 0:
A=D (16-54)
e Derivative obeys (Lecture XV)
!/ !/ 2m
u'(e) —u'(—e) = —?AU(O) (16-55)
2m
kD — KA = ——5 A (16-56)
h
2
ok = h—”;A (16-57)
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Ky = (16-58)
h
h2k2 h2m?2 m
E,=— = — 2\ 16-59
! om omh 2h? ( )

— Binding energy for attractive )-function. The § potential supports

AN K

iy

sCelors
I A,

5[\:_/&91_; £ l{:

P ofecdeng @

Figure IX: Comparison of bound states as the potential evolves from a very deep
to a very shallow potential. In the very deep potential, like in the infinite well, the
wave function oscillates sinusoidally inside the well, and decays exponentially in the
forbidden region. In the very shallow potential, the wavefunction is is mostly located
in the ”forbidden” region outside the well.

exactly one bound state of energy F = —ZLT’\;. For a finite-size well, this result

corresponds to the limiting case of a weak potential that supports only one
2 ~
bound state (Vy < %) with energy F = —’;T“;VOQ.
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Figure X: Solutions in different regions.

Two attractive )-potentials

We could proceed as before, or simplify slightly by making use of the fact that the
potential is symmetric x — —xz, and therefore we expect solutions of definite parity.
The even solution in the middle region is 2B cosh(kz), and A = D, which eliminates
two parameters.

e Continuity of u:

2B cosh(ka) = Ae™"™ (16-60)
e Derivative:
2
—KkAe ™ — k2B sinh(ka) = ——T;L)\Ae’““ (16-61)
h
2
(h—?/\ — H) Ae "™ = 2kBsinh(ka) (16-62)
2m .
?)\ — Kk | 2B cosh(ka) = 2k B sinh(ka) (16-63)
2
=X — 1 = tanh(ka) (16-64)
hka

There is always exactly one solution of the eigenvalue equation (16-64) for even

parity. From the figure we see that for the bound state ka < 2722“’\, which is where
2ma) 1

the function

— 1 intersects zero. On the other hand, since tanh(z) < 1, we

h? ka
need 2’;?% —1<1,or k> {5\ Larger £ means larger magnitude of binding energy
E = —h;’ff. We have A < k < QE—ZL/\ If we compare this to the binding-energy in

single d-potential, k1 = 73X we see that the particle is more strongly bound in the
double-well potential.
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Figure XI: Graphic solution of the eigenvalue equation 16-64.

Reason. Given the discontinuity in slope due to the potential, it is possible to choose
a steeper wavefunction (larger k — larger binding energy) when the two J-functions
are close. Variation of binding energy with well separation a: As we decrease a, the

Figure XII: Comparison of the wavefunction for two different well spacings. If the wells
are close, for the same wavefunction discontinuity at each ¢ function the wavefunction
outside the two wells can decay faster (larger k), resulting in larger binding energy
|E| = h*k%/2m.

Figure XIII: Graphic comparison of the binding energies for large and small separation
2a between the binding sites.

binding energy increases from the value given by x = ’g—? (binding energy of a single
well attained at a — o0o0) towards the value k = 2;”—2’\, attained as a — 0. Thus
the binding energy quadruples. the possibility of the wavefunction in a double-well
system to change so as to decrease the kinetic (and possibly potential) energy is at

the origin of chemical bonds in molecules.
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For the single d-potential we have exactly one bound state (symmetric state), for
the double d-potential we always have one symmetric bound state, and we may have
(depending on the potential strength) also an antisymmetric bound state. For the
finite-size potential well we may have several (but always a finite number) of bound
states.

Bound states in potential well

s he ™ Bcose;ués...;;(ﬂ Ao

Ewlﬁ._a’—gfx

X -a X=0 X-a %‘ = ~f=Jt)

ot
%f = Vo-lEl = VIE

Figure I: Solutions in different regions for bound states in a potential well.

Here, instead of writing the solutions as exponentials, Be'® + Ce™"* we have
already written them in a form that reflects the symmetry of the potential. We

match L% at 2 = a:
u dx

e For even solutions: C' =0

—gsin(qga) _ —reT™ (17-1)
cos(qa) e—ha
Kk = qtan(qa) (17-2)
e For odd solutions: D =0
qeosqa) _ (17-3)
sin(ga)
Kk = —qcot(qga) (17-4)
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Even solutions

Let us introduce y = ga, A = 25V;a?

2 2
Ka = Z‘f E| (17-5)
2ma? 2ma?
=\ Vo (Vo |E)) (17-6)

= /A —¢2a? (17-7)
=VA-y? (17-8)
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Figure II: Graphic solution of the eigenvalue equation (17-2) for symmetric bound
states.

There is always at least one solution, more if A = QFL—T%CF is larger (potential deeper
and/or wider). For A > 1, the lowest energy solutions are approximately located at
y=gqa= (n + %) m,or Vo — |E,| = h;j’f = 3;222 (n + %)2, similar to infinite well.

The existence of at least one bound state is typical of 1D problems, but not of 3D
problems that behave more like odd solutions.

Odd solutions

N\ —

y__ cot(y) = tan (z + y) (17-9)
Y 2

The looks similar to the previous plot, but with shifted RHS. For large A, the solutions

2

are q,a = no. For small A\, a solution exists only if 4/ — (%)2 >0 or Q@LLQO“Q >
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Figure III: Graphic solution of the eigenvalue equation (17-4) for antisymmetric bound
states.
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Figure IV: Graphic construction of an odd-state solution, or of a solution in 3D, where
the wavefunction must vanish at the origin.

Condition for the existence of odd solutions. In 3D, we will require that a
(modified) wavefunction vanishes at the origin, therefore the solutions will look like
odd-parity solutions. (It is as if the wavefunction were continued at —r.)

Odd solutions do not always exist because the wavefunction needs to bend around
sufficiently to match a decaying exponential, this requires high KE.

S et mold
i “"“ ;‘0 l-lX

Figure V: If the well is not deep enough, the odd solution cannot bend down suffi-
ciently to match (with continuous slope) a decaying exponential at the edge of the
well.
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