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The Fermi-Dirac Distribution

The Fermi-Dirac distribution applies to fermions, particles with half-
integer spin which must obey the Pauli exclusion principle. Each
type of distribution function has a normalization term multiplying the
exponential in the denominator which may be temperature
dependent. For the Fermi-Dirac case, that term is usually written:

-E. /KT
e

where E_ = Fermienergy

The significance of the Fermi energy is most clearly seem by setting || |dex
T=0. At absolute zero, the probability is =1 for energies less than the
Fermi energy and zero for energies greater than the Fermi energy. Applied

We picture all the levels up to the Fermi energy as filled, but no statistics
particle has a greater energy. This is entirely consistent with the concepts

Pauli exclusion principle where each quantum state can have one but
only one particle.

H(E) = (E - E.)/KT
e

+ 1

Explain the
symbols

Distribution functions||Numerical example

Fermi level in solids||Fermi level in band theory of solids

R ||Go Back
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At absolute zero, fermions will fill up all
available energy states below a level Ep
called the Fermi enargy with one (and

only one) particle. They are constrained Index
— by the Fauli exclusion principla. At highar ——
The probability that temperaturas, some are elevated 1o
a particle will have levels above the Fermi leval, Appli
ed
anargy E _pp—
v statistics
f( E) . concepts
- (E - E,.)/KT
Fermi-Dirac e //f + -1
Ses the Maxwsll- For low temperatures, The quantum difference
Boltzmann those energy states below which arizes from the
distribution for a -
) ) the Fermi energy E have fact that the particles
of the exponential and those above the Fermi
term. energy essentially zero,
The Fermi-Dirac distribution.
R Go
HyperPhysics***** Quantum Physics Nave Back
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Electron Energy Density

The behavior of electrons in solids depends upon the distribution
of energy among the electrons:

The distribution function,
or probability that a
particle is in energy state E

N
n(E)AE = g(E){(E)AE
-\ Energy
Mumber of particles Density of states, :
per unit volume with or number of interval

energy between
E and E + AE,

energy states per
unit volume in
the interval AE

Since electrons are fermions, the distribution function is the Fermi-
Dirac distribution

HE) = (E - E.)/KT
e

1

Explain the
symbols

This distribution determines the probability that a given energy
state will be occupied, but must be multiplied by the density of
states function to weight the probabability by the number of states
available at a given energy.

The determination of how many ways there are to obtain an
energy in an incremental energy range dE can be approached with
the quantum mechanical particle in a box. The energy for an
infinite walled box is

(o 03 030
8mi’
Index
Treating the "quantum
numbers" n as a space M
statistics

such that a given set of n
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ng values determines a point || concepts

. in that space, you can
| argue that the number of ||References
possible states is Rohlf
n= rﬁ+ n, i+ n, i proportional to the Sec 12.6
4 Ty "volume" i "n-space".
" Richtmyer
S . "It is convenient to define T_al%
"j,'.i"'{'_ji-"""' a radius R in n-space: Ch. 5

R = -,\f‘n]: + n:? + n:f
The Rayleigh scheme for counting
modes.

After Richtmyer, et al.

The energy can be expressed in terms of R and vice versa.

R= 2+2mE L or E= J'r'.‘-E:
h sml”

The n-space associated with the particle-in-a-box involves only
positive values of n, so the volume must be divided by 8. It then
must be multiplied by 2 to account for the two possible spin values
of the electron. The number of values is then

V4 4 3.1:] g P
N=2) = |=ar*=| == |2mE)** =
'L }(8)3 (3 (EmE) =

The number of states per unit volume is

N (BH]{EmE )32
n,.= Il el e m—
B 3 h

The final density of states as a function of energy is then the
deriviative of this population with respect to energy

dn, Am(2my’” 1B

E)= - v
pE) dE h

This represents the number of electron states per unit volume per
unit energy at energy E. This energy density is a factor in many of
the electical properties of solids. Note that the result is

independent of the dimension L which was chosen above,

J[RGRI [ UEU RI[ CUVI IUW GFW JDCUG SWCPWO GGFGPU J\O N



http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/statcn.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quaref.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quaref.html

"NGEVIOP ' PGTI[ & GPUM

showing that the expression can be applied to the bulk material.

Application in solids

HyperPhysics*****_Quantum Physics
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Spin Classification

One essential parameter for classification of partlcles is their "spin"

or intrinsic-angular momentum. Half-integer spin fermions are
constrained by the Rauliexclusionprinciple whereas integer spin
bosons are not. The electron is a fermion with electron-spin 1/2.

[ The spin classification of particles determines the nature of the
energy-distribution in a collection of the particles. Particles of mteger

behave according to Eermi-Dirac-statistics.

spin obey Bose-Einstein-statistics, whereas those of half-integer spin ||

HyperPhysics*****_Quantum Physics ****¥ _Particles ;
| ’ - Nave

Go-Back

Fermions

Fermions are particles which have half-integer spin and therefore are
constrained by the Pauli-exclusionprinciple. Particles with integer
spin are called bosons. Fermions include electrons, protons, acutrons.
The wavefunction which describes a collection of fermions must be
lantisymmetric with respect to the exchange of identical particles,
iwhilc the wavefunction for a collection of bosons is symmetric.

The fact that electrons are fermions is foundational to the buildup of
"!he periodic table of the elements since there can be only one electron
for each state in an atom (only one electron for each possible set of
lquantum numbers). The fermion nature of electrons also governs the

energy states are filled up to a level called the Eermi-energy. This
{ffilling of states is described by Eermi-Dirac-statistics. _

ibehavior of electrons-in-a-metal where at low temperatures all the low;




Bosons

[Bosons are particles which have integer spin and which therefore are
|nm constrained by the Pauli-exclusion principle like the half-integer
pm 1enmons Thc energy distribution of bosons is described by
stics. The wavefunction which describes a
I::ollcc:uon of bosons must be symmetric with respect to the exchange |
of identical particles, while the wavefunction for a collection of
‘ fermions is antisymmetric.

/At low temperatures, bosons can behave very differently than
ffermions because an unlimited number of them can collect into the
same energy state. The co]lectlon into a smg]e state is called
condensation, or L2 . It is responsible for the

|phenomenon of e.upu-ﬂuadu,\- in hq.md-hchum Coupled particles can
Iso act effectively as bosons. In the BCS Jheory of
Eupcuuud&uuu coupled pairs of electrons act like bosons and

llcondense into a state which demonstrates zero electrical resistance.

|Bosons include photons-and the characterization of photons as
particles with frequency-dependent energy given by the Planck
‘ulaum:»lnp allowed Planck to apply Bose-Einstein statistics to explain
the thermalradiation from a hot cavity. |

HyperPhysics*****_ Quantum Physics ***** Particles
| 7 % Nave




|
|rB0se-Einstein Condensation

’In 1924 Einstein pointed out that bosoens could "condense" in
unlimited numbers into a single ground state since they are governed
by BD&&.—-LIH\MI]—SI.’}HSEL‘S and not constrained by the Rauliexclusion

i . Little notice was taken of this curious possibility until the
fanomalous hehavior of lauid helium at low temneratures was studied
|

llcarefully.

[When helium is cooled to a critical temperature of 2.17 K, a

remarkable discontinuity in heat capacity occurs, the liquid density
drops, and a fraction of the liquid becomes a zero viscosity
"supertluid”. Superfluidity arises from the fraction of helium atoms
{which has condensed to the lowest possible energy.

A condensation effect is also credited with producing
[superconductivity. In the BCS Theory, pairs of electrons are coupled
by lattice interactions, and the pairs (called Cooperpairs) act like
{bosons and can condense into a state of zero electrical resistance.

! T'he conditions for achieving a Bose-Einstein condensate are quite
llextreme. The participating particles must be considered to be
identical, and this is a condition that is difficult to achieve for whole |
jatoms. The condition of indistinguishabilit: requires that the deBrogplie

4 s of the particles overlap significantly. This requires
E’extremely low temperatures so that the deBroglie wavelengths will be
long, but also requires a fairly high particle density to narrow the gap
between the particles.

Since the 1990s there has been a surge of
|research into Bose-Einstein condensation since
|it was discovered that Bose-Einstein
condensates could be formed with ultra-cold
atoms. The use of lascecooling and the trapping
of ultra-cold atoms with magnetic lraps has

produced temperatures in the nanokelvin range.
Cornell and Wieman along with Ketterle of MIT [
received the 2001 Nobel Prize in Physics "for
the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the
condensates". Cornell and Wieman led an active
group at the University of Colorado, Boulder
which has produced Bose-Einstein condensates
with rubidium-atoms. Other groups at MIT,
Harvard and Rice have been very active in this
rapidly advancing field.




[
| Liquid Helium

' Kamerlingh Onnes worked for many years to liquify the element

| which persisted as a gas to the lowest temperature. Using liquid air

to produce liquid hydrogen and then the hydrogen to jacket the

|[liquification apparatus, he produced about 60 cubic centimeters of
liquid helium on July 10, 1908. Its boiling point was found to be 4.2

K. Onnes received the Nobel Prize in 1913 for his low temperature

work leading to this achievement.

When helium is cooled to a critical temperature of 2.17 K (called its
|lambda-point), a remarkable discontinuity in heat capacity occurs,
the liquid density drops, and a fraction of the liquid becomes a zero
viscosity "supsrfluid”. Superfluidity arises from the fraction of
helium atoms which has condensed to the lowest possible energy.

|An important application of liquid helium has been in the study of

|superconductivity and for the applications of superconducting

maanels,

T -

-

! H:'p*:Ph;':‘ir:‘***** Quantum Physics . R
- - Nave

Liquid Helium Working Range

| [ Tarmgerslures st
| unicher * K e
| ol by purmpng
I QN Uit Pstorr
it ot i Ra . .
T Nb.Tc, Pb, La
| ('1” By V, and Ta are
| i = 9 superconductors
} atiiquid He temperature
i

prodr | bt ligpntd siandard pirmospharkc

e 424 15 the boling
217K s the lnmbda palnt of hatlum ot
Fdoum prossura

5K

Six of e Type | 1
S LB OO . <|--|
suparcanduching &

¥ et ConEUC g
by pasrvesing on laric
Fban

Index

Reference:
Blatt




Superfluidity

A remarkable transition occurs in the properties of liquid-helium at
the temperature 2.17K, called the "lambdapoint" for helium. Part
|of the liquid becomes a "superfluid", a zero viscosity fluid which
\will move rapidly through any pore in the apparatus.

A vacuum container which seemed to be leak tight could suddenly
|leak helium rapidly as the superfluid moved out through a
microscopic hole. A vertical tube could produce a fountain effect
as the superfluid moved up the walls and out the top.

In 1938, F. London proposed a "two-fluid" model to explain the
behavior of the liquid: normal liquid and the superfluid fraction
consisting of those atoms which have "condensed" to the ground
state and make no contribution to the entropy or heat capacity of
the liquid. This condensed fraction is the standard example of
Bose-Linsteln condensation,

Another remarkable characteristic of the the superfluid is its very
(| high heat conductivity, 30 times that of copper!
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Lambda Point for Liquid
Helium

|'When helium is cooled to a critical temperature of 2.17 K , a
Iremarkable discontinuity in heat capacity occurs, the liquid density
|drops, and a fraction of the liquid becomes a zero viscosity
"superfluid”. It is called the lambda point because the shape of the
|specific heat curve is like that Greek letter. Superfluidity arises
from the fraction of helium atoms which has condensed to the
lowest possible energy by a process called Bose-Linstein

| candeusation:

When helium is cooled to a critical temperature of 2.17 K , a
remarkable discontinuity in heat capacity occurs, the liquid density
drops, and a fraction of the liquid becomes a zero viscosity
"superfluid”. It is called the lambda point because the shape of the
specific heat curve is like that Greek letter. Superfluidity arises
from the fraction of helium atoms which has condensed to the
lowest possible energy by a process called Bose-Einstein
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