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THE ADDITION
OF ANGULAR
MOMENTA

THE ADDITION OF TWO SPINS

Suppose we have two electrons, whose spins are described by the operators S,
and S,. Each of these sets of operators satisfies the standard angular momentum
commutation relations

[S1x Sly] = ifiS,,
and so on,
[S2w Say] = iAS,, (15-1)

and so on, but the two sets of operators commute with each other, since the de-
grees of freedom associated with different particles are independent, that is,

[S1, 821 =0 (15-2)
Let us now define the total spin S by

S$=6,+8, (15-3)
The commutation relations obeyed by the components of S are

[S,, Sy] = [S1x + San Sly + SZy]
= [S1x S1yl + [S2x S2y) (15-4)
ih(s1z + SZz) = lﬁsz

I
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and so on. We are therefore justified in calling S the total spin. We may now
determine the eigenvalues and eigenfunctions of $% and S..
The two-spin system actually has four states. If we denote the spinor of the first
electron by x¥, so that
Sk = 3G + 1) AP
e (15-5)
3

S1x¥ = Hhhx?

and similarly for the spinor x'? of the second electron, then the four states are

XOx2, xXOx2, xOx2, xOx? (15-6)

The eigenvalues of S, for the four states are

SxPx? = (51 + Sox¥x?
= (S X2 + xS, x?)

that is,
SxPX? = ixPx?
SaxPx® =S xPx® =0 (15-7)
SxPx® = —hxyPy?

There are two states with m-value 0. One might expect that one linear combination
of them will form an S = 1 state, to form a triplet with the m = 1 and m = —1
states, and the orthogonal combination will form a singlet S = 0 state. To check
this expectation, let us construct the lowering operator

S.=5,_+85, (15-8)

and apply this to the m = 1 state. This should give us the m = 0 state that belongs
to the S = 1 triplet, aside from a coefficient in front. Indeed, using the fact that

SOV = Ay? (15-9)

which can be established by noting that

o [ R ) Y I

i we get

S xPx? = S1xD) xP + xS, x¥?
| = ixOx? + hxPx? (15-11)
;i W@ 4 LM, @
| = V24 X+ X- X=X+
! V2

|
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The linear combination has been normalized, and the compensating factor in front,
\V/2#, agrees with what one would expect from (11-36) and (11-48) with I = m =
1. If we now apply S_ to this linear combination, and note that

SOy =0 (15-12)
we get
; YPx@ + X(I)X(Z) h (D@ 1 D@y
, \/E \/— X-X= X-"X=
- \/_ﬁXm @ 1512

as we should, for an angular momentum state 5 = 1. The remaining state, con-
structed to be orthogonal to (15-11) and properly normalized, is

% (Xg)X(—Z) _ X(l) (2)) (15_14)

and because it has no partners, we conjecture that it is an S = 0 state. In order to
check this, we compute S? for the two states

X, = — (X(l) (2) + X(l) (2)) (15-15)

g

We have

§2=(S, +5,°=8>+83+125,-8, R
=82+ 83+ 25,.S,, + S;.5,_ + 5,5,
First of all,
S%Xi \}_ (X(Z)SZX(JP + (2)82 (1))
(15-17)
- %ﬁzX:
and similarly
SiX. = 32X, (15-18)
Next, we calculate
251,5,. X+ = 2GR)(—3h) X. = —3A°X. (15-19)
Finally
(S1452- + 5,5, X = —= (51+X(USZ X(Z) + 51 X(I)SZ X(Z)

\[

= 51+X9)52—X(f) = Sl~X(—1)52+X(3))



256 CHAPTER 15 THE ADDITION OF ANGULAR MOMENTA

which, with the help of (15-9) and (15-12) yields
(51+S,- + 5,-5,.) X. = =#°X., (15-20)

Thus

2
X, =#E +3-3= DX, = ( >ﬁ2X+
£ (4 4 2 ) (15_21)

= KS(S + 1) X.

with S = 1 and 0 corresponding to the * states.

What we have shown is that the totality of the four states of two spin 1/2
particles may be recombined into a triplet and into a singlet total spin state. It is
important to note that the two descriptions are entirely equivalent. In one case we
have as our complete set of commuting observables §3, S5, Sy, and S,.. In the
other case we have as our complete set of commuting observables 8?, S, 83, S3.
By the expansion theorem, any function can be expanded in terms of a complete
set of eigenstates. What we have demonstrated here is the expansion of the eigenstates
of the second set of observables in terms of the complete set of states of the first set of
observables. This is quite analogous to the expression of the eigenstates of the hy-
drogen atom in terms of the eigenstates of the momentum operator, in which the
coefficients (the analogs of the 1/V/2 s here) are the momentum-space wave func-
tions. It is a simple exercise to invert the process and to find the products of the
xPx®@ in terms of triplet and singlet combinations.

In physical problems it frequently happens that to first approximation two sets
of completely commuting observables are equally useful in the construction of
eigenstates. In next approximation, when additional terms in the Hamiltonian are
taken into account, only one of these sets remains useful. A simple example occurs
in low energy nuclear physics.
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Angular momentum
The eigenequation associated with angular momentum reads
L2Y (0, ¢) = 2mr?EL(r)Y (6, ¢) = const - Y (6, ¢) (20-1)

where 2mr?E; is the eigenvalue, and

. 2 1 2
L2 =—p (a— +eot92 4 0 ) (20-2)

00° 90 " sinf 06?
Similar to the HO problem, we can proceed in two ways. We can either:
1. solve the differential equation using some Taylor expansion.
2. we can take a more abstract operator approach.

Here we will do the latter. (For the direct approach see Gasiorowicz, supplement 7-B,
or F&T.) We analyze the commutation relations for the angular momentum operator

A

L=fxp (20-3)

Note. that since waves in orthogonal directions are independent, we have no Heisen-
berg uncertainty restriction on, say z and p,, and consequently the commutator is
zero, [x,p,] = 0.

Let us calculate the commutator between different components of L: omit operator
symbol

(L, Ly) = [yp> — 2py, 2ps — -] (20-4)
= y[ 29 Z]pﬂc + x[z’py]py (20'5)
n
= GYpx ihxp, (20-6)
= ih(zpy — ypo) (20-7)
— ihL, (20-8)
[La, Ly] = ihL, (20-9)
[Ly, L:] = ihL, (20-10)
(L, L] = ihLy (20-11)

The fact that the different components of angular momentum do not commute means
that it is not possible to find simultaneous eigenstates of, say, L, and L., unless
L, = 0 for that state (see previous lecture).

Massachusetts Institute of Technology XX-1
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What about L2?

(Lo, L%) = [L., 12] + L., L] (20-12)
— Ly[L., Ly + [L., L)Ly + Ly[L., L] + [L., L,] L, (20-13)
— ihLy Ly + ihLyLy — ihL,L, — ihL,L, (20-14)
=0 (20-15)

This implies that one can find simultaneous eigenstates of L? and one component
of L? and one component of L, e.g., L., but not of all components:

Proof. (Direct proof by contradiction) For a simultaneous eigenstate |n) of L, and
L, with
v

Lyn) = li|n), (20-16)
Ly,n) = ls|n). (20-17)
we have
(L, Ly]|n) = 0= L,|n) (20-18)
and
1
laIn) = Ly|n) = E[LZ’ Ln)=0 — 1,=0 (20-19)

and similarly {; = 0. Only for L = 0 can we have simultaneous eigenstates of L, L,,
L,. O

In general, we can only have simultaneous eigenstates of L? and L, (or L, or L,
L, by convention). Let us denote such an eigenstate by |l,m) with

L.|l,m) = mhl|l,m) (20-20)
L2, m) = h*1(1 4 1)|I,m) (20-21)

The reason for the strange definition of the quantum number [ (or L? eigenvalue
h*1(1 4 1)) will become apparent later. m, [ are dimensionless numbers, since L =
r X p has units of i. We assume that the simultaneous eigenstates of L? and L, are
normalized,

orthonormality for
(', m/|l,m) = owbpm | — angular momentum (20-22)
eigenstates

Massachusetts Institute of Technology XX-2
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Raising and lowering operators for angular momentum

It is useful to define the following non-Hermitian operators

L,=L,+iL, (20-23)

L =1L_ (20-24)

L' =1L, (20-25)

L, and L_ are Hermitian conjugate of each other (reminiscent of a = xﬁo + z'p%,

al = f—o — z'p%). To understand similar significance of these operators, let us analyze

their commutation relations:

L2, L. =0 (20-26)

since [L? L,] =0, [L?, L,] = 0.

(L4, L] = [Ly +iLy, Ly — iLy] (20-27)
= —i[Ly, L) +i[L,, L,] (20-28)
= —2i[L,, L,] (20-29)
= —2iihL, (20-30)
= 2hL, (20-31)
[Ly,L_]=2hL, (20-32)
[Li,L.] =[L,+iL,, L.] (20-33)
= [Lq, L.) £ i[L,, L.] (20-34)
= —ihL, +i(ihL,) (20-35)
= FhL, —ihL, (20-36)
= Fh(L, + L,) (20-37)
= Fhl. (20-38)
[L+,L.] = FhLs (20-39)

We also note that
LyL_ = (Ly+iL,) (L, —iL,) (20-40)
=L+ L} —iL,L,+ L,L, (20-41)
=L*—L?—i[L,, L, (20-42)
=L>—- L2 +hL, (20-43)

and similarly L_L, = L? —L? — hL,.

Massachusetts Institute of Technology XX-3
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L.L. = L2-L%+hL.
L L, = L2-L?—nL,

As for the HO, we now proceed to analyze the range of allowed values for [, m: Since
L? = L2+ L} + L? and L,, L,, L. are Hermitian operators, we have

similarly for y, z, and consequently (I, m|L?|l,m) > 0 or
0 < (I, m|L2|l,m) = R*I(1 + 1){I,m|l,m) = R*I(l + 1). (20-45)

Consequently, we can choose | > 0. (If I < —1, we define I" := —(l + 1), then
I(I+1)==U(I"+1) and I’ > 0.) To understand the operators L., let us define a new
state

) = Ly|l,m), (20-46)

and act on it with L.
L?|¢ps) = L?Li|l, m) ( )
= L.12|I,m) (20-48)
= R2(L+ 1)L |l,m) (20-49)
= B2+ 1) |¢p), ( )

S0 |14+) is an eigenstate of L? with the same quantum number [. Also we have

L.|¢s) = L.Ly|l,m) (20-51)
— (LyL. + hLL)|l, m) (20-52)
= (mh + h)L|l,m) (20-53)
= (m £ D)iL.|l,m) (20-54)
= (m+1)hlyy). (20-55)

This means that L |l,m) is also an eignenstate of L,, but with an eigenvalue (m=+1)h
that differs from the original one by one. Since m is the quantum number associated
with the z component of angular momentum, we call m the azimuthal (or mag-
netic) quantum number, while [ is the quantum number associated with
total angular momentum. L, (L_) raises (lowers) the magnetic quantum number
by one, while preserving the total angular momentum /.

Let us calculate the length of

1,m £ 1) := Ly|l, m), (20-56)

Massachusetts Institute of Technology XX-4
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the unnormalized state vector.

(I,m=£1|l,m=+1) = (I, m|L+Lyl,m) (20-57)
= (I, m|L* — L F hL.|l,m) (20-58)
=R+ 1) — 2*m? F B*m?) (I, m|l, m) (20-59)
=n*(I(L+1) —m(m £ 1)) (20-60)
=n*(lFm)l£m+1) (20-61)
Since the length squared of any vector must be non-negative, it follows that
[(I+1)—m(m+£1)>0. (20-62)
Consequently,
1
m(mil):mQj:m—i-A—l—Z (20-63)
1\ 1
= e 20-64
(m 2> 1 (20-64)
<P+1l= z+l 2—1 (20-65)
- B 2 4
o 1 1 1
Lo <|+=l=1+= 20-
‘m 2‘ ‘—1—2’ l—l—2 (20-66)
since [ > 0,
m <1, form >0 (20-67)
and also
—m <1, for m <0. (20-68)

Therefore, m is bounded both from above and from below:

EETTINE (2060)

Since |1,) = Ly |l,m) is also an eigenstate of L? and L., but with new eigenvalue
m’ = m+1, the bound on m is only consistent with this fact if L, |l, m) = 0 for some
m. Consequently, with

L.|l,m) = |l,m+1) (20-70)
0= (,m+1|l,m+1) (20-71)
=n*(l—m)(l+m+1). (20-72)

Massachusetts Institute of Technology XX-5
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o~

(20-73)

mmax

Similarly, for
ketiyp_ = L_|l,m) we have

= 1) 20

Thus, we have a ladder of eigenvalues spaced by one, and connected by the raising
and lowering operators L, and L_

m=—l,—l+1,...,0—1,1, >0 (20-75)

This is only possible is [ is integer or half integer. It turns out that half-integer

e~ =

LF,J_{IL’

e = F‘1

— -—( 41
-_— .t - -e.
Figure I: Ladder of eigenvalues for fixed (.
values of [ have no simple spatial representation, and correspond to an internal form

of angular momentum called spin of the particle. Here we will restrict ourselves to
orbital angular momentum, which requires [ to be an integer.
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Lecture XXI

Summary: angular momentum derivation

L=rxp
L, = Yp= — ZPy, etc.
[z,py] =0, ete.

Angular momentum commutation relations

Ly, Ly,] =ihL,
[Li, LJ] = lhEZ]kLk

Levi-Civita symbol:

{+1 for even permutation of xryz
€ijk =

—1 for odd permutation

In general, no simultaneous eigenstates of L,, L,, L.,

L= L3+ L+ L,
L%, L,) = [L% L, = [L? L. =0,

simultaneous eigenstates of L? and one component (L,).

(21-1)
(21-2)
(21-3)

(21-6)

Define, without loss of generality, simultaneous eigenstates |I,m) of L? and L,

such that
L.|l,;m) =mh|l,m) — m magnetic quantum number (21-9)
>
L2, m) = hQW F)Lm)  — ( [ > 0 quantum number of ) (21-10)
total average momentum
(I',m'|lm) = Owdmm, —  orthonormality (21-11)
Raising and lowering operators
Li=1L,+ilL, =L\ (21-12)
[L? Li] =0 (21-13)
Note. L.y preserves [.
Massachusetts Institute of Technology XXI-1
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Lyll,m) = |l,m £ 1), from Ly, L,] = FhL. (21-14)

Note. Ly increases (lowers) magnetic quantum number by 1.

(LmE1|l,m=+1) = (Lal,m|Lel,m) = BRI Fm)( £m+ 1) (21-15)

Im| <1 (21-16)

Since L, increases m by 1 we need L. |l, mpay) = 0 for some my,, or

(l, Mumax + 1|1, Mimax + 1) = A2(l = M) (L + Mumae + 1) = 0 (21-17)
(21-18)

L_|l, my;,) =0, for some mmpiq (21-19)

(L, Mumin — 1|1, Mmin — 1) = B2 + i) (| = Mumin + 1) = 0 (21-20)
(21-21)

since Mumax — Mmin = integer (integer number of application of L, onto |I, mpu)). We
need Mmax — Mmin = 20 = integer. (I integer of half-integer.)



¥
%#K: /=10
vy
_A@_dym&zéucﬁatm_ﬁmgy—_——‘
H = H o+ H '
. H << H,

H & =E7L°  har been solved
T4 EF

7

Non - a’ffereﬂa.te

Corre.&pond.L_Za cach £, . there is one

a
linear zna’ebendmf ¢’

7 &) fam an__orthonormal setl, i. e.,

H n = é:}' 77
:j / ) ':
¥
approvimale solution
Ly g0 _c_z/a/ﬁ I

hoep Lrack o/ he
olbcin _of “Ihe

c‘z/c;arcd'imaﬁan

in the end, will be
Sel to . be. | .

BUBBEABRYER (A MRELRE



% H:
“Hh: f/-1]
L

R A ¥ A
AN AN VAP WA
£y — first - o:aimeaﬁazz,_ta_tﬁc_&éé__

eaam:/alue
t

7

) — //z‘r.rt order carrectiazz_t‘o_éﬁc_aﬁ_ég%cm

(Hy t AH ) (L7 + AL+ A2 L%~
=L FAE 2N EL e (L AL+ A L)
e A Y A

given JStarting point
— il

)\: H, lé?: *Hfté_'a =£,.: Sé?z_/_é:; Sé;i
Az H E;z._f_!{zié:____5:655;4!*?1;;/’-525;0

4551&_@&&%@::&&:&4&%
<$”° /H,[ﬁi Dt < LOH IS -é;,‘cg /4°)

_.L.f'ozt f______
< H &0_/¢)+<¢"//—//¢) Ty <L

S ARD AR AL
£;<¢;_,/¢») "

= £, =< Y’IHIEL D

77

(Hy = £°) &' =~ (H~ £’
¢! = E gM} sgé
: man

BURBEXNPNER (T MEZHLik



aE:
WH:7/~[2
3R,

—Z_Lﬁ,,_é;,) =~ (H-E)L°

Tebina the nner prodwucl with ¢“a
< 4 7 > 4

== o ,.(o)]ﬁ(ﬂ) o o e = o / o
2. (£, =% /Gy “"7‘4'7’5‘4‘,,,7\" ~ <At H 'fn‘g‘r”ﬁ:’

PIEIT A

e
.5/ £ =0, then L=m , LHS=0, lhen

WANERT AV WS N
£

'J_Qd;r_ﬁar,z_ . . -

correction e oblained

carly.
7
If L#n
(£ -£°)C" = - <& IH L%
= L S T H T2
e
[} ’ (-]
A . e TH1E,> o
m+En z_;o__ £"a ”

The cdenominator ls safe . since lhere is 4o

deg
theory sl be
rsed.,
( we shall discuss Zhis

,me_[akéy)

BIRSEABNER (AT AREELE



R
#%:_//~/3
L 87

[emarks

> (H,- f»Lsé,J,,Jé,_fpé:.-mé

<P UH - EDIGEs = L L IL s +EF - <LH 1L

/! .
) %) /¢n3)

/"
o
= £° = <L IHIE D )
‘= (5&6_//{//‘2: \'#,”7#379;:" %"6)
o mEH E"" qfr;:
=2 o Y HIG S K
men  E£° L, "
= ) [< &1 H| & 2°
)’7?;? i ~ 0
“n “m
Jgamqnéf -

. a) (2)
(1 £, L are real ar it should be

) &,
(5) 2£ AT M{M&_,JMMMLM%

3 () (2)
Hhen. £, i <_.£{ / lor all K = A - -nf/mz.";'ye - ‘ -

BEUREXBNER (FHMEZRNS



35
“#: /(-4
3

(o). _ﬁd/_atbfridféc%éﬁzy_cfuaid_% all_the _Mafcu.’_ﬁle.mﬁaﬁ ﬁf V

__..-,_________am_ﬁL rg&fjAéz_fﬁL.zame_arie / —magni tude . then aear.év Jeve/;

) __,ﬁm_a___b_gi}cc_#ﬁf_an_téﬁ_iecaacf__arafec_ea%#f_@n_dﬁfﬂzc&mﬂ -

hH ”

(i) lLevel R Lthen the

Second orc/eg_term Zend's ZLo brine. the enerav of. nith slale downward.
-/ 7

" "

%aa_@,@nfanf__[eue/ 4" lies below lovel "n  then Zhe second

order rerm tends to bring rthe energy Mb_iﬂf_éfémacd____
~/ S

L

HEIRFEARWER RV MRELHE



EXE
w3 //~15
3

—— EX ampz_e

—— Anbarmonic Perturbation o

—_—— Fa
F . .
_H = Za t xR’ one - dimensional Aarmonic_oscillator

.8

V = ax’+ px*

. £q(0) — L/]f)l) ﬁa) R ‘){%(0)}
/4 ¢
A’, ¢_o = Ynri Wa

TTT

o)

P 2 :

-
-~

R- %"= /n Sb.o,,_

i £

s Johm (v R)

[t can be shown lhal

(R, + R.) ¥° = /nri_ &, /0 %

(Re#R-) g’ = Vnin-1) ¢, S+ (2nt1) %+ Anm)int2) 94:}

—_—h
(R, *+ )?_) (}0 \/n(nd)(n-Z) ¢ * Indn_ /._(., *0’7 +3)ynts 5/";"*%511){/:@2@:}' ) fé!;
(R 28> L°= [ntn-pin-2)tn=3) L°, + /ntn-) (¢n-2) &2 +Vntari) m;,«ég%

L]

+ An+intan+3)(n+4) 5&._,, LN _/‘{(.’fﬂﬁ)(”f‘/) *3”"7} 9.4:0

W, = JEF _V_Sé,_od_-r_ ) _ﬁ/ﬂ /54;) S

o ___Z' L‘,-_c.sz_ob_uam_ z‘/m.t ;,a,x ferm lee.;;_‘m_C;mta ouz‘; on .
- l B
~ l/,.m = b 0 Zmin? 4 (3/7+3)(nf/) *3n nl = dmiz. (2n?r 2n+1)

_can_be c’aﬂ‘év read o[f '/rom aé_qze /:e/a,fz_';!

Note . V., {5 _hon- {é’ro on[v L£ /é N-4, h-3 - A+r&
R77 V4

a) (2)
= the series_ for 54. o bu  containc only a_ few Lermr




o Hi:
W

FLE
__.ngera.tc Perturbation Tﬁeorly
T lpertuched slates are degenerate
"/
Tive ( or more) distinct states share the same
CHhEray .
_‘_//
lise Twofald degeneracy as example
W4 / 4 /
A
Generalize to /N~ fold )
—/ ~ /
e a?))f‘)‘ac/v’ )
12 1.2 == O ol i O hal” s
77, £ 72 b = 7%
aond
& !/) e g !/) e X s M
A ra rb P — S
An ¢ iats of lhese stales
F&aear_cgméma.ﬁm o
R

il o ale® A
an e_{fen.:fafﬁ 5/ M with the same

still

-]
eLGen Vﬁ,[af: £
-/

Ho :p_a: Eo :A_ﬂ
HY = £¢ Hz=H +AH’
£° = FP e AL 2 ALY e

L = e Ap’ r AT

H® @ + A H L + ¢ )+
=E YT r AL % + g0 p) # o
B b s A = E T

f—JfQ‘rJf order (n /\

BEIREARWER T MEELE



o
43K
wik: [/—=/7

< _S_b: I H’ ,¢l > * <¢érlﬁl %o) inner /producf with ',néo I
EWARW AN PR AR STE A -

L v cancels

< $TIH AL > v B THIL D> 2 L E

Define Iy = < AN W E (0, 7 =a,b)
= A Wog t Blpy = £ Q)
- Jake  inner /erd_g,Qﬁ_ with Séa_ .
= dwba"ﬁ%é:/af, (g,

Eliminale y:. J/rom. (A)  and (B)

) ,Jf} V. __/_;:’ y Py A A =
—/ | B

o/ rlfab”b ! 27 1]l =0
a

~Yag’ ' = YVeh 7

If K #o
= 4
//S")'Z-é"_(j/\/i * Wy )t (N, W, =~ W, W, ) =0
B = F L Wyt iy, 2 N, — i, )+ 4I0,F (c)
 With £, given . (A).(B) + oA+ B'=] “
= e, Be 2 LTote L s B, &

3 a

1/\/_’#& f.’ jc‘yen = oA , ,/3..

= (,L_E_fo(_féarfﬁ_sé:
7his  is fllzjfaﬁ_ciammtaﬁ_tﬂalu#igmeme—(_
!b erturbation

2
o [2]

-Zj[ AL =0 = (4) z'/);p/[e.r W, =0 =‘>£'=M/é

BUREARYER (F7)MAE LK



o
43K :
ws: /18

EJ_I — Nbb = < SL‘%O/ H// ‘Lbo )
F - - : -4 Vi VI
£l = W, = <L IHL LD
= ° 14 " ” :
R ¥ 2, /@ > are the jcm_d.._ J_iaiaf_rj;?/;t

Loom lhe slates right from the starl
4 1 7 S
condition W4 =9

L _ ZZ { E_ 1_ _E - %{ .ﬁ. ) f 55 E m_ f

L with  H {/_ ,96‘0 and _5%0 a.rc_cgcyamiéom_%f A

with distinet c‘_’f:?m values

_ slales to use in perturbalion theory

Proof LA, HI]=o0
<$°/ LA H] &> =o o
= < bIAH £ >~ <LTIH A LS

[~

»

Q

=<AJGO/H,¢{;°)—<¢;/H,))¢6°)

= (M=) <L LH LD = (p-v) Iy —

At Fp = Naé_—-.o -

, o A
> %
’ “. our
o L] - A
and A. h o

EUREXBYERR (AMMAEELE



L - ﬁ_ja back to B

P.ll-4 and Chapler 7

fxnm;_(ﬂ_hﬁtaci _%&_QL[A, /::f)f drogen. Atom {/ for

n=2 Leyel.

! '_";:f__;__f,_jé __,__—7_"? _:._,__,V__f,a,-;,e. £zo, m;_a;___. ]

R SR Ay T I
4 -

R~ LR N L R N SR {08)
- -—— — /77[.?:_ — 2.H __.md___é_l /._ _19 &t S

——— 2o Ly

S S . o .
. _/HZ jmze_tﬁﬂ ime_mPﬂtu_ééLfnefjf E{} T M ‘L__ R

o Mete [l H] =0 because [z;, HI=0 ana {4, jl=0

— ___ 77 vl =0 ﬁ_L&szo LA zylz% o —

- e | —‘é} _JLCanM_}ﬂofzon — — S =

- e e 77 VA i i
.2 FPertarbalion only #/mm____ﬁé oﬁ,_m¢4g o Wl ol

= 4 ot’/?ef_,ffgl;&fw _ } o




T (o) ¥, i
I A o % v L=
B . PSR, R

o Prasf _Lvd” Vi, ., = VDG, =-VE |

_“ ,__ e 21(27_A.L_a/2 funch_n_ / g_lﬂ[é Ly ngluc_ ,_ R

e I S S - e
—ee e Y is_an eigen za‘[uﬁ_y‘_;lj Jwté_ﬁgeam/uﬁ___/__ E—

= &, (0{ ___and Vﬁsé, zi_adég_;qaal_—‘_’%__z__‘éux Lhe_ Azcgf.‘*._ o

s = 24—

. o - S
Simelaril /Z_J ij27T~Z “ rii_.__ﬁ%g,hz_é,r Gl Folom = o = mm =

| S =",, J&‘afe.r_wu‘/z J%rent . _zml/_ﬂazf_zz:a: .

— - - . - Jd..—l—_ma’o _mzH=o e - - - - ——

S o o o } IRl -
R o X o X S

e @) X ___ D 9 S o e
o f=gmxp\ ©o x © X /¥ R

e S =(ay = 7 R e

e J/ﬁar[)/n_arﬁ aZreaaQL_ the e je‘n/fmctma Jéz%e -

o ______ s __',__ f‘_fﬁ/ Jzz_ﬁpmf)/__-a:n.ud&aiLﬂ [ o __.___-

i — — S —

S — éﬂ,_.-;_ J.IJLJ;wa.Z_L‘ﬁ 7n:*m_ o N

o Z.L._ua_C[maj ed

; o
There s MLLMj_éﬁfth ¢T,j‘,ﬂ 73 !

200 e ———= ——————

—ee B __Jgaeneme-fecéwégiLm_meMad ég_c_;‘_o_ég mpa/ -
e n = (20,00 . nmysi2.t0) T

By REABYBE (AR 4748



2

| /=21 |
e %_;.:}_J__J‘Z,j:__aéfj_gid {t = j/fomfarté)/ ;o/z.ndfmﬁwL B

e = [ e b S0 fom parity consideration.

s = "m0 a- " = N -

R
N LR A Y 3 & Ve [

T T A O N AT T A B T
B = [ [, ety £, dxl . R ——
S = . . ——— e e
= = Vo, S — o
T ;i _ -"'/— === ===_JNRU _r- /ﬁa_ -_. e I'/a' =
o = /_-_-_,:372:@:___( 27 a_-)”_c. oL reosh T W—- -V
. 4@@_&_. T ———— T
___ g Bedliae o e e o _
o (Ezr/ out the T R — .
- . ,_142- -jefa B - S
]Zc ejfavaltccéé’gmdlon l"o éc_.m/zeai 7 -
| '___ ( o —seEa){ } ,;")7/ N } .
N Jefa Cz,;. _ e Comabeme e S

_ _"_'f_'_'_"____'___(___';oga -jeEQ} (__CM]L wl/ E:/L - _' _ -

_The solutions are "_____ .

 E s sefa gk
SUR— y ~——2 2 we fave noraniyed |

e B me z)_;: el - e e ( _the wave Jé«ncta
v __£_4 a C/z“'_f'. 22— —)/2—— —

- - S
S ___.“-___._____Jmmarv - o

| o __Nave Function ( Zeroth Order) - Eac j_lct/f;i to Fu z:ré Order

- j_@)—_“' S == === —'—)ng""'—‘?——‘—* - S

Gt = = zoem - T 2AT 4 - . o

e e = ¢(aj . — ————e —— ____ :‘we_&'—_:[- —
o Iy ———— N & 1. - D ——

SR Y — T —
: - . . (o
- £ (%p‘:— y}(a)




Time-Dependent Perturbation Theory

scribed by Hamiltonians which can be split
me-dependent part 7 (t) that is small com:

(1022

We consider here only those phenomena that are de
into two parts, a time-independent part Hp and a ti

d to Ho:
pared 1o 1o H(t)=Ho+V(t),

where ﬁo, which describes the system when unperturbed, is assumed to have exact solutions
that are known. Such splitting of the Hamiltonian is encountered in the following typical prob-
lem. Consider a system which, when unperturbed, is described by a time-independent Hamilo-
nian Hy whose solutions—the eigenvalues E, and eigenstates, | y,)—are known,

Ho | yn) = En | ¥n), (10.23)

and whose most general state vectors are given by stationary states
| Ba(0)) = e | gy = 7B |y, (1024)

In the time interval 0 < ¢ < 1 we 'subject the system to an external time-dependent perturbation,
¥ (1), that is small compared to Ho:

Py O<r<t

=4, £<0, 151

(10.25)

During the time interval 0 < ¢ < 7, the Hamiltonian of the system is H=Hy+ 17(1‘), and the
corresponding Schrddinger equation is

AR A0)

= Ho+ V(1) | ¥ (). (10.26)

where I7(t) characterizes the interaction of the system with the external source of perturbation.

How does I7(t) affect the system? When the system interacts with I7(t), it either absorbs
or emits energy. This process inevitably causes the system to undergo transitions from one
unperturbed eigenstate to another. The main task of time-dependent perturbation theory consists
of answering this question: If the system is initially in an (unperturbed) eigenstate | ;) of Ho,
what is the probability that the system will be found at a later time in another unperturbed
eigenstate | v s)?

To prepare the ground for answering this question, we need to look for the solutions of the
Schrodinger equation (10.26). The standard method to solve (10.26) is to expand | ¥ (¢)) in
terms of an expansion coefficient ¢, (¢):

W@ =D calt)e™ " | ya), (10.27)

n

and then insert this into (10.26) to find ¢, (?) to various orders in the approximation. Instead of
following this procedure, and since we are dealing with time-dependent potentials, it is more
convenient to solve (10.26) in the interaction picture (10.19):

ihf%(’))’ = Vi) | ¥())s, (10.28)

where | W(1)); = giHO’/h | W()) and V;(z) = eH!/A ) (1)e~iHot/A  The time evolution
equation | ¥ (7)) = U(r, t;) | ¥ (#)) may be written in the interaction picture as

| (1)) = P 1 w(e)) = HR T, 4) | (1)) = e HRT(, ) HOH | (1)),
(10.29)
or as
LY (@) = U, ) | )1, (10.30)




where the time evolution operator is given in the interaction picture by

U1(t, 1) = &0 (1, 1y~ Hoti/h, (10.31)
Inserting (10.30) into (10.28) we end up with
dur, ) o~
ih%ﬁ = P10t 1) (10.32)

The solutions of this equation, with the initial condition U (i, ) = I , are given by the integral
equation
.ot
~ i ~ N
Ur(t, ) =1- E/ ViU, ;) dr'. (10.33)
4
Time-dependent perturbation theory provides approximate solutions to this integral equation.
This consists in assuming that V;(¢) is small then proceeding iteratively. The first-order ap-
proximation is obtained by inserting Us (¢, ;) = 1 in the integral sign of (10.33), leading to
01(1)(1‘, 1) =1—(i/h) f’f Vi(t") dr’. Substituting Uy (', ;) = ﬁ}l)(t’, t;) in the integral sign of
(10.33) we get the second-order approximation:

. q ! . .\ 2 ! . 1] N

09, t)=1- % / Pr(eyde' + (—-’ﬁ) / P1(n)dn / Pin)dn.  (1034)
{; L 4

The third-order approximation is obtained by substituting (7,(2) (1, t;) into (10.33), and so on. A

repetition of this iterative process yields

. : t N2 ot Ho,
Urt, ) =1 - %/ Vi(hdr' + (—-;;) / Vl(tl)dtl/ Vi()den + ---
t 15

4

N7 n . [
+ (—;—) / Vl(tl)dtl/ Vl(tz)dtz/ V1(t3)dt3-~/ Vit )dty + - - -.
i 1; Il 1
(10.35)

This series, known as the Dyson series, allows for the calculation of the state vector up to the
desired order in the perturbation.

We are now equipped to calculate the transition probability. It may be obtained by taking the
matrix elements of (10.35) between the eigenstates of Ho. Time-dependent perturbation theory,
where one assumes knowledge of the solutions of the unperturbed eigenvalue problem (10.23),
deals in essence with the calculation of the transition probabilities between the unperturbed
eigenstates | ,) of the system.

10.3.1 Transition Probability

The transition probability corresponding to a transition from an initial unperturbed state | ;)
to another unperturbed state | ) is obtained from (10.35):

- 2 A [ oo -
Py = |ty 10, 0) 1w = )(w v =5 | e 1 P 1y de

2

-\ 2 ! n
i . ~ Smy ~
+ (—g) ZL ey | P (n) | wn)dt% ey | V(n) | widdia + -+
(10.36)
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where we have used the fact that

r | V1) Ly = (wp | €800 (e P00 gy = Gy | V) | i) exp (it

(10.37)
where w; is the transition frequency between the initial and final levels i and f
Er—E 1 2 5
wi === = = (wy 1 Ao L) — (w1 B L ). (10:38)

The transition probability (10.36) can be written in terms of the expansion coefficients ¢, (t)
introduced in (10.27) as

| 2
Pr@) =[P +P0) + P+, (10.39)
where
0 14
i A P
o =wrlw=dp  Po=- /0 (wrl PUY ) yie®rtdr,.... (1040)

The first-order transition probability for | w;) —| w ) withi # f (and hence (y 7 | i) =
0) is obtained by terminating (10.36) at the first order in ¥;(¢):

2

(10.41)

-
1 ~ ’
Hﬂ0=L;A<wwWﬂimMW”M
|

In principle we can use (10.36) to calculate the transition probability to any order in ¥; ).
However, terms higher than the first order become rapidly intractable. For most problems of
atomic and nuclear physics, the first order (10.41) is usually sufficient. In what follows, we are
going to apply (10.41) to calculate the transition probability for two cases, which will have later
usefulness when we deal with the interaction of atoms with radiation: a constant perturbation
and a harmonic perturbation.

10.3.2 Transition Probability for a Constant Perturbation

In the case where ¥ does not depend on time, (10.41) leads to

1 . i B , 2| elosit — 17
Wm:?<wquﬁéwq/=ﬁwwqu’ ——|, (1042
1
which, using |e’® — 1|7 = 4sin?(6/2), reduces to
4 V)P it
W@:”W!J%”mzw’. (10.43)
h i 2

As a function of time, this transition probability is an oscillating sinusoidal function with a
period of 27 /w ;. As a function of @ 7i» however, the transition probability, as shown in Fig-
ure 10.1, has an interference pattern: it is appreciable only near @ +i =~ 0 and decays rapidly
as w; moves away from zero (here, for a fixed ¢, we have assumed that o £i 1S a continuous



[sin®(e7i1/2))/@%;

(U;;

6x _4r _2z 0 2z dr br
it

Figure 10.1 Plot of [sin? (wfit/2)]/wffi versus wy; for a fixed value of t; wyi = (Ef — E;)/2.

variable; that is, we have considered a continuum of final states; we will deal with this in more
details in a moment). This means that the transition probability of finding the system in a state
| wr) of energy E s is greatest only when E; =~ E s or when w;; =~ 0. The height and the width
of the main peak, centered around w,; = 0, are proportional to 12 and 1/1, respectively, so the
area under the curve is proportional to ¢; since most of the area is under the central peak, the
transition probability is proportional to /. The transition probability therefore grows linearly
with time. The central peak becomes narrower and higher as time increases; this is exactly the
property of a delta function. Thus, in the limit # — oo the transition probability takes the shape
of a delta function as we are going to see.
As t — oo we can use the asymptotic relation (Appendix A)

)
. sin“(yt)
tl_l)rgo "y =d(y) (10.44)
to write the following expression:
1 it
—— sin’ (wf: ) = 2nthd(horyy), (10.45)
(zosi) 2

because d(w i /2) = 2hd(hw ;). Now since hws; = E r — E;, hence d(hwy;) = 6(Ey — Ej),
we can reduce (10.43) in the limit of long times to

2t A 2
Pty === | wr 1 7 Lyl 8B/ - E. (10.46)

The transition rate, which is defined as a transition probability per unit time, is thus given by

Pir(t 2 o 2
Fif=—'ft—)=7 (wrl V1 V/i)’ S(Ef — E)). (10.47)

The delta term J(E ; — E;) guarantees the conservation of energy: in the limit 1 — oo, the
transition rate is nonvanishing only between states of equal energy. Hence a constant (time
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independent) perturbation neither removes energy from the system nor supplies energy to it. It
simply causes energy-conserving transitions.

Transition into a continuum of final states

Let us now calculate the total transition rate associated with a transition from an initial state
| wi) into a continuum’ of final states | v r). If p(Es) is the density of final statfzs—the number
of states per unit energy interval—the number of final states within the energy mtervgl Efand
Er+ dE is equal to p(Ef)dEy. The total transition rate ;s can then be obtained from

(10.47):

> 2 .
mfz/P_'ft(_’)p(E,)dE,=7”|<w| 1wl [ p(EaEs = ENAEy,  (1049)

ar

2T N 2
Wig=—|twr1 VI vn). p(E;). (10.49)

This relation is called the Fermi golden rule. It implies that, in the case of a constant perturba-
tion, if we wait long enough, the total transition rate becomes constant (time independent).

10.3.3 Transition Probability for a Harmonic Perturbation

Consider now a perturbation which depends harmonically on time (i.e., the time between the
moments of turning the perturbation on and off):

() = 6 4 pleior (10.50)

where 0 is a time-independent operator. Such a perturbation is encountered, for instance, when
charged particles (e.g., electrons) interact with an electromagnetic field. This perturbation pro-
vokes transitions of the system from a stationary state to another.

The transition probability corresponding to this perturbation can be obtained from (10.41):

2

t , L. p
(w161 i) / @I G 4y 15T |y / e gyl (10.51)
0 0

1
Pir(t) = Y

Neglecting the cross terms, for they are negligible compared with the other two (because they
induce no lasting transitions), we can rewrite this expression as

2

1 2| gilerita) _ 1 i 2 ei(w/’i—a’)t -1 ?
L e R R e
lf() hz (V/fll)l‘//l) CUf1+CU +h2 ('//flv |Wl> a)fi_w
4 (10.52)
which, using |¢/® — 1|2 = 4sin?(0/2), reduces to
4 2 sin((w; + w)t/2) 2 sin® (0 /i — w)t/2)
Pr(t) = — ' D ; ‘ ‘ "T . ‘
lf() hzl:('l/fh)l‘//l) (CUfi+CU)2 + (WflU lWl) (CO/[—CU)Z
(10.33)
As displayed in Figure 10.2, the transition probability peaks either at wys; = —w, where its

maximum value is P;s(f) = (t2/4h2)|(|//f | & | wi)l?, orat wsi = w, where its maximum

IE. Schwabl, Quantum Mechanics, 2nd ed., Springer—Verlag, Berlin, 1995, Section 16.3.3
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Figure 10.3 Stimulated emission and absorption of a photon of energy Aw.

Remark
For transitions into a continuum of final states, we can show, by analogy with the derivation of
(10.49), that (10.54) leads to the absorption and emission transition rates:

2 % 2
Wit ==\ tws 1 77 1w P(Ef)’Ef:E,_Mw, (10.57)
emi 2r > 2
o= ‘(V/fl V1 i) p(Ef)iEsz._hw- (10.58)
Since the perturbation (10.50) is Hermitian, (yr | 0 | w;) = (y/,-lﬁT | wr)*, we have
s 181 widl> =1wr |57 | wi)l?, hence
ngs pemi
if = i (10.59)

p(Ef)|E/=E,'+ha) p(Ef)[EJ‘:E,'—h{u

This relation is known as the condition of detailed balancing.

Example 10.1

A particle, which is initially (¢ = 0) in the ground state of an infinite, one-dimensional potential
box with walls at x = 0 and x = g, is subjected for 0 < ¢ < oo to a perturbation I7(t) =
x%e~"/*. Calculate to first order the probability of finding the particle in its first excited state
fort > 0.

Solution
For a particle in a box potential, with E,, = n?z2h?/(2ma?) and y, (x) = /2]asin(nzx/a),
the ground state corresponds to » = 1 and the first excited state to n = 2. We can use (10.41)

to obtain
00 ) . 2 1 2 00 1 ) 2
Pu=—3 /O (al P Ole = dr| = — |wall)| /0 e~ (/rieaigy
(10.60)
where

- a . 2 7 5, . (2mx\ . (¢mx 1642
(pal®%|y1) =/ 2y )y (x) dx = —/ x? sin (—ﬂ—) s1n(—) dx = ——,
0 a Jo a a 97
(10.61)



2

‘ /' o= (/T =i}t g, P | 1T 14 e7/" —2e7!/" cos(wn!) (10.62)
0 /7 —iwn ws, +1/72 ’ '
which, in the limit ¢ — o0, reduces to
0 _ 2 117! ordn2 117!
—(V/t—iwyn )t o 2 o
e di| =|w — =|-—+ = , 10.63
‘ A [ 2t 121| |:4m2a4 + 72 ( )

since wy| = (E2 — Ey)/h = 3z2h/(2ma®). A substitution of (10.61) and (10.63) into (10.60)

leads to 1
162\’ [9z%r2 1]

Py = — 4+ — : 10.64

12 (97[271) |:4m2a4 + 5 ( )
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