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Supplement 4-C

Periodic Potentials

Metals generally have a crystalline structure; that is, the ions are arranged in a way that
exhibits a spatial periodicity. In our one-dimensional discussion of this topic, we will see
that this periodicity has two effects on the motion of the free electrons in the metal. One is
that for a perfect lattice—that is, for ions spaced equally—the electron propagates with-
out reflection; the other is that there are restrictions on the energies allowed for the elec-
trons; that is, there are allowed and forbidden energy “bands.”

We begin with a discussion of the consequences of perfect periodicity.

The periodicity will be built into the potential, for which we require that

Vix + a) = V(x) (4C-1)
E Since the kinetic energy term — (A%2m)(d*/dx*) is unaltered by the change x — x + a, the
whole Hamiltonian is invariant under displacements by a. For the case of zero potential,
when the solution corresponding to a given energy £ = A 2m is
Plx) = & (4C-2)
1| the displacement yields
t . .
.u Y(x + a) = XD = g*y(x) (4C-3)
1 that is, the original solution multiplied by a phase factor, so that
o + @) = [yl (4C-4)
The observables will therefore be the same at x as at x + a; that is, we cannot tell whether
we are at x or at x + a. In our example we shall also insist that (x) and (x + a) differ
only by a phase factor, which need not, however, be of the form e*,
We digress briefly to discuss this requirement more formally. The invariance of the
Hamiltonian under a displacement x — x + a can be treated formally as follows. Let D,
be an operator whose rule of operation is that
D, fix) = flx + a) (4C-5)
The invariance implies that
[H,D,)=0 (4C-6)
i We can find the eigenvalues of this operator by noting that
i
' D, p(x) = Ap(x) (4C-7)
together with
1 D-uDaﬂx) = DaD—uﬂx) = ﬂ-x) (4C—8)
W-19
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implies that A, A _, = 1. This then implies that A, must be of the form ¢'?. Here g must be

real, because if ¢ had an imaginary part, a succession of displacements by a would make

the wave function larger and larger with each displacement in one or the other direction.
Consider now a simultaneous eigenfunction of H and D,, and define

u(x) = e”““Y(x) (4C-9)
Then, using the fact that A, = €%, we get
Dou(x) = e 9D (x) = e W VY (x) = ¢ IY(x) = u(x)  (4C-10)

This means that u(x) is a periodic function obeying u(x + a) = u(x). The upshot is that a
function which 1s a simultaneous eigenfunction of / and D, must be of the form

Y(x) = e“u(x) (4C-11)

with u(x) periodic. This result is known as Bloch’s Theorem.

For a free particle ¢ = k, the wave number corresponds to the energy E. More gener-
ally, the relation between g and & is more complicated. In any case, it is clear that (4C-4)
holds, so that the net flux is unchanged as we go from x to x + q, and by extension to x +
na. This means that an electron propagates without a change in flux.

Let us consider a series of ions in a line, with their centers located at x = na. To
avoid having to deal with end effects, we assume that there are N ions placed on a very
large ring, so that n = 1 and n = N + 1 are the same site. We will assume that the most
loosely bound electrons—the ones that are viewed as “free”—are still sufficiently
strongly bound to the ions that their wave functions do not overlap more than one or two
nearest neighbors. We may now ask: What is the effect of this overlap on the energies of
the electrons?

To answer this question, we consider first a classical analogy. We represent the elec-
trons at the different sites by simple harmonic oscillators, all oscillating with the same an-
gular frequency w. In the absence of any coupling between the oscillators, we have the
equation of motion

2
ddtx; = -k, (1=0,1,2..) (4C-12)
If the harmonic oscillators are coupled to their nearest neighbors, then the equation is
changed to

d* ,
2=~y — Kl ~ %0m1) + G5y~ Fa)] (4c-13)

n

To solve this we write down a trial solution
x, =A, cos (4C-14)
When this 1s substituted into (4C-13), we get
(o' = OHA, = —K(2A, — A,y — Ap) (4C-15)
This is known as a difference equation. We solve it by a trial solution. Let us assume that
A, =L (4C-16)

The identification of the sites atn = 1 and N + 1 implies A, = Ay,, so that LY = 1. This
means that

L = e¥ir¥ ol o V) (S, (N—=1) (4C-17)
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The equation for the frequency {) now yields

12— _ 2mry _ _ . 2T
w — 2K(1 cos N) 4K sin N

The result

O = o’ + 4K sin* T (4C-18)
shows that the frequencies, which, without coupling are all w—that is, are N-fold de-
generate (which corresponds to all the pendulums moving together)—are now spread
over a range from w to Vw* + 4K. For large N there are many such frequencies, and
they can be said to form a band. If we think of electrons as undergoing harmonic oscil-
lations about their central locations, we can translate the above into a statement that in
the absence of neighbors, all electron energies are degenerate, and the interaction with
neighboring atoms spreads the energy values. We can, of course, have several funda-

mental frequencies w;, w,, ..., and different couplings to their neighbors, with
strengths K, K,, . .., which will then give rise to several bands that may or may not
overlap.

The spreading of the frequencies is the same effect as the spreading of the energy lev-
els of the most loosely bound electrons. For atoms far apart, with spacing larger than the
exponential fall-off of the wave functions, all the energies are the same so that we have an
N-fold degenerate single energy. Because the atoms are not so far apart, there is some
coupling between nearest neighbors, and the energy levels spread. The classical analogy
1s suggestive, but not exact, since for the quantum case levels are pushed up as well as
down, whereas all the frequencies above, lie above w. Later we solve the Kronig-Penney
model in which the potential takes the form

e —

©

R A
: Vi) =5-4 _Em 8(x — na) (4C-19)
The solution can be shown to lead to a condition on ¢, which reads

_ 1, sin ka L
cos qa = cos ka + 7 A e (4C-20)

As can be seen from Figure (4C-1), this clearly shows the energy band structure.

THE KRONIG-PENNEY MODEL

To simplify the algebra, we will take a series of repulsive delta-function potentials,

Vix) = Zﬁ_m% S 8tx — na) (4c-21)

n=-w

Away from the points x = na, the solution will be that of the free-particle equation—that
is, some linear combination of sin kx and cos kx (we deal with real functions for simplic-
ity). Let us assume that in the region R, defined by (n — 1) a =< x < na, we have

Y(x) = A, sin k(x — na) + B, cos k(x — na) (4C-22)
and in the region R, defined by na = x =< (n + 1) a we have

Yx) = A, sin k[x —(n+ 1)a] + B,,, cos k[x — (n + 1) a] (4C-23)

v
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h COs x +

A sin x
2x

Figure 4C-1 Plot of cos x + (A/2)(sin x/x) as a function of x. The horizontal lines represent the
bounds *1. The regions of x for which the curve lines outside the strip are forbidden.

Continuity of the wave function implies that (x = na)

—A,+ sin ka + B,,, cos ka =B, (4C-24)
and the discontinuity condition (4-68) here reads
KA,., cos ka + kB,., sin ka — kA, =2 B, (4C-25)

A little manipulation yields

A,y = A, cos ka + (g cos ka — sin ka) B,
B,,; = (g sin ka + cos ka) B, + A, sin ka 4C-26)

where g = A/ka.
The requirement from Bloch’s theorem that

Ylx + a) = 9Ty (x + a) = 4T y(x) = eY(x) (4C-27)
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implies that the wave functions in the adjacent regions R, and R,,, are related, since the
wave function in (4C-22) may be written as

Y(x) = A sinfk((x+a)—(n+a]+B,cos k[k((x+a)—(n+1)a]

which 1s identical to that in (4C-23), provided

Ans = €74, (4C-28)
Bn+l = e‘ann

When this is inserted into the (4C-26), that is, into the conditions that the wave equation
obeys the Schrédinger equation with the delta function potential, we get

A (e — cos ka) = B,(g cos ka — sin ka)

4C-29
B, (e — (g sinka + cos ka)) = A, sin ka ( )

This leads to the condition

(e — cos ka)(e"" — (g sin ka + cos ka)) = sin ka(g cos ka — sin ka) (4C-30)

This may be rewritten in the form

et — 2(cos ka + 3 sin ka)e™ + 1= 0 (4C-31)

This quadratic equation can be solved, and both real and imaginary parts lead to the
condition

A sin ka

= ka +
cos ga = coska + 5 =

(4C-32)
This is a very interesting result, because the left side is always bounded by 1; that is, there
are restrictions on the possible ranges of the energy E = #%?/2m that depend on the para-
meters of our “crystal.” Figure 4C-1 shows a plot of the function cos x + A sin x/2x as a
function of x = ka. The horizontal line represents the bounds on cos ga, and the regions of
x, for which the curve lies outside the strip, are forbidden regions. Thus there are allowed

energy bands separated by regions that are forbidden. Note that the onset of a forbidden
band corresponds to the condition

ga = nm n==1,+x2 *£3 ... (4C-33)

This, however, is just the condition for Bragg reflection with normal incidence. The exis-
tence of energy gaps can be understood qualitatively. In first approximation the electrons
are free, except that there will be Bragg reflection when the waves reflected from succes-
sive atoms differ in phase by an integral number of 27r—that is, when (4C-33) is satisfied.
These reflections give rise to standing waves, with even and odd waves of the form cos mx/a
and sin mx/a, respectively. The energy levels corresponding to these standing waves are
degenerate. Once the attractive interaction between the electrons and the positively
charged ions at x = ma (m integer) is taken into account, the even states, peaked in be-
tween, will move up in energy. Thus the energy degeneracy is split at ¢ = nr/a, and this
leads to energy gaps, as shown in Fig. 4C-1.

The Kronig-Penney model has some relevance to the theory of metals, insulators, and
semiconductors if we take into account the fact (to be studied later) that energy levels
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occupied by electrons cannot accept more electrons. Thus a metal may have an energy
band partially filled. If an external field is applied, the electrons are accelerated, and if
there are momentum states available to them, the electrons will occupy the momentum
states under the influence of the electric field. Insulators have completely filled bands, and
an electric field cannot accelerate electrons, since there are no neighboring empty states.
If the electric field is strong enough, the electrons can “jump” across a forbidden energy
gap and go into an empty allowed energy band. This corresponds to the breakdown of an
insulator. The semiconductor is an insulator with a very narrow forbidden gap. There,
small changes of conditions, such as a rise in temperature, can produce the “jump’” and the
insulator becomes a conductor.

The band structure is of great relevance in solid state physics. Fig. 4C-2 shows three
situations that can arise when energy levels are filled with electrons. We shall learn in
Chapter 13 that only two electrons are allowed per energy level. In case (a) the electrons
fill all the energy levels below the edge of the energy gap. The application of a weak elec-
tric field will have no effect on the material. The electrons near the top of the filled band
cannot be accelerated. There are no levels with higher energy available to them. Materials
1n which this occurs are insulators; that 1s, they do not carry currents when electric fields
are applied. In case (b) the energy levels are only partly filled. In this case the application
of an electric field accelerates the electrons at the top of the stack of levels. These electrons
have empty energy levels to move into, and they would accelerate indefinitely in a perfect
lattice, as stated in the previous section. What keeps them from doing that is dissipation.
The lattice is not perfect for two reasons: one is the presence of impurities, which destroys
the perfect periodicity; the other is the effect of thermal agitation on the position of the ions
forming the lattice, which has the same effect of destroying perfect periodicity. Materials
in which the energy levels below the gaps are only partially filled are conductors.

The width of the gaps in the energy spectrum depends on the materials. For some in-
sulators the gaps are quite narrow. When this happens, then at finite temperatures 7, there
is a calculable probability that some of the electrons are excited to the bottom of the set of
energy levels above the gap. (To good approximation the probability is proportional to the
Boltzmann factor ¢ #*T). These electrons can be accelerated as in a conductor, so that the
application of an electric field will give rise to a current. The current is augmented by an-
other effect: the energy levels that had been occupied by the electrons promoted to the
higher energy band (called the conduction band) are now empty. They provide vacancies
into which electrons in the lower band (called the valence band) can be accelerated into,

Narrow
gap

OHoles
ta]

Figure 4C-2 Occupation of levels in the lowest two energy bands, separated by a gap. (a) Insulator
has a completely filled band. Electrons cannot be accelerated into a nearby energy level.

(b) Conductor has a half-filled band, allowing electrons to be accelerated into nearby energy levels
(¢) In a semiconductor, thermal effects promote some electrons into a second band. These electrons
can conduct electricity. The electrons leave behind them holes that act as positively charged
particles and also conduct electricity.
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| Figure 4C-3 Schematic picture of
secssen electrons and holes trapped in a well

Gap Gap Gap created by adjacent semiconductors with

0000000 a wider gap. An example of such a
[N N N NN ] . -
cecccoe heterostructure is provided by a layer of
Al Ga As ‘ 260006 E Filled levels GaAs sandwiched between two layers of
LN NN N N ]
AlGaAs.

when an electric field is applied. These vacancies, called holes, propagate in the direction
opposite to that of the electrons and thus add to the electric current. This is the situation
shown in Fig. 4C-2(c).

The technology of making very thin layers of compounds of materials has improved
in recent decades to such an extent that it is possible to create the analog of the infinite
wells discussed in Chapter 3. Consider a “sandwich” created by two materials. The outer
one has a larger energy gap than the inner one, as shown in Fig. 4C-3. The midpoints of
the gaps must coincide' (for equilibrium reasons). The result is that both electrons and
holes in the interior semiconductor cannot move out of the region between the outer semi-
conductors, because there are no energy levels that they can move to. Such confined re-
gions may occur in one, two, or three dimensions. In the last case we deal with quantum
dots. The study of the behavior of electrons in such confined regions is a very active field
of research in the study of materials.

In summary, one-dimensional problems give us a very important glimpse into the
physics of quantum systems in the real world of three dimensions.

'A brief, semiquantitative discussion of this material may be found in Modemn Physics by ]. Bernstein,

P. M. Fishbane, and S. Gasiorowicz (Prentice Hall, 2000). See also Chapter 44 in Physics for Scientists and
Engineers, (2nd Edition) by P. M. Fishbane, S. Gasiorowicz and S. T. Thornton (Prentice Hall, 1996). There
are, of course, many textbooks on semiconductors, which discuss the many devices that use bandgap
engineering in great quantitative detail. See in particular L. Solymar and D. Walsh, Lectures on the Electrical
Properties of Materials, Oxford University Press, New York (1998).
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One-dimensional potentials: potential step

Figure I: Potential step of height Vjy. The particle is incident from the left with energy
E.

We analyze a time independent situation where a current of particles with a well-
defined energy is incident on the barrier. The time-independent SE is

Hu(z) = Eu(x) (15-1)
n? d*u
_%@(x) + V(z)u(z) = Eu(x) (15-2)
d*u 2m
o7 = 7B = V@)u(2) (15-3)

Qualitative features of solutions for regions of constant V;:
. . . 21.2
If E—V; > 0, the solutions are of the form e*™** with LE = E — V;, k; real.

h2k2

Interpretation. =~ is the KE of the particle with total energy E in a region of
potential Vi, the e**** wavefunctions correspond to particles traveling left / right.

Figure II: In a region where the particle energy is greater than the (constant) potential,
the solutions of the SE are plane waves e*** where F — V; = h?k? /2m is the kinetic
energy of the particle in that region.

If E -V, < 0, the solutions are of the form e™'* with Bm? Vi — E, k1

2m
real. These are damped exponentials with a decay length constant x; (decay length
k171), where h;’:j = Vi — E represents the “missing” kinetic energy of the particle

As E — V, the decay length ;! becomes longer and longer.

Massachusetts Institute of Technology XV-1
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Figure III: In a region where the particle energy is less than the (constant) potential,
the solutions of the SE are exponentially growing or decaying functions, e*** where
Vi — E = h®k?/2m is the "missing kinetic energy” of the particle in that region.

oty e

T X
h>| - typo ‘“""k"&? 0((.&3-'1.‘]

’f“’ - Keld . (evenescent wove )

Figure IV: When a light wave experiences total internal reflection on a glass-vacuum
interface, an evanescent (non-traveling, exponentially decaying wave) builds up inside
the vacuum. The closer we are to the critical angle for total internal reflection, the
longer the decay length of the evanescent wave. This phenomenon is analogous to a
particle entering a classically forbidden region with V; > E. The less forbidden the
region, the longer the decay length.

Note. There is a non-zero probability to find the particle with energy E in a “clas-
sically forbidden region” with E < Vj. The less the region is forbidden (the smaller
Vi — E), the further the particle penetrates into the forbidden region (the longer the
decay length ;). The phenomenon is similar to total internal reflection inside glass
at a glass-vacuum interface.

The light field has non-zero amplitude in the “forbidden region”. How do we
know? Approach with a second prism. The evanescent (decaying) field existing in
the vacuum is converted back into a traveling wave in the second prism.

Similarly, a particle can tunnel through a potential barrier even if its energy
is insufficient to surpass it.

Back to potential step Assume E > Vj: define

Massachusetts Institute of Technology XV-2
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Figure V: The light field "tunneling” through the forbidden region can be detected
as it emerges on the other side in a second prism.

fe rsiuﬂa
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Figure VI: As a particle tunnels through a barrier and emerges from the other side,
the energy E and the Broglie wavelength 27/k remain the same. The amplitude of
the emerging wave is smaller than that of the incident wave.

Figure VII: Potential step

n*k?

o E (KE in region = < 0) (15-4)
m

h2q2

5 = E—-V, (KE in region x > 0) (15-5)
m

Massachusetts Institute of Technology XV-3
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The most general solution is

Ae'** 4 Beke in the region z < 0 (15-6)
Ce'* + De"* in the region x > 0 (15-7)

If we choose as the initial condition a particle incident from the left (A # 0), then
the particle can be transmitted to the RHS (C' # 0), or, as we shall see, partially
reflected by the barrier in spite of E > V4 (B # 0). However, if no particle is incident
from the right then D = 0.

Calculate the particle current (or flux)

In region x < 0:

‘ h Ldu du*

= [(A*e™™* + B*e'™™) (ikAe™ — ikBe™™) — c.c] (15-9)
im
hk , .
= 5 [P + AB"e™ — A"Be™™ — |B” — c.c] (15-10)
m
hk
= — [|JAP = |BI)] — net current for <0 (15-11)
m

We define the reflection amplitude r = %, and the reflection coefficient as R = |r|* =
B2
al
For x > 0: 5
. q
j> = —|CP (15-12)
m
Continuity of wavefunction at x = 0:

bz —0)=A+B=1x—0)=C (15-13)

In spite of the potential step, the derivative of the wavefunction must also be contin-

uous:
du du € d du
(@>“ N (%L_e = / dz— (@) (15-14)

2m [
= —?/_ dz[E — V(x)u(z) =0 (15-15)
For future applications, we note that if the potential contains a delta function term
Ad(x — a), with some magnitude of the delta function A, then the same calculation

Massachusetts Institute of Technology XV-4
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gives
du du U [ote
dx “\ 7z =— dz ) (x — a)u() 15-16
(dx)a::a+e (dx)g[;::a€ h2 ae x (IE a>u( ) ( )
2m
= gz ula) (15-17)

To summarize, we have the following rules:

Rule 1. The wavefunction u(x) is always continuous

Rule 2. The first spatial derivative of the wavefunction Z—g is continuous if the po-

tential does not contain d-function like terms. (It may contain potential steps).

Rule 2.1. if the potential contains a term Ad(z — a), the the first derivative 2* is

discontinuous at x = a amnd satisfies the relation

du du 2m
(&) (&) =5 15-15)

g Cusp

Vis):  Af(x-a)
Mg o

Figure VIII: A discontinuity in the slope of the wavefunction occurs at a delta function
potential. The difference in wavefunction slopes is proportional to the strength of the
0 potential, and to the value of the wavefunction at the cusp.

Continuity of 1: A+B=C (15-19)
Continuity of ": ik(A — B) = iqC (15-20)
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Solve for B, C in terms of A
C’:A—I—B:E(A—B) (15-21)
q
k k
A(l——)__—B(1+—) (15-22)
q q
Au — _Bﬂ (15-23)
q q
k—q
B=——A 15-24
k+q ( )
q 2
C=A+B=A+—1A=_"_ 15-25
k+q k+q ( )
B k-
Reflection amplitude Ul s a (15-26)
q
C 2k
Transmission amplitude t= o (15-27)
q
B k—q
Reflecti fficient == = 15-28
eflection coefficien |7 ‘A <k n q> ( )
24k
Transmission coefficient It]? = = (EE (15-29)
q
hk hk (k= q\’
Reflection current jo=—|BI = ( ) |AJ? (15-30)
m k+q
h hk  4kq *
Transmission current Jo >0 = _q| |> = (k +q) |AJ? (15-31)
q
hk 4k
Net current for x <0 j. = (]A\Z |B|*) = —]A\z( +q>2 (15-32)
q
: hq lik  4kq )
Net t fi 0 = — 15-33
et current for x > J> m| > = m T P 514 ( )
The current obeys the continuity equation (see problem set)
9
P WP—O (15-34)

Here we are considering stationary states, % 14|* = 0 (no change of probability density
in time), => j = const, current is continuous across the potential step,

j< = j>7

(15-35)
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or
Jine = J—z<0 = E'A‘z = Jreft + Jerans (15-36)
- j<—,x<0 + j—>,a:>0 (15-37)
hk h
= g+ Y. (15-38)
m m

Note. |r|? + |t|* # 1 because the particle velocity is different for z > 0 from that for
x < 0.

Discussion of results

In contrast to classical mechanics, there is some reflection at the potential step even
though the energy of the particle is sufficient to surpass it. This is familiar from
optics, where a step-like change in the index of refraction (e.g., air-glass interface)
leads to partial reflection. The particle reflection is a consequence of the matching of
the wavefunction and its derivative at the boundary. Again, this is similar to optics

where the matching of th electromagnetic fields at the boundary results in a reflected
field.

Note. For a very smooth change of potential (or refractive index in optics) there is
not reflection. What is smooth? A change over many wavelengths. Changes of the
potential over a distance [ short compared to a wavelength \ = 2?” result in reflection.
Slow changes of potential over many A do not result in reflection if particle energy

exceeds barrier height.
¢ |
L

Figure IX: A potential that varies smoothly over many de Broglie wavelengths does
not produce partial reflection if the particle energy is sufficient to surpass it.

Intermediate region | ~ \: we expect resonance phenomena (non-monotonic
changes of reflection probability with particle energy). For the potential step, the

Massachusetts Institute of Technology XV-7



8.04 Quantum Physics Lecture XV

reflection probability

7> — 0 for k — g (E>Vy),and (15-39)
Ir|> — 1 for ¢ — 0 (E > Vi), as expected. (15-40)
(15-41)

Interestingly, the reflection probability can be written as

VE-VE-T\
VE+VE-V;

i.e. it does not depend explicitly on . However, the reflection is still inherenetly non-
classical in that the potential needs to change abruptly compared to the particle’s de
Broglie wavelength, that depends on h.

Solution for E < Vj: We define

[r?

(15-42)

hk?

o E (KE for z < 0) (15-43)

72 K2
o Vo — F (“missing KE to surpass barrier”) (15-44)

m

Most general solution

Ae™** - Bemike for x <0 (15-45)
Ce "™ + De"™ for z >0 (15-46)

The e™* term is not normalizable, D = 0

We can go through the same procedure as before using the continuity of v’
at x = 0, or use the previous calculation if we set ¢ — ix (Ce® — Ce ™ then).
Consequently,

B|? E—in|* k24 K2
2 _ |B| _ _ —1 15-47
! 'A ’k+iq k2 + K2 (15-47)
C? o | 4K+ K2
2 _ || — 15-4
i 'A 'k+m 22 7 (15-48)
(15-49)

A part of the wave penetrates the barrier, which is why the 'transmission” amplitude
does not vanish. Note, however, that there is no associated particle current: Since
Ce " does not have a spatially varying phase, the particle current

J= i (w*a—w - C.C.> (15-50)
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vanishes for z > 0,
. hk
je= 24P - |B) =0 (15-51)
J>=0 (15-52)

The net current is zerO in steady-state because all particles are reflected.

Note. The reflected wave has an energy-dependent phase shift

B k—-ik

"TA ktin (15-53)
_ —(Z;jZf (15-54)
_ K _kfi;fm (15-55)
= (15-56)
with tan ¢ = — %

The phase shift of the wave is important in 3D scattering problems.

Can we localize the particle in the forbidden region?

AL;L{ + GCE-’LY t/,

‘-L-LL 3 Va 'E
In

Figure X: The wavefunction for £ < V{ protrudes into the forbidden region x > 0.
Can the particle be observed there?

To be sure that we have measured the particle inside the barrier, and not outside,
we must measure its position at least with accuracy Az ~ x~!. Then according to
Heisenberg uncertainty, a momentum kick exceeding Ap > Aix ~ hr will be trans-

ferred onto the particle.
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How much energy do we transfer?

AE = E(p+ Ap) — E(p) (15-57)
(p+4Ap?*  p?
= - 2 15-
2m 2m (15-58)
2
_2op | (o) (15-59)
m 2m
p=nhk (15-60)

pAp can be positive or negative, (Ap)? is always positive. the transferred energy is
on average

(Ap)2 B h2 B h2/€2
2m  2m(Az)2 2m

According to Heisenberg uncertainty, the measurement that localizes the particle
inside the barrier transfers enough energy to allow the particle to be legitimately
there.

(AE) = =Vo-E (15-61)

Rule. A positive KE E — V] > 0 corresponds to a spatially oscillating wavefunction
e** with rate constant k (oscillation period A = 2T). A negative (“missing”) KE
E — Vi < 0 corresponds to a spatially decaying or growing wavefunction e*
decay rate constant s (decay length x71).

Kkx with

The “missing” KE is associated with the size of the region (k') that the particle
occupies in the classically forbidden space.
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The potential barrier: tunneling

) . Ul‘x} ;{“
At,rh ' gb-.m (e

- - _»/, | Tu-c
s >

Figure I: Tunneling through a potential barrier.

VE

Assume E < Vj (classically particle is reflected). Outside barrier solutions to the
SE are

u(z) = Ae*®  Be™** for v < —a, (16-1)
u(z) = Ce™ for x > a, (16-2)
(16-3)

where we have omitted the term De " that corresponds to an incident waveform
the right. Inside the barrier the SE is

d*u 2m

(@) = + =% - BJu(x) = ru(z) (16-4)

with k% = 28(V, — E). As before, & is the decay constant in the classically forbidden
region (k7! is the decay length) that is associated with the “missing” KE necessary

to surpass the barrier classically, % =V — E. Consequently inside the barrier
u(x) = Ee™ ™ + Fe™ for |z| < a (16-5)

As before, we need to match the solution u(z) and its derivative u/(z) at the bound-
aries.

o At x = —a:
Ae~*a - Betta — Fethe 4 [emre for u (16-6)
+ikAe™* — jkBe* = fkEe™® + kFe ™™ for v’ (16-7)
o Atz =u:
Ce't® = Fe™r 4 Fere for u (16-8)
ikAe™ = —xEe™ + kFe™ for ' (16-9)
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We are interested in the reflection amplitude r = % (or the reflection probability

Ir]? = ’%!2) and the transmission amplitude ¢ = £ (or transmission probability

t]> = ‘%‘2) from the barrier. Remember that |A|?> determines the incident current,

and is a free parameter. It is useful to divide the equation for ' by the equation for

u (or alternatively, match ﬁ% = 4L (Inwu(z)) directly. Then we write

o Atz = —a:
—|—z'k:Ae*.ika — ikBe“ka _ —kFEe + kFe "¢ (16-10)
Ae—zka + Bezka Fera + Fe—ra
o Atz =a:
+ikCeke  _gEe " 4 gFete
k= - = 16-11
t Cezka Fe—ra + Fera ( )
(matching of £ (Inu(z)) = ﬁ% at boundaries).
Now we proceed to eliminate E, F' (Eq. 16-11):
itkEe " + ikFe™ = —kFEe " + kFe™ (16-12)
(k +ik)Ee " = (k — ik)Fe™ (16-13)
Kk — ik
E=——_Fe*e 16-14
K+ 1k © ( )
Substitute into Eq. 16-10:
— itk pedka 4 pe—ka
RHS = — =tk (16-15)
mFefimz + Fe—ra
i Gl ?k)e“”’”“ + H(H.—F ik)e—2ra (16.16)
(k —ik)e?re + (k + ik)e—2ra
_ —Ii2(62’w _ 6—2Ha) —|—.7:I€I€<€2Ra + 6—25(1) (16_17)
KJ(GQWI + 6—25&) _ Zl{?(GQ’W _ e—QRa)
_ k?sinh(2ma) + ikr cosh(2ka) (16.15)

k cosh(2ka) — ik sinh(2ka)
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Consequently, Eq. 16-10

[+ikAe** — ikBe™*] [k cosh(2ka) — ik sinh(2ka))

(16-19)

= [Ae** + Be™] [~k sinh(2ka) + ikk cosh(2ka)]
(16-20)

= Ae ™ (+ikk cosh(2ka) + k? sinh(2ka) + k*sinh(2ka) — ikk cosh(2ka))
(16-21)

= Be™(4-ikx cosh(2ka) + k*sinh(2ka) — k% sinh(2ka) + ikk cosh(2ka))
(16-22)

Ae™™ [(K?* + k) sinh(2ka)| = Be'* [2ikk cosh(2ka) + (k* — K?) sinh(2ka)]
(16-23)

B
r=- (16-24)
. 2 %) sinh(2

_ -2ika (k* 4+ k*) sinh(2ka) (16-25)

2ikk cosh(2ka) + (k? — k?) sinh(2ka)

reflection amplitude from barrier.

To calculate the transmission amplitude %, we use the continuity of u at x = a:

Ce'k® = Ee™r 4 Fetra (16-26)
_ : . Zk Fere + Fera (16-27)

2
= - sz' CFe (16-28)
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We find F' from the continuity of u at x = —a:

RHS = Ee™ + Fe "™ (16-29)
— ik
= BT W pedna | peha (16-30)
K+ 1k
. Ka Ka Ka 16-31
K+ ik Kk (16-31)
_ poka 2k cosh(2ka) — 22k sinh(2ka) (16-32)
K+ ik
RHS = Ae~ @ 4 Bethe (16-33)
: , k* + k) sinh(2ka)
— A —ika A —ika ( 16-34
¢ A 2ikk cosh(2ka) + (k? — Kk?) sinh(2ka) ( )
, k% + k?)sinh(2ka)
= Ae™™ |1 ( 16-35
‘ { T ik cosh(2ka) + (k% — K?) sinh(2ka) ( )
_ Aok 2ikk cosh(2ka) + 2k> sinh.(2/ia) ' (16-36)
2ikk cosh(2ka) + (k% — K?) sinh(2ka)
Then,
C 2k F ”
Z =2 rarika 16-37
A Ark+ik ( )
2k Ae~2ika (2ikr cosh(2ka) + 2k? sinh(2ka) (16.38)
A 2k cosh(2ka) — 2ik sinh(2ka) 2ikk cosh(2ka) + (k? — k2) sinh(2ka)
. 1
-9 —2ika k 16-39
S Y cosh(2ka) + (k? — k2) sinh(2ka) ( )
C
= — 16-40
< (16-40)
. 2kk
—2ika
= 16-41
‘ 2kr cosh(2ka) — i(k? — Kk?) sinh(2ka) ( )
. Vis)
b o &
A Ly +B£'Eu " v CQ.'U’ Pt
B A L 00 7
[ L‘-&L
-6 v a
Figure II: Tunneling through the potential barrier.
Consequently, we have the results for the barrier
Massachusetts Institute of Technology XVI-4
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272
.hk — B

2m

.EQKZZ‘/O_E

2m
° _ B _ _—2ika —i(k%24k2) sinh(2ka)
r=z=¢ 2kk cosh(2ka)—i(k?—k?) sinh(2ka)
ot = ¢ _ e—Qika 2kk
A 2kk cosh(2ka)—i(k2—k2) sinh(2ka)

Since the energy and particle velocity are the same on both sides of the barrier, here
we have [r|? + [t]* = 1.

.[S.;I-;L]

Figure III: The sinh function.

Let us look at |¢|?

(2kk)?

(2]{/—{)2 -+ (kQ + /4,2)2 Sinh2(2/<,a) (16—42)

[t]* =

where we have used cosh?(z) = 1+sinh?(x). Since, sinh is a monotonically increasing
function, and k = QH—ZLm, the transmission is monotonically decreasing with
barrier height V4.

In the limit of small transmission, ka > 1 (barrier width large compared to decay
length 1), we have sinh(2ra) ~ (%62““)2 = te* and |t|? — (%)2 e~4% In this
limit the tunneling probability falls off exponentially with barrier thickness (in units
of decay length 1.

— This exponential dependence explains the extremely wide variation in, e.g.,
lifetimes of unstable nuclei (us to 10° years, corresponding to a variation by a factor
of 10%2).
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Lecture XVI

o

Figure IV: The transmission through the barrier as a function of decay wavevector k.

S —

Figure V: In the limit of large barrier height or width, the transmission falls off
exponentially because the wavefunction inside the barrier is dominated by the expo-

nentially decaying term.

Potential well: resonance phenomena

We first consider scattering (E > 0)

r< —a: Aettr 4 pTike (16-43)
—a<z<a: Eet® 4 Fe " (16-44)
T >a: Ce'ke (16-45)
] e :
I |
- — |
Figure VI: The potential well.
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21.2
.hk — F
2m
h2q2_
d 2m_‘/0+E

Instead of going through the calculation again, we note that these equations are
equivalent to those of the potential barrier (for E < V;) if we replace K — —igq.
Consequently, we obtain

: 2 k?)sin(2
r = i€_2Zka (q ) Sln( qa) : (16—46)
2kq cos(2qa) — i(q? + k?) sin(2qa)
4 2kq
t = e 2 16-47
2kq cos(2qa) — i(q? + k?) sin(2qa) ( )
For the potential well, in contrast to tunneling through the barrier, the reflection and
transmission oscillate as a function of parameter 2qa, i.e. as a function of number of
de Broglie wavelengths %’T inside the well of size a. In particular, for values

2¢qp,a =nmw  — n integer (16-48)
nm
= 16-49
=5 (16-49)
2 4
Ay = (16-50)
q n

the reflection goes to zero because of destructive interference between the waves re-
flected at —a and +a. This corresponds to the resonance condition for a Fabry-Perot
resonator in optics. the phenomenon persists in 3D, and for electrons scattering off no-
ble gas atoms is called a Ramsaner-Townsend resonance. A very similar phenomenon
has been observed in collision of ultracold atoms, where the effective depth of the
interatomic potential V; can be tuned with a magnetic field, there (and in nuclear
collisions) it is called a Feshbach resonance).

Bound states in attractive J-potential

What happens for negative energies —Vy < E < 0 in the potential well?

We expect discrete bound states, at least if potential is sufficiently deep. Particu-
larly simple mathematically is a limiting case where we shrink the size of the potential,
simultaneously making it deeper, such that the product of depth and width is con-
stant.

Let Vo — oo, a — 0 such that a -V = const = A > 0. We then obtain the
attractive delta potential V(z) = —Ad(z). We are interested in bound states: F < 0

o Define

h22
" —0-E=-E=|BE, k>0 (16-51)

2m
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Lecture XVI

VY

-V,

Figure VII: If the potential well is sufficiently deep or wide, it can support bound

states with discrete energies —Vy < E < 0.

Vi =-Adlx)

Figure VIII: Attactive delta potential.

Solutions for z < 0:

Ae"™ + B~ (16-52)
diverges for z — —o0
e Solutions for x > 0:
G 4 D (16-53)
e Continuity of wavefunction at x = 0:
A=D (16-54)
e Derivative obeys (Lecture XV)
!/ !/ 2m
u'(e) —u'(—e) = —?AU(O) (16-55)
2m
kD — KA = ——5 A (16-56)
h
2
ok = h—”;A (16-57)
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Ky = (16-58)
h
h2k2 h2m?2 m
E,=— = — 2\ 16-59
! om omh 2h? ( )

— Binding energy for attractive )-function. The § potential supports

AN K

iy

sCelors
I A,

5[\:_/&91_; £ l{:

P ofecdeng @

Figure IX: Comparison of bound states as the potential evolves from a very deep
to a very shallow potential. In the very deep potential, like in the infinite well, the
wave function oscillates sinusoidally inside the well, and decays exponentially in the
forbidden region. In the very shallow potential, the wavefunction is is mostly located
in the ”forbidden” region outside the well.

exactly one bound state of energy F = —ZLT’\;. For a finite-size well, this result

corresponds to the limiting case of a weak potential that supports only one
2 ~
bound state (Vy < %) with energy F = —’;T“;VOQ.
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X=-4 X=8

A xka) -Alx~q)

63_“4' C.eu De X

Figure X: Solutions in different regions.

Two attractive )-potentials

We could proceed as before, or simplify slightly by making use of the fact that the
potential is symmetric x — —xz, and therefore we expect solutions of definite parity.
The even solution in the middle region is 2B cosh(kz), and A = D, which eliminates
two parameters.

e Continuity of u:

2B cosh(ka) = Ae™"™ (16-60)
e Derivative:
2
—KkAe ™ — k2B sinh(ka) = ——T;L)\Ae’““ (16-61)
h
2
(h—?/\ — H) Ae "™ = 2kBsinh(ka) (16-62)
2m .
?)\ — Kk | 2B cosh(ka) = 2k B sinh(ka) (16-63)
2
=X — 1 = tanh(ka) (16-64)
hka

There is always exactly one solution of the eigenvalue equation (16-64) for even

parity. From the figure we see that for the bound state ka < 2722“’\, which is where
2ma) 1

the function

— 1 intersects zero. On the other hand, since tanh(z) < 1, we

h? ka
need 2’;?% —1<1,or k> {5\ Larger £ means larger magnitude of binding energy
E = —h;’ff. We have A < k < QE—ZL/\ If we compare this to the binding-energy in

single d-potential, k1 = 73X we see that the particle is more strongly bound in the
double-well potential.
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k,; T SN
bol.mn' b M J -— I Ra
s’_&" {\1 X-ﬂ

Figure XI: Graphic solution of the eigenvalue equation 16-64.

Reason. Given the discontinuity in slope due to the potential, it is possible to choose
a steeper wavefunction (larger k — larger binding energy) when the two J-functions
are close. Variation of binding energy with well separation a: As we decrease a, the

Figure XII: Comparison of the wavefunction for two different well spacings. If the wells
are close, for the same wavefunction discontinuity at each ¢ function the wavefunction
outside the two wells can decay faster (larger k), resulting in larger binding energy
|E| = h*k%/2m.

Figure XIII: Graphic comparison of the binding energies for large and small separation
2a between the binding sites.

binding energy increases from the value given by x = ’g—? (binding energy of a single
well attained at a — o0o0) towards the value k = 2;”—2’\, attained as a — 0. Thus
the binding energy quadruples. the possibility of the wavefunction in a double-well
system to change so as to decrease the kinetic (and possibly potential) energy is at

the origin of chemical bonds in molecules.
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For the single d-potential we have exactly one bound state (symmetric state), for
the double d-potential we always have one symmetric bound state, and we may have
(depending on the potential strength) also an antisymmetric bound state. For the
finite-size potential well we may have several (but always a finite number) of bound
states.

Bound states in potential well

s he ™ Bcose;ués...;;(ﬂ Ao

Ewlﬁ._a’—gfx

X -a X=0 X-a %‘ = ~f=Jt)

ot
%f = Vo-lEl = VIE

Figure I: Solutions in different regions for bound states in a potential well.

Here, instead of writing the solutions as exponentials, Be'® + Ce™"* we have
already written them in a form that reflects the symmetry of the potential. We

match L% at 2 = a:
u dx

e For even solutions: C' =0

—gsin(qga) _ —reT™ (17-1)
cos(qa) e—ha
Kk = qtan(qa) (17-2)
e For odd solutions: D =0
qeosqa) _ (17-3)
sin(ga)
Kk = —qcot(qga) (17-4)
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Even solutions

Let us introduce y = ga, A = 25V;a?

2 2
Ka = Z‘f E| (17-5)
2ma? 2ma?
=\ Vo (Vo |E)) (17-6)

= /A —¢2a? (17-7)
=VA-y? (17-8)

S - T;

Ll
2 ywall

.
1

LHS,)«?N}L

—

S b
i =

els +

Figure II: Graphic solution of the eigenvalue equation (17-2) for symmetric bound
states.

There is always at least one solution, more if A = QFL—T%CF is larger (potential deeper
and/or wider). For A > 1, the lowest energy solutions are approximately located at
y=gqa= (n + %) m,or Vo — |E,| = h;j’f = 3;222 (n + %)2, similar to infinite well.

The existence of at least one bound state is typical of 1D problems, but not of 3D
problems that behave more like odd solutions.

Odd solutions

N\ —

y__ cot(y) = tan (z + y) (17-9)
Y 2

The looks similar to the previous plot, but with shifted RHS. For large A, the solutions

2

are q,a = no. For small A\, a solution exists only if 4/ — (%)2 >0 or Q@LLQO“Q >
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Figure III: Graphic solution of the eigenvalue equation (17-4) for antisymmetric bound
states.

A"

o

: —
1 N w

Figure IV: Graphic construction of an odd-state solution, or of a solution in 3D, where
the wavefunction must vanish at the origin.

Condition for the existence of odd solutions. In 3D, we will require that a
(modified) wavefunction vanishes at the origin, therefore the solutions will look like
odd-parity solutions. (It is as if the wavefunction were continued at —r.)

Odd solutions do not always exist because the wavefunction needs to bend around
sufficiently to match a decaying exponential, this requires high KE.

S et mold
i “"“ ;‘0 l-lX

Figure V: If the well is not deep enough, the odd solution cannot bend down suffi-
ciently to match (with continuous slope) a decaying exponential at the edge of the
well.
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6

Three-Dimensional Problems

6.1 Introduction

In this chapter we examine how to solve the Schrodinger equation for spinless particles moving
in three-dimensional potentials. We carry out this study in two different coordinate systems:
the Cartesian system and the spherical system.

First, working within the context of Cartesian coordinates, we study the motion of a particle
in different potentials: the free particle, a particle in a (three-dimensional) rectangular potential,
and a particle in a harmonic oscillator potential. This study is going to be a simple generaliza-
tion of the one-dimensional problems presented in Chapter 4. Unlike the one-dimensional case,
three-dimensional problems often exhibit degeneracy, which occurs whenever the potential dis-
plays symmetry.

Second, using spherical coordinates, we describe the motion of a particle in spherically
symmetric potentials. After presenting a general treatment, we consider several applications
ranging from the free particle and the isotropic harmonic oscillator to the hydrogen atom. We
conclude the chapter by calculating the energy levels of a hydrogen atom when placed in a
constant magnetic field; this gives rise to the Zeeman effect.

6.2 3D Problems in Cartesian Coordinates

We examine here how to extend Schrodinger’s theory of one-dimensional problems (Chapter
4) to three dimensions.

6.2.1 General Treatment: Separation of Variables

The time-dependent Schrodinger equation for a spinless particle of mass m moving under the
influence of a three-dimensional potential is

o¥Y(x,y,z,1)
ot ’

A . -
—2—v2~P(x,y,z,r) +V(x,y,2,0)¥(x, y,2) = ik (6.1)
m

where V2 is the Laplacian, V2 = 92 /8x? + 8% /6y? + 8%/6z°. As seen in Chapter 4, the wave
function of a particle moving in a time-independent potential can be written as a product of
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spatial and time components:

Y(x,y,z,t) = wix,y,z)e  E/A, (6.2)
where w(x, y, z) is solution to the time-independent Schrédinger equation:
h? o .
—Evzl//(x, Y, Z) + V(x7 ¥, Z)l//(x’ Vs Z) = EW(x9y9 Z)y (63)

which is of the form I:Iy/ =Ey.

This partial differential equation is generally difficult to solve. But, for those cases where
the potential ¥ (x, y, z) separates into the sum of three independent, one-dimensional terms
(which should not be confused with a vector)

Vix,y,2) = V() + V5 (») + Vz(2), (6.4)

we can solve (6.3) by means of the technique of separation of variables. This technique consists
of separating the three-dimensional Schrédinger equation (6.3) into three independent one-
dimensional Schrodinger equations. Let us examine how to achieve this. Note that (6.3), in
conjunction with (6.4), can be written as

[I-Alx + fly + ﬁz] wx,y,2)=Ew(x,y,2), (6.5)
where Hy is given by
5 n? 82 _ -
x= oot Vi (x); (6.6)

the expressions for H), and H; are analogous.

As I7(x, ¥, z) separates into three independent terms, we can also write y(x, y,z) as a
product of three functions of a single variable each:

px,y,2) = X()Y(»)Z(2). (6.7)
Substituting (6.7) into (6.5) and dividing by X (x)Y (y) Z(z), we obtain
B 1d*X n* 1d%Y
['g}m * Vﬂx)} * [‘ﬁ?ﬁ AL
n? 1d°Z
——=—+V =E. 6.8
,: 2m Z dz? + Z(z)} 68

Since each expression in the square brackets depends on only one of the variables x, y, z, and
since the sum of these three expressions is equal to a constant, £, each separate expression
must then be equal to a constant such that the sum of these three constants is equal to E. For
instance, the x-dependent expression is given by
h2 dZ
—s——— + Va(x) | X(x) = ExX(x). (6.9)
I: 2m dx? :|

Similar equations hold for the y and z coordinates, with

The separation of variables technique consists in essence of reducing the three-dimensional
Schrodinger equation (6.3) into three separate one-dimensional equations (6.9).
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6.2.2 The Free Particle

In the simple case of a free particle, the Schrédinger equation (6.3) reduces to three equations
similar to (6.9) with Vx = 0, V', = 0 and V; = 0. The x-equation can be obtained from (6.9):

2
Y ;i gx) = —k2X(x), (6.11)

where k2 = 2mE; /2, and hence E, = #%k2/2m. As shown in Chapter 4, the normalized
solutions to (6.11) are plane waves

X(x) = J—;zneikxx. (6.12)

Thus, the solution to the three-dimensional Schrddinger equation (6.3) is given by
l//]_('(xa ¥, Z) — (2”)—3/2eikxxeikyyeikzz — (27[)_3/26”2.?, (613)

where k and 7 are the wave and position vectors of the particle, respectively. As for the total
energy E, it is equal to the sum of the eigenvalues of the three one-dimensional equations

(6.11):
R a
E=EtEy+E = (B+E+E)=—F. (6.14)

Note that, since the energy (6.14) depends only on the magnitude of k, all different orientations
of k (obtained by varying ky, k,, k;) subject to the condition

k| = VK + K+ k? = constant, (6.15)

generate different eigenfunctions (6.13) without a change in the energy. As the total number
of orientations of £ which preserve its magnitude is infinite, the energy of a free particle is
infinitely degenerate.

Note that the solutions to the time-dependent Schrodinger equation (6.1) are obtained by
substituting (6.13) into (6.2):

W7, 1) = w(Pe™ = Qr) "2 kT, (6.16)

where w = E/h; this represents a propagating wave with wave vector k. The orthonormality
condition of this wave function is expressed by

/ V(0¥ dr = / vi A wpF) dr = (2r) 7 / dEFY Py = 5~ R, (6.17)
which can be written in Dirac’s notation as

(P (O)¥e(0)) = (wplwg) = 5k — ). (6.18)

The free particle can be represented, as seen in Chapter 3, by a wave packet (a superposition of
wave functions corresponding to the various wave vectors):

Y, 1) = 2r) 32 / Ak, )Wk, 1) d°k = 2x)™/? / Ak, e ®FF=D B (6.19)
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where A(k, ¢) is the Fourier transform of P, 1)
Ak, 1) = (2m) 32 / W7, 1)e~i*F—on) 3. (6.20)

As seen in Chapters 1 and 4, the position of the particle can be represented classically by the
center of the wave packet.

6.2.3 The Box Potential

We are going to begin with the rectangular box potential, which has no symmetry, and then
consider the cubic potential, which displays a great deal of symmetry, since the xyz axes are
equivalent.

6.2.3.1 The Rectangular Box Potential

Consider first the case of a spinless particle of mass m confined in a rectangular box of sides
Lx > Ly, LZ:

0 O0<x<Ly,0<y<L,, 0<z<lL
A= [ oo elsewhere i g g ’ (6.21)
which can be written as ¥ (x, y, z) = Vi (x) + ¥, (») + V;(z), with
0 O0<x<lL
Velx) = [ 00 elsewhere'x C22)

the potentials ¥, (y) and ¥, (z) have similar forms.
The wave function y (x, y, z) must vanish at the walls of the box. We have seen in Chapter
4 that the solutions for this potential are of the form

2 i
X(x) = \/L:sin (”"”_\-) , ne=1,23,..., (6.23)

Ly

-
and the corresponding energy eigenvalues are

2.2
_hﬂ' )

_rr o2 6.24
* T amIZ (6.24)

Ey,

From these expressions we can write the normalized three-dimensional eigenfunctions and their
corresponding energies:

f 8 . f T . (nym . [ nzxw
Ynenyn, (x,y,2) = V T 7.7 sin T V) sin %) (6.25)
xboylz x y &

2 [ n? n? n>
Ennyn, = —— (é + L—y =z ) (6.26)
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Table 6.1 Energy levels and their degeneracies for the cubic potential £ = w2h?/(2mL?).

Enxnynz/El (nx, ny, nz) En
3 (111) 1
6 (211), (121), (112) 3
9 (221), (212), (122) 3
11 (311), (131),(113) 3
12 (222) 1
14 (321), (312), (231), (213), (132), (123) 6

6.2.3.2 The Cubic Potential

For the simpler case of a cubic box of side L, the energy expression can be inferred from (6.26)
by substituting Ly =L, = L, = L:

W2
Enxnynz = —2mL2

(n} +n5 +n), Ny, my, nz=1,2,3,.... (6.27)

The ground state corresponds to ny = ny, = n; = 1; its energy is given by

= 3E|, (6.28)

where, as shown in Chapter 4, E; = 7 2h%/(2mL?) is the zero-point energy of a particle in a
one-dimensional box. Thus, the zero-point energy for a particle in a three-dimensional box is
three times that in a one-dimensional box. The factor 3 can be viewed as originating from the
fact that we are confining the particle symmetrically in all three dimensions.

The first excited state has three possible sets of quantum numbers (ny, ny, n;) = (2,1, 1),
(1,2, 1), (1, 1, 2) corresponding to three different states w211 (x, y, 2), v121(x, ¥, 2), w112(x, ¥, 2),

where
/8 2
wai(x,y,z) = 3 sin (Tnx) sin (%y) sin (%z) ; (6.29)

the expressions for w121 (x, ¥, z) and w112(x, y, z) can be inferred from w21 (x, y, z). Notice
that all three states have the same energy:
7 2h?

Eaii = Eig) = Eijs = 60— — 6E). 6.30
211 = B = E112 = 65— 1 (6.30)

The first excited state is thus threefold degenerate.

Degeneracy occurs only when there is a symmetry in the problem. For the present case of a
particle in a cubic box, there is a great deal of symmetry, since all three dimensions are equiv-
alent. Note that for the rectangular box, there is no degeneracy since the three dimensions are
not equivalent. Moreover, degeneracy did not exist when we treated one-dimensional problems
in Chapter 4, for they give rise to only one quantum number.

The second excited state also has three different states, hence it is threefold degenerate; its
energy is equal to 9E1: E2p1 = E212 = E122 = 9E).

The energy spectrum is shown in Table 6.1, where every nth level is characterized by its
energy, its quantum numbers, and its degeneracy gy.
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6.2.4 The Harmonic Oscillator

We are going to begin with the anisotropic oscillator, which displays no symmetry, then con-
sider the isotropic oscillator where the xyz axes are all equivalent.

6.2.4.1 The Anisotropic Oscillator

Consider a particle of mass m moving in a three-dimensional anisotropic oscillator potential

R BTV VY Ry
V9,8 = EmwﬁX2 + Ema))z,Yz + zmwﬁzz. (6.31)

Its Schrodinger equation separates into three equations similar to (6.9):

n? d2Xx(x) 1
-0 dx(2 ) 2 Emwxsz(x) = E.X(x), (6.32)
with similar equations for Y (y) and Z(z). The eigenenergies corresponding to the potential

(6.31) can be expressed as

1 1 1
Enxnynz =E, + Eny + E,, = (nx + 5) ho, + (ny + E) howy + (nz + 5) ho,,

(6.33)

with ny, ny,n; =0,1,2,3,. ... The corresponding stationary states are

Wngnyny (%, Y5 2) = X, () Yn, () Zn. (2), (6.34)

where X, (x), Yn, (), and Zy,(z) are one-dimensional harmonic oscillator wave functions.
These states are not degenerate, because the potential (6.31) has no symmetry (it is anisotropic).

6.2.4.2 The Isotropic Harmonic Oscillator

Consider now an isotropic harmonic oscillator potential. Its energy eigenvalues can be inferred
from (6.33) by substituting wx = vy = w; = O,

(6.35)

3
Enxnynz == nx+ny+nz +§ ha).

Since the energy depends on the sum of nx, ny, 7z, any set of quantum numbers having the
same sum will represent states of equal energy.

The ground state, whose energy is Eooo = 3Aw/2, is not degenerate. The first excited state
is threefold degenerate, since there are three different states, w100, ¥o10, Woo1, that correspond
to the same energy 5hw/2. The second excited state is sixfold degenerate; its energy is 7Thw/2.

In general, we can show that the degeneracy g, of the nth excited state, which is equal to
the number of ways the nonnegative integers #y, ny, n; may be chosen to total to n, is given by

g = 501+ D +2), (636)

where n = ny + n, + nz; Table. 6.2 displays the first few energy levels along with their
degeneracies.
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Table 6.2 Energy levels and their degeneracies for an isotropic harmonic oscillator.

n 2FE,/(hw) (nxnynz) gn

0 3 (000) 1

1 5 (100), (010), (001) 3

2 7 (200), (020), (002) 6
(110), (101), (011)

3 9 (300), (030), (003) 10

(210), (201), (021)
(120), (102), (012)
(111)

Example 6.1 (Degeneracy of a harmonic oscillator)
Show how to obtain the degeneracy relation (6.36) for a harmonic oscillator.

Solution
For a fixed value of », the degeneracy g, is given by the number of ways of choosing n,, n,
and n; so that n = ny +ny + n;.

For a fixed value of ny, the number of ways of choosing »,, and n; so that n, +n, = n —ny
is given by (n — n, + 1); this can be shown as follows. For a given value of »,., the various
permissible values of (n, n;) are given by (n,, n:) = (0, n—ny), (1, n—nx—1), 2, n—nx=2),
B,n—ny=3),..,(n—n,—=3,3),(n—n,—2,2),(n—ny — 1, 1) and (n — ny, 0). In all,
there are (n — ny + 1) sets of (n,, n;) so that n, + n; = n — n,. Now, since the values of n,
can vary from 0 to », the degeneracy is then given by

n

17 = Z(n—nx-’f—l):(n-}—l) Z 11— an =(n+1)2—%n(n+l):—;—(n+l)(n+2).

ny=0 He=0 =0

(6.37)

A more primitive way of calculating this series is to use Gauss’s method: simply write the series
ZZX —o(n — nyx + 1) in the following two equivalent forms:

G=m+D+n+n—-D+m—2)+ - +4+3+241, (6.38)
g =1+4+24344+ - +m=D+m—=1)+n+n+1. (6.39)

Since both of these two series contain (» + 1) terms each, a term by term addition of these
relations yields

260 = M+2)+H+D)++2)+ - +m+2)+m+2)+(n+2)
(n+ Dn+2), (6.40)

hence g, = %(n + D + 2).




19. Calculate the possible energy values of a particle in the potential given by V(x) = =

2
if x=<0,and V(x) = %x‘-’ifx = 0.
20. A system described by the Hamiltonian

hZ
H= ~om i+ % (02x%+ wFy? + wiz?) (20a)

is called an “anisotropic harmonic oscillator™.
Determine the possible energies of this system, and, for the isotropic case (01 = wy =
wy = w), calculate the degeneracy of the level E,.

~ - o



19. Since the particle cannot penetrate into the range x < 0, the eigenfunctions of the
corresponding Schrédinger equation have to vanish for x = 9. On ihe other hand, in the
range x > 0, these eigenfunctions are the same as those of the harmonic oscillator. Hence

the odd wavefunctions of the oscillator, with n = 2k +1, which vanish at x = 0, are the
solutions of this problem. Therefore

Ex=hoRk+3), k=012, ...

20. Since V{(x, y, 2) = V1(x)+V2(y)+ ¥ 3(2), this problem reduces to the problem of three
Independent harmonic oscillators of frequencies w1, ws, 3, along the axes x, y, z respectively
fsee problem !). Therefore

Epynony = fioi(n+ 5 )+ hoo(ne + 5 ) + Hos(ns+ 1), (20.1

m3a)1a)2a)3 1/4 /D —(m+ns+ny) 1/3
Prannd%> ) z)=( 3 ) ( ny!ng!n;! ) x

5 Hy (81) Hoy(E2) Ho(E5) eXp [ - ;- @ +Ey sg)] , (202)

1/2 1/2 1/2
51=(”’;°1) o sz=($) » 53=(’”;:’3) ,

and ny, ny, n3 =0, 1,2, ... .

where

If the ratios of the eigenfrequencies ars irrational. the energy levels are non-degenerate,
otherwise they may be degenerate. The ground state Egqq is always non-degenerate.
For the isotropic harmonic oscillator

E,=fw(n+%), where n=n+ny+ns. (20.3)

In this case all the energy levels with the exception of E, are degenerate. To calculate the
degeneracy of the level of energy E,, consider for the moment a particular vaiue of the
quantum number 7. n; can then have acy of the values 0,1, ..., n--ny, and the sum
n = ny+ny+nsfor given nand n; can be obiainedinn — r;+ 1 ways. Sincen; =0,1,2, ..., n,
the degeneracy of E, will be

3 (—m+1) = J(nt1)(n+2). (20.4)

ny=0
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