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* Figure 10-7 The lowest en-
ergy, or ground, state for N

— fermions has at most two parti- :
cles in each single-particle
leyel, one with spin up and one
~ with spin down. All the levels

up ton = N /2 are filled.
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* Figure 10-9  Because nega-

—— tive n-values for a three-dimen-

sional well do not represent
different states from those al-

—— ready labeled by the corre-

sponding positive values, only
positive values need be count-
ed. This condition restricts us
to one quadrant (one-eighth) of
the full lattice. In other words,
to find the points that corre-

spond to the energy states and
thus allow us to count the

number of states with energy

up to E, we restrict ourselves to
—— points that lie within the octant

that contains all positive coor-

dinates of a sphere whose ra-
dius is proportional to E.
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* Figure 104 Paul A. M,
Dirac was one of the pioneers
of quantum mechanics. He de-
veloped the quantum theory of
radiation and diq ground-
breaking work in the creation
of relativistic quantum me-
chanics. He predicted the exis-
tence of anti-matter. The French
physicist Leon Brillouin, him-
self an important contributor, is
in the background.

® Figure 10-3 The [talian-born
American physicist Enrico
Fermi (1901-1954) was both a
brilliant theorist and an egually
brilliant experimental physi-
ast. Among his many accom-
plishments was his leadership
fﬂ the construction of the first
nuclear reactor. He is shown
here on a hike with Niels Bohr
in 1931.




* Figure 10-2  Wolfgang Pauli
was born in Vienna in 1900 and
died in Zurich in 1958, He was
one of the most brilliant theo-

retical physicists of this century

Satyendranath
Bose
(1894-1974, Indian)

Bose was born and educated in
Calcutta, India. In a paper written
in 1924 he derived the Planck for-
mula for blackbody radiation by
treating the photons as what we
would now call bosons. This paper
drew the attention of Einstein and
secured an invitation for Bose to
visit Europe, where he met Ein-
stein, de Broglie, Born, and others.
Einstein extended Bose's ideas, and
the rules that govern bosons are
now called Bose-FEinstein statis-
tics. We will see some of the dra-
matic consequences of these ideas
in Chapter [3.
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Hans Bethe .

(Born 1906, German-American) [

After postdoctoral work with

— | Rutherford in Cambridge and —

Fermi in Rome, Bethe taught in

Germany for a few years before
__| coming to the United States in
1935. Among many contributions
" to atomic and nuclear physics, he
|is best known for finding the two

| nuclear cycles by which most stars
| get their energy. For this discovery,

he won the 1967 Nobel Prize in
- physics.
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“I read Chandra from beginning to end with intense interest and pleasure.”

— Freeman Dyson, author of Disturbing the Universe and Infinite in All Directions
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Identical Particles

Up to this point, we have dealt mainly with the motion of a single particle. We want to examine
now how to describe systems with many particles. We shall focus on discussing systems of
identical particles and examine how to construct their wave functions.

8.1 Many-Particle Systems

Most physical systems—nucleons, nuclei, atoms, molecules, solids, fluids, gases, etc.—involve
many particles. They are known as many-particle or many-body systems. While atomic, nuclear
and subnuclear systems involve intermediate numbers of particles (~ 2 to 300), solids, fluids
and gzziges are truly many-body systems, since they involve very large numbers of particles
(~ 10°°).

8.1.1 Schrdidinger Equation

How does one describe the dynamics of a system of N particles? This description can be
obtained from a generalization of the dynamics of a single particle. The state of a system of
N spinless particles (we ignore their spin for the moment) is described by a wave function
Y (F1, 7, ... 7N, t), where |¥ (71, 72, ..., PN, )|*d°r1 dPra . .. dPry represents the probability
at time ¢ of finding particle 1 in the volume element d°r1 centered about 71, particle 2 in the
volume d°7, about F2, ..., and particle N in the volume dry about Fy. The normalization
condition of the state is given by

/d3r1 /d3r2 . / ¥ (F1, 72, ..., N, t)|2d3VN =1 (8.1

The wave function ¥ evolves in time according to the time-dependent Schrédinger equation
o a — - - @ - - -

lh'a'}'(”l s P2, PN, )y = HY (P, P, ... TN, ). (8.2)

The form of H is obtained by generalizing the one-particle Hamiltonian P? /(2m) + 17(7) to N

437
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particles:

Ny N L
H = —j— V_),-),...,—' ,t = = = +V;:,F,’;: ’ta 8'3
; j+ (1,72 FN, 1) ;2"1] ) (r1, 72 N> 1) (8.3)

where m; and P ;j are the mass and the momentum of the jth particle and V is the operator

corresponding to the total potential energy.

The formalism of quantum mechanics for an N-particle system can be, in principle, inferred
from that of a single particle. Operators corresponding to different particles commute; for
instance, the commutation relations between the position and momentum operators are

[X;, Pol=ihdi,  [Xj, Xal=1[P, Pel=0 (,k=1,23,...,N), (84)

where X ; 1s the x-position operator of the jth particle, and f’xk the x-momentum operator of
the kth particle; similar relations can be obtained for the y and z components.

Stationary states
In the case where the potential V' is time independent, the solutions of (8.2) are given by sta-

tionary states .

WL TP ) = Y@L, Py) e (8.5)
where E is the total energy of the system and  is solution to the time-independent Schrodinger
equation Hy = Ey, i.e.,

: 2mj

N 2
oo = - L - .- S
[_Z—VJZ-—*'V("],-..,""V)} W(r15r2,-"er)zEW(rlyrZ;--'arN)' (86)
Jj=1

The properties of stationary states for a single particle also apply to N-particle systems. For
instance, the probability density (y | ), the probability current density /, and the expectation
values of time-independent operators are conserved, since they do not depend on time:

(P1A|Y) = (y|A|wp) =/d3r1/d3r2~--/ WL PN AW L P, L PN AT
(8.7)
In particular, the energy of a stationary state is conserved.

Multi-electron atoms .

For an illustration, let us consider an atom with Z electrons. If R is used to represent the posi-
tion of the center of mass of the nucleus, the wave function of the atom depends on 3(Z + 1)
coordinates y (71, 72, . . ., 7z, R), where 71,7, ...,z are the position vectors of the Z elec-
trons. The time-independent Schrodinger equation for this atom, neglecting contributions from
the spin—orbit correction, the relativistic correction and similar terms, is given by

n & n e, & Zé e .
- Vz - —Vz - - — — F 7-, ""3_' ’R
[ r, AL Zlfi—R|+zlri—rj| w(ry, 12 rz, R)

2me {= | >

= Ey(F, 7, ..., 72, R), (8.8)

where M is the mass of the nucleus and —hzﬁfg/ 2M is its kinetic energy operator. The term
—>"Z | Ze2/IFi — R| represents the attractive Coulomb interaction of each electron with the
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nucleus and > ;. ; je 2/~ 7 Fj| is the repulsive Coulomb interaction between the ith and the
jth electrons, |[; — #;| is the distance separating them. As these (Coulomb) interactions are
independent of time, the states of atoms are stationary.

We should note that the Schrodinger equations (8.2), (8.6) and (8.8) are all many-particle
differential equations. As these equations cannot be separated into one-body equations, it is
difficult, if not impossible, to solve them. For the important case where the N particles of the
system do not interact—this is referred to as an independent particle system—the Schrodinger
equation can be trivially reduced to NV one-particle equations (Section 8.1.3); we have seen how
to solve these equations exactly (chapters 4 and 6) and approximately (chapters 9 and 10).

8.1.2 Interchange Symmetry

Although the exact eigenstates of the many-body Hamiltonian (8.3) are generally impossible
to obtain, we can still infer some of their properties by means of symmetry schemes. Let ¢;
represent the coordinates (position #;, spin §;, and any other internal degrees of freedom such as
isospin, color, flavor) of the ith particle and let w (&1, &2, . . ., &) designates the wave function
of the N-particle system.

We define a permutation operator (also called exchange operator) b j as an operator that,

when acting on an N-particle wave function (1, ..., ¢, ..., &y ..., EN), mterchanges the
ith and the jth particles
ﬁijl//(éla"'>fl’5"'s éja'gN) = '//(51’"'afja"'sgi,'-'afN); (89)

i and j are arbitrary (i, j = 1,2, ---, N). Since

ﬁji‘//(éla'”: gl.a"'a éjafN) = W(gla"-agja-'-acfi:---aéN)
= Py, & .., & EN), (8.10)

we have P, j = ﬁji. In general, permutation operators do not commute
PPy # PyPj  or [Py, Pul#0  (ij #KkD). (8.11)

For instance, in the case of a four-particle state w (&1, &, &3, ¢4) = (38 /5253)e_i5‘ , we have

PuPuay (6,8, 8,4) = Py (@, &,.5,8) = y(&, &, &,4) = f 5 e, (8.12)
3 :
PPy (&1, 8,8,8) = Puy(&, &,8,8) = y(&,8,5,8) = 51%6_'54- (8.13)
Since two successive applications of P; ; leave the wave function unchanged,
V/(gls'-'s Iseeey éja---af) = f)ljl//(gbaéj’a ',-“afN)
= l//(fl,..., ',...,g_,,...,f]v), (8.14)

we have }35 = 1, hence ﬁi ; has two eigenvalues *1:

Py, ooy Gy & EN) =W Gy s &y R, (8.15)

ILE Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore, 1998, Chapter 17.
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The wave functions corresponding to the eigenvalue +1 are symmetric and those corresponding
to —1 are antisymmetric with respect to the interchange of the pair (i, j). Denoting these

functions by y; and w,, respectively, we have

!//S(fl,'-',gia'--afjs'-"QZN) = W.S‘(Q\:la-";éja‘--761','--,{[\/)7 (816)
Wﬂ(gla---,‘fi:---:fj5---’§N) = _V/a(é:la--"éj,--'ail',--"fN)‘ (817)
Example 8.1

Specify the symmetry of the following functions:
(@) w(x1, x2) =4(x1 — x2)* +

(b) B(x1, x2) = =523k

)
xy+x)

B0 Pl
x5 4x5+x3—1
c x2) = T T
()X(XI,XZ, 3)_6x1x2x3+———2x§+2x§+2x33 3

(d) D(x1, x2) = 517¢

—|x1]

Solution
(a) The function y (x1, x2) is symmetric, since y (x2, x1) = y(x1, x2).
(b) The function ¢ (x{, x2) is antisymmetric, since ¢ (x2, x1) = —@(x1, x2). And ¢ is zero

when X] = X2: ¢(x1,x1) =0.
(c) The function y (x, x2, X3) is symmetric because

x (1, x2,x3) = x(x1,x3,%) = y(x2, x1,x3) = x(x2,x3, 1)
= y(x3,x1,x2) = y(x3, X2, x1). (8.18)

(d) The function ®(x3, x1) is neither symmetric nor antisymmetric, since
D (x2, x1) = phge Ml # £D(x1, x2).

8.1.3 Systems of Distinguishable Noninteracting Particles

For a system of N noninteracting particles that are distinguishable—each particle has a different
mass m; and experiences a different potential V; (&)—the potential V is given by

V@ r&inesGin e EN) = ZV,@, (8.19)

and the Hamiltonian of this system of N independent particles by

p=3 =3 [-’ivz it | 20
I 2m i H s

where H; = —h? V2 /2m; + V;(&) is the Hamiltonian of the ith particle, known as the single
partlcle Ham11toman The Hamiltonians of different particles commute [H,, H ] = 0, since
[Xi, X;1=[8, Pj1=0.
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The Schrédinger equation of the N -particle system

ﬁwnl,ng,"-,n}\/ (fla sza Y gN) = En],n2,~~~,nN Wn;,nz,“-,ﬂ]v (619 525 T gN)z (821)

separates into N one-particle equations

2
[ v} +V,<f,>] Vi (&) = en, yin, (&) (8.22)

with
N
Eningyny = Eny t+En, + - Eny = Zgn,- (8.23)
i=l

and
N
'//nl,ng,---,nN (gla 62’ ftt fN) = Wnl (él)‘//nz (62) et WnN (éN) = H Q//n,-(fi)- (824)
i=1

We see that, when the interactions are neglected, the N -particle Schrédinger equation separates
into N one-particle Schrédinger equations. The solutions of these equations yield the single-
particle energies ¢, and states yy, (;); the single-particle states are also known as the orbitals.
The total energy is the sum of the single-particle energies and the total wave function is the
product of the orbitals. The number »; designates the set of all quantum numbers of the ith par-
ticle. Obviously, each particle requires one two or three-quantum numbers for its full descrip-
tion depending on whether the particles are moving in a one, two, or three dimensional space; if
the spin were considered, we would need to add another quantum number. For instance, if the
particles moved in a one-dimensional harmonic oscillator, »; designate the occupation number
of the ith particle. But if the particles were the electrons of an atom, then #; would stand for
four quantum numbers: the radial, orbital, and spin quantum numbers N;/;m; ms, .

Example 8.2

Find the energy levels and wave functions of a system of four distinguishable spinless particles
placed in an infinite potential well of size a. Use this result to infer the energy and the wave
function of the ground state and the first excited state.

Solution
Each particle moves in a potential which is defined by V;(x;) = 0for0 < x; < g and V;(x;) =
oo for the other values of x;. In this case the Schrédinger equation of the four-particle system:

4 2 2
7 d
Z Wny,na.n3, n4(xla X2, X3, )C4) En1,l’l2,ﬂ3,n4 Wnl,nz,n3,n4(xl,x2, X3, x4)5

2m i
(8.25)
separates into four one-particle equations

hz d? Vi, (X7)

— — —_ ) . ; s .= 1,2,3’4, 826
I dxiz En; Wn, (Xi) ! ( )
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with 5 s
h : 2 -
En, = it Wn; (xi) = \/jsin (n'—ﬂx,-) . 8.27)
a a

2!’}1,'612 ’
The total energy and wave function are given by

2 2 2 2
a (ﬂ S A ”—4), (8.28)

En\nynyng = 242 \ my my | ms ma

4  /mx . /M7 . /naxw . [N4TT
Wn\,np,n3,na (xl, X2, X3, X4) = - sm (——xl) sim (—xz) s (-——X3) Sm (—X4) o
a a a a a
The ground state corresponds to the case where all four particles occupy their respective
ground state orbitals, n; = ny = n3 = ns4 = 1. The ground state energy and wave function are
thus given by

B2 (1 1 1 1
Eii11= (—-—- +—+—+ —) (8.30)

2a2 \m m;  m3y  mg
4 7 Nz . (T . T
wi,1.1,1(x1, X2, X3, x4) = — sin (—x1) sin (—xz) sin (—x3) sin (—x4) . (8.31)
a a a a a

The first excited state is somewhat tricky. Since it corresponds to the next higher energy
level of the system, it must correspond to the case where the particle having the largest mass
occupies its first excited state while the other three particles remain in their respective ground
states. For argument’s sake, if the third particle were the most massive, the first excited state
would correspond to the configuration n; = ny = n4 = 1 and n3 = 2; the energy and wave
function of the first excited state would then be given by

Wr? (1 1 4 1
Erig=—= (—+—+—+——), (8.32)
2a my my m3  mg

4 ) . 2 :
wi,1,2,1(x1, X2, X3, X4) = — sin (le) sin (Exz) sin (—nx3) sin (1x4) . (8.33)
a a a a a

Continuing in this way, we can obtain the entire energy spectrum of this system.

8.2 Systems of Identical Particles

8.2.1 Identical Particles in Classical and Quantum Mechanics

In classical mechanics, when a system is made of identical particles, it is possible to identify
and distinguish each particle from the others. That is, although all particles have the same
physical properties, we can “tag” each classical particle and follow its motion along a path.
For instance, each particie can be colored differently from the rest, hence we can follow the
trajectory of each particle separately at each time. Identical classical particles, therefore, do
not lose their identity; they are distinguishable.

In quantum mechanics, however, identical particles are truly indistinguishable. The un-
derlying basis for this is twofold. First, to describe a particle, we cannot specify more than
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Detector Dy Q/ Detector D Q/

Si 6 S S 6 M)
» @

3

A
®
A

r 3

(z —6) (r —6)

Detector D; Detector D,

Figure 8.1 When scattering two identical particles in the center of mass frame, it is impossible
to forcast with certitude whether the particles scatter according to the first process or to the
second. For instance, we cannot tell whether the particle fired from source S; will make it to
detector D) or to D3.

a complete set of commuting observables. In particular, there exists no mechanism to tag the
particles as in classical mechanics. Second, due to the uncertainty principle, the concept of the
path of a particle becomes meaningless. Even if the position of a particle is exactly determined
at a time, it is not possible to specify its coordinates at the next instant. Thus, identical particles
lose their identity (individuality) in quantum mechanics.

To illustrate this, consider an experiment in which we scatter two identical particles. As
displayed in Figure 8.1, after particles 1 and 2 (fired from the sources S1 and $2) have scattered,
it is impossible to distinguish between the first and the second outcomes. That is, we cannot
determine experimentally the identity of the particles that are collected by each detector. For
instance, we can in no way tell whether it is particle 1 or particle 2 that has reached detector D .
We can only say that a particle has reached detector D) and another has made it to D5, but no
information on their respective identities. There exists no experimental mechanism that allows
us to follow the motion of each particle from the time it is fired out of the source till the time it
reaches the detector. This experiment shows how the individuality of a microscopic particle is
lost the moment it is mixed with other similar particles.

Having discussed the indistinguishability concept on a two-particle system, let us now study
this concept on larger systems. For this, consider a system of N identical particles whose wave
function 1s w ({1, &2, ..., EN).

The moment these N particles are mixed together, no experiment can determine which
particle has the coordinates &1, or which one has &, and so on. It is impossible to specify
experimentally the identity of the particle which is located at &, or that located at {3, and so
on. The only measurements we can perform are those that specify the probability for a certain
particle to be located at &7, another at &, and so on, but we can never make a distinction as to
which particle is which.

As a result, the probability remains unchanged by an interchange of the particles. For
instance, an interchange of particles i and j will leave the probability density unaffected:

2 (834)

W& & Gy G = (WG, Gy ey G EN)
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hence

w(&, &, 8L & L) =, &2 G e es Gis el 8N (8.35)

This means that the wave function of a system of N identical particles is either symmetric or
antisymmetric under the interchange of a pair of particles. We will deal with the implications
of this result in Section 8.2.3. We will see that the sign in (8.35) is related to the spin of the
particles: the negative sign corresponds to particles with half-odd-integral spin and the positive
sign corresponds to particles with integral spin; that is, the wave functions of particles with
integral spins are symmetric and the wave functions of particles with half-odd-integral spins
are antisymmetric. In fact, experimental observations show that, in nature, particles come in
two classes:

e Particles with integral spin, S; = 0, 1A, 2k, 3h,---, such as photons, pions, alpha
particles; these particles are called bosons.

e Particles with half-odd-integral spin, S; = h/2, 3k/2, 5h/2, Th/2, ..., such as quarks,
electrons, positrons, protons, neutrons. These particles are called fermions.

That is, particles occurring in nature are either bosons or fermions.
Before elaborating more on the properties of bosons and fermions, let us present a brief
outline on the interchange (permutation) symmetry.

8.2.2 Exchange Degeneracy

How does the interchange symmetry affect operators such as the Hamiltonian? Since the
Coulomb potential, which results from electron—electron and electron—nucleus interactions,

S o = Z, Zé e’
VG P Fr) == D + (8.36)

pel TN (el ]

is invariant under the permutation of any pair of electrons, the Hamiltonian (8.8) is also in-
variant under such permutations. This symmetry also applies to the orbital, spin and angular
momenta of an atom. We may thus use this symmetry to introduce an another definition of the
identicalness of particles: The N particles of a system are said to be identical if the various
observables of the system (such as the Hamiltonian H, the angular momenta, and so on) are
symmetrical when any two particles are interchanged. If these operators were not symmetric
under particle interchange, the particles would be distinguishable.

The invariance of the Hamiltonian under particle interchanges is not without physical impli-
cations: the eigenvalues of H are degenerate. The wave functions corresponding to all possible
electron permutations have the same energy £: H w = Ew. This is known as the exchange
degeneracy. For instance, the degeneracy associated with a system of two identical particles is
equal to 2, since (&1, &) and w (&, &q) correspond to the same energy E.

So the Hamiltonian of a system of N identical particles (m; = m) is completely symmetric
with respect to the coordinates of the particles:

H(él,....:i..A..I:Jf'a---«‘:;\"] = Zq’_};;_i-V(él’agl,’fja’fN)

= HEG, ... & ooy &y oy END (8.37)
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because V is invariant under the permutation of any pair of particles i «— j:
DL, s G oees Eir s ENY = Ty ey & evs Ein s EN)- (8.38)

This property can also be ascertained by showing that H commutes with the particle inter-
change operator P;; . If v 1s eigenstate to H with eigenvalue E, we can write

APy, ..., &, ..., &, LN =Hy (&, o &y s EN)
=Ew@, ..., &G N) = EPju(&1, .. & L EN)

:ﬁijEl//(gl’"'Séi7"',§j,""§N):ﬁinAW(il’""§i7"'7éj,""§N))
(8.39)

or o
[A, P,;]=0. (8.40)

Therefore, P;; ; is a constant of the motion. That is, if we start with a wave function that s sym-
metric (antisymmetric), it will remain so for all subsequent times. Moreover, since P, 7 and H
commute, they possess a complete set of functions that are joint eigenstates of both. As shown
in (8.15) to (8.17), these eigenstates have definite parity, either symmetric or antisymmetric.

8.2.3 Symmetrization Postulate

We have shown in (8.35) that the wave function of a system of N identical particles is either
symmetric or antisymmetric under the interchange of any pair of particles:

W(gli :23"" fi”"’ §j7"',§N)=iW(gvl3 525"" éfj"", éi""’gN)' (8'41)

This result, which tumns out to be supported by experimental evidence, is the very essence of
the symmetrization postulate which stipulates that, in nature, the states of systems containing
N identical particles are either totally symmetric or totally antisymmetric under the interchange
of any pair of particles and that states with mixed symmetry do not exist. Besides that, this
postulate states two more things:

e Particles with integral spins, or bosons, have symmetric states.
e Particles with half-odd-integral spins, or fermions, have antisymmetric states.

Fermions are said to obey Fermi—-Dirac statistics, and bosons to obey Bose-Einstein statistics.
So the wave function of a system of identical bosons is totally symmetric, and the wave function
of a system of identical fermions is totally antisymmetric.

Composite Particles

The foregoing discussion pertains to identical particles that are “simple” or elementary such as
quarks, electrons, positrons, muons, and so on. Let us now discuss the symmetry of systems
of identical composite “particles” where each particle is composed of two or more identical
elementary particles. For instance, alpha particles, which consist of nuclei that are composed
of two neutrons and two protons each, are a typical example of composite particles. A system
of N hydrogen atoms can also be viewed as a system of identical composite particles where
each “particle” (atom) consists of a proton and an electron. Protons, neutrons, pions, etc., are



446 8. IDENTICAL PARTICLES

themselves composite particles, because protons and neutrons consist of three quarks, and pions
consist of two. Quarks are elementary spin % particles.

Composite particles have spin. The spin of each composite particle can be obtained by
adding the spins of its constituents. If the total spin of the composite particle is half-odd-integer,
this particle behaves like a fermion, hence it obeys Fermi-Dirac statistics. If, on the other
hand, its resultant spin is integer, it behaves like a boson and obeys Bose-Einstein statistics. In
general, if the composite particle has an odd number of fermions, it is then a fermion, otherwise
it is a boson. For instance, nucleons are fermions because they consist of three quarks; mesons
are bosons because they consist of two quarks. For another illustrative example, let us consider
the isotopes “He and >He of the helium atom: “He, which is called an alpha particle, is a boson
for it consists of four nucleons (two protons and two neutrons), while *He is a fermion since it
consists of three nucleons (one neutron and two protons). The hydrogen atom consists of two
fermions (an electron and a proton), so it is a boson.

8.2.4 Constructing Symmetric and Antisymmetric Functions

Since the wave functions of systems of identical particles are either totally symmetric or totally
antisymmetric, it is appropriate to study the formalism of how to construct wave functions
that are totally symmetric or totally antisymmetric starting from unsymmetric functions. For
simplicity, consider first a system of two identical particles. Starting from any normalized
unsymmetric wave function (&1, &), we can construct symmetric wave functions ;s (&, £2)
as

@) = 2= [ &)+ v ), (842

and antisymmetric wave functions , (&1, &) as

1 v
valét, @)= —=[ v, &) - w(& ), (8.43)

where 1/+/2 is a normalization factor.
Similarly, for a system of three identical particles, we can construct w; and y, from an

unsymmetric function y as follows:

1
0.8 = [ vena &) TrEns )+ iy 6,8
F @A +vGaa+rE.aa|. 64
x - L -
vald @8 = | V@ a8 - vEE &) T rE.8.9)

- p@ A V@A - vG.am]. 64

Continuing this way, we can in principle construct symmetric and antisymmetric wave func-
tions for any system of N identical particles.
8.2.5 Systems of Identical Noninteracting Particles

In the case of a system of N noninteracting identical particles, where all particles have equal
mass m; = m and experience the same potential Vi &) = V(&) the Schrédinger equation of
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the system separates into N identical one-particle equations
B,
=5 Vi T VG | yn(S) = En yrm (G)- (8.46)

Whereas the energy is given, like the case of a ]s\ystem of N distinguishable particles, by a sum of

the single-particle energies Ey, n,...ay = D.in1 £n;» the wave function can no longer be given

by a simple product Wu, n,,...nx(€1,82, ..., EN) = H1N=1 wn, (&) for at least two reasons. First,
if the wave function is given by such a product, it would imply that particle 1 is in the state yy, ,
particle 2 in the state yy,, ..., and particle N in the state vy, . This, of course, makes no sense
since all we know is that one of the particles is in the state y,,, another in ,,, and so on; since
the particles are identical, there is no way to tell which particle is in which state. If, however, the
particles were distinguishable, then their total wave function would be given by such a product
as shown in (8.24). The second reason why the wave function of a system of identical particles
cannot be given by Hf\;l wp, (&) has to do with the fact that such a product has, in general,
no definite symmetry—a mandatory requirement for systems of N identical particles whose
wave functions are either symmetric or antisymmetric. We can, however, extend the method
of Section 8.2.4 to construct totally symmetric and totally antisymmetric wave functions from
the single-particle states wy, (&;). For this, we are going to show how to construct symmetrized
and antisymmetrized wave functions for systems of two, three, and N noninteracting identical
particles.

8.2.5.1 Wave Function of Two-Particle Systems

By analogy with (8.17) and (8.43), we can construct the symmetric and antisymmetric wave
functions for a system of two identical, noninteracting particles in terms of the single-particle
wave functions as follows:

pe) = = [ @)wn @)+ m @y @] (847)
1
va(1, &) = E [ Vn, ($1) wn, ($2) — wn (&2) wn, (é:l):l > (8.48)

where we have supposed that n; # ny. When n; = ny = n the symmetric wave function is
given by ws (&1, &) = wn (1) wn(&2) and the antisymmetric wave function is zero; we will deal
later with the reason why w,4(¢1, £2) = 0 whenever n1 = n».

Note that we can rewrite y; as

1 n
s s = — P ni no 5 849
ws (&1, &) ﬁ!}; Wiy (G1) Wny (£2) (8.49)

where P is the permutation operator, and where the sum is over all possible permutations (here
we have only two possible ones). Similarly, we can write y/; as

Va1, &) = % ;(—DPPW v &), (8.50)
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where (—l)P is equal to +1 for an even permutation (i.e., when we interchange both & and &
and also n; and n3) and equal to —1 for an odd permutation (i.e., when we permute ¢; and & but
not n1, ny, and vice versa). Note that we can rewrite , of (8.48) in the form of a determinant

__1__ W (€1)  Wn &) |
l//a(fl,étz)——ﬁ’ vy (51) wn;(«:z) : (8.51)

8.2.5.2 Wave Function of Three-Particle Systems

For a system of three noninteracting identical particles, the symmetric wave function is given
by

1 ~
ws (1,6, 85) = ﬁ ; Pyn (&) Wny (&2) wny (&3) (8.52)
or by
1
ws (&1, 8, 85) ﬁ [ V/nl(fl)‘//nz(é)‘//m (&) + Wny (fl)‘//nz @:3)‘//n3 (&)

+ Wn, (fZ)an (4)) Wy (‘:3) + W, @:2)'//@ (63)‘//n3 1)
+ Y @)W €)Y (@) + Yimy @)W @)W (&) ] (853)

and the antisymmetric wave function is given by
1 .
va@u & &) = —= ;(—1)”1’%1 QUZACNZNEY (8.54)

or, in the form of a determinant, by

1 l//nl('/:l) V/ny@:Z) '//nl(é)
',l/a(fl,fz,f?,):f W& ¥ (&)  wm (&) | (8.55)
3 @) v (@) v (&)

Ifn) = ny = n3 = nwehave ys(&1, 8, &) = wn($1) wn (&) wa (&) and ya(ér, £, $5) = 0.

8.2.5.3 Wave Function of Many-Particle Systems

We can generalize (8.52) and (8.55) and write the symmetric and antisymmetric wave functions
for a system of N noninteracting identical particles as follows:

1 “
s\Gl, >ecc = == P ny ny o Yny ) 856
ws (&L & EN) — ; Wy (E)Wny (E2) -+ Wy (EN) (8.56)

1
wa(&1, 8, ..., EN) = ﬁg(—l)”wm(a)wm(@)---wnN(fN), (8.57)

or
Yny (‘fl) Yn, (fZ) e Wiy (fN)
1 Wny (§1)  Wny (&) oo wm ()

Wa(él,fz,...,f]v) E——
N!

(8.58)

nn @) Yoy @) Sy (W)
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This N x N determinant, which involves one-particle states only, is known as the Slater deter-
minant. An interchange of any pair of particles corresponds to an interchange of two columns
of the determinant; this interchange introduces a change in the sign of the determinant. For

even permutations we have (— ¥ =1, and for odd permutations we have (=P = ~1.

The relations (8.56) and (8.58) are valid for the case where the numbers 1, na, .. ., ny are
all different from one another. What happens if some, or all, of these numbers are equal? In the
symmetric case, if n] = ny = ... = ny then y; is given by

N
Ws (i, &, os E) = [ Jwnl&) = wn Gy (&) - - wn ). (8.59)
i=l
When there is a multiplicity in the numbers 7y, n2, .. ., ny (i.e., when some of the numbers »;

occur more than once), we have to be careful and avoid double counting. For instance, if n;
occurs N times in the sequence n1, s, . . ., ny, if ny occurs N, times, and so on, the symmetric
wave function will be given by

/’N1!N2!-

- Np! - . . ;
ws (1, &, ooos IN) = D Pum )Y (&) wnn N (8.60)
N1 .

the summation ), is taken only over permutations which lead to distinct terms and includes
N!/Ni!N,!- - N,! different terms. For example, in the case of a system of three independent,
identical bosons where n; = ny = n and n3 # », the multiplicity of ny is N; = 2, hence y; is
given by

21 A 1
ws (&1, &, &) = \/3:'21; Pyn(E)wn(&)wn, (&3) = 7 [ wn(&1) wn($2) wny (&3)

+ )Yy @)0n () + v ED Y @IWn(E)]. (8.61)

Unlike the symmetric case, the antisymmetric case is quite straightforward: if, among the
numbers ny, ny, ..., ny, only two are equal, the antisymmetric wave function vanishes. For
instance, if n; = nj, the ith and jth rows of the determinant (8.58) will be identical, hence the
determinant vanishes identically. Antisymmetric wave functions, therefore, are nonzero only
for those cases where all the numbers n1, na, ..., ny are different.

8.3 The Pauli Exclusion Principle

As mentioned above, if any two particles occupy the same single-particle state, the determinant
(8.58), hence the total wave function, will vanish since two rows of the determinant will be
identical. We can thus infer that in a system of N identical particles, no two fermions can
occupy the same single-particle state at a time; every single-particle state can be occupied by
at most one fermion. This is the Pauli exclusion principle, which was first postulated in 1925
to explain the periodic table. It states that no two electrons can occupy simultaneously the
same (single-particle) quantum state on the same atom; there can be only one (or at most one)
electron occupying a state of quantum numbers n;limi;ms;: Ynl;m,m,, (i, Si). The exclusion
principle plays an important role in the structure of atoms. It has a direct effect on the spatial
distribution of fermions.
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Boson condensation

What about bosons? Do they have any restriction like fermions? Not at all. There is no
restriction on the number of bosons that can occupy a single state. Instead of the exclusion
principle of fermions, bosons tend to condense all in the same state, the ground state; this
is called boson condensation. For instance, all the particles of liquid “He (a boson system)
occupy the same ground state. This phenomenon is known as Bose—FEinstein condensation. The
properties of liquid 3He are, however, completely different from those of liquid *He, because
3He is a fermion system.

Remark

We have seen that when the Schrédinger equation involves the spin, the wave function of a
single particle is equal to the product of the spatial part and the spin part: ¥ (7, S) =yw@)y (S)
The wave function of a system of N particles, which have spins, is the product of the spatial
part and the spin part:

Wy, S1; P2, So; s s SN) = WL, Fas .., )X SL, S2, .., Sh). (8.62)

This wave function must satisfy the appropriate symmetry requirements when the N particles
are identical. In the case of a system of N identical bosons, the wave function must be symmet-

ric, hence the spatial and spin parts must have the same parity:

I .z wa(F1, F2, ..., rN),(a(Sl, Sz, .y SN)
Yo(ry, S1; m2, 82, ... FN, Sy) = N 5 8.63
S(l ! 2 2 v N) [ ‘//s("'l, r29 000 rN)XS(Sla S29 000 SN) ( )

In the case of a system of N identical fermions, however, the space and spin parts must have
different parities, leading to an overall wave function that is antisymmetric:

- L2 war1, 72, ..., "N)Xs(Sl, Sz, e S'N)
Y,(r1, S1; r2, 82, ... Fy, SN) = L > 8.64
alfl 172, 652 R [ ws(F1s P2y ooy P Xa(S1, S2s oty SN); (8.64)

Example 8.3 (Wave function of two identical, noninteracting particles)
Find the wave functions of two systems of identical, noninteracting particles: the first consists
of two bosons, and the second of two spin % fermions.

Solution
For a system of two identical, noninteracting bosons, (8.47) and (8.48) yield

pd ped r n Fa) — F n r S’ s g
WG ST B) = [ ‘//m(il)‘// z(iz) ‘//nl(tZ)W z(il)] xa(S1, 52) (8.65)
V2| [ wm Gwny ) + wn, Gy 1)) 25 (51, S2),

and for a system of two spin % fermions

L [ wm GO wm 2 = v, G2 yn, FD] 25 (S1, $2) (8.66)

W, (71, S1; 72, So) =
Lol =8 [ Wy G Wy F2) + Wy P2 yimy G1)] xa(S1, S2),
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where, from the formalism of angular momentum addition, there are three states (a triplet) that
are symmetric, xs(S1, S2):

—

—
——
—

N —
Nl —
——

N

|§ b}
. S S = 1 11 1 1 1 1 11
L _ 1y 1 _ 1
3 -4) [ -4
and one state (a singlet) that is antisymmetric, y, (31 , 3’2):
5o 1 11 1 1 1 1 11
meletS1, )= —( |=2) |= =) -z - =) |2} ). 8.68
Koinglet (31, 57) «/5( ‘2 2>1 2 2>2 2 3>1 ‘2 2>2) (5.69)

8.4 The Exclusion Principle and the Periodic Table

Explaining the periodic table is one the most striking successes of the Schrodinger equation.
When combined with the Pauli exclusion principle, the equation offers insightful information
on the structure of multi-electron atoms.

In Chapter 6, we saw that the state of the hydrogen’s electron, which moves in the spher-
ically symmetric Coulomb potential of the nucleus, is described by four quantum numbers 7,
1, mi and ms: Pnimm,(F) = Ynim; (%) Ym,, Where wnim,(F) = Rai(r)Yim; (6, ¢) is the elec-
tron’s wave function when the spin is ignored and ym, = ‘%, i%> is the spin’s state. This
representation turns out to be suitable for any atom as well.

In a multi-electron atom, the average potential in which every electron moves is different
from the Coulomb potential of the nucleus; yet, to a good approximation, it can be assumed
to be spherically symmetric. We can therefore, as in hydrogen, characterize the electronic
states by the four quantum numbers n, /, m; and m;, which respectively represent the principal
quantum number, the orbital quantum number, the magnetic (or azimuthal) quantum number,
and the spin quantum number; m, represents the z-component of the electron orbital angular
momentum and m; the z-component of its spin.

Atoms have shell structure. Each atom has a number of major shells that are specified by
the radial or principal quantum number n. Shells have subshells which are specified by the
orbital quantum number /. Subshells in turn have subsubshells, called orbitals, specified by my;
so an orbital is fully specified by three quantum numbers n, I, my, i.e., it is defined by |nlm;).
Each shell n therefore has » — 1 subshells correspondingto/ = 0, 1,2, 3, ..., n — 1, and in
turn each subshell has 2/ + 1 orbitals (or subsubshells), since tom; = —/, = + 1, =1 + 2, ...,
{ —2,1—1,1 Asin hydrogen, individual electrons occupy single-particle states or orbitals;
the states corresponding to the respective numerical values / = 0, 1,2, 3,4, 5, ... are called s,
p,d, f, g h, ... states. Hence for a given n an s-state has 1 orbital (m; = 0), a p-state has 3
orbitals (m; = —1,0, 1), a d-state has 5 orbitals (m; = —2,—1,0, 1, 2), and so on (Chapter
6). We will label the electronic states by n/ where, as before, / refers to s, p, d, f, etc.; for
example 1s corresponds to (n, /) = (1, 0), 2s corresponds to (n, /) = (2, 0), 2p corresponds to
(n,1) = (2, 1), 3s corresponds to (n, ) = (3, 0), and so on.

How do electrons fill the various shells and subshells in an atom? If electrons were bosons,
they would all group in the ground state |n/m;) = |[100); we wouldn’t then have the rich di-
versity of elements that exist in nature. But since electrons are identical fermions, they are
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Element 1ls 2s 2p Configuration
H (1s)!

He (1s)*

Li (1s)2(2s)"

Be (1s)*(25)?

B (1s)*(2s)*(2p)’
C (15)%(25)*(2p)
N (15)*(25)*(2p)°
0 (1s)2(2s)* (2p)*
F (15)*(2s)*(2p)°
Ne (1s)2(25)*(2p)°

Figure 8.2 Filling orbitals according to the Pauli exclusion principle.
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governed by the Pauli exclusion principle which states that no two electrons can occupy si-
multaneously the same quantum state |\nlmymg) on the same atom. Hence each orbital |nim;)
can be occupied by two electrons af most: one having spin up m; = —I—%, the other spin down
ms = —%. Hence, each state n/ can accommodate 2(2/ + 1) electrons. So an s-state (i.e., |#00))
can at most hold 2 electrons, a p-state (i.e., [n1m;)) at most 6 electrons, a d-state (i.e., |n2m;))
at most 10 electrons, an f-state (i.e., |#3my;)) at most 14 electrons, and so on (Figure 8.2).2

For an atom in the ground state, the electrons fill the orbitals in order of increasing energy;,
once a subshell is filled, the next electron goes into the vacant subshell whose energy is just
above the previous subshell. When all orbitals in a major electronic shell are filled up, we get
a closed shell; the next electron goes into the next major shell, and so on. By filling the atomic
orbitals one after the other in order of increasing energy, one obtains all the elements of the
periodic table (Table 8.1).

Elements 1 < Z < 18

As shown in Table 8.1, the first period (or first horizontal row) of the periodic table has two
elements, hydrogen H and helium He; the second period has 8 elements, lithrum Li to neon
Ne; the third period also has 8 elements, sodium Na to argon Ar; and so on. The orbitals of
the 18 lightest elements, 1 < Z < 18, are filled in order of increasing energy according to the
sequence: 1s, 2s, 2p, 3s, 3p. The electronic state of an atom is determined by specifying the
occupied orbitals or by what is called the electronic configuration. For example, hydrogen has
one electron, its ground state configuration is (1s)'; helium He has two electrons: (1s)?; lithium
Li has three electrons: (1s)2(2s)!; beryllium Be has four: (1s)2(2s)?, and so on.

Let us now say few words about how to determine the total angular momentum of an atom.
For this, we need to calculate the total orbital angular momentum L= z, 1 I;, the total spm
S = Z, | 5i, and then obtain total angular momentum by coupling Land S,ie,J =L+,
where l and 5; are the orbital and spin angular momenta of individual electrons. As will be
seen in Chapter 9, when the spin—orbit coupling is considered, the degeneracy of the atom’s
energy levels 1s partially lifted, introducing a splitting of the levels. The four numbers L, S, J
and M are good quantum numbers, where |L — S| < J < L + Sand —J < M < J. So there
are 25 + 1 values of J when L > Sand 2L + 1 values when L < S. Since the energy depends
on J, the levels corresponding to an L and S split into (25 + 1)-multiplet. The issue now is
to determine which one of these states has the lowest energy. Before studying this issue, let
us introduce the spectroscopic notation according to which the state of an atom is labelled by
25411 ; where, as before, the numbers L = 0,1,2,3,...aredesignated by S, P, D, F, .... For
example, since the total angular momentum of a beryllium atom is zero J = 0, because L = 0
(all electrons are in s-states, /; = 0) and S = 0 (both electrons in the (1s)? state are paired and
s0 are the two electrons in the (2s)? state), the ground state of beryllium can be written as IS,.
This applies actually to all other closed shell atoms such as helium He, neon Ne, argon Ar, and
so on; their ground states are all specified by 'Sy (Table 8.1).

Let us now consider boron B: the closed shells 1s and 2s have L = S = J = 0. Thus the
angular momentum of boron is determined by the 1p electron whichhas S =1/2andL =1. A
coupling of S = 1/2 and L = 1 yields J = 1/2 or 3/2 leading therefore to two possible states:

2P1/2, or 2P3/2. (8.69)

Which one has a lower energy?

ZR. Serway, C. J. Moses, and C. A. Moyer, Modern Physics, Saunders College Publishing, New York, 1989, p.238.
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Table 8.1 Ground state electron configurations, spectroscopic description, and ionization ener-
gies for the first four rows of the Periodic Table. The brackets designate closed-shell elements.

Ground state Spectroscopic Ionization

Shell Z Element configuration desctiption energy (eV)
1 1 H (1s) *S1)2 13.60
2 He (1s)> 1Sy 24.58

2 3 Li [He](2s)! = (1s)*(2s)! 2S1,2 5.39
4 Be [He](2s)? ISo 9.32

5 B [He](2s)?(2p)* P 8.30

6 C [He](25)2(2p)? 3P 11.26

7 N [He](2s)?(2p)° 4832 14.55

8 0 [He](25)*(2p)* 3p, 13.61

9 F [He](2s)%(2p)° 2P3; 17.42

10 Ne [He](2s)?(2p)® ISo 21.56

3 11 Na [Ne](3s)’ 281, 5.14
12 Mg [Ne](3s)? 1So 7.64

13 Al [Ne](3s)2(3p)! P 5.94

14 Si [Nel(3s)?(3p)° 3Py 8.15

15 P [Ne](3s)>(3p)° 4S32 10.48

16 S [Ne](3s)2(3p)* 3P, 10.36

17 Cl [Ne](3s)2(3p)° P30 13.01

18 Ar [Ne](3s)?(3p)® I3, 15.76

4 19 K [Ar](4s)! 2812 4.34
20 Ca [Ar](4s)? IS 6.11

21 Sc [Ar](3d)! (4s)? D32 6.54

22 Ti [Ar](3d)?(4s)? 3F, 6.83

23 \ [Ar](3d)> (4s)? “F3 2 6.74

24 Cr [Ar](3d)*(4s)? 783 6.76

25 Mn [Ar](3d)° (4s)? 6332 7.43

26 Fe [Ar](3d)® (4s)* SDy 7.87

27 Co [Ar](3d)7 (4s)? 4Fg) 7:86

28 Ni [Ar](3d)3 (45)? 3F4 7.63

29 Cu [Ar](3d)!0(4s)! S 7.72

30 Zn [Ar](3d)!0(4s)? 1Sy 9.39

31 Ga [Ar](3d)10(4s)? (4p)! P 6.00

32 Ge [Ar](3d)'0(4s)? (4p)* 3P 7.88

33 As [Ar](3d)10(45)? (4p)° 4332 9.81

34 Se [Ar](3d)!10(4s)? (4p)* 3p, 9.75

35 Br [Ar](3d)'%(4s)? (4p)° P32 11.84

36 Kr [Ar](3d)'0(4s)? (4p)® ISy 9.81
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Consider another example, the carbon atom. Its ground state configuration (1 5)?(2s)%(2p)?
implies that its total angular momentum is determined by the two 2p electrons. The coupling
of the two spins s = 1/2, as shown in equations (7.174) to (7.177), yields two values for their
total spin § = 0 or S = 1; and, as shown in Problem 7.3 page 418, a coupling of two individual
orbital angular momenta / = 1 yields three values for the total angular momenta L = 0, 1, or
2. But the exclusion principle dictates that the total wave function has to be antisymmetric, i.e.,
the spin and orbital parts of the wave function must have opposite symmetries. Since the singlet
spin state S = 0 is antisymmetric, the spin triplet S = 1 is symmetric, the orbital triplet L =1
is antisymmetric, the orbital quintuplet L = 2 is symmetric, and the orbital singlet L = 0 is
symmetric, the following states are antisymmetric

1S, 3Py, 3Py, 3Py, or 'D,, (8.70)

hence any one of these states can be the ground state of carbon. Again, which one of them has
the lowest energy?

To answer this question and the question pertaining to (8.69), we may invoke Hund's rules:
(a) The lowest energy level corresponds to the state with the largest spin S (i.e., the maximum
number of electrons have unpaired spins), (b) Among the states with a given value of S, the
lowest energy level corresponds to the state with the largest value of L, (c) For a subshell that
1s less than half full the the lowest energy state corresponds to J = |L — S|, and for a subshell
that is more than half full the lowest energy state corresponds to J = L + §S.

Hund’s third rule answers the question pertaining to (8.69): since the 2p shell of boron is
less than half full, the value of J corresponding to the lowest energy is given by J = |L — §| =
1-1/2=1/2, hence Zp, /2 1s the lower energy state.

To find which one of the states (8.70) has the lowest energy, Hund’s first rule dictates that
S = 1. Since the triplet S = 1 is symmetric, we need an antisymmetric spatial wave function;
this is given by the spatial triplet L = 1. We are thus left with three possible choices: J = 0, 1,
or 2. Hund’s third rule precludes the values J = 1 and 2: since the 2p shell of carbon 1s less than
half full, the value of J corresponding to the lowest energy is givenby J = |[L -S| =1-1 =0,
hence *Py is the lower energy state (Table 8.1). That is, the two electrons are in different spatial
states or different orbitals (Figure 8.2). Actually, we could have guessed this result: since the
Coulomb repulsion between the two electrons when they are paired together is much larger
than when they are unpaired, the lower energy configuration corresponds to the case where
the electrons are in different spatial states. The ground state configurations of the remaining
elements, oxygen to argon, can be inferred in a similar way (Table 8.1).

Elements Z > 18

When the 3p shell is filled, one would expect to place the next electron in a 3d shell. But this
doesn’t take place due to the occurrence of an interesting effect: the 4s states have lower energy
than the 3d states. Why? In a hydrogen atom the states 3s, 3p and 3d have the same energy
(E3(0) = —R/3? = —1.51eV, since R = 13.6eV). But in multi-electron atoms, these states

have different energy values. As / increases, the effective repulsive potential #2/( 4 1)/2mr?
causes the d-state electrons to be thrown outward and the s-state electrons to remain closer to
the nucleus. Being closer to the nucleus, the s-state electrons therefore feel the full attraction of
the nucleus, whereas the d-state electrons experience a much weaker attraction. This 1s known
as the screening effect, because the inner electrons, i.e., the s-state electrons, screen the nucleus,
hence the outward electrons (the d-state electrons) do not experience the full attraction of the
nucleus; they instead feel a weak effective potential. As a result, the energy of the 3d-state is
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larger than that of the 4s-state. The screening effect also causes the energy of the 5s-state to
have a lower energy than the 4d-state, and so on. So for a given #, the energies E,; increase as
| increases; in fact, neglecting the spin—orbit interaction and considering relativistic corrections
we will show in Chapter 9 (9.87) that the ground state energy depends on the principal and
orbital quantum numbers # and / as E,E?) = ZZE,(,O){I + a’Z?[2/(21 + 1) = 3/4n]/n}, where
a = 1/137 is the fine structure constant and E,(,O) =—-R/n* =—13.6 eV /n2.

In conclusion, the periodic table can be obtained by filling the orbitals in order of increasing
energy E, as follows (Table 8.1):

Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, s, .... (8.71)

Remarks

The chemical properties of an element is mostly determined by the outermost shell. Hence
elements with similar electron configurations of the outside shell have similar chemical prop-
erties. This is the idea behind the structure of the periodic table: it is arranged in a way that
all elements in a column have similar chemical properties. For example the elements in the
last column, helium, neon, argon, krypton, and so on, have the outer p-shell completely filled
(except for helium whose outside shell is 1s). These atoms, which are formed when a shell or
a subshell is filled, are very stable, interact very weakly with one another, and do not combine
with other elements to form molecules or new compounds; that is, they are chemically inert.
They are very reluctant to give up or to accept an electron. Due to these properties, they are
called noble gases. They have a very low boiling point (around —200° C); note that each row
of the periodic table corresponds to filling out a shell or subshell of the atom. There is a signif-
icant energy gap before the next level is encountered after each of these elements; as shown in
Table 8.1, a large energy is required to ionize these elements; for instance, 24.58 eV is needed
to ionize a helium atom.

Atoms consisting of a closed shell (or a rare gas configuration) plus an s-electron (or a
valence electron), such as Li, Na, K, and so on, have the lowest binding energy; these elements
are known as the alkali metals. In elements consisting of an alkali atom plus an electron, the
second s-electron is more bound than the valence electron of the alkali atom because of the
higher nuclear charge. As the p-shell is gradually filled (beyond the noble gas configuration),
the binding energy increases initially (as in boron, carbon and nitrogen) till the fourth electron,
then it begins to drop (Table 8.1). This is due to the fact that when the p-shell is less than half
full all spins are parallel, hence all three spatial wave functions are antisymmetric. With the
fourth electron (as in oxygen), two spins will be antiparallel or paired, hence the spatial wave
function is not totally antisymmetric causing a drop in the energy. Note that elements with
one electron more than or one electron less than noble gas configurations are the most active
chemically, because they tend to easily give up or easily accept one electron.

Example 8.4

(a) Specify the total angular momenta corresponding to 4G, 3H and 'D.

(b) Find the spectroscopic notation for the ground state configurations of aluminum Al
(Z = 13) and scandium Sc (Z = 21).

Solution

(a) For the term G the orbital angular momentum is L = 4 and the spin is S = 3/2, since
2§+ 1 = 4. The values of the total angular momentum corresponding to the coupling of L = 4
and S = 3/2 are given by |4 — 3/2| < J < 4 + 3/2. Hence we have J = 5/2,7/2,9/2, 11/2.
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