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W%k /O
483,

S Chapter /O

R ._ _Maa/_ . /Dartf'ccle.f ' . . o ' B | ._ ‘_._

 The mu(fz,ag_ﬁedc Tehsautin nger e?uaimn S
 H Ylx ek, ) FAST (A k)

- where - . B o . S

o H= zfr, ' zi,—r Sl i 4_’_’:"’) -
s & ,;:L-zﬁi‘;;—- T ER TN T W]
N Y A A

b (x, , 1, X, H— multiparticle  wave Sfunction.

[ fix, X, X, t) dx, dx, - dx,
——— /broabaéuitf rfccfc—/ ——in-the range (X, Xyt dAX )
— 4 '/ 74 aiela_z_ _Ja_lﬁcw jﬁxz— L rdXe)
—_— - ——Ggnd /th&c £G—L

for }/(x . . 9 a%tzcaa’eaﬁ / Lime &}chafmﬂji

B variable me t/)od may be wsed. -

- YT S
_— —ﬂmaj-.f __¢(x‘.,_’r‘_.,_“‘ /rﬂ_g t) = fo, zl’rd_,.; )_ ( __ﬁ_ — E—

Jubstitute zzzto t/ze_fzmc_ dggmdmf_afcémd; nger. e?ua.fm/z___ )

D :ﬁ‘“zm ;;T‘ e VxR )) atE xR

i . R R —

= S _/ o R
I . ‘A me ¢ ndc?pmdmf Je/:roe!t:tj&#—é? uation o
I ene _7)" e jmvduc—eyaatwn

I /?emarlé_f.. - S S o = —_—

- This clearly is a__generalizalion of one particle Jchrodinger
e;waﬁazu_/__ [ ___/__ B ____'_jei_
The . e?_
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Ok F
%% /0"2
W

X, == F ) -

ad

. d. 0 ; V.z

— — _‘;z‘._z'_ == e . = . — ——— —————

l.f]bl‘n can be included also. - -

 The 79.:;@1@2_ can Qx&m;d@g@_ﬁcd_fw_ {zza&:}pma’mlf e

Vix, x,, ~~X,) = Y(x) + 1 (x)*+* V(%)

e 7 o = 4 v

7h a_ﬁamc_aade/bmdeai Jehrod lfgﬁr_e-yuaim becomes

— aa_ # _e: S
[« }nﬂf Fyxg) t (o o PG ] i, k)

) = L ulxk. x, ~,.x)

B Ansaty . Ulx,, 2%, X, ) = U lx) U, (&)~ é{,‘,(/rﬂ)

I - Thic _ansal an.raf comes from lhe fact that the Loéajuﬁéz .
I /{mdm_j_ajg cu.AQL mﬁ{éc_ Jmﬁm_ff ind

o/ the _,bmmatm JL jéad_mj #chdm%zméﬂ_cﬁc__

This is c.r.remfzal(v L5 to carzy .repemf 5,/ variable to
the wltimale. o -~

4ZE¢ﬁaméZan_ci_¢:educgd_fL fnd uy (X)), LX), U LJWL;

The re.ruéﬁr a[c

zm, dx‘
‘ 2 I [ 1
T ¢ Z_ﬁ-”lz d“'i; '2(';(‘!‘) lil'z([/?:l‘ = LI-; fl
e 3
- — Zm dxz Vot ) uya,) = Lo u68,) :

SE f —a—f bt ‘-‘..-v —

The prablem s rea’uced— to solve N one -Aaa}v /.broé[em
( which we have learned how to solve.

Nt all H can be written as = Z He o but we

Jﬁezj_t;utLﬁjgacwmaig<H-é,v- H"‘ZH- R S 1)

.\uiﬁk@%ﬂ% (F) Bt 52 22 Ac 6%
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Tdentical [farticle
T If two particles are not identical ana ¥ (1. 2) represents
" a state ?’ a high ener Mm_@dJJQMMWMQL
_roles o ar

then WY(2,7) ., in which the two particles e
- reversed, would represent a  high energy pro on _agnad low
o _mc_rfy_ﬂ(:_cttomq_aa .mt;:cc_év_ aifferent ~ situalion.

 But if W1, 2) are the wave /mém'_ yJﬂm‘mmﬂ: N
o ~ par tcles , jéw- instance , tweo eléctrons — ~ . .

 The indistinguishability of particles reguires the states
o /-e/ar.e.amé_éa{w by _}é{:’/,{r_ and 54(2_,_/?) Cwith the o
roles of | and 2 reversed) must be #@ch,cd;v d'ﬂ.aklzﬁc_:fyuééq&

R i .

. o M1, 2) = H2, 1) . S

S [z, 0lt = 1da, 2)F i

s gz = e g 2) B - .

B - J_m_gz_:;q_éﬁﬂcﬁaelﬂféu&ﬁ& - ]

L .S&(Z: /1) = '¢'(/, 2) - .r/ymmefm'c under /<2

__ - ,Sl'( 2:7_; = _54( _/, 2) . ot anli - {, ymmelric uﬂ;’er _
o _ [ s*p

- Postulate . I

 for identical bosons (particles with integer Spin)
the  multiparticle wave Junction must be symmetric.

N . _under ﬂcéa:zjg_( 3/ édmtf.‘sg.l__.é_amml
-l il R

bl 1, 2,08 j o) = # (L2, 0 fe o)

S feg : .
4, j  are (dentical basons

For identical j{ ermions ( /baz;t{c_(eJ - with _/my inle _ml_.r/ziad_
 the mul tﬁ,mcffdc_waxej&nctmﬂ_ .mm_t_éf_qa&‘)_fzfymmdan
— and.ar_ex.cjzag_c_ 9( any pm’r%{ (dentical fermiorts.
Yor, 2, 5. g7 s Joas )= }é{_fz_'e;_."_},_"‘ &) L

i = vj : i }‘__M_Lmtl:ﬂﬂljff[m{:%r——————__
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 ldentical Farticles and Indistinguishabilily.
T We say that tfwe particles are identical if they have all
o ___tbg_,zg.é{a_tjatcmn_,p’;_opa&a :_mecﬁm,_.zamc,cﬁa_qe_gnd
Jame shin.
; S )

o In classical mechanics, e @Z&MA&C@ _éz:c_d;ﬂf:ya:uéfék

in the sense lhat we could n ﬁmﬂci&gpjmy o
ls whicA. ’
J . .

- ja.dau_z."_fic_ (frfy'eatoz)_r_ - -

In guantum mechanics . Lo (dentical particles are
in.d;.‘.tic.‘fju&égé le.

When the w%@y@m&i&é&@#ﬂp_&%_

o ﬁ0/_91;.&1./_'2);7aut.r vo J(denlical /bartz'ct'é‘-l‘-

. - \\E:\imm> /’.’/’3 Pt _

- Q‘\ -
L Detector c (a) clc"crtrl(_m
o /3 Detector
j - __ | /\‘\.\ ——

Detector t :
Dutector

— - "N - /O'

. F 4 » . Detector C/ e

(©)

e —— - YT 380 % Y



X E
wRh: /04
w3

= Caau‘der_ébL&m@gcgdmt_Iﬁb%L&Légmw_ﬁéﬁM no
I pdmtmé_%éﬁiic:_@fmﬁ'al wcdlaz -

e - - = At ]
= 5~ *Ulzx) Tt 30 + VL

_ H«w 2= Zu by S
_ (x)= f O oSkl
%E 7r o0 otherwise -

_ A2 44 2 2 - .
I LsE rvaa)] v [ s vl u x) = Fut 4

Ansaly L_l(/r I)_—'~“ Ulx,) ulx,)

Y
77

e o o S . 2 2 g
= um% d:; tvix)] wix) +ule )l zn e )
| = Eu(x)a( x,) -

.,J

4__4((,@'}__4- @/u J +V(Z)JU(Z)—-£"[ ;*V{fr) U(j{')

o fm c%‘ﬂﬁ_ﬁ(_x" - ]?mct'z'oﬂ_d/ FY

= A

=

— —[-—E—_ﬂ.’__— s Ja (x )=f )

. /U dat‘ o
- _ the problem we have
- Solved before.
- ) o 2p3 2 S
L Uptx) = JE sin T with &, , = 55
_ and B i
& 2
: [~ wx‘)}auw—{—wxa —
- ——— G [ n
- o £- £ 5 |
_— U—(—x“—)—a—‘/&— Ji7 —”z—)z‘."rt _— R AZ) E/L—Ez?_—": _—-—-,: ﬁé 5 —

U,,,,.(.x_f)__ Uy (Xp) = 2 ( XKoo X) U5 _tée_fgafg/mchm 9@’

— Lhe time — 114 eﬂa’&'é‘ Afcémdmycr— o
= ———————= ———Jv‘.f:t/:—czjmv —f [ffi —

il
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o fake _int / half int (2 4 of £

 Farticles with integs w _valusi ore called  HAbisni., Bhile
th o.[cﬁm't&_ﬁaz j;t'ﬁt_cyml_ J/am are /fcrmz‘am.

&. p, n are_fermions

X, K. / are bosons .
Lo
A ‘ . ——1 I
 FElectrons are fermions .Jimc:c_.tllﬂ%?ma_u_z_/i_,_&_uv
possible ectrons to form a ~Complete pair” (n Jome
materials.

L _____}/m ompatile cin éam:__{afgml_ . memi
 behaves as a boson.

_ Thu _cﬁaﬁc_ager__ﬁom fmmw
s /ngﬂy_ccéad i electrical properties 9@@% S
- éz_.aaznﬁig_&ﬁm_dcm&&éauj[umm:&u_mat:cm___
_—b_qzz%zmtc_m’_cafan ce.
o Under “certain conditions , when ele ther
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7 Hi:
%#h: (O0=7
LS
2 77 i, . inﬂ.fra
B m,,_(t_r,_,;_‘_{‘__)_ = 7 Jin 77 Jin "4 S
-~ r ” : - . . - : - - : T Cm‘r,(z/]niz'- - - - - - .
— with  eigenvalue £ = = S
 This wave /m;t;,on (s nol ymmcfrcc wunder X, X,
L . . . [ S
/ 2

“_HM#QJ_ML_Q@;&.&LM_ /[ and 2 .
 fer identical bosons S

75_Ja.tn_.r/§v the rc?ammmf 9{ ymmﬂim wnder | <2

L U tr x) 2 /um(&)aﬂf,g) N IVNE D)

R o S—— (At B o
- __.W‘,t.é_ £—~ Z‘/a".‘

id ttc&c
. _ Concider Zwo _zero .;;:a bosons interactin ng with a

bofmtmf V(/F f'f)

- The Lime - 1»7a’c’7¢=¢’/m’£at Jaémdf.yﬁg eguation has the

R {Qfm S
- Ty . BB pCiE-ED
. 4 Tam 44
s =
- E/'uj'_?_"'— ‘?ai_ —+—V¢#ﬁfr#)] UE B fﬁu{ﬁ,—&‘%

lg Lroduce New variab les

e — L g Ffmal¥ & S57 & Swtet —

R and F ( a.r_ we Aave done (n Céa}pz‘cr /) !

_ H = H(R) + HF) (Jee Appendgix A )

S H(R) _u/neﬁarﬁc&_f&m&m—_i

i HmL&ga_Laa_.L_ _rcperajydo
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=

W(R ., B) = $(R) PF)

D) quffﬁei g_J;é_d_}eL;’gugi@z with a central

/Qo\fcﬂf;_a.l_l{ r)

L The ei j&ryancfmn can be _given 6y

PR = R )y, (6, B)  with eigenvalue £

Aote . anév//ar Coulamib /oafcotca.l

 Now [Bose statistics requires

S —F B to be Symmelric anafer S 2

B _z‘._el,_ébafgecag’m@:{i

. Linder [*=% & R-R, F—-

-7

E==F i J/:Acm:gL coordinale Uis
) )i A A::/-.rmd’ca.rsﬁ
- e 7-0 4 = rrinBsing
o P> x+P _J 2 rcoesd
- F 4
- = )r{fm ) —-*J;m(zr e, zrp) =C1) );n?(a ®)
R R = bR R)

_J,m'n_p/ r° =1 I

Adn tA:_rc.rl'_..yﬂ‘;m_ of g _}u.ZaL momentum conservation

)‘f_?ﬂ ires

( There _;L_,,;;ﬁm_;;__MM -

However , bose statisties @ A

éan ée EVen dw'é.r

= perxz’

( Jao S CMWMJ& )
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o Fhc
“#n: /0—-9
#35,
I;TAC_EMM_ 3// o [lectrons
I /ZJ () = ’;Qaré;:‘cle. ! has .j}.bl.:ﬂ' u{b - Jg =2LA'
o . A (1) "ﬁpm.-ﬁ}:lﬁ ! has .WM,MJFJJ =-FA
X, (2) > particle 2 has Spin up S = FA
L2 = particle 2 has Spin down. i = A

- 730_ _.&;z‘a_.ZL_ )Qagﬁ';.ff.r ,_ichaJ_digéﬁaﬂ;

= TEL_ _1;_01'/7_ can be ellther / or O

42D - = — —_—
¥

_ J = l Af} ﬁ,. O ) ‘5
Jd
m / o, -1
= )
- J =2/, m, = / /’C; a) X, (2J)
_ my = ~1 X, (1) ¥ _(2)

N Na.uze/_a_u_e.ﬁ_gM£&1_ wnder /2 ~

. m, =0  can be formed by linear combinalion of

S T (D, xT2)x ) o

=L, m =0 should have the Same property under
. interchange [ 2 = ';—-?’éz’uz z_g;_._/;,.g z (;5 ¥ )]

I K1) Ey (2)
S=r e _;cyﬁﬁcz%(z%ﬁu;

B i xqz) B

. J=zo0 F X ) (2) - KX ()

. Ulnder / 2 S o
= Spin _ivave .amf;faa_&_é}zmméaijﬁr_ J=1 =
a/zﬁ;ymmtﬂg Jfar J=0

S =1 Z‘H.'/D[CL : S

J =0 singlet .
—
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[O~(0

(LB

__Zfsm_ﬂuima._.gy;fem

The ltotal h-raz:.ﬁ_&.nct}.‘o/z..

o)

’ - I ]

b1, 2) = P(F, & . F

S JMal_mzejﬁadm - IBn wayc/,&mcfcbn

..{y /ﬁr L=02 4 :{y /ﬁr S =/
A ‘)( A::I{J,s. _ﬁ kp ‘J‘=O

$1.2) _mgzLéa_m&';ymMr Vim & 4
for .n')y/pé L = 0,2 4

riplet A4 = 1,3 5, -

D YY),

= A+S  muslt be even,

. Sum _up the above resull.

i —
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% [0~/

A

__NoLLJégAL_j_égaLz‘_o tﬁ;qu@é N=-body

bf-aé[em :

N ildentica rlic

H Cr, 2. ~ A B

/

Ham(t 0/21'017_

H (1,2 ¢, -], N = AL 2, dill I el AN

-
N N ,partc'cZeJ are t'a’enfif/v

7—15.2Lfﬁc case a/ :hdekcxzdexzf_/gaclf}:d&f_ o

i Hi e ~m = L H(i)

; D mc md.:/oma'?ﬂé—ﬁ%m;(fvmm—
= -, ]ar—ﬁéc—:#jbwﬁt[c—
- i

- - H(f) = )m * V(/';)

B Jolye H () 55’(:‘) = £ Fé
Y

e.r.rent/'alé/v G one éad/y lpmé(a'n

jét ) — ec‘qm/anch’a/z -

- L all  the ;Luafﬁm ﬂqLﬁLﬂf_ia_/Qc%ﬂd_—

— B stale
L N with corresponding Lnergy Ly
. 2 bl 2agN) = sé‘_()gé, (2) =& Ci)
My @, L B CaF) J
L ’s aa_cjefz_dg.tc _ j:f H = £¢ o
- i J—Y 7 tot -
— — HMHamiltonian

o E = £, £, " L,

—If we interchange <]
I & D e . S ) W é(; 35 (JLS?‘ (i) B
‘9\. 7 7 L /, % .

Td‘ dﬁ oo
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“H: /O-/2
Wk

I_iu_aﬁa_a_q_e_ ea.aéai_g.é HE =L  with the
. JSame._elgenviluc A L —

Bose Linstein  slatistics z-efamer the wave/aﬂcfe.m o
o be .gymmzfcm - wnder ¢ o
B BB (2) - ¢Z) 9?5_{;_) ~ D (N

7%

- * @LZ_/LMALL/Q&MMWW -

- it is  fotall by J/fmmc;fﬂ_L—

[xamb(c @) é(/)¢ (2) B I

S */'—¢—(‘27L¢—(T7‘—1T—t1£€ar#—l‘vfa:[ﬁ—‘7mmccﬂc

+ £,

n’ #1

(i) B,() $,2) B (3)

I ﬁwj%zmw{we&%——
* B6) ) B.(3) + B,(3) B (2P (1)

) _C_an_d/ _c.i‘_a_.pzmm&ig
S . kave /mclflon

 Now termi - Dirac statitics re ?mm _the . iiv_t?%(aﬂ_ctwﬁ_ fo_
- be anli-Symmetric _undel L j

— Lermi = Dirac skatistics :g,gccg,te.r aa_zdjafmgljermmm

R We shall m:w_add the J}om _/?ZJ_fﬁ our a’ﬁ.:cn]pf:ga_ o

- oy o? l A L mpk AEES _corresponds. lo
o extension _ the Spin up a nd spin down
¢°‘:—( /) ?f,&_(g_)_"“ ?‘5,(” (N)  is an gg.ea/&aa&ba_ of i -
____ with eigenvalue £ = £, :_/ t o £ - B
-/ 7 Z %

 termi - Dirac statistics fiygzd.r _fjftc Jﬂ/_&mj{u&cftaﬂ Zo
- be aaﬁ_J/M&m under ¢ <> j

m , be  done a.rcznyd‘ er determinant.
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I
| ) B2 e PBo(n)
. Iy - r O . / M% s " N ’r?"‘t (,4.111 .
rr/) ( UI/ C?; = l"!fl = / d'z az d"
B o,y / 2 N /

Lo "~ 4

L‘:\’aa?,plc 0(1._ %+

% 7y -

44 - | B0 B ]

—— et ———

= Pop )Py 2~ 4 2)5,0)
. A

‘]'/n‘.r i exact[/y the resull we

ohtained 55 fore

Lel ws look al the Ihree (parz‘f.'c(e case discussed (n
the  booR

o LR

%y Ldy 4
- % u,
. o U,
[ Uy oy @ 2y,3)
U ) U, 2) g}&/
() 4.%?_(2)_ U; T_(“'}/I /
—f —
o = U ) [ 4y02) & »(3) |
) [ t,, ) Ly (3)
et (2 (1) Uy (3) |

LUppll)  Upp (3)
| ) Uy c2) |

Uy (. Ug (3) I

B AEXBMERFIHMERICE



o H
s /014
3

= Uy #ggq_,.,,(s)- _,f()é,(,/(j’)l/u(z)

-a (z)

* U, (3) Y, ,(z)z/,f(aL ~ U Gy, (2) Uy (1)

™

Uy ) Uy, (3) + ey c2) Ups3) Upp (1)

This is exacflly the result _given in the lextboolt

A Xy then the anti- ,gmmzfac_m funclion
- does aat exul‘ —
= No more then on on can wﬂiﬁf.
%Lyyaﬂtm_ﬁmmé&r_L tncludin _/c_z’éﬁ_.rfgm%mzfum

S humber

D Thir i the Faaliexclusion principle.
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%K
-

,Jéart Jfram P /2 N particle

: ,z'é enr'::'ra{’ .

/39.:;2'_* &n:'fez‘.:o. _fz‘af.:x'rfr_:cr
Pal ,)_-;_3 A

H =Z_:}(§7‘;‘?— # l/,g«t;)) -'-'.Z(: H.
= 3

7 ¢
L fy -
* T

N harmonic oscillator )

H & =£,2,

B,_(x,) — fil particles in R, state

P o(x, (x,)- P (x )
,’J 2 j '” ra

(s a gsolulion a/ the Afc.é»adgnaer

eeuaicaa._cc_t}%&acm"
Wwith
for bosons , { €* aj , Lthe wayejfumf::owf_ﬁf_d}vmm

£\'a@2lﬂ. N =2
¢>_ (x, )P (X;)

i

The ﬁr.rf Ieacﬁd_e_u_af n, stale with e energy .ﬁ, =(n*3)
Jecond Par&cfc s al 7, state with mg;%g é; "C'/?,*g"'z

ﬁw
= £, = (a )ﬁw*(ﬁ,*z)ﬁw

Interchange [ «— 2
—
= ?4, (x,) g!%! (x,)

Clearf/\/ . It i not .LYmmPr‘r{r

2 (x)P (x) * all passible permutation

B, (X) ;ﬁf,r)v* ¢_ (x,)%, (%)

Canr.Z/v LS .rmmeina wunder
/. Hj

HiIKNEXRPYER (A7) A BT



Three dimensional _
PEET/ A RN P A
H. & = £ 2,
n-»_in, kL, mk

Gt ) Gty (5

¥ e I ‘/

-

______L'.r_mé_.ymzmefric
Lor ol BB o, ()
1+ ‘! &2,

s the onév ,pa.r.n‘bfe {bermufnfc-dl?,

- =y —
@ , = ) * ” (7
A 777 27 A2, 7743 1054776, 2,12, 772

LS {’ ymmelric

Now e wunderstand 2he meoning of
e
G b2 B () (G) G ()

* all fpa.r.rible‘ /berm::fnb‘a/z

wave //u.ac tion

&rmaple. . N=3 case
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The ferni = Dirac Staltictics

Notation in /0-/3

/-ermi ~ Dirac stalistics

[Hj

the Wabicjfuﬂcfa'on Gléaffe
—Jgiga.

for N=22

Tﬁc anti- .ﬁymme tric ware_//uncﬁo/z

%‘ " / o =) y’é e %} /
,/ 2 ) 7 el/ml m.f, il ”.ll.l.l”’!'”?h . /

/—é?—l 771 t./.r: é.;(l (:é V7 ~ :
¢ Ba > ot 2 7 2 7
Jg %"SI # -&

[ €2

exchange of colwumn

determingnt rAa:)jE .E!‘/Gn.

Al =3
. P hmom (R0) B, SR B e
SL - - ; Y / <R RT Iy g e
A 5z AN WL
- 12’ <l 443,74, 7
gj) = b - ol
”.“em’m‘ (,},0“;’) ?i? I (F (7 p (’f‘pd‘)
L e s F A3, 77377, 34,7, :y
linder _exchange L < ] chaonge SL6H
-7 g TS </

no  four ouanlum numbers can be identical because
_/ 7/
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then two rows woulad be i1dentical

-#. o T n T O g v . g ]

= Paulls exclusion /brzhcgpf e
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7%: /;N'm' 52&59/\/

_Alo_ce.ducﬁm_&f_ﬁm& _e,mlmoa%cmc@g(&
é;. NE,

- First excited state

R . “0—0—0—-0— c —Q—Q——Q—— Ground state —

N bosons

(@
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— fermions has at most two parti-
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with spin down. All the levels
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ready labeled by the corre-
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positive values need be count-
ed. This condition restricts us
to one quadrant (one-eighth) of
the full lattice. In other words,
to find the points that corre-
spond to the energy states and
thus allow us to count the
number of states with energy
up to E, we restrict ourselves to
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dinates of a sphere whose ra-
dius is proportional to E.
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* Figure 104 Paul A. M.
Dirac was one of the pioneers
of quantum mechanics, He de-
veloped the quantum theory of
radiation and djd ground-
breaking work in the creation
of relativistic quantum me-
chanics. He predicted the exis-
tence of anti-matter. The French
physicist Leon Brillouin, him-
self an important contributor, is
in the background,

* Figure 10-3 The [talian-born
American physicist Enrico
Fermi :".'-”.‘.J—E“"-h was both a
brilliant theorist and an equally
brilliant experimental physi-
ast. Among his many, accom-
plishments was his leadership
in the construction Of the first
nuclear reactor. He is show n
here on a hike with Niels Bol

in 193],



® Figure 10-2  Wolfgang Pauli
was born in Vienna in 1900 and
died in Zurich in 1958, He was
one of the most brilliant theo-

retical physicists of this century

'_Satyendranath l
Bose
(1894-1974, Indian)

Bose was born and educated in
Calcutea, India. In a paper written
in 1924 he derived the Planck for-
mula for blackbody radiation by
treating the photons as what we
would now call bosons. This paper
drew the attention of Einstein and
secured an invitation for Bose to
visit Europe, where he met Ein-
stein, de Broglie, Born, and others.
Einstein extended Bose's ideas, and
the rules that govern bosons are
now called Bose—Einstéin statis-
tics. We will see some of the dra-
matic consequences of these ideas
in Chapter |3,
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Hans Bethe |

(Born 1906, German-American)

After postdoctoral work with
Rutherford in Cambridge and
Fermi in Rome, Bethe taught in
Germany for a few years before
coming to the United States in
1935. Among many contributions
to atomic and nuclear physics, he
is best known for finding the two
nuclear cycles by which most stars
get their energy. For this discovery,
he won the 1967 Nobel Prize in
physics.
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“I read Chandra from beginning to end with intense interest and pleasure.”

—Freeman Dyson, author of Disturbing the Universe and Infinite in All Directions
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8

Identical Particles

Up to this point, we have dealt mainly with the motion of a single particle. We want to examine
now how to describe systems with many particles. We shall focus on discussing systems of
identical particles and examine how to construct their wave functions.

8.1 Many-Particle Systems

Most physical systems—nucleons, nuclei, atoms, molecules, solids, fluids, gases, etc.—involve
many particles. They are known as many-particle or many-body systems. While atomic, nuclear
and subnuclear systems involve intermediate numbers of particles (~ 2 to 300), solids, fluids
and gzziges are truly many-body systems, since they involve very large numbers of particles
(~ 10°°).

8.1.1 Schrdidinger Equation

How does one describe the dynamics of a system of N particles? This description can be
obtained from a generalization of the dynamics of a single particle. The state of a system of
N spinless particles (we ignore their spin for the moment) is described by a wave function
Y (F1, 7, ... 7N, t), where |¥ (71, 72, ..., PN, )|*d°r1 dPra . .. dPry represents the probability
at time ¢ of finding particle 1 in the volume element d°r1 centered about 71, particle 2 in the
volume d°7, about F2, ..., and particle N in the volume dry about Fy. The normalization
condition of the state is given by

/d3r1 /d3r2 . / ¥ (F1, 72, ..., N, t)|2d3VN =1 (8.1

The wave function ¥ evolves in time according to the time-dependent Schrédinger equation
o a — - - @ - - -

lh'a'}'(”l s P2, PN, )y = HY (P, P, ... TN, ). (8.2)

The form of H is obtained by generalizing the one-particle Hamiltonian P? /(2m) + 17(7) to N

437
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particles:

Ny N L
H = —j— V_),-),...,—' ,t = = = +V;:,F,’;: ’ta 8'3
; j+ (1,72 FN, 1) ;2"1] ) (r1, 72 N> 1) (8.3)

where m; and P ;j are the mass and the momentum of the jth particle and V is the operator

corresponding to the total potential energy.

The formalism of quantum mechanics for an N-particle system can be, in principle, inferred
from that of a single particle. Operators corresponding to different particles commute; for
instance, the commutation relations between the position and momentum operators are

[X;, Pol=ihdi,  [Xj, Xal=1[P, Pel=0 (,k=1,23,...,N), (84)

where X ; 1s the x-position operator of the jth particle, and f’xk the x-momentum operator of
the kth particle; similar relations can be obtained for the y and z components.

Stationary states
In the case where the potential V' is time independent, the solutions of (8.2) are given by sta-

tionary states .

WL TP ) = Y@L, Py) e (8.5)
where E is the total energy of the system and  is solution to the time-independent Schrodinger
equation Hy = Ey, i.e.,

: 2mj

N 2
oo = - L - .- S
[_Z—VJZ-—*'V("],-..,""V)} W(r15r2,-"er)zEW(rlyrZ;--'arN)' (86)
Jj=1

The properties of stationary states for a single particle also apply to N-particle systems. For
instance, the probability density (y | ), the probability current density /, and the expectation
values of time-independent operators are conserved, since they do not depend on time:

(P1A|Y) = (y|A|wp) =/d3r1/d3r2~--/ WL PN AW L P, L PN AT
(8.7)
In particular, the energy of a stationary state is conserved.

Multi-electron atoms .

For an illustration, let us consider an atom with Z electrons. If R is used to represent the posi-
tion of the center of mass of the nucleus, the wave function of the atom depends on 3(Z + 1)
coordinates y (71, 72, . . ., 7z, R), where 71,7, ...,z are the position vectors of the Z elec-
trons. The time-independent Schrodinger equation for this atom, neglecting contributions from
the spin—orbit correction, the relativistic correction and similar terms, is given by

n & n e, & Zé e .
- Vz - —Vz - - — — F 7-, ""3_' ’R
[ r, AL Zlfi—R|+zlri—rj| w(ry, 12 rz, R)

2me {= | >

= Ey(F, 7, ..., 72, R), (8.8)

where M is the mass of the nucleus and —hzﬁfg/ 2M is its kinetic energy operator. The term
—>"Z | Ze2/IFi — R| represents the attractive Coulomb interaction of each electron with the



8.1. MANY-PARTICLE SYSTEMS 439

nucleus and > ;. ; je 2/~ 7 Fj| is the repulsive Coulomb interaction between the ith and the
jth electrons, |[; — #;| is the distance separating them. As these (Coulomb) interactions are
independent of time, the states of atoms are stationary.

We should note that the Schrodinger equations (8.2), (8.6) and (8.8) are all many-particle
differential equations. As these equations cannot be separated into one-body equations, it is
difficult, if not impossible, to solve them. For the important case where the N particles of the
system do not interact—this is referred to as an independent particle system—the Schrodinger
equation can be trivially reduced to NV one-particle equations (Section 8.1.3); we have seen how
to solve these equations exactly (chapters 4 and 6) and approximately (chapters 9 and 10).

8.1.2 Interchange Symmetry

Although the exact eigenstates of the many-body Hamiltonian (8.3) are generally impossible
to obtain, we can still infer some of their properties by means of symmetry schemes. Let ¢;
represent the coordinates (position #;, spin §;, and any other internal degrees of freedom such as
isospin, color, flavor) of the ith particle and let w (&1, &2, . . ., &) designates the wave function
of the N-particle system.

We define a permutation operator (also called exchange operator) b j as an operator that,

when acting on an N-particle wave function (1, ..., ¢, ..., &y ..., EN), mterchanges the
ith and the jth particles
ﬁijl//(éla"'>fl’5"'s éja'gN) = '//(51’"'afja"'sgi,'-'afN); (89)

i and j are arbitrary (i, j = 1,2, ---, N). Since

ﬁji‘//(éla'”: gl.a"'a éjafN) = W(gla"-agja-'-acfi:---aéN)
= Py, & .., & EN), (8.10)

we have P, j = ﬁji. In general, permutation operators do not commute
PPy # PyPj  or [Py, Pul#0  (ij #KkD). (8.11)

For instance, in the case of a four-particle state w (&1, &, &3, ¢4) = (38 /5253)e_i5‘ , we have

PuPuay (6,8, 8,4) = Py (@, &,.5,8) = y(&, &, &,4) = f 5 e, (8.12)
3 :
PPy (&1, 8,8,8) = Puy(&, &,8,8) = y(&,8,5,8) = 51%6_'54- (8.13)
Since two successive applications of P; ; leave the wave function unchanged,
V/(gls'-'s Iseeey éja---af) = f)ljl//(gbaéj’a ',-“afN)
= l//(fl,..., ',...,g_,,...,f]v), (8.14)

we have }35 = 1, hence ﬁi ; has two eigenvalues *1:

Py, ooy Gy & EN) =W Gy s &y R, (8.15)

ILE Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore, 1998, Chapter 17.
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The wave functions corresponding to the eigenvalue +1 are symmetric and those corresponding
to —1 are antisymmetric with respect to the interchange of the pair (i, j). Denoting these

functions by y; and w,, respectively, we have

!//S(fl,'-',gia'--afjs'-"QZN) = W.S‘(Q\:la-";éja‘--761','--,{[\/)7 (816)
Wﬂ(gla---,‘fi:---:fj5---’§N) = _V/a(é:la--"éj,--'ail',--"fN)‘ (817)
Example 8.1

Specify the symmetry of the following functions:
(@) w(x1, x2) =4(x1 — x2)* +

(b) B(x1, x2) = =523k

)
xy+x)

B0 Pl
x5 4x5+x3—1
c x2) = T T
()X(XI,XZ, 3)_6x1x2x3+———2x§+2x§+2x33 3

(d) D(x1, x2) = 517¢

—|x1]

Solution
(a) The function y (x1, x2) is symmetric, since y (x2, x1) = y(x1, x2).
(b) The function ¢ (x{, x2) is antisymmetric, since ¢ (x2, x1) = —@(x1, x2). And ¢ is zero

when X] = X2: ¢(x1,x1) =0.
(c) The function y (x, x2, X3) is symmetric because

x (1, x2,x3) = x(x1,x3,%) = y(x2, x1,x3) = x(x2,x3, 1)
= y(x3,x1,x2) = y(x3, X2, x1). (8.18)

(d) The function ®(x3, x1) is neither symmetric nor antisymmetric, since
D (x2, x1) = phge Ml # £D(x1, x2).

8.1.3 Systems of Distinguishable Noninteracting Particles

For a system of N noninteracting particles that are distinguishable—each particle has a different
mass m; and experiences a different potential V; (&)—the potential V is given by

V@ r&inesGin e EN) = ZV,@, (8.19)

and the Hamiltonian of this system of N independent particles by

p=3 =3 [-’ivz it | 20
I 2m i H s

where H; = —h? V2 /2m; + V;(&) is the Hamiltonian of the ith particle, known as the single
partlcle Ham11toman The Hamiltonians of different particles commute [H,, H ] = 0, since
[Xi, X;1=[8, Pj1=0.
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The Schrédinger equation of the N -particle system

ﬁwnl,ng,"-,n}\/ (fla sza Y gN) = En],n2,~~~,nN Wn;,nz,“-,ﬂ]v (619 525 T gN)z (821)

separates into N one-particle equations

2
[ v} +V,<f,>] Vi (&) = en, yin, (&) (8.22)

with
N
Eningyny = Eny t+En, + - Eny = Zgn,- (8.23)
i=l

and
N
'//nl,ng,---,nN (gla 62’ ftt fN) = Wnl (él)‘//nz (62) et WnN (éN) = H Q//n,-(fi)- (824)
i=1

We see that, when the interactions are neglected, the N -particle Schrédinger equation separates
into N one-particle Schrédinger equations. The solutions of these equations yield the single-
particle energies ¢, and states yy, (;); the single-particle states are also known as the orbitals.
The total energy is the sum of the single-particle energies and the total wave function is the
product of the orbitals. The number »; designates the set of all quantum numbers of the ith par-
ticle. Obviously, each particle requires one two or three-quantum numbers for its full descrip-
tion depending on whether the particles are moving in a one, two, or three dimensional space; if
the spin were considered, we would need to add another quantum number. For instance, if the
particles moved in a one-dimensional harmonic oscillator, »; designate the occupation number
of the ith particle. But if the particles were the electrons of an atom, then #; would stand for
four quantum numbers: the radial, orbital, and spin quantum numbers N;/;m; ms, .

Example 8.2

Find the energy levels and wave functions of a system of four distinguishable spinless particles
placed in an infinite potential well of size a. Use this result to infer the energy and the wave
function of the ground state and the first excited state.

Solution
Each particle moves in a potential which is defined by V;(x;) = 0for0 < x; < g and V;(x;) =
oo for the other values of x;. In this case the Schrédinger equation of the four-particle system:

4 2 2
7 d
Z Wny,na.n3, n4(xla X2, X3, )C4) En1,l’l2,ﬂ3,n4 Wnl,nz,n3,n4(xl,x2, X3, x4)5

2m i
(8.25)
separates into four one-particle equations

hz d? Vi, (X7)

— — —_ ) . ; s .= 1,2,3’4, 826
I dxiz En; Wn, (Xi) ! ( )
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with 5 s
h : 2 -
En, = it Wn; (xi) = \/jsin (n'—ﬂx,-) . 8.27)
a a

2!’}1,'612 ’
The total energy and wave function are given by

2 2 2 2
a (ﬂ S A ”—4), (8.28)

En\nynyng = 242 \ my my | ms ma

4  /mx . /M7 . /naxw . [N4TT
Wn\,np,n3,na (xl, X2, X3, X4) = - sm (——xl) sim (—xz) s (-——X3) Sm (—X4) o
a a a a a
The ground state corresponds to the case where all four particles occupy their respective
ground state orbitals, n; = ny = n3 = ns4 = 1. The ground state energy and wave function are
thus given by

B2 (1 1 1 1
Eii11= (—-—- +—+—+ —) (8.30)

2a2 \m m;  m3y  mg
4 7 Nz . (T . T
wi,1.1,1(x1, X2, X3, x4) = — sin (—x1) sin (—xz) sin (—x3) sin (—x4) . (8.31)
a a a a a

The first excited state is somewhat tricky. Since it corresponds to the next higher energy
level of the system, it must correspond to the case where the particle having the largest mass
occupies its first excited state while the other three particles remain in their respective ground
states. For argument’s sake, if the third particle were the most massive, the first excited state
would correspond to the configuration n; = ny = n4 = 1 and n3 = 2; the energy and wave
function of the first excited state would then be given by

Wr? (1 1 4 1
Erig=—= (—+—+—+——), (8.32)
2a my my m3  mg

4 ) . 2 :
wi,1,2,1(x1, X2, X3, X4) = — sin (le) sin (Exz) sin (—nx3) sin (1x4) . (8.33)
a a a a a

Continuing in this way, we can obtain the entire energy spectrum of this system.

8.2 Systems of Identical Particles

8.2.1 Identical Particles in Classical and Quantum Mechanics

In classical mechanics, when a system is made of identical particles, it is possible to identify
and distinguish each particle from the others. That is, although all particles have the same
physical properties, we can “tag” each classical particle and follow its motion along a path.
For instance, each particie can be colored differently from the rest, hence we can follow the
trajectory of each particle separately at each time. Identical classical particles, therefore, do
not lose their identity; they are distinguishable.

In quantum mechanics, however, identical particles are truly indistinguishable. The un-
derlying basis for this is twofold. First, to describe a particle, we cannot specify more than
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Figure 8.1 When scattering two identical particles in the center of mass frame, it is impossible
to forcast with certitude whether the particles scatter according to the first process or to the
second. For instance, we cannot tell whether the particle fired from source S; will make it to
detector D) or to D3.

a complete set of commuting observables. In particular, there exists no mechanism to tag the
particles as in classical mechanics. Second, due to the uncertainty principle, the concept of the
path of a particle becomes meaningless. Even if the position of a particle is exactly determined
at a time, it is not possible to specify its coordinates at the next instant. Thus, identical particles
lose their identity (individuality) in quantum mechanics.

To illustrate this, consider an experiment in which we scatter two identical particles. As
displayed in Figure 8.1, after particles 1 and 2 (fired from the sources S1 and $2) have scattered,
it is impossible to distinguish between the first and the second outcomes. That is, we cannot
determine experimentally the identity of the particles that are collected by each detector. For
instance, we can in no way tell whether it is particle 1 or particle 2 that has reached detector D .
We can only say that a particle has reached detector D) and another has made it to D5, but no
information on their respective identities. There exists no experimental mechanism that allows
us to follow the motion of each particle from the time it is fired out of the source till the time it
reaches the detector. This experiment shows how the individuality of a microscopic particle is
lost the moment it is mixed with other similar particles.

Having discussed the indistinguishability concept on a two-particle system, let us now study
this concept on larger systems. For this, consider a system of N identical particles whose wave
function 1s w ({1, &2, ..., EN).

The moment these N particles are mixed together, no experiment can determine which
particle has the coordinates &1, or which one has &, and so on. It is impossible to specify
experimentally the identity of the particle which is located at &, or that located at {3, and so
on. The only measurements we can perform are those that specify the probability for a certain
particle to be located at &7, another at &, and so on, but we can never make a distinction as to
which particle is which.

As a result, the probability remains unchanged by an interchange of the particles. For
instance, an interchange of particles i and j will leave the probability density unaffected:

2 (834)

W& & Gy G = (WG, Gy ey G EN)
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hence

w(&, &, 8L & L) =, &2 G e es Gis el 8N (8.35)

This means that the wave function of a system of N identical particles is either symmetric or
antisymmetric under the interchange of a pair of particles. We will deal with the implications
of this result in Section 8.2.3. We will see that the sign in (8.35) is related to the spin of the
particles: the negative sign corresponds to particles with half-odd-integral spin and the positive
sign corresponds to particles with integral spin; that is, the wave functions of particles with
integral spins are symmetric and the wave functions of particles with half-odd-integral spins
are antisymmetric. In fact, experimental observations show that, in nature, particles come in
two classes:

e Particles with integral spin, S; = 0, 1A, 2k, 3h,---, such as photons, pions, alpha
particles; these particles are called bosons.

e Particles with half-odd-integral spin, S; = h/2, 3k/2, 5h/2, Th/2, ..., such as quarks,
electrons, positrons, protons, neutrons. These particles are called fermions.

That is, particles occurring in nature are either bosons or fermions.
Before elaborating more on the properties of bosons and fermions, let us present a brief
outline on the interchange (permutation) symmetry.

8.2.2 Exchange Degeneracy

How does the interchange symmetry affect operators such as the Hamiltonian? Since the
Coulomb potential, which results from electron—electron and electron—nucleus interactions,

S o = Z, Zé e’
VG P Fr) == D + (8.36)

pel TN (el ]

is invariant under the permutation of any pair of electrons, the Hamiltonian (8.8) is also in-
variant under such permutations. This symmetry also applies to the orbital, spin and angular
momenta of an atom. We may thus use this symmetry to introduce an another definition of the
identicalness of particles: The N particles of a system are said to be identical if the various
observables of the system (such as the Hamiltonian H, the angular momenta, and so on) are
symmetrical when any two particles are interchanged. If these operators were not symmetric
under particle interchange, the particles would be distinguishable.

The invariance of the Hamiltonian under particle interchanges is not without physical impli-
cations: the eigenvalues of H are degenerate. The wave functions corresponding to all possible
electron permutations have the same energy £: H w = Ew. This is known as the exchange
degeneracy. For instance, the degeneracy associated with a system of two identical particles is
equal to 2, since (&1, &) and w (&, &q) correspond to the same energy E.

So the Hamiltonian of a system of N identical particles (m; = m) is completely symmetric
with respect to the coordinates of the particles:

H(él,....:i..A..I:Jf'a---«‘:;\"] = Zq’_};;_i-V(él’agl,’fja’fN)

= HEG, ... & ooy &y oy END (8.37)
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because V is invariant under the permutation of any pair of particles i «— j:
DL, s G oees Eir s ENY = Ty ey & evs Ein s EN)- (8.38)

This property can also be ascertained by showing that H commutes with the particle inter-
change operator P;; . If v 1s eigenstate to H with eigenvalue E, we can write

APy, ..., &, ..., &, LN =Hy (&, o &y s EN)
=Ew@, ..., &G N) = EPju(&1, .. & L EN)

:ﬁijEl//(gl’"'Séi7"',§j,""§N):ﬁinAW(il’""§i7"'7éj,""§N))
(8.39)

or o
[A, P,;]=0. (8.40)

Therefore, P;; ; is a constant of the motion. That is, if we start with a wave function that s sym-
metric (antisymmetric), it will remain so for all subsequent times. Moreover, since P, 7 and H
commute, they possess a complete set of functions that are joint eigenstates of both. As shown
in (8.15) to (8.17), these eigenstates have definite parity, either symmetric or antisymmetric.

8.2.3 Symmetrization Postulate

We have shown in (8.35) that the wave function of a system of N identical particles is either
symmetric or antisymmetric under the interchange of any pair of particles:

W(gli :23"" fi”"’ §j7"',§N)=iW(gvl3 525"" éfj"", éi""’gN)' (8'41)

This result, which tumns out to be supported by experimental evidence, is the very essence of
the symmetrization postulate which stipulates that, in nature, the states of systems containing
N identical particles are either totally symmetric or totally antisymmetric under the interchange
of any pair of particles and that states with mixed symmetry do not exist. Besides that, this
postulate states two more things:

e Particles with integral spins, or bosons, have symmetric states.
e Particles with half-odd-integral spins, or fermions, have antisymmetric states.

Fermions are said to obey Fermi—-Dirac statistics, and bosons to obey Bose-Einstein statistics.
So the wave function of a system of identical bosons is totally symmetric, and the wave function
of a system of identical fermions is totally antisymmetric.

Composite Particles

The foregoing discussion pertains to identical particles that are “simple” or elementary such as
quarks, electrons, positrons, muons, and so on. Let us now discuss the symmetry of systems
of identical composite “particles” where each particle is composed of two or more identical
elementary particles. For instance, alpha particles, which consist of nuclei that are composed
of two neutrons and two protons each, are a typical example of composite particles. A system
of N hydrogen atoms can also be viewed as a system of identical composite particles where
each “particle” (atom) consists of a proton and an electron. Protons, neutrons, pions, etc., are



446 8. IDENTICAL PARTICLES

themselves composite particles, because protons and neutrons consist of three quarks, and pions
consist of two. Quarks are elementary spin % particles.

Composite particles have spin. The spin of each composite particle can be obtained by
adding the spins of its constituents. If the total spin of the composite particle is half-odd-integer,
this particle behaves like a fermion, hence it obeys Fermi-Dirac statistics. If, on the other
hand, its resultant spin is integer, it behaves like a boson and obeys Bose-Einstein statistics. In
general, if the composite particle has an odd number of fermions, it is then a fermion, otherwise
it is a boson. For instance, nucleons are fermions because they consist of three quarks; mesons
are bosons because they consist of two quarks. For another illustrative example, let us consider
the isotopes “He and >He of the helium atom: “He, which is called an alpha particle, is a boson
for it consists of four nucleons (two protons and two neutrons), while *He is a fermion since it
consists of three nucleons (one neutron and two protons). The hydrogen atom consists of two
fermions (an electron and a proton), so it is a boson.

8.2.4 Constructing Symmetric and Antisymmetric Functions

Since the wave functions of systems of identical particles are either totally symmetric or totally
antisymmetric, it is appropriate to study the formalism of how to construct wave functions
that are totally symmetric or totally antisymmetric starting from unsymmetric functions. For
simplicity, consider first a system of two identical particles. Starting from any normalized
unsymmetric wave function (&1, &), we can construct symmetric wave functions ;s (&, £2)
as

@) = 2= [ &)+ v ), (842

and antisymmetric wave functions , (&1, &) as

1 v
valét, @)= —=[ v, &) - w(& ), (8.43)

where 1/+/2 is a normalization factor.
Similarly, for a system of three identical particles, we can construct w; and y, from an

unsymmetric function y as follows:

1
0.8 = [ vena &) TrEns )+ iy 6,8
F @A +vGaa+rE.aa|. 64
x - L -
vald @8 = | V@ a8 - vEE &) T rE.8.9)

- p@ A V@A - vG.am]. 64

Continuing this way, we can in principle construct symmetric and antisymmetric wave func-
tions for any system of N identical particles.
8.2.5 Systems of Identical Noninteracting Particles

In the case of a system of N noninteracting identical particles, where all particles have equal
mass m; = m and experience the same potential Vi &) = V(&) the Schrédinger equation of
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the system separates into N identical one-particle equations
B,
=5 Vi T VG | yn(S) = En yrm (G)- (8.46)

Whereas the energy is given, like the case of a ]s\ystem of N distinguishable particles, by a sum of

the single-particle energies Ey, n,...ay = D.in1 £n;» the wave function can no longer be given

by a simple product Wu, n,,...nx(€1,82, ..., EN) = H1N=1 wn, (&) for at least two reasons. First,
if the wave function is given by such a product, it would imply that particle 1 is in the state yy, ,
particle 2 in the state yy,, ..., and particle N in the state vy, . This, of course, makes no sense
since all we know is that one of the particles is in the state y,,, another in ,,, and so on; since
the particles are identical, there is no way to tell which particle is in which state. If, however, the
particles were distinguishable, then their total wave function would be given by such a product
as shown in (8.24). The second reason why the wave function of a system of identical particles
cannot be given by Hf\;l wp, (&) has to do with the fact that such a product has, in general,
no definite symmetry—a mandatory requirement for systems of N identical particles whose
wave functions are either symmetric or antisymmetric. We can, however, extend the method
of Section 8.2.4 to construct totally symmetric and totally antisymmetric wave functions from
the single-particle states wy, (&;). For this, we are going to show how to construct symmetrized
and antisymmetrized wave functions for systems of two, three, and N noninteracting identical
particles.

8.2.5.1 Wave Function of Two-Particle Systems

By analogy with (8.17) and (8.43), we can construct the symmetric and antisymmetric wave
functions for a system of two identical, noninteracting particles in terms of the single-particle
wave functions as follows:

pe) = = [ @)wn @)+ m @y @] (847)
1
va(1, &) = E [ Vn, ($1) wn, ($2) — wn (&2) wn, (é:l):l > (8.48)

where we have supposed that n; # ny. When n; = ny = n the symmetric wave function is
given by ws (&1, &) = wn (1) wn(&2) and the antisymmetric wave function is zero; we will deal
later with the reason why w,4(¢1, £2) = 0 whenever n1 = n».

Note that we can rewrite y; as

1 n
s s = — P ni no 5 849
ws (&1, &) ﬁ!}; Wiy (G1) Wny (£2) (8.49)

where P is the permutation operator, and where the sum is over all possible permutations (here
we have only two possible ones). Similarly, we can write y/; as

Va1, &) = % ;(—DPPW v &), (8.50)
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where (—l)P is equal to +1 for an even permutation (i.e., when we interchange both & and &
and also n; and n3) and equal to —1 for an odd permutation (i.e., when we permute ¢; and & but
not n1, ny, and vice versa). Note that we can rewrite , of (8.48) in the form of a determinant

__1__ W (€1)  Wn &) |
l//a(fl,étz)——ﬁ’ vy (51) wn;(«:z) : (8.51)

8.2.5.2 Wave Function of Three-Particle Systems

For a system of three noninteracting identical particles, the symmetric wave function is given
by

1 ~
ws (1,6, 85) = ﬁ ; Pyn (&) Wny (&2) wny (&3) (8.52)
or by
1
ws (&1, 8, 85) ﬁ [ V/nl(fl)‘//nz(é)‘//m (&) + Wny (fl)‘//nz @:3)‘//n3 (&)

+ Wn, (fZ)an (4)) Wy (‘:3) + W, @:2)'//@ (63)‘//n3 1)
+ Y @)W €)Y (@) + Yimy @)W @)W (&) ] (853)

and the antisymmetric wave function is given by
1 .
va@u & &) = —= ;(—1)”1’%1 QUZACNZNEY (8.54)

or, in the form of a determinant, by

1 l//nl('/:l) V/ny@:Z) '//nl(é)
',l/a(fl,fz,f?,):f W& ¥ (&)  wm (&) | (8.55)
3 @) v (@) v (&)

Ifn) = ny = n3 = nwehave ys(&1, 8, &) = wn($1) wn (&) wa (&) and ya(ér, £, $5) = 0.

8.2.5.3 Wave Function of Many-Particle Systems

We can generalize (8.52) and (8.55) and write the symmetric and antisymmetric wave functions
for a system of N noninteracting identical particles as follows:

1 “
s\Gl, >ecc = == P ny ny o Yny ) 856
ws (&L & EN) — ; Wy (E)Wny (E2) -+ Wy (EN) (8.56)

1
wa(&1, 8, ..., EN) = ﬁg(—l)”wm(a)wm(@)---wnN(fN), (8.57)

or
Yny (‘fl) Yn, (fZ) e Wiy (fN)
1 Wny (§1)  Wny (&) oo wm ()

Wa(él,fz,...,f]v) E——
N!

(8.58)

nn @) Yoy @) Sy (W)
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This N x N determinant, which involves one-particle states only, is known as the Slater deter-
minant. An interchange of any pair of particles corresponds to an interchange of two columns
of the determinant; this interchange introduces a change in the sign of the determinant. For

even permutations we have (— ¥ =1, and for odd permutations we have (=P = ~1.

The relations (8.56) and (8.58) are valid for the case where the numbers 1, na, .. ., ny are
all different from one another. What happens if some, or all, of these numbers are equal? In the
symmetric case, if n] = ny = ... = ny then y; is given by

N
Ws (i, &, os E) = [ Jwnl&) = wn Gy (&) - - wn ). (8.59)
i=l
When there is a multiplicity in the numbers 7y, n2, .. ., ny (i.e., when some of the numbers »;

occur more than once), we have to be careful and avoid double counting. For instance, if n;
occurs N times in the sequence n1, s, . . ., ny, if ny occurs N, times, and so on, the symmetric
wave function will be given by

/’N1!N2!-

- Np! - . . ;
ws (1, &, ooos IN) = D Pum )Y (&) wnn N (8.60)
N1 .

the summation ), is taken only over permutations which lead to distinct terms and includes
N!/Ni!N,!- - N,! different terms. For example, in the case of a system of three independent,
identical bosons where n; = ny = n and n3 # », the multiplicity of ny is N; = 2, hence y; is
given by

21 A 1
ws (&1, &, &) = \/3:'21; Pyn(E)wn(&)wn, (&3) = 7 [ wn(&1) wn($2) wny (&3)

+ )Yy @)0n () + v ED Y @IWn(E)]. (8.61)

Unlike the symmetric case, the antisymmetric case is quite straightforward: if, among the
numbers ny, ny, ..., ny, only two are equal, the antisymmetric wave function vanishes. For
instance, if n; = nj, the ith and jth rows of the determinant (8.58) will be identical, hence the
determinant vanishes identically. Antisymmetric wave functions, therefore, are nonzero only
for those cases where all the numbers n1, na, ..., ny are different.

8.3 The Pauli Exclusion Principle

As mentioned above, if any two particles occupy the same single-particle state, the determinant
(8.58), hence the total wave function, will vanish since two rows of the determinant will be
identical. We can thus infer that in a system of N identical particles, no two fermions can
occupy the same single-particle state at a time; every single-particle state can be occupied by
at most one fermion. This is the Pauli exclusion principle, which was first postulated in 1925
to explain the periodic table. It states that no two electrons can occupy simultaneously the
same (single-particle) quantum state on the same atom; there can be only one (or at most one)
electron occupying a state of quantum numbers n;limi;ms;: Ynl;m,m,, (i, Si). The exclusion
principle plays an important role in the structure of atoms. It has a direct effect on the spatial
distribution of fermions.
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Boson condensation

What about bosons? Do they have any restriction like fermions? Not at all. There is no
restriction on the number of bosons that can occupy a single state. Instead of the exclusion
principle of fermions, bosons tend to condense all in the same state, the ground state; this
is called boson condensation. For instance, all the particles of liquid “He (a boson system)
occupy the same ground state. This phenomenon is known as Bose—FEinstein condensation. The
properties of liquid 3He are, however, completely different from those of liquid *He, because
3He is a fermion system.

Remark

We have seen that when the Schrédinger equation involves the spin, the wave function of a
single particle is equal to the product of the spatial part and the spin part: ¥ (7, S) =yw@)y (S)
The wave function of a system of N particles, which have spins, is the product of the spatial
part and the spin part:

Wy, S1; P2, So; s s SN) = WL, Fas .., )X SL, S2, .., Sh). (8.62)

This wave function must satisfy the appropriate symmetry requirements when the N particles
are identical. In the case of a system of N identical bosons, the wave function must be symmet-

ric, hence the spatial and spin parts must have the same parity:

I .z wa(F1, F2, ..., rN),(a(Sl, Sz, .y SN)
Yo(ry, S1; m2, 82, ... FN, Sy) = N 5 8.63
S(l ! 2 2 v N) [ ‘//s("'l, r29 000 rN)XS(Sla S29 000 SN) ( )

In the case of a system of N identical fermions, however, the space and spin parts must have
different parities, leading to an overall wave function that is antisymmetric:

- L2 war1, 72, ..., "N)Xs(Sl, Sz, e S'N)
Y,(r1, S1; r2, 82, ... Fy, SN) = L > 8.64
alfl 172, 652 R [ ws(F1s P2y ooy P Xa(S1, S2s oty SN); (8.64)

Example 8.3 (Wave function of two identical, noninteracting particles)
Find the wave functions of two systems of identical, noninteracting particles: the first consists
of two bosons, and the second of two spin % fermions.

Solution
For a system of two identical, noninteracting bosons, (8.47) and (8.48) yield

pd ped r n Fa) — F n r S’ s g
WG ST B) = [ ‘//m(il)‘// z(iz) ‘//nl(tZ)W z(il)] xa(S1, 52) (8.65)
V2| [ wm Gwny ) + wn, Gy 1)) 25 (51, S2),

and for a system of two spin % fermions

L [ wm GO wm 2 = v, G2 yn, FD] 25 (S1, $2) (8.66)

W, (71, S1; 72, So) =
Lol =8 [ Wy G Wy F2) + Wy P2 yimy G1)] xa(S1, S2),
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where, from the formalism of angular momentum addition, there are three states (a triplet) that
are symmetric, xs(S1, S2):

—

—
——
—

N —
Nl —
——

N

|§ b}
. S S = 1 11 1 1 1 1 11
L _ 1y 1 _ 1
3 -4) [ -4
and one state (a singlet) that is antisymmetric, y, (31 , 3’2):
5o 1 11 1 1 1 1 11
meletS1, )= —( |=2) |= =) -z - =) |2} ). 8.68
Koinglet (31, 57) «/5( ‘2 2>1 2 2>2 2 3>1 ‘2 2>2) (5.69)

8.4 The Exclusion Principle and the Periodic Table

Explaining the periodic table is one the most striking successes of the Schrodinger equation.
When combined with the Pauli exclusion principle, the equation offers insightful information
on the structure of multi-electron atoms.

In Chapter 6, we saw that the state of the hydrogen’s electron, which moves in the spher-
ically symmetric Coulomb potential of the nucleus, is described by four quantum numbers 7,
1, mi and ms: Pnimm,(F) = Ynim; (%) Ym,, Where wnim,(F) = Rai(r)Yim; (6, ¢) is the elec-
tron’s wave function when the spin is ignored and ym, = ‘%, i%> is the spin’s state. This
representation turns out to be suitable for any atom as well.

In a multi-electron atom, the average potential in which every electron moves is different
from the Coulomb potential of the nucleus; yet, to a good approximation, it can be assumed
to be spherically symmetric. We can therefore, as in hydrogen, characterize the electronic
states by the four quantum numbers n, /, m; and m;, which respectively represent the principal
quantum number, the orbital quantum number, the magnetic (or azimuthal) quantum number,
and the spin quantum number; m, represents the z-component of the electron orbital angular
momentum and m; the z-component of its spin.

Atoms have shell structure. Each atom has a number of major shells that are specified by
the radial or principal quantum number n. Shells have subshells which are specified by the
orbital quantum number /. Subshells in turn have subsubshells, called orbitals, specified by my;
so an orbital is fully specified by three quantum numbers n, I, my, i.e., it is defined by |nlm;).
Each shell n therefore has » — 1 subshells correspondingto/ = 0, 1,2, 3, ..., n — 1, and in
turn each subshell has 2/ + 1 orbitals (or subsubshells), since tom; = —/, = + 1, =1 + 2, ...,
{ —2,1—1,1 Asin hydrogen, individual electrons occupy single-particle states or orbitals;
the states corresponding to the respective numerical values / = 0, 1,2, 3,4, 5, ... are called s,
p,d, f, g h, ... states. Hence for a given n an s-state has 1 orbital (m; = 0), a p-state has 3
orbitals (m; = —1,0, 1), a d-state has 5 orbitals (m; = —2,—1,0, 1, 2), and so on (Chapter
6). We will label the electronic states by n/ where, as before, / refers to s, p, d, f, etc.; for
example 1s corresponds to (n, /) = (1, 0), 2s corresponds to (n, /) = (2, 0), 2p corresponds to
(n,1) = (2, 1), 3s corresponds to (n, ) = (3, 0), and so on.

How do electrons fill the various shells and subshells in an atom? If electrons were bosons,
they would all group in the ground state |n/m;) = |[100); we wouldn’t then have the rich di-
versity of elements that exist in nature. But since electrons are identical fermions, they are
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Element 1ls 2s 2p Configuration
H (1s)!

He (1s)*

Li (1s)2(2s)"

Be (1s)*(25)?

B (1s)*(2s)*(2p)’
C (15)%(25)*(2p)
N (15)*(25)*(2p)°
0 (1s)2(2s)* (2p)*
F (15)*(2s)*(2p)°
Ne (1s)2(25)*(2p)°

Figure 8.2 Filling orbitals according to the Pauli exclusion principle.
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governed by the Pauli exclusion principle which states that no two electrons can occupy si-
multaneously the same quantum state |\nlmymg) on the same atom. Hence each orbital |nim;)
can be occupied by two electrons af most: one having spin up m; = —I—%, the other spin down
ms = —%. Hence, each state n/ can accommodate 2(2/ + 1) electrons. So an s-state (i.e., |#00))
can at most hold 2 electrons, a p-state (i.e., [n1m;)) at most 6 electrons, a d-state (i.e., |n2m;))
at most 10 electrons, an f-state (i.e., |#3my;)) at most 14 electrons, and so on (Figure 8.2).2

For an atom in the ground state, the electrons fill the orbitals in order of increasing energy;,
once a subshell is filled, the next electron goes into the vacant subshell whose energy is just
above the previous subshell. When all orbitals in a major electronic shell are filled up, we get
a closed shell; the next electron goes into the next major shell, and so on. By filling the atomic
orbitals one after the other in order of increasing energy, one obtains all the elements of the
periodic table (Table 8.1).

Elements 1 < Z < 18

As shown in Table 8.1, the first period (or first horizontal row) of the periodic table has two
elements, hydrogen H and helium He; the second period has 8 elements, lithrum Li to neon
Ne; the third period also has 8 elements, sodium Na to argon Ar; and so on. The orbitals of
the 18 lightest elements, 1 < Z < 18, are filled in order of increasing energy according to the
sequence: 1s, 2s, 2p, 3s, 3p. The electronic state of an atom is determined by specifying the
occupied orbitals or by what is called the electronic configuration. For example, hydrogen has
one electron, its ground state configuration is (1s)'; helium He has two electrons: (1s)?; lithium
Li has three electrons: (1s)2(2s)!; beryllium Be has four: (1s)2(2s)?, and so on.

Let us now say few words about how to determine the total angular momentum of an atom.
For this, we need to calculate the total orbital angular momentum L= z, 1 I;, the total spm
S = Z, | 5i, and then obtain total angular momentum by coupling Land S,ie,J =L+,
where l and 5; are the orbital and spin angular momenta of individual electrons. As will be
seen in Chapter 9, when the spin—orbit coupling is considered, the degeneracy of the atom’s
energy levels 1s partially lifted, introducing a splitting of the levels. The four numbers L, S, J
and M are good quantum numbers, where |L — S| < J < L + Sand —J < M < J. So there
are 25 + 1 values of J when L > Sand 2L + 1 values when L < S. Since the energy depends
on J, the levels corresponding to an L and S split into (25 + 1)-multiplet. The issue now is
to determine which one of these states has the lowest energy. Before studying this issue, let
us introduce the spectroscopic notation according to which the state of an atom is labelled by
25411 ; where, as before, the numbers L = 0,1,2,3,...aredesignated by S, P, D, F, .... For
example, since the total angular momentum of a beryllium atom is zero J = 0, because L = 0
(all electrons are in s-states, /; = 0) and S = 0 (both electrons in the (1s)? state are paired and
s0 are the two electrons in the (2s)? state), the ground state of beryllium can be written as IS,.
This applies actually to all other closed shell atoms such as helium He, neon Ne, argon Ar, and
so on; their ground states are all specified by 'Sy (Table 8.1).

Let us now consider boron B: the closed shells 1s and 2s have L = S = J = 0. Thus the
angular momentum of boron is determined by the 1p electron whichhas S =1/2andL =1. A
coupling of S = 1/2 and L = 1 yields J = 1/2 or 3/2 leading therefore to two possible states:

2P1/2, or 2P3/2. (8.69)

Which one has a lower energy?

ZR. Serway, C. J. Moses, and C. A. Moyer, Modern Physics, Saunders College Publishing, New York, 1989, p.238.
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Table 8.1 Ground state electron configurations, spectroscopic description, and ionization ener-
gies for the first four rows of the Periodic Table. The brackets designate closed-shell elements.

Ground state Spectroscopic Ionization

Shell Z Element configuration desctiption energy (eV)
1 1 H (1s) *S1)2 13.60
2 He (1s)> 1Sy 24.58

2 3 Li [He](2s)! = (1s)*(2s)! 2S1,2 5.39
4 Be [He](2s)? ISo 9.32

5 B [He](2s)?(2p)* P 8.30

6 C [He](25)2(2p)? 3P 11.26

7 N [He](2s)?(2p)° 4832 14.55

8 0 [He](25)*(2p)* 3p, 13.61

9 F [He](2s)%(2p)° 2P3; 17.42

10 Ne [He](2s)?(2p)® ISo 21.56

3 11 Na [Ne](3s)’ 281, 5.14
12 Mg [Ne](3s)? 1So 7.64

13 Al [Ne](3s)2(3p)! P 5.94

14 Si [Nel(3s)?(3p)° 3Py 8.15

15 P [Ne](3s)>(3p)° 4S32 10.48

16 S [Ne](3s)2(3p)* 3P, 10.36

17 Cl [Ne](3s)2(3p)° P30 13.01

18 Ar [Ne](3s)?(3p)® I3, 15.76

4 19 K [Ar](4s)! 2812 4.34
20 Ca [Ar](4s)? IS 6.11

21 Sc [Ar](3d)! (4s)? D32 6.54

22 Ti [Ar](3d)?(4s)? 3F, 6.83

23 \ [Ar](3d)> (4s)? “F3 2 6.74

24 Cr [Ar](3d)*(4s)? 783 6.76

25 Mn [Ar](3d)° (4s)? 6332 7.43

26 Fe [Ar](3d)® (4s)* SDy 7.87

27 Co [Ar](3d)7 (4s)? 4Fg) 7:86

28 Ni [Ar](3d)3 (45)? 3F4 7.63

29 Cu [Ar](3d)!0(4s)! S 7.72

30 Zn [Ar](3d)!0(4s)? 1Sy 9.39

31 Ga [Ar](3d)10(4s)? (4p)! P 6.00

32 Ge [Ar](3d)'0(4s)? (4p)* 3P 7.88

33 As [Ar](3d)10(45)? (4p)° 4332 9.81

34 Se [Ar](3d)!10(4s)? (4p)* 3p, 9.75

35 Br [Ar](3d)'%(4s)? (4p)° P32 11.84

36 Kr [Ar](3d)'0(4s)? (4p)® ISy 9.81
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Consider another example, the carbon atom. Its ground state configuration (1 5)?(2s)%(2p)?
implies that its total angular momentum is determined by the two 2p electrons. The coupling
of the two spins s = 1/2, as shown in equations (7.174) to (7.177), yields two values for their
total spin § = 0 or S = 1; and, as shown in Problem 7.3 page 418, a coupling of two individual
orbital angular momenta / = 1 yields three values for the total angular momenta L = 0, 1, or
2. But the exclusion principle dictates that the total wave function has to be antisymmetric, i.e.,
the spin and orbital parts of the wave function must have opposite symmetries. Since the singlet
spin state S = 0 is antisymmetric, the spin triplet S = 1 is symmetric, the orbital triplet L =1
is antisymmetric, the orbital quintuplet L = 2 is symmetric, and the orbital singlet L = 0 is
symmetric, the following states are antisymmetric

1S, 3Py, 3Py, 3Py, or 'D,, (8.70)

hence any one of these states can be the ground state of carbon. Again, which one of them has
the lowest energy?

To answer this question and the question pertaining to (8.69), we may invoke Hund's rules:
(a) The lowest energy level corresponds to the state with the largest spin S (i.e., the maximum
number of electrons have unpaired spins), (b) Among the states with a given value of S, the
lowest energy level corresponds to the state with the largest value of L, (c) For a subshell that
1s less than half full the the lowest energy state corresponds to J = |L — S|, and for a subshell
that is more than half full the lowest energy state corresponds to J = L + §S.

Hund’s third rule answers the question pertaining to (8.69): since the 2p shell of boron is
less than half full, the value of J corresponding to the lowest energy is given by J = |L — §| =
1-1/2=1/2, hence Zp, /2 1s the lower energy state.

To find which one of the states (8.70) has the lowest energy, Hund’s first rule dictates that
S = 1. Since the triplet S = 1 is symmetric, we need an antisymmetric spatial wave function;
this is given by the spatial triplet L = 1. We are thus left with three possible choices: J = 0, 1,
or 2. Hund’s third rule precludes the values J = 1 and 2: since the 2p shell of carbon 1s less than
half full, the value of J corresponding to the lowest energy is givenby J = |[L -S| =1-1 =0,
hence *Py is the lower energy state (Table 8.1). That is, the two electrons are in different spatial
states or different orbitals (Figure 8.2). Actually, we could have guessed this result: since the
Coulomb repulsion between the two electrons when they are paired together is much larger
than when they are unpaired, the lower energy configuration corresponds to the case where
the electrons are in different spatial states. The ground state configurations of the remaining
elements, oxygen to argon, can be inferred in a similar way (Table 8.1).

Elements Z > 18

When the 3p shell is filled, one would expect to place the next electron in a 3d shell. But this
doesn’t take place due to the occurrence of an interesting effect: the 4s states have lower energy
than the 3d states. Why? In a hydrogen atom the states 3s, 3p and 3d have the same energy
(E3(0) = —R/3? = —1.51eV, since R = 13.6eV). But in multi-electron atoms, these states

have different energy values. As / increases, the effective repulsive potential #2/( 4 1)/2mr?
causes the d-state electrons to be thrown outward and the s-state electrons to remain closer to
the nucleus. Being closer to the nucleus, the s-state electrons therefore feel the full attraction of
the nucleus, whereas the d-state electrons experience a much weaker attraction. This 1s known
as the screening effect, because the inner electrons, i.e., the s-state electrons, screen the nucleus,
hence the outward electrons (the d-state electrons) do not experience the full attraction of the
nucleus; they instead feel a weak effective potential. As a result, the energy of the 3d-state is
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larger than that of the 4s-state. The screening effect also causes the energy of the 5s-state to
have a lower energy than the 4d-state, and so on. So for a given #, the energies E,; increase as
| increases; in fact, neglecting the spin—orbit interaction and considering relativistic corrections
we will show in Chapter 9 (9.87) that the ground state energy depends on the principal and
orbital quantum numbers # and / as E,E?) = ZZE,(,O){I + a’Z?[2/(21 + 1) = 3/4n]/n}, where
a = 1/137 is the fine structure constant and E,(,O) =—-R/n* =—13.6 eV /n2.

In conclusion, the periodic table can be obtained by filling the orbitals in order of increasing
energy E, as follows (Table 8.1):

Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, s, .... (8.71)

Remarks

The chemical properties of an element is mostly determined by the outermost shell. Hence
elements with similar electron configurations of the outside shell have similar chemical prop-
erties. This is the idea behind the structure of the periodic table: it is arranged in a way that
all elements in a column have similar chemical properties. For example the elements in the
last column, helium, neon, argon, krypton, and so on, have the outer p-shell completely filled
(except for helium whose outside shell is 1s). These atoms, which are formed when a shell or
a subshell is filled, are very stable, interact very weakly with one another, and do not combine
with other elements to form molecules or new compounds; that is, they are chemically inert.
They are very reluctant to give up or to accept an electron. Due to these properties, they are
called noble gases. They have a very low boiling point (around —200° C); note that each row
of the periodic table corresponds to filling out a shell or subshell of the atom. There is a signif-
icant energy gap before the next level is encountered after each of these elements; as shown in
Table 8.1, a large energy is required to ionize these elements; for instance, 24.58 eV is needed
to ionize a helium atom.

Atoms consisting of a closed shell (or a rare gas configuration) plus an s-electron (or a
valence electron), such as Li, Na, K, and so on, have the lowest binding energy; these elements
are known as the alkali metals. In elements consisting of an alkali atom plus an electron, the
second s-electron is more bound than the valence electron of the alkali atom because of the
higher nuclear charge. As the p-shell is gradually filled (beyond the noble gas configuration),
the binding energy increases initially (as in boron, carbon and nitrogen) till the fourth electron,
then it begins to drop (Table 8.1). This is due to the fact that when the p-shell is less than half
full all spins are parallel, hence all three spatial wave functions are antisymmetric. With the
fourth electron (as in oxygen), two spins will be antiparallel or paired, hence the spatial wave
function is not totally antisymmetric causing a drop in the energy. Note that elements with
one electron more than or one electron less than noble gas configurations are the most active
chemically, because they tend to easily give up or easily accept one electron.

Example 8.4

(a) Specify the total angular momenta corresponding to 4G, 3H and 'D.

(b) Find the spectroscopic notation for the ground state configurations of aluminum Al
(Z = 13) and scandium Sc (Z = 21).

Solution

(a) For the term G the orbital angular momentum is L = 4 and the spin is S = 3/2, since
2§+ 1 = 4. The values of the total angular momentum corresponding to the coupling of L = 4
and S = 3/2 are given by |4 — 3/2| < J < 4 + 3/2. Hence we have J = 5/2,7/2,9/2, 11/2.



3. Quantum mechanics in postulational form

We are now prepared to present the basic postulates of quantum mechanics.

Complementarity postulates

Postulate I.  The state of a physical system is represented by a vector (ket) in
a linear vector space of infinitely many dimensions.
We shall make the following explanatory remarks:

(1) Inview of the uncertainty relation, it is not possible to define, as in classical
dynamics, the state of a system by specifying the coordinates and momenta
of the particles at any given instant of time.

(2) A vector (ket) is to represent a state to allow the superposition of states.
By hypothesis only the direction (not the sense such as the “arrow”), but not
its length, defines a state. Thus multiplying a ket by any constant does not
lead to a different state.

(3) The vector space of infinitely many dimensions is an abstract space, and
not the configuration space nor the momentum space of the particles of a
system.

(4) The changes of the state of a system are represented by changes in the ket.
The Newtonian equations of motion are replaced by an equation for the
change of the ket of a system.

Postulate I1.  All physical quantities (“observables™) are represented by
linear hermitian operators, which, acting on the state vector (ket), change
the state of a system.

(1) Linearity is assumed for a linear theory in the state vectors to allow for
superposition of state vectors.

(2) Hermitian operators are employed because hermitian operators have real
eigenvalues. Real eigenvalues are needed on account of another basic postu-
late which connects the mathematical formalism (this and the preceding



postulate) with physics—the result of physical observations (see Probability
Postulate in the following).

(3) The choice of the eigenvectors of an observable as the basis set of vectors
immediately leads to the concepts of representations and transformation of
representations. The requirement of invariance of the hermitian charactor of
operators leads to unitary transformations.

(4) The transformation theory and the Probability Postulate (see I'V below)
build up Quantum Mechanics into a coherent system.

Postulate I1I. The hermitian operators for the coordinate g and the conju-
gate momentum (in the sense of classical dynamics) obey the commutation
relation

h
Pg—ap=7 L. (V-99)

(1) This relation, containing the Planck constant h, causes the system of
quantum mechanics to have a fundamental break with classical physics.

(2) Together with the Probability Postulate (that connects the above mathe-
matical formalism with physics), it leads to the uncertainty relation.

(3) In this sense, it may be regarded as the mathematical expression of the
Einstein-de Broglie relations.

(4) It is a mathematical expression of the concept of complementarity.

(5) The commutation relation (V-99) may be taken to be a basic principle in
quantum mechanics. The postulates I and II have been made for the construc-
tion of a mathematical system to cope with the non-classical commutation
relation.

The above three postulates are essentially of a mathematical nature and
have no real contact with the results of physical measurements. This contact
is provided by the Probability Postulate.

Postulate IV. When a measurement is made of a physical quantity (repre-
sented by the hermitian operator Q) on a system in a state represented by a
vector |a), the expectation value is given by

Q> =<alQla), (V-100)

(1) This postulate contains the main physical contents of the theory; for it
makes theoretical statements of the result of experimental measurements.

(2) If {a) is an eigenstate of Q, say |a) = |q,), then the expectation value of
the measurement is



Q> =<q|Qlq> = 4l aql qi>
= q,, (V-101)

ie., in this case, the measurement will definitely yield, with certainty, the
eigenvalue g, of Q.

(3) If |a> 1n (V-100) 1s an arbitrary state, it can be expanded in the complete
set of eigenkets of Q,

lay = Zkljlq;& {qcla> (V-102)
and

al = %;<a.qk><qkl
and

Q= ;fl(alqmzqk- (V-103)

This states that the result of measurement is not a definite one of the eigen-
values, not an in-between value of the g,’s, but one of all the ¢,’s each of which
may come out with a probability |{a|q,>|*. The probabilities themselves are
definite enough, as they are given by (V-103) but the theory does not tell which
one of the g,’s will actually come out from the measurement.

(4) Itis most important to note that the nature of this probability distribution
|<al|q,>|?, for various k,

is basically different from that in classical statistical physics. In the latter,
probability is introduced, when dealing with an extremely large number of
molecules, as a substitute for the exact knowledge which exits in principle. In
quantum mechanics, even for one atom, a precise knowledge does not exist
and probability is of an intrinsic nature.

For this reason, quantum mechanics differs from classical physics in a basic
way.

(5) Then one may ask why such a probability concept is necessary. For one
thing, since two non-commuting operators do not have simultaneous eigen-
kets, this probability postulate (employed in the derivation of the uncertainty
relation) forms at least a consistent theory from the point of view of the
anschaulich thought-experiments in Heisenberg’s demonstration of the uncer-
tainty relation on the Einstein-de Broglie relations.




(6) A much deeper and more difficult question is whether it is possible to
assume the existence of “hidden variables” and the probability concept arises
as the result of a sort of averaging over those hidden variables.™ If this is the
case, the probability will not be “intrinsic” but has the same classical meaning.

From the experimental point of view, when measurements are made, not
on one atom, but on a large number of atoms, it is not possible to distinguish
between the two kinds of probabilities. The question is a philosophical one—
one concerning the nature of quantum mechanics. The concept of an intrinsic
probability is repugnant to some philosophers of science; the most prominent
ones have been Einstein, Planck and de Broglie. The question has been studied
by von Neumann and the answer seems to be that an interpretation of
probability in terms of hidden variables is inconsistent in the present system
of quantum mechanics. We shall not go into this deep question, but refer to
a review of critical studies by Belinfante.

The four postulates above have not included considerations regarding of
the change of a system in time. For this, a separate postulate is furnished by
the Schrodinger equation:

Postulate V. The change of the state of a physical system in time is governed
by the equation

ho
—;E.a,o = Hla,t),

or

(? % + H(q,p, t)) Y(q,t) =0, (V-104)

where (g, ¢) is the representative {g, t|a,t) of |a,t) in the g-representation.

(1) This equation is an independent postulate, unlike the Schrodinger equa-

tion for momentum, (V-64)
h é
(— Py p> Y,(q) =0,

idq

which can be derived from the commutation relation pg — qp = #/i on the
transformation theory.

™ In the classical kinetic theory of gases, the “hidden variables” are the coordinates and momenta
of the individual molecules. With these variables, the dynamical theory is a deterministic one;
but on averaging over, and therefore suppressing, these variables, the theory works with probable
values.
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(2) In classical dynamics, the time variable ¢ and the energy (Hamiltonian) H
formally behave as a pair of canonical conjugate variables (t, — H). It might
then be thought that, analogously to (g, p), a commutation relation

h
Ht—tH=—-1 (V-105)
i

exists, and if so, then one may have a time representation in which the
hermitian operators are:
ho
t, H=——, V-106
idt ( )
and an energy representation in which the hermitian operators are
h o
H, t=-—. V-107
i 0E ( )
But if two hermitian operators H and ¢ exist that satisfy the commutation
relation (V-105), it can be proved that, if E,, y, are the eigenvalue and

eigenvector of H
Hy, = Epa,
then
H(e"",) = (E, — &)™), QALY

ie., E, — ¢ is the eigenvalue of H, for arbitrary, real value of e, with the
eigenvector ™y, As ¢ is real and arbitrary, it follows that H has a con-
tinuous spectrum of eigenvalues extending from — co to + co. But this is not
true of systems in general; in fact negative infinite total energy is unphysical.
Also systems exist whose energy spectrum is not continuous.

Thus no hermitian operator ¢ exists which satisfies a commutation relation
like (V-105).° For this reason, it is not possible to derive the relations (V-106),
(V-107) from a relation like (V-105).

The Schrodinger equation (V-104) must then be based on a different line of
arguments.

In Sec. 2, (V-98), it is seen that

d L
ih— = a hermitian operator.

dt

" See Prob. 7 at the end of Chap. 2, Sec. 2. Also (V-91a).
° This was pointed out by W. Pauli in his article in Handbuch der Physik, Bd. 24, 2nd ed.
(Springer-Verlag, Heidelberg, 1933).



Quantum Mechanics: General Theory 237

Hence it is reasonable to postulate (V-106)?

H= ho V-109
T ot (VL)

and hence the Schrédinger equation (V-104).
(3) The Schrédinger equation (V-104)

ho
~—+H|¥(qn=0
( en ) (q,0)
is a first-order differential equation in t, but second-order with respect to x,
¥, z. Thus its form is not Lorentz covariant. Attempts to have a relativistic
wave equation have been made.9 These are the Klein-Gordan equation and
the Dirac equation.

(4) Anargument for an equation which is of the first order in d/0t is as follows.
From the normalization

f‘l’*(q, H'¥(q,1)dg =1,

one has

7 A G
Y — Y )dg = 0. V-110
J( ot * ot > 1 ( )

To solve an initial value problem of an equation of first order in 0/dt, one has
to specify ¥ at t = ¢,. For a second order in /dt, it is necessary to specify W
and 0'P/ot at t = t,, but (V-110) does not allow arbitrary ¥ and oW/or.

(5) The Schrodinger equation (V-104) determines (g, ) in the course of time
completely deterministically, and hence the probability |¥(q, )|, but only the
probability distribution, and not the actual outcome of an experiment! One
may say that quantum mechanics is a “causal theory of probabilities”.

(6) There are “constants of motion” of the Schrodinger equation. For ex-
ample, take a system with central symmetry, i.e., the Hamiltonian H is invari-
ant under parity operation (inversion with respect to a center, see Chap. 3,
Sec. 4, (3), (ITI-115)—(III-120)) If at an instant t, the parity of the state of the
system is even, the parity will remain even in time, if the system is not perturbed
by external fields, such as electromognetic fields.

P This is the view of Dirac in The Principles of Quantum Mechanics, Sec. 27, 4th Ed. (Clarendon
Press, Oxford, 1958).

* See references to Schrodinger, Klein, Gordon, de Broglie and Fock at the end of Sec. 3 of
Chap. 3.
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As another example, take an atom with two electrons, such as helium, whose
Hamiltonian is symmetric with respect to the interchange of the two electrons.
The space part (i.e., without the spins) of the wave function of the two electrons
may be symmetric or antisymmetric with respect to this interchange, (although
the total wave function including both the space and the spin parts must be
antisymmetric, according to Pauli’s principle, which constitutes another inde-
pendent postulate). If at one instant the state is symmetric, this symmetry will
remain unchanged in time when the state changes in accordance with the
Schrédinger equation, provided the system is not perturbed by external fields
affecting the electron spins.

Such “constants of motions” are essentially the consequence of the symme-
try properties of the system.

(7) For systems whose Hamiltonian H is not explicitly a function of time, then
the assumption of the form

leads to the time-independent Schrédinger equation
(H(g,p) — EWn(q) = 0. (V-112)
We have seen a few examples of this equation in Chap. 3.

In subsection (6) above, we mentioned that for a system containing identical
particles, there is the question of the symmetry of the state vector, or its
representative ¥(q,,4;,4s,...) in coordinate representation. This question
arises as follows: Take a system containing two identical particles (for example,
electrons), and let us denote them simply by the indices 1 and 2. The Schrédin-
ger equation is

(H(1,2) — E)yy(1,2) = 0.
Let P be the operator interchanging the two identical particles. Hence in
general

P2y(1,2) = ¥(1,2),

so that the eigenvalue of P? is 1, and those of P are + 1, and corresponding
to them, the function (1, 2) is either symmetric with respect to P, i.e.,

Py(1,2) = y(1,2),
or antisymmetric, i.e.,

Pl//a(192) = —'//0(1’2)-
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Both ¥,, Y, are solutions of the Schrodinger equation because
PH(1,2) = H(2,1) = H(1,2).

The question is: Does nature allow both kinds of solutions?

The answer to this question came, paradoxically, before the question was
asked, i.e., before quantum mechanics was born. For the electrons in atoms,
Pauli postulated, the exclusion principle early in 1925. The connection with
the symmetry of the wave function was first given by Dirac (1926). This
principle can now be stated as follows.

Postulate VI. For a system of identical particles of half-odd-integral spin
(such as electrons, muons, protons, neutrons), the wave function is antisym-
metric with respect to the interchange of two particles. For identical particles
of integral spin (such as pions, deuterons, a-particles), the i is symmetric with
respect to the interchange of two particles. .

This principle (including the Pauli principle) re'ally, so to speak, does not
belong to the group of postulates that form the system of quantum mechanics.
It is directly related to the statistics—the Fermi-Dirac and the Bose-Einstein
statistics. The relationship among the symmetry, the spin and the statistics is
regarded as a profound law of nature.
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