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The Three Statistical Distribution Functions

Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac

Applies to systems of

Identical, distingui-
shable particles

Identical, indistin-
guishable particles
that do not obey

exclusion principle

Identical, indistinguish-
able particles that obey
exclusion principle

Category ol particles

Classical

Bosons

Fermions

Properties of particles

Any spin, particles far
enough apart so wave
functions do not overlap

Spin 0, 1, 2,
functions are symmetric
to interchange of
particle labels

, wave

13 s

Spin s, 5, 5,
functions are antisym-
metric to interchange
of particle labels

; wave

Examples

Molecules of a gas

Photons in a cavity;
phonons in a solid;

liquid helium at low
temperatures

Free electrons in a metal;
electrons in a star whose
atoms have collapsed
(white dwarf stars)

Distribution function

(number of particles in

each state of energy €
at the temperature T)

fMB(E) — Ae*e/kT

1

fBE(E) = ‘e“ee/w 1

1

fFD(E) = 76“7&)/“ T

Properties ol
distribution

No limit to number of
particles per state

No limit to number of
particles per state; more
particles per state than
fue at low energies;
approaches [y at high
energies

Never more than 1
particle per state; fewer
particles per state than
Jue at low energies;
approaches fyg at high

energles
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Spin Classification

One essential parameter for classification of particles is their "spin"

or intrinsic-angular momentum. Half-integer spin fermions are
constrained by the Pauli-exclusion-principle whereas integer spin
bosons are not. The electron is a fermion with electronspin 1/2.

The spin classification of particles determines the nature of the
energy-distribution in a collection of the particles. Particles of mteger
spin obey Bose-Einstein-statistics, whereas those of half-integer spin
‘ behave according to Eermi-Dirac statistics,

| ries
l

| HyperPhysics***** Quantum Physics ***** Particles
- Nave

Fermions

Fermions are particles which have half-integer spin and therefore are
(constrained by the Pauli-exclusion-principle. Particles with integer
Ispin are called bosons, Fermions include electrons, protons, neutrons.
t‘he wavefunction which describes a collection of fermions must be
ntisymmetric with respect to the exchange of identical particles,
I]whiic: the wavefunction for a collection of bosons is symmetric.

[The fact that electrons are fermions is foundational to the buildup of
ithc periodic table of the elements since there can be only one electron
(for each state in an atom (only one electron for each possible set of
quantum numbers). The fermion nature of electrons also governs the
{behavior of electrons-in-a-metal where at low temperatures all the low
lenergy states are filled up to a level called the Eermi energy. This

filling of states is described by Eermi-Diracstatistics.




Bosons

Bosons are particles which have integer spin and which therefore are
not constrained by the Pauli exclusion principle like the half-integer
S]:Ill'l 1ex:mms The energy distribution of bosons is described by
tics. The wavefunction which describes a
collection of bosons must be symmetric with respect to the exchange
of identical particles, while the wavefunction for a collection of
fermions is antisymmetric.

‘At low temperatures, bosons can behave very differently than
fermions because an unlimited number of them can collect into the
|same energy state. The collection into a single state is called
condensation, or Bese-Einsteincondensation. It is responsible for the
phenomenon of superfluidity in liquid-helium. Coupled particles can
also act effectively as bosons. In the BCS Theor: of
superconductivity, coupled pairs of electrons act like bosons and
condense into a state which demonstrates zero electrical resistance.

Bosons include photons-and the characterization of photons as
particles with frequency-dependent energy given by the Planck

relationship allowed Planck to apply Bose-Einstein statistics to explam
the thermal radiation from a hot cavity.
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Figure 12 11—Variation of the chemical petential g of an ideal boson gas
with temperature, The Bose temperature T, is given by cquation
(12.55). The chemical potential g is always negative. It is virtually zero
up to the Bose temperature. As T increases above 77, g gets more and
more negative. [ Adapted with permission from Introductory Statistical
Mechanics, by R, E. Turner and D. S. Betts.]
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| Kamerlingh Onnes worked for many years to liquify the clement

Itiquification apparatus, he produced about 60 cubic centimeters of

Liquid Helium

which persisted as a gas to the lowest temperature. Using liquid air
to produce liquid hydrogen and then the hydrogen to jacket the

liquid helium on July 10, 1908. Its boiling point was found to be 4.2
K. Onnes received the Nobel Prize in 1913 for his low temperature
work leading to this achievement.

When helium is cooled to a critical temperature of 2.17 K (called its
lambda point), a remarkable discontinuity in heat capacity occurs,
the liquid density drops, and a fraction of the liquid becomes a zero
viscosity "superfluid”. Superfluidity arises from the fraction of
helium atoms which has condensed to the lowest possible energy.

An important application of liquid helium has been in the study of

superconductivity and for the applications of superconducting

Liauid heli i
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Superfluidity

A remarkable transition occurs in the properties of liquid-helium at
the temperature 2.17K, called the "lambdapoint" for helium. Part
of the liquid becomes a "superfluid", a zero wdscosity fluid which
will move rapidly through any pore in the apparatus.

A vacuum container which seemed to be leak tight could suddenly
: leak helium rapidly as the superfluid moved out through a
|Imicroscopic hole. A vertical tube could produce a fountain effect
as the superfluid moved up the walls and out the top.

In 1938, F. London proposed a "two-fluid" model to explain the
| behavior of the liquid: normal liquid and the superfluid fraction

consisting of those atoms which have "condensed" to the ground
state and make no contribution to the entropy or heat capacity of
the liquid. This condensed fraction is the standard example of

Another remarkable characteristic of the the superfluid is its very
[high heat conductivity, 30 times that of copper!

Apolication in IRAS. Satelli
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Lambda Point for Liquid
| Helium

When helium is cooled to a critical temperature of 2.17 K , a
|lremarkable discontinuity in heat capacity occurs, the liquid density
! drops, and a fraction of the liquid becomes a zero viscosity
"supertuid”, It is called the lambda point because the shape of the
specific heat curve is like that Greek letter. Superfluidity arises
from the fraction of helium atoms which has condensed to the
lowest possible energy by a process called Bos

| umd;.m.umn

When helium is cooled to a critical temperature of 2.17K , a
|remarkable discontinuity in heat capacity occurs, the fiquid density
drops. and a fraction of the liquid becomes a zero viscosity
"superfluid”. It is called the lambda point because the shape of the
specific heat curve is like that Greek letter. Superfluidity arises
from the fraction of helium atoms which has condensed to the
lowest possible energy by a process called Bose-Einstein
condensation.
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_—
| Bose-Einstein Condensation
|
|

In 1924 Einstein pointed out that besons could "condense” in

|‘unhmlred number= into a single ground state since they are governed
by Bose-Linstci

slatistics and not constrained by the Pauli exclusion
principle, [.1lt|u. notice was taken of this curious possibility until the

|
lanomalous hehavior of liauid helium at Tow temneratures was studied
learefully.

When helium is cooled to a critical temperature of 2.17 K, a
remarkable discontinuity in heat capacity occurs, the liquid density
|drops, and a fraction of the liquid becomes a zero viscosity
|"supertluid". Superfluidity arises from the fraction of helium atoms
iwhich has condensed to the lowest possible energy.

|A condensation effect is also credited with producing
‘superconductivity, In the BCS Theory, pairs of electrons are coupled
by lattice interactions, and the pairs (called Cooper pairs) act like
|bosons and can condense into a state of zero electrical resistance.

[The conditions for achieving a Bose-Einstein condensate are quite
sextreme. The participating particles must be considered to be

fidentical, and this is a condltlon that is dlfflcult to achieve for whole

toms. The condition of i : requires that the deBroglie
mavelengths of the particles overlap S|gmf1cantly This requires
extremely low temperatures so that the deBroglie wavelengths will be
long, but also requires a fairly high particle density to narrow the gap
between the particles.

Since the 1990s there has been a surge of
research into Bose-Einstein condensation since
it was discovered that Bose-Einstein
condensates could be formed with ultra-cold

atoms. The use of lasercooling and the trapping
of ultra-cold atoms with magnetic traps has

produced temperatures in the nanokelvin range.
Cornell and Wieman along with Ketterle of MIT [
received the 2001 Nobel Prize in Physics "for
the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the
condensates". Cornell and Wieman led an active
group at the University of Colorado, Boulder
which has produced Bose-Einstein condensates
with rubidium-aloms. Other groups at MIT,
Harvard and Rice have been very active in this

rapidly advancing field.
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Figure 11.7 The specific heat of
liquid helium near the A transition
to the superfluid phase. {a) Results
of early measurements. (b) Data
obtained by Buckingham and
Fairbank in 1961; note that the
data points near 7, are separated
by only a few microkelvins.
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Figure 11.8 Liguid helium and the
porous-plug experiment. (a) Above
the A transition, the liquid helium
Is seen to boil vigorously and the
liquid inside the small container
sealed with a porous plug of
jeweler’s rouge does not escape.
(b) Below the A transition, the
liquid is quiescent and flows
through the porous plug. (Kurt
Mendelssohn, The Quest for
Absolute Zero, Wiley, New York,
1977, p. 242; Physics Photographic
Unit, University of Oxford.)
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Carl Wieman and
Eric Cornell

(born 1951 and 1961, both

American)

A Bose-Einstein condensate in a
gas was first achieved on planet

Earth at 10:54 a.m., June, 5, 1995,in
the laboratory of Wieman(left)
and Cornell(right) on the campus
of the University of Colorado at

Boulder. The original experimental

apparatus is now at the Smithson-
ian Institution. Along with MIT

man and Cornell were awarded

physicist. Wolfgang Ketterle, Wie- -

the 2001 Nobel Prize in physics

for their experimental work. A
dedicated teacher, Wieman now
splits his time between research

and developing innovative ways of
teaching freshman physics.
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2.3.8. Derivation of the Kronig-Penney model =

The solution to Schrodinger’s equation for the Kronig-Penney potential previously shown in
Figure 2.3.3 and discussed in section 2.3.2.1 is obtained bz; assuming that the solution is a Bloch
function, namely a traveling wave solution of the form, ¢™, multiplied with a periodic solution,
u(x), which has the same period as the periodic potential. The total wavefunction is therefore of
the form:

¥(x)=u(x)e™ (2.3.13)

where u(x) is the periodic function as defined by u(x) = u(x + a), and k(x) is the wave number.
Rewriting the wavefunction in such form allows the simplification of the Schridinger equation,
which we now apply to region I, between the barriers where V(x) =0 and region II, the barrier
region where V(x) = Vp:

In region I, Schrédinger’s equation becomes:

2 23.19
dx dx
with
B= 2;1 mE (2.3.20)
While in region II, it becomes:
i (23221
d uuz(x) + ik du, (x) _(kz +a2)u” (x)=0 fora-b<x<a )
dx dx
with
¢=2 Am@,—E) (23.22)
h
The solution to equations (2.3.6) and (2.3.8) are of the form:
u,(x)=(Acos fx+ Bsin Pr)e™ for 0 <x<a-b (2.3.23)
u, (x)=(Ccoshax+ Dsin ax)e ™ fora-b<x<a (2.3.24)

Since the potential, V(x), is finite everywhere, the solutions for upx) and wu;(x) must be
continuous as well as their first derivatives. Continuity at x = 0 results in:

u,(0)=u,(0) sothat4=C (2.3.25)



and continuity at x = a-b combined with the requirement that u(x) be periodic results in:
u,(a-b)=u,(-b) (2.3.26)
so that
(Acos B(a - b) + Bsin f(a —b))e ™ ™ = (Ccosh ab — Dsinh ab)e™  (2.3.27)
Continuity of the first derivative at x = 0 requires that:

du,(x)| _ du,(x)| (2.3.28)
dx B

x=0 dx lx=0

The first derivatives of u;(x) and u(x) are:

dx e ‘ _— 1 2.3-2
l( ) ( Bsin fx Bﬂ cos Bx) —i ik(ACOS,Bx + Bsin ,Bx)e_""‘ ( 9)
Casinh ax + Da cosh ax)e™ — i 2.3.30
#(Z (e cos Ye " — ik(C cosh ax + Dsinh ax)e"b‘ ( )
X
so that (2.3.15) becomes:
B,B —ikA=Da —ikC (2.3.31)

Finally, continuity of the first derivative at x = a-b, again combined with the requirement that
u(x) is periodic, results in:

du, (x)| _duy, (x)’ (2.3.32)
d‘x x=a-b - dx x==b
so that
(ABsin B(a—b)— Bfcos B(a—b))e ™ (2.3.33)

—ik(Acos B(a—-b)+ Bsin f(a—b))e ™™
= (~Casinh ab+ Da cosh ab)e™ —ik(C cosh ab — Dsinh ab)e™
This equation can be simplified using equation (2.3.14) as:
(ABsin B(a—b)~ BB cos f(a—b)) = (~Casinh b + Da cosh ab)e™ (2.3.34)

As a result we have four homogenous equations, (2.3.12), (2.3.14), (2.3.18), and (2.3.21), with
four unknowns, 4, B, C, and D, for which there will be a solution if the determinant of this set of
equations is zero, or:



I 0 =] 0 (2.3.35)
0 yi) 0 a
cos f(a—b) sin f(a—b) —coshabexpika  sinhabexpika
Psin fla—b) —Pcosf(a-b) asinabexpika —acoshabexpika

The first row of the determinant represents equation (2.3.12), the second row is obtained by
combining (2.3.18) and (2.3.12), the third row represents equation (2.3.14) and the fourth row
represents equation (2.3.21). This determinant can be rewritten as two determinants, each with
three rows and column, while replacing cos&a-b) by £., sinfAa-b) by f, coshab ¢* by a, and
sinhab € by a, which results in:

g 0 a 0 f «a (2.3.36)
B, —a. a =B B a,
-pB. aa, -aa| |fB, -pB. -aa

2ika

Working out the determinants and using 8,2+ £ =1, and &.” - ;" = ¢**, one finds:

(a® - f*)sinh absin B(a — b)expika + 2a cosh ab cos B(a — b)expika = af(1+ (2.3.37)

And finally, substituting 8., £, a. and a;:

1_ g (2.3.38)

coska=F = B sinh absin f(a —b) + cosh abcos f(a—b)

where ¢**+ ¢ was replaced by 2cos ka.

A further simplification is obtained as the barrier width, b, is reduced to zero while the barrier
height, V}, is increased to infinity in such manner that the product, bV, remains constant and the
potential becomes a delta function train at x = g and repeated with a period of a, namely bV,&x —
b — na) where n is an integer. As b approaches zero, sinhab approaches ab. Equation (2.3.25)
then reduces to:

coska=F =p pa +cos fa (2.3.39)
Pa
with
v2mE mV,ba (2.3.40)
B = - and P= h‘;
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6.21. INTRO TO BAND STRUCTURE 265

6.21 Intro to Band Structure

Quantum mechanics is essential to describe the properties of solid materials,
just as it is for lone atoms and molecules. One well-known example is supercon-
ductivity, in which current flows without any resistance. The complete absence
of any resistance cannot be explained by classical physics, just like superfluidity
cannot for fluids.

But even normal electrical conduction simply cannot be explained without
quantum theory. Consider the fact that at ordinary temperatures, typical metals
have electrical resistivities of a few times 10™® ohm-m (and up to a hundred
thousand times less still at very low temperatures), while Wikipedia lists a
resistance for teflon of up to 10** ohm-m. (Teflon’s “one-minute” resistivity
can be up to 10! ohm-m.) That is a difference in resistance between the best
conductors and the best insulators by over thirty orders of magnitude!

There is simply no way that classical physics could even begin to explain it.
As far as classical physics is concerned, all of these materials are quite similar
combinations of positive nuclei and negative electrons.

Consider an ordinary sewing needle. You would have as little trouble sup-
porting its tiny 60 mg weight as a metal has conducting electricity. But multiply
it by 103°. Well, don’t worry about supporting its weight. Worry about the en-
tire earth coming up over your ears and engulfing you, because the needle now
has ten times the mass of the earth. That is how widely different the electrical
conductivities of solids are.

Only quantum mechanics can explain why it is possible, by making the
electron energy levels discrete, and more importantly, by grouping them together
in “bands.”

Key Points

0—= FEven excluding superconductivity, the electrical conductivities of sol-
ids vary enormously.

6.21.1 Metals and insulators

To understand electrical conduction in solids requires consideration of their
electron energy levels.

Typical energy spectra are sketched in figure 6.19. The spectrum of a free-
electron gas, noninteracting electrons in a box, is shown to the left. The energy
E® of the single-particle states is shown along the vertical axis. The energy
levels allowed by quantum mechanics start from zero and reach to infinity. The
energy levels are spaced many orders of magnitude more tightly together than
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the hatching in the figure can indicate. For almost all practical purposes, the
energy levels form a continuum. In the ground state, the electrons fill the
lowest of these energy levels, one electron per state. In the figure, the occupied
states are shown in red. For a macroscopic system, the number of electrons is
practically speaking infinite, and so is the number of occupied states.

EP EP EP EP unoccupied
states
) (grey)
7: — IEgap .
—— —— occupied
— states
— (red)
free
electron metal insulator a%;%lllrgs
gas

Figure 6.19: Sketch of electron energy spectra in solids at absolute zero tem-
perature. (No attempt has been made to picture a density of states). Far left:
the free-electron gas has a continuous band of extremely densely spaced energy
levels. Far right: lone atoms have only a few discrete electron energy levels.
Middle: actual metals and insulators have energy levels grouped into densely
spaced bands separated by gaps. Insulators completely fill up the highest occu-
pied band.

However, the free-electron gas assumes that there are no forces on the elec-
trons. Inside a solid, this would only be true if the electric charges of the nuclei
and fellow electrons would be homogeneously distributed throughout the entire
solid. In that case the forces come equally from all directions and cancel each
other out perfectly. In a true solid, forces from different directions do tend to
cancel each other out, but this is far from perfect. For example, an electron
very close to one particular nucleus experiences a strong attraction from that
nucleus, much too strong for the rest of the solid to cancel.

The diametrical opposite of the free-electron gas picture is the case that the
atoms of the solid are spaced so far apart that they are essentially lone atoms.
In that case, of course, the “solid” would not physically be a solid at all, but
a thin gas. Lone atoms do not have a continuum of electron energy levels, but
discrete ones, as sketched to the far right in figure 6.19. One basic example
is the hydrogen spectrum shown in figure 4.8. Every lone atom in the system
has the exact same discrete energy levels. Widely spaced atoms do not conduct
electricity, assuming that not enough energy is provided to ionize them. While
for the free-electron gas conduction can be achieved by moving a few electrons to
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slightly higher energy levels, for lone atoms there are no slightly higher energy
levels.

When the lone atoms are brought closer together to form a true solid, how-
ever, the discrete atomic energy levels broaden out into bands. In particular,
the outer electrons start to interact strongly with surrounding atoms. The dif-
ferent forms that these interactions can take produce varying energies, causing
initially equal electron energies to broaden into bands. The result is sketched
in the middle of figure 6.19. The higher occupied energy levels spread out sig-
nificantly. (The inner atomic electrons, having the most negative net energies,
do not interact significantly with different atoms, and their energy levels do
not broaden much. This is not just because these electrons are farther from
the surrounding atoms, but also because the inner electrons have much greater
kinetic and potential energy levels to start with.)

For metals, conduction now becomes possible. Electrons at the highest oc-
cupied energy level, the Fermi energy, can be moved to slightly higher energy
levels to provide net motion in a particular direction. That is just like they
can for a free-electron gas as discussed in the previous section. The net motion
produces a current.

Insulators are different. As sketched in figure 6.19, they completely fill up
the highest occupied energy band. That filled band is called the “valence band.”
The next higher and empty band is called the “conduction band.”

Now it is no longer possible to prod electrons to slightly higher energy levels
to create net motion. There are no slightly higher energy levels available; all
levels in the valence band are already filled with electrons.

To create a state with net motion, some electrons would have to be moved
to the conduction band. But that would require large amounts of energy. The
minimum energy required is the difference between the top of the valence band
and the bottom of the conduction band. This energy is appropriately called the
“band gap” energy £, . It is typically of the order of electron volts, comparable
to atomic potentials for outer electrons. That is in turn comparable to ionization
energies, a great amount of energy on an atomic scale.

Resistance is determined for voltages low enough that Ohm’s law applies.
Such voltages do not provide anywhere near the energy required to move elec-
trons to the conduction band. So the electrons in an insulator are stuck. They
cannot achieve net motion at all. And without net motion, there is no current.
That makes the resistance infinite. In this way the band gaps are responsible
for the enormous difference in resistance between metals and insulators.

Note that a normal applied voltage will not have a significant effect on the
band structure. Atomic potential energies are in terms of eV or more. For the
applied voltage to compete with that would require a voltage drop comparable
to volts per atom. On a microscopic scale, the applied potential does not change
the states.
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Key Points

0— Quantum mechanics allows only discrete energy levels for the elec-
trons in a solid, and these levels group together in bands with gaps
in between them.

0—= If the electrons fill the spectrum right up to a gap between bands,
the electrons are stuck. It will require a large amount of energy
to activate them to conduct electricity or heat. Such a solid is an
insulator at absolute zero temperature.

0—= The filled band is called the valence band, and the empty band above
it the conduction band.

6.21.2 Typical metals and insulators

If a material completely fills up its valence band with electrons, it is an insulator.
But what materials would do that? This subsection gives a few rules of thumb.

One important rule is that the elements towards the left in the periodic table
figure 5.8 are metals. A relatively small group of elements towards the right are
nonmetals.

Consider first the alkali metals found in group I to the far left in the table.
The lone atoms have only one valence electron per atom. It is in an atomic “s”
state that can hold two electrons, chapter 5.9.4. Every spatial state, including
the s state, can hold two electrons that differ in spin.

Now if the lone atoms are brought closer together to form a solid, the spatial
states change. Their energy levels broaden out into a band. However, the total
number of states does not change. One spatial state per atom stays one spatial
state per atom. Since each spatial state can hold two electrons, and there is
only one, the band formed from the s states is only half filled. Therefore, like
the name says, the alkali metals are metals.

In helium the spatial 1s states are completely filled with the two electrons
per atom. That makes solid helium an insulator. It should be noted that helium
is only a solid at very low temperatures and very high pressures. The atoms are
barely held together by very weak Van der Waals forces.

The alkaline metals found in group II of the periodic table also have two
valence electrons per atom. So you would expect them to be insulators too.
However, like the name says, the alkaline metals are metals. What happens is
that the filled band originating from the atomic s states merges with an empty
band originating from the atomic p states. That produces a partially filled
combined band.

This does not apply to helium because there are no 1p states. The lowest
empty energy states for helium are the 2s ones. Still, computations predict
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that helium will turn metallic at extremely high pressures. Compressing a
solid has the primary effect of increasing the kinetic energy of the electrons.
Roughly speaking, the kinetic energy is inversely proportional to the square
of the electron spacing, compare the Fermi energy (6.16). And increasing the
kinetic energy of the electrons brings them closer to a free-electron gas.

A case resembling that of helium is ionic materials in which the ions have a
noble-gas electron structure. A basic example is salt, sodium chloride. These
materials are insulators, as it takes significant energy to take apart the noble-gas
electron configurations. See however the discussion of ionic conductivity later
in this section.

Another case that requires explanation is hydrogen. Like the alkali metals,
hydrogen has only one valence electron per atom. That is not enough to fill up
the energy band resulting from the atomic 1s states. So you would expect solid
hydrogen to be a metal. But actually, hydrogen is an insulator. What happens
is that the energy band produced by the 1s states splits into two. And the lower
half is completely filled with electrons.

The reason for the splitting is that in the solid, the hydrogen atoms combine
pairwise into molecules. In an hydrogen molecule, there are not two separate
spatial 1s states of equal energy, chapter 5.2. Instead, there is a lowered-energy
two-electron spatial state in which the two electrons are symmetrically shared.
There is also a raised-energy two-electron spatial state in which the two electrons
are antisymmetrically shared. So there are now two energy levels with a gap in
between them. The two electrons occupy the lower-energy symmetric state with
opposite spins. In the solid, the hydrogen molecules are barely held together by
weak Van der Waals forces. The interactions between the molecules are small,
so the two molecular energy levels broaden only slightly into two thin bands.
The gap between the filled symmetric states and the empty antisymmetric ones
remains.

Note that sharing electrons in pairs involves a nontrivial interaction between
the two electrons in each pair. The truth must be stretched a bit to fit it
within the band theory idea of noninteracting electrons. Truly noninteracting
electrons would have the spatial states of the hydrogen molecular ion available to
them, chapter 4.6. Here the lower energy state is one in which a single electron
is symmetrically shared between the atoms. And the higher energy state is
one in which a single electron is antisymmetrically shared. In the model of
noninteracting electrons, both electrons occupy the lower-energy single-electron
spatial state, again with opposite spins. One problem with this picture is that
the single-electron states do not take into account where the other electron is.
There is then a significant chance that both electrons can be found around the
same atom. In the correct two-electron state, the electrons largely avoid that.
Being around the same atom would increase their energy, since the electrons
repel each other.



270 CHAPTER 6. MACROSCOPIC SYSTEMS

Note also that using the actual hydrogen molecular ion states may not be
the best approach. It might be better to account for the presence of the other
electron approximately using some nuclear shielding approach like the one used
for atoms in chapter 5.9. An improved, but still approximate way of accounting
for the second electron would be to use a so-called “Hartree-Fock” method.
More generally, the most straightforward band theory approach tends to work
better for metals than for insulators. Alternative numerical methods exist that
work better for insulators. At the time of writing there is no simple magic bullet
that works well for every material.

Group IV elements like diamond, silicon, and germanium pull a similar trick
as hydrogen. They are insulators at absolute zero temperature. However, their
4 valence electrons per atom are not enough to fill the merged band arising
from the s and p states. That band can hold 8 electrons per atom. Like hydro-
gen, a gap forms within the band. First the s and p states are converted into
hybrids, chapter 5.11.4. Then states are created in which electrons are shared
symmetrically between atoms and states in which they are shared antisymmet-
rically. There is an energy gap between these states. The lower energy states
are filled with electrons and the higher energy states are empty, producing again
an insulator. But unlike in hydrogen, each atom is now bonded to four others.
That turns the entire solid into essentially one big molecule. These materials
are much stronger and more stable than solid hydrogen. Like helium, hydrogen
is only a solid at very low temperatures.

It may be noted that under extremely high pressures, hydrogen might be-
come metallic. Not only that, as the smallest atom of them all, and in the
absence of 1p atomic states, metallic hydrogen is likely to have some very un-
usual properties. It makes metallic hydrogen the holy grail of high pressure
physics.

It is instructive to examine how the band theory of noninteracting electrons
accounts for the fact that hydrogen is an insulator. Unlike the discussion above,
band theory does not actually look at the number of valence electrons per atom.
For one, a solid may consist of atoms of more than one kind. In general, crys-
talline solids consist of elementary building blocks called “primitive cells” that
can involve several atoms. Band theory predicts the solid to be a metal if the
number of electrons per primitive cell is odd. If the number of electrons per
primitive cell is even, the material may be an insulator. In solid hydrogen each
primitive cell holds a complete molecule, so there are two atoms per primitive
cell. Each atom contributes an electron, so the number of electrons per primitive
cell is even. According to band theory, that allows hydrogen to be an insulator.
In a similar way group V elements can fill up their valence bands with an odd
number of valence electrons per atom. And like hydrogen, diamond, silicon, and
germanium have two atoms per primitive cell, reflecting the gap that forms in
the merged s and p bands.
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Of course, that cannot be the complete story. It does not explain why atoms
towards the right in the periodic table would group together into primitive cells
that allow them to be insulators. Why don’t the atoms to the left in the periodic
table do the same? Why don’t the alkali metals group together in two-atom
molecules like hydrogen does? Qualitatively speaking, metals are characterized
by valence electrons that are relatively loosely bound. Suppose you compare
the size of the 2s state of a lithium atom with the spacing of the atoms in solid
lithium. If you do, you find that on average the 2s valence electron is no closer
to the atom to which it supposedly “belongs” than to the neighboring atoms.
Therefore, the electrons are what is called “delocalized.” They are not bound
to one specific location in the atomic crystal structure. So they are not really
interested in helping bond “their” particular atom to its immediate neighbors.
On the other hand, to the right in the periodic table, including hydrogen and
helium, the valence electrons are much more tightly held. To delocalize them
would require that the atoms would be squeezed much more tightly together.
That does not happen under normal pressures because it produces very high
kinetic energy of the electrons.

Where hydrogen refuses to be a metal with one valence electron per atom,
boron refuses to do so with three. However, boron is very ambivalent about it.
It does not really feel comfortable with either metallic or covalent behavior. A
bit of impurity can readily turn it metallic. That great sensitivity to impurity
makes the element very hard to study. At the time of writing, it is believed
that boron has a covalent ground state under normal pressures. The convoluted
crystal structure is believed to have a unit cell with either 12 or 106 atoms,
depending on precise conditions.

In group IV, tin is metallic above 13 °C, as white tin, but covalent below
this temperature, as grey tin. It is often difficult to predict whether an element
is a metal or covalent near the middle of the periodic table. Lead, of course, is
a metal.

It should further be noted that band theory can be in error because it ignores
the interactions between the electrons. “Mott insulators” and “charge transfer
insulators” are, as the name says, insulators even though conventional band
theory would predict that they are metals.

Key Points

0—= In the periodic table, the group I, II, and III elements are normally
metals.

0— Hydrogen and helium are nonmetals. Don’t ask about boron.

0— The group IV elements diamond, silicon, and germanium are insula-
tors at absolute zero temperature.
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6.21.3 Semiconductors

Temperature can have significant effects on electrical conduction. As the pre-
vious section noted, higher temperature decreases the conduction in metals, as
there are more crystal vibrations that the moving electrons can get scattered
by. But a higher temperature also changes which energy states the electrons
occupy. And that can produce semiconductors.

Figure 6.19 showed which energy states the electrons occupy at absolute
zero temperature. There are no electrons with energies above the Fermi level
indicated by the red tick mark. Figure 6.20 shows how that changes for a
nonzero temperature. Now random thermal motion allows electrons to reach
energy levels up to roughly kg'T" above the Fermi level. Here kg is the Boltzmann
constant and T the absolute temperature. This change in electron energies is
described mathematically by the Fermi-Dirac distribution discussed earlier.
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Figure 6.20: Sketch of electron energy spectra in solids at a nonzero tempera-
ture.

It does not make much difference for a free-electron gas or a metal. However,
for an insulator it may make a dramatic difference. If the band gap is not
too large compared to kgT', random thermal motion will put a few very lucky
electrons in the previously empty conduction band. These electrons can then
be prodded to slightly higher energies to allow some electric current to flow.
Also, the created “holes” in the valence band, the states that have lost their
electrons, allow some electric current. Valence band electrons can be moved
into holes that have a preferred direction of motion from states that do not.
These electrons will then leave behind holes that have the opposite direction of
motion.

It is often more convenient to think of the moving holes instead of the elec-
trons as the electric current carriers in the valence band. Since a hole means
that a negatively charged electron is missing, a hole acts much like a positively
charged particle would.
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Because both the electrons in the conduction band and the holes in the
valence band allow some electrical conduction, the original insulator has turned
into what is called a “semiconductor.”

The previous section mentioned that a classical picture of moving electrons
simply does not work for metals. Their motion is much too much restrained by
a lack of available empty energy states. However, the conduction band of semi-
conductors is largely empty. Therefore a classical picture works much better for
the motion of the electrons in the conduction band of a semiconductor.

Key Points

0— For semiconductors, conduction can occur because some electrons
from the valence band are thermally excited to the conduction band.

0— Both the electrons that get into the conduction band and the holes
they leave behind in the valence band can conduct electricity.

6.21.4 Semimetals

One additional type of electron energy spectrum for solids should be mentioned.
For a “semimetal,” two distinct energy bands overlap slightly at the Fermi level.
In terms of the simplistic spectra of figure 6.19, that would mean that semimetals
are metals. Indeed they do allow conduction at absolute zero temperature.
However, their further behavior is noticeably different from true metals because
the overlap of the two bands is only small. One difference is that the electrical
conduction of semimetals increases with temperature, unlike that of metals.
Like for semiconductors, for semimetals a higher temperature means that there
are more electrons in the upper band and more holes in the lower band. That
effect is sketched to the far right in figure 6.20.

The classical semimetals are arsenic, antimony, and bismuth. Arsenic and
antimony are not just semimetals, but also “metalloids,” a group of elements
whose chemical properties are considered to be intermediate between metals and
nonmetals. But semimetal and metalloid are not the same thing. Semimetals
do not have to consist of a single element. Conversely, metalloids include the
semiconductors silicon and germanium.

A semimetal that is receiving considerable attention at the time of writing is
graphite. Graphite consists of sheets of carbon atoms. A single sheet of carbon,
called graphene, is right on the boundary between semimetal and semiconductor.
A carbon nanotube can be thought of as a strip cut from a graphene sheet
that then has its long edges attached together to produce a cylinder. Carbon
nanotubes have electrical properties that are fundamentally different depending
on the direction in which the strip is cut from the sheet. They can either be
metallic or nonmetallic.
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Key Points

0— Semimetals have properties intermediate between metals and semi-
conductors.

6.21.5 Electronic heat conduction

The valence electrons in metals are not just very good conductors of electricity,
but also of heat. In insulators electrons do not assist in heat conduction; it takes
too much energy to excite them. However, atomic vibrations in solids can con-
duct heat too. For example, diamond, an excellent electrical insulator, is also
an excellent conductor of heat. Therefore the differences in heat conduction
between solids are not by far as large as those in electrical conduction. Because
atoms can conduct significant heat, no solid material will be a truly superb ther-
mal insulator. Practical thermal insulators are highly porous materials whose
volume consists largely of voids.

Key Points
0— Electrons conduct heat very well, but atoms can do it too.

0— Practical thermal insulators use voids to reduce atomic heat conduc-
tion.

6.21.6 Ionic conductivity

It should be mentioned that electrons do not have an absolute monopoly on
electrical conduction in solids. A different type of electrical conduction is possi-
ble in ionic solids. These solids consist of a mixture of positively and negatively
charged ions. Positive ions, or “cations,” are atoms that have lost one or more
electrons. Negative ions, or “anions,” are atoms that have absorbed one or more
additional electrons. A simple example of a ionic solid is salt, which consists of
Na*t sodium cations and Cl~ chlorine anions. For ionic solids a small amount of
electrical conduction may be possible due to motion of the ions. This requires
defects in the atomic crystal structure in order to give the atoms some room to
move.

Typical defects include “vacancies,” in which an atom is missing from the
crystal structure, and “interstitials,” in which an additional atom has been
forced into one of the small gaps between the atoms in the crystal. Now if a
ion gets removed from its normal position in the crystal to create a vacancy, it
must go somewhere. One possibility is that it gets squeezed in between the other
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atoms in the crystal. In that case both a vacancy and an interstitial have been
produced at the same time. Such a combination of a vacancy and an interstitial
is called a “Frenkel defect.” Another possibility occurs in, for example, salt;
along with the original vacancy, a vacancy for a ion of the opposite kind is
created. Such a combination of two opposite vacancies is called a “Schottky
defect.” In this case there is no need to squeeze an atom in the gaps in the
crystal structure; there are now equal numbers of ions of each kind to fill the
surrounding normal crystal sites. Creating defects in Frenkel or Schottky pairs
ensures that the complete crystal remains electrically neutral as it should.

Impurities are another important defect. For example, in salt a Ca?* calcium
ion might be substituted for a Na™ sodium ion. The calcium ion has the charge of
two sodium ions, so a sodium vacancy ensures electric neutrality of the crystal.
In yttria-stabilized zirconia, (YSZ), oxygen vacancies are created in zirconia,
7104, by replacing some Zr** zirconium ions with Y3+ yttrium ones. Calcium
ions can also be used. The oxygen vacancies allow mobility for the oxygen ions.
That is important for applications such as oxygen sensors and solid oxide fuel
cells.

For salt, the main conduction mechanism is by natrium vacancies. But the
ionic conductivity of salt is almost immeasurably small at room temperature.
That is due to the high energy needed to create Schottky defects and for natrium
ions to migrate into the natrium vacancies. Indeed, whatever little conduction
there is at room temperature is due to impurities. Heating will help, as it
increases the thermal energy available for both defect creation and ion mobility.
As seen from the Maxwell-Boltzmann distribution discussed earlier, thermal
effects increase exponentially with temperature. Still, even at the melting point
of salt its conductivity is eight orders of magnitude less than that of metals.

There are however ionic materials that have much higher conductivities.
They cannot compete with metals, but some ionic solids can compete with lig-
uid electrolytes. These solids may be referred to as “solid electrolytes, “fast ion
conductors,” or “superionic conductors.” They are important for such appli-
cations as batteries, fuel cells, and gas sensors. Yttria-stabilized zirconia is an
example, although unfortunately only at temperatures around 1,000 °C. In the
best ionic conductors, the crystal structure for one kind of ion becomes so irreg-
ular that these ions are effectively in a molten state. For example, this happens
for the silver ions in the classical example of hot silver iodide. Throw in 25% of
rubidium chloride and RbAg,Cl; stays superionic to room temperature.

Crystal surfaces are also crystal defects, in a sense. They can enhance ionic
conductivity. For example, nanoionics can greatly improve the ionic conductiv-
ity of poor ionic conductors by combining them in nanoscale layers.

Key Points
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0—= In ionic solids, some electrical conduction may occur through the
motion of the ions instead of individual electrons.

o— It is important for applications such as batteries, fuel cells, and gas
sensors.

6.22 Electrons in Crystals

A meaningful discussion of semiconductors requires some background on how
electrons move through solids. The free-electron gas model simply assumes that
the electrons move through an empty periodic box. But of course, to describe a
real solid the box should really be filled with the countless atoms around which
the conduction electrons move.

This subsection will explain how the motion of electrons gets modified by
the atoms. To keep things simple, it will still be assumed that there is no
direct interaction between the electrons. It will also be assumed that the solid
is crystalline, which means that the atoms are arranged in a periodic pattern.
The atomic period should be assumed to be many orders of magnitude shorter
than the size of the periodic box. There must be many atoms in each direction
in the box.

Figure 6.21: Potential energy seen by an electron along a line of nuclei. The
potential energy is in green, the nuclei are in red.

The effect of the crystal is to introduce a periodic potential energy for the
electrons. For example, figure 6.21 gives a sketch of the potential energy seen
by an electron along a line of nuclei. Whenever the electron is right on top of a
nucleus, its potential energy plunges. Close enough to a nucleus, a very strong
attractive Coulomb potential is seen. Of course, on a line that does not pass
exactly through nuclei, the potential will not plunge that low.

Kronig & Penney developed a very simple one-dimensional model that ex-
plains much of the motion of electrons through crystals. It assumes that the
potential energy seen by the electrons is periodic on some atomic-scale period
d,. It also assumes that this potential energy is piecewise constant, like in figure
6.22. You might think of the regions of low potential energy as the immediate
vicinity of the nuclei. This is the model that will be examined. The atomic
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