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7:an_.5/orm éa;_é_ fo  the /déon;fofjv J;y.rfam
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/b/u = ( c . /D)- 2, /‘?) ¢S J/oa/- - Vé'cLLa.r
s r: 0= : z \ B
v /.7: " ____/:: - 7,9 - C__J/_ t,tr __f,;zc :/ =
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Pt P ir also a //E;ar- vector

(e R = BR rET G 2E B

= S (L+E) - (,/5,:’ */zi:)‘ it a Lorents Jcalar

CJ.
( eavarianl)

ELunlate (L *p, )2 in the (aéafafc?;y L vrlem

= 2Mmict » 25 mc
/- — [

Lyulate  (p+pb,) ' in the center 2; £ _snass .{/VJ'ZLE/?Z

= (£ + LA

2Mict ¢ b, 0, = (£FrEM)., = (4976 Gev JE*

26, Moct = (£976° ~ /757688 Gev”

= /[z,,; ~ [2. 26 GeV

Nole y the wse j// c'ﬂvare'aﬂf Scalar s Hg_;r[_/drﬁaf

jm:/oortancco

( 7his has been discussed in Céc-?ofcr J) e
= convenient %i”eri‘_
Relativistic hinemalics are used. A (useful) unils p/,)j.:{;’;
(fnown as natural: unils) is given in Appeadix C. :
Furthermore , the and_er.rz‘_and.:‘r_sy of physics m,ﬁLg’mM____
necessilales a fusion y guantium mechanics and .

J/_?ecia,é reéa.t_éyd__é){ .
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— _ — X/ - X/ — N
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(2) Jam.f:- of lhe -ffundamc"’/?fa,ﬂ Conjfa'fueﬂéf have A_z/a/z,

=4 3
malsir  and finilte lifeltime
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7 = = = 7
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2. Mistorical Deve @am ent

() 1897 T T Thomron Aircovered cleclror

The _birth of elementary sarlicle phycics
= = 77

< Cowulomb :_// g/72.

adzrusled crossed

i
electlric and mg_f?&fcc
_/-/z‘e(d

Negativelsy charces
— P -

/994 Mellihon e orf a’n%b B»\’f.bff[&?é’/?lz
//

71 e.maremenf ﬁ’/ 4

3.

e = / ér‘ /0—/7 Coclomb
Lise £ as g  wml of chorge . & (e )= -/
A g3

Kesl cnergy j/ eleclron = /77:,C‘3 = 0, 3/ Me

/Pd -/-t"I‘EI?CFJ
/ .
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‘[decnzla,;v farticles . A JShorl /‘/zﬁ.rfo;r/v;f Jome L ircoier

in Altomic Phyrics by C. A Yono

“/\;-om X-/?a/v.r Yo Quarks . Modern /‘:’A/y.r‘z'c.:'_rif and 7/7&'2‘

Disroverles i 6\/ [ Jegre
@ i

CZ‘Z‘) [905 5‘/-:.rz'e£/z_/pro/pojm’ Zhal /7[0/- Jome /Duébafc_’.f @aﬁ?‘

can be  made j’[ /parl‘z';:(c_r _ laler calles /aéafc)/;kn

/b/ml'an_ e ele cfmmﬁa/ancf_/'c //L‘a/zj

particle Lield
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Reference.  Subtle ir the Lord. 1he Jeience and Life of
e >

Albart Fiolein " 4y A s

Photorleclric 35/6(;5‘ LA Iclliban /914 - /9/6
Complon Sscallering ;5*=/2; C‘ofr;bto/z /922 =/923

" w=/Elc T2 F=/Flc 2 =05

Photons bave 3jero (rect) marr and zero charge
= Py —

Photons always Lravels al the speed of [lighl, so they
7 7 — — =

cannol _conltained woithin alosus

(ter) 1977 ﬁ;ﬁ/ziyfo/—a’ SLcallering = dircoveres rhe ruclews

of lhe alor.
=4

..

: : =5
Atomic Lipe . o [0 " cmm

V4

Nuclear Jige o /0 "~ rm

(L) /913 Bobrls mode! 3[ ﬁ/va’/:o/aen alor

/L//ydrgam huclews 2  brofon e

/9/%

Discovery of Zhe protorn . evidence for the protosn ar &
= 7 — -

consliluent _3/ he nuclewus

/&f:/ze;ﬁ:rd . He » N /cu.‘am)"_"‘/b * X

Q(ﬁj = +/

JWFC"' = _938. 246 Mey

In 1913, there were  Lhree “CZC/Z?MfQC/}%,ba/‘ZTC(&f .

- EO S )

(v) /Z;om [/ 9/3 - 1970 = deve/f}p/nenf j/ :;Juav?é/m mechanicrs

Jim;{y /a/ alomic JSlruclure.
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We shall mention Z’ﬁeJ/o/(OW[/)j‘ 1'/7}b0/-/anlf‘ c/eve/ggme/zzfr

because z‘/:e/y are z'opmc'a’c'a.l‘eﬁv relaled To owr oliScesision

o n thir seclion.

/925 (ol exclusion /pa'na/'p[e

LRAS CGoudsmil Vo)a =4 Z/A/Pnééc‘/é

L From the sludy of alomic Sbeclra
. = & P 7
J/‘.bz/z ﬁ/ rf/e:fm/?

£Llecltron has .)}bz'fl _;L

EEE;
Froton A4as J}b&’? 3‘
A = _3% . b= Planch .COHIZL&/?({_

/b/so ton has .’);b[/z /

( bul owév {WQA‘I/‘P[/? slatles )

vi) /932  Chadwich diccovered Fhe nrewlron 22 gn Zhe

followine reaction
=7 ~5

<L 19 LE ]
yol T e - L * s
== B

o

[ .r%ber—-.rc:r?'az’ - A4 . J‘//Arcr;’pf — 2/
LBefor r

—MMMMJMAMM_

L5 made/o/ A /pmz‘a/;.r and (/‘4 =~ Z ) electrons

‘_.%M with  this /bz'cz‘ure

A4

AN

Lhis preture . Showuld be made of [4 lpmﬂaa,r ane 7 electr
awelear ’r/bz'n poucl be Aa_.///-{'n_féaf/-

7F
bxperimentally L@MMM@M%L
/. S
/e /

/932  Heicenberg ( Lvanenbo , Majorana) = /szfozu ond
neulrons are the. nuclear congliluents
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P 979 55 Mey ( nca(fmf? L5 JZcq/fvf/y Aeapine Bhow

'M,_, e
praéon /

Neutron also bas 7&9:’/7 2

Newtron Aas m_czjm.ezzc'c Jament = At Aars c’/ecrzlmmiz/anel‘c‘c

interaction

Cvid) /930 FAaulih _ruaaf-rﬁ'ozz of the exiclence f// e lrino

B -~ decays have been rludied since the worf j/

fa,dfoa]cifu/afv év /3e°¢aur‘=ra_f (/8 F& ) and (urie (/575 )

747)- exarye le,

It was aiswumed to be Zwo - éaa’v decay ,
228 .zzg " 7
Ja FAY~/ > 3? /_l C U GJ
e
—D:. f/r cwlly . Jvo -body decay = wnlgue eleclron energy

4
zn i/c: )—e.rzf .Iv.rz‘fom ol Ihe Jdecaving ruclews
= e

M — ‘tn *M,

In _the rest J/v_ra‘em of M . relativictic Rinematics

QLIEr
—
= JP¥c: rmict t o Bt r Myt et

are {izred = //54/ ond. _frneralls oX /2. 7
T -__/ _/ v o SE

M. m, . N,

are  fized
=7

Apb/cfd to above reaclion . one f“)fpti‘clfr the cnergy j/

the ou_z.‘am.ncz C” Lo he urnioueE
J /

How ever ., fxbﬂz-zmmfa(efv the pneray JSpeclrim of ZAe
=% —

electron. s conz‘muom:

/Da.ula .fuaap_rffa’ Fhat  lhere s an ana/effcéad bar&‘cc(ﬁ:

1 éu. mno az-oafuced Zogelher wilh /4c * C:’

the reafflf)/z L acffu Ly
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o/ newlrino = /na/éé’ co ;
valion Corme arible..

The exiclence
and enckgy = momentuzl  CONLEr

LB~ decay theor
= oy

/933 formi cured [l idea to  contlrucl a ,
is ! conristents sal

Hal gives an electron energy “5aecfmm that

-/I
eXIp erimental data

pn—=>p5pbte t Y
er (n order

The basic reaction Ls 5
= peulrino thin IS f-e/am'nzd‘ lo be Aaj/-z'ni"_e/o

to salisfy z"/:/{- anoular momenti?l. Coniervalion

Spin i_f‘-//ZL/J/éP)? Lo éﬁ’ 2

div)=o0
= O ( from The end psomal of eleclron ernergy

/7 =
L4 o
_rperzfram )

)‘ecenf:.//v , the are dndicalion that /71, #0O
A

will be dircucred n C%c}pfer /a2

/:7//2'& /[ﬂ{’mx_/f wo;-/ﬁ . ma.rzf' /.b.é/va'c.c'.rf.r ﬁrrg@fﬁd Z%e

exirlence 5/ the Aewulrind

Lxperimentally . newtrino ivar Lirsl " pbrerved 5/;/

//?ec'ner a.n/a’ Cowan in 19353=/957

Most of the malerial has been discussed n

f’arZE/Cr C‘/?a:(ofer.f
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(VAIL') [932 Anderson . [933 Blackell znd Oechialiri

ditcavered posilron C? in the carmic radialiorn.

[ Reference "N Mcloar ond Particle Pévmz'CJ ” é7v

A///;-auen#/a’er and L M /‘/fn/ev ]

[mporfance a/ Zhe dirco l/ery fﬁr/ C”l.

(G) [} ;¢ the JZ‘a;—hz_v/& boinl of a serier of dircoverias

of nrnew Darl‘zczfg_r/from casuc )-aa’zaftO/?

(b) TE provides the Frslk imporlant Ca/z/zrmafaofz. 3/

Drea’m:ftafz -frozzz reTalivictic ouan/‘um z‘/)f'orv

L™ it particle

/928 Dirac féﬂnrv of electron
7S

Lirac a?ua_fr}m LfD(./? +  palatiuidlie  wave é”guaff'aﬁ

/;'t:c, {Darfz'c‘/f' Pfuafz.'()ﬂ




Lo AR

£2 = plctr mic?
£ = f.,\/;p‘?*-m" /
7+ Vv =F£ 5 — -4, f*’dft,z_z{

’

4

Y , 7
s (E v 17 ¢ = 52?
7

Jehrod z':?/ Ger & ;?ua,fc‘oxz

Jecond ord - _dcamﬂzﬁ_&ﬂJﬁJ.‘L_cZL_Zo_{Qace_

Lircl order dertvalive wilth )-C‘J‘DC‘C/L Lo Firme

= ()Zba_fcéfﬁ wilth _;bﬁma,( rel. cwéw

Klern = Gordon e’guaz‘wﬂ

. # = -7+ mif =0

Py

Z
1. = 2z 77T C
oF -y ok

F i =2
&

&L 4 gl 4

Jl does nol oive the Avdrogern speclrim ichen
7 o = /7

Coulomb /pafenét'a/ 05 yntrodiced
/

L does pol describe the electron

Uy swllable in a/c..rcn'éd'/_?/a

spin less pazfccée
( rince ro J'omv variable Aas

been :nzfroducea’ )

. ’ T . i ;
Dirac c}?ua,(fco/? Crelativiclic Spin 2 wave rf;;aafw/z)

/

(L = :"é‘fﬁz'ﬁ;’ﬁé ,;.,,,:,L

A =]

Lirac £?ua_tz.'a/7 LS L/%E‘rn‘ order ¢n  Lime and .J}ba(:r"

deri valives

—

Nows < . B are 4 X4  malricer

5& L5 a  column malriz wilth 4 - C‘a/?;,ocwf'ﬂfi

k.
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there are 4 ,planc wave

/z;.w- a Kxed momenlum ;5’

L2 lu 'L'a/?.f_

Twvo tolulions wilh /_A‘ ,\/P r pr?

Obwou.r(/v )-c/.bre_reﬂfz:?j: the z‘wo J,b.m stales

Tovo  more colutions with £ = - A/,5‘+m"-

/

mesative sneiaw itale
=7 a7 4

Advantager of. 1he Dirac equatiorn
: agel o 4 _

(0) TE os a relalivictic wave c’auaﬁozz

(L) Spin comes oul ﬁafura.(év

/
Gir) 1 agives the correct é/\/dfzgm alorm _gperfram

(Lv) It “c;r'vf_r Q = 2
~ Y

g vromagnelic rallo
7 =

At = g AL, .S
7 J"ZD
e
EN
s = —— = ABohr magneton
7O Z7/ncC =7

DitLivcllies in excluding the negalive enecrgy JStales
=54 Sy e

(1) There /5 No A — brior reason in guanium mechanies

i
to exclude Francition fo negalive frnergy stalers

Gr) The posilive eneray eigenrtalesr alone oo 4ot Sorm &
“LH—=0 =,

7
Com:,bfpztf J’«ff

7;an:£z"r_'on o/ & _D[rac /bartfr.:l./f can oCcLe’s w;‘.éé

emicrions of shatons

/930 Oppcnﬁ/ecmcr and._lamm.

Zz/rﬁc/;m ﬁ/ eleclrons. cjlam/?.[f Juch Lroar! /LcQ/?
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= Some  mechaniism  Pausl exisl that  Sforbids /-a.z:cd’

fran.rzftc?f? ZLO nf'jaaﬁl/ﬁ 8/7(‘_'/'05/ J‘faf f

Dirac's accumplion (/930) abowul lhe vacuur .

(a) All hcaaff?;/é enerqgy stater are fulled wi'th /,oaz-z‘c?:&ef,

. g e
No sarticle ?/1.3 posiltive cnergvjfafe

7 -
The Dirac vacuurr coes hol broduce ar e/vzféw?a_r:’/ Loeld

(5) .
to the charge  CrErav . 1220mmEnlii7
— - A

and do rnot contribute

and. the shin of The Syslem
p 7 7

One  particle ( electron ) state . one barlicle wn the Paﬁ:fzz'v&

cnergy Slale . all ﬂeaa.ﬁ?,yd cnerg, J rlater areJ{Z(ed
Q € one ct’ecfran ..rzLaL‘e) =~/

One " fole ctate. no parlicle 1n the .ocsw_a‘z.ve Crergy

7
state  one paréu:fe Z_r parring Lrom  the mésalive cnergy

rltale = Z%c ' hole ' Aas /pOJz lve cnergy and paru‘c;/e

.:Ai/};e ) i}
& (one hole slate) = #/

At the time Dirac bo.rfz_c(afpd the bole L‘Aeary’ 0/?/y 2AF

electron and the p)—ofa/z were fromwn

_)c rac  ldentified

. 4
particle €~ electron.

c‘mée — !braéa/z

/930  Oppenheimer pamtcd owl that /L srotonn were JE?’&?_Z}'#?

with fc(ccf':on /?aZc _then the & ﬁ ‘4)0'!‘6/77 (e, LAe L

hydrogen alom) wau.Zd he annchilated potthin ~ 10" Srep

:é P/Pr‘fo()ﬂ ,/_)QZP

(93] Weyl showed that bholer musl bave lhe Same mass

ar the sepiaved elsetron. — Aole chsuld Ae zrjmz‘u‘}ca’

with the pa.fzz‘zve electron

4

Dirar acceair’a’ Lhe interprelation &/ /4/:2»//

= /brﬂa’rc/’ﬂd’ the exitlence ﬁé C

/932 - 33  Anderron obrerved rhe lrack of cosmmic ray (22

a  Wilson chamber wilh magrelic _{{:'P/d — dirroverés

g L .
Lracks bad a curvalure — porlive /pafz‘char /o/ aboul

Lhe cleclron Jnanrl.
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Direction of molion iwas delermined éy the snsertion 07[

alead p(a.f.«: (nlo the chamber

. /Darz‘ccfc m L‘rayé’r.rma the lead .a(zuff. /‘a_rf' ErRray a/?c/ c'{.r

radius of curvalure became .smaller than bé ore (‘écv

=
enltered” the lead /p/a.ff’ = a’c_rcayef/-yj/ @

£alr crealion év racdiation € the mcamzzg /pAofO/?_ lifts

an.__electron -/ram a necalive enerey clale fo a pa_r.:z‘zw"

PNEraGyY rtate” = 4 Sicitron (bole ) and an electron.

7
/ /\/E;/tc . trom  Erergy = mmomen Lum CoNnSEervallor. contideralior

A
ol cEAalian (,oma’ucz‘m/z) Ly o Sinale photon 15 rol

7
facu_rcbfe W&f/?_ou.f an ff@nt Juch as g nwclews, o lake
Lip some. momentum ]

Poir annibilation — poagtive energy electron Falling
g = Z5

into the Ahole with cnergy carrid arvay Av aéofom

7770
e 2
S | ﬁlﬂl
TG 7 7 7
e 7/
g IID I
v /
5
H €
F
o)
m.-z-z'
Fri.
oef

Llectron —-/Da.r.{fra/? /bcu‘r //aroc/ucfz'on

(a) A b/)aicm, of eneray ALY (2 /[ 02 Mel/) ix absorbed

bva negalive - Znergy electron which QZM" Zhe

=7 7
Slectroin. a panz,‘we Cnergy

(b) The resulting hole in the negalive ehergy clectron

= =
sea  behaver like an electrorn a/ paﬂéwe cﬁg}oe

S

—
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an(z'—/parﬂc/c >  particle moving baclward rn  irme
/
J - - T . . .
mars (particle) = 2 ( anéc‘/bart&‘c../c)
= J (Gﬂff_—-jbarff(‘(f)

- /\/("a/}é'—/bafﬁ‘céﬂ

—_—
fl—

J (;barh'cld )
A (/barfc‘c(c)

any additive Guanlum fiumber hHoSe
4 7 .
value /7(0/- the bAofO/z (s _3ero

/Darfccf\c\ QARG
\ /

;v P};oif&?ﬂ
anli~ /.'Jc?rll / C(P

,bo.rz tron (/932)
dwf:. - brolfb/z, (/935

a2 (‘ﬂ = /JEul‘rofz

o arlicle

b‘hgl‘bl r\\

AR DT o
NN

"

In /933, =2
o2 ’F. b, »An, Y and &

elementary particles  were

L

[le ference on anz‘z'—/barz’zc/ﬁ
“ The Reacon for Ants-tarticler” in ux.[/w.f/?fary
- ke /986 _Du-ac

Larls of Physics
famérda’oe /’/'m.yer.nz’v Lrecr /8T

A."/vnmafz
Larlicler and Z‘/?f :

Memorial [eclures
Yobawals prediction 377'/ he exislence 5/ 292050

(cx) 793%

Nucleus s made 3/ L and 2
/
exislence of /?uC/E.ﬂI_‘/-té/‘C("

WNuclear force df rlrong al shorl oislaonce
= L — ¢ ‘ '
binding the auclews " 74 TIC
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1 o B T
In the late [920'c ond early /9305
L
the a’.eye(apmez;f _3/ 2he Gaanz‘a& z%eary a/ the radiat
Ae(a’
.6.v'

Dirac ., _/«;ra’an . /DauZ:.' . ane //Eflrené(_‘z/}?

Llectromagnelic interaction ir described Mmggé the

exchanae of. pholtorn
=]

] /
i’ll‘ e f e

e \ e-

il \

Yokaisa tuggscted that the tlrong inleraclion showls be

> =
I described  throwgh Lhe exchanae. of rmesor
! .../_ ._./ _/

Zn
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. ip-7  Hideki Yukawa
was the i - Japanese physicist
to win the Nobel prize.

16—4 The Yukawa Hypothesis and Pions

In 1934, shortly after the discovery of the neutron, the Japanese physicist Hideki
Yukawa (*Fig. 16-7) had the inspired idea that the nuclear forces could be de-
scribed by an analogue of the electromagnetic field. This field would have quan-
ta that are analogous to photons, and the nuclear force, with its retardation
effects, could be generated by the exchange of the quanta of the field. He found
that if the quantum had a mass u, then the proper analogue of the coulomb
potential ¢/ (4me,r) would take the form (*Fig. 16-8)

V(r) = —¢* M) (16-7)
where g is some coupling strength analogous to the electric charge e. This re-
sult reduces to the coulomb form when p = 0. The range r; of the potential is
defined to be the distance where the exponential factor falls to 1 /e; that 1s,

= —. (16-8)
C
We can understand the association of a mass . with the range if we use the
energy-time uncertainty relation. A virtual quantum requires the “borrowing”
of an energy of at least uc’. This can be done for a time At = i/uc? during
which the virtual quantum can propagate for a distance of, at most, cAt = 1/uc.
That distance matches precisely ry. If u = 0, the range is infinite.

The potential in Eq. (16-7) is known as the Yukawa potential. Yukawa pre-
dicted the associated quanta, subsequently named pi-mesons, or pions (sym-
bolized by 7). He estimated their mass by its association with an experimental
value for the range that came from the known properties of nuclear forces (see
Chapter 15), namely

1.05 X 107 - .
m, = A = AL = 0.3 X 107 kg = 320m,.

e (12 % 107% m)(3.0 X 10° m/s)
In energy units, m,c* = 163 MeV. Yukawa did not specify the spin of the meson,
but the particle had to be a boson, since it was emitted by a nucleon, and a nu-
cleon remains in the final state (*Fig. 16-9). Nucleons have spin 1/2, 50 the
meson must have integer spin. Analogy with photons suggested that it would
have spin 1, whereas simplicity suggested spin 0.

Comparison of
the shapes of the Yukawa
potential ¢ */x and the
coulomb potential 1/x.

Nucleon

Feynman
diagram containing a vertex in
which a nucleon emits a pion
and becomes a virtual nucleon.
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Victor Hess (1883-1964, Nobel prize 1936) and Theodor Wulf (1868—-1946).
These physicists discovered cosmic rays. In 1910 Theodor Wulf, a Jesuit College
teacher in Valkenburg, the Netherlands, made a sensitive electroscope (Wulf’s
electroscope). It was known that such an instrument, after being charged, slowly
lost its charge and it was believed that this was due to radiation from the earth.
It was known at the time that radio-activity would discharge such an instrument.
Wulf asked the French physicist Langevin for help to do the experiment at the
top of the Eiffel tower. The result, carefully analyzed, was unexpected: the
electroscope discharged much faster than anticipated given the absorption of
radiation by the air!

An electroscope is a very simple device of which the main part consists of
two conducting leaves. When charging this setup the leaves will repel another,
and they will spread out, as in the picture. If a charged particle passes by,
knocking off electrons from atoms, the resulting ions or electrons drift to the
leaves, thereby discharging them, and they fall back.

Hess decided to investigate the issue in a systematic manner. He started
off with some experiment in a meadow in Vienna. In order to get higher up he
became a balloonist, taking Wulf’s electroscope to heights of up to 5 km. After
some 8 flights (sometimes unmanned), a few of them at night and one during
a solar eclipse (to eliminate the sun as a source) he established that at high
altitudes the effect was stronger than near the ground, concluding that the
effect was due to radiation from outer space. Millikan entered the field later on,
and having a better sense of public relations coined the name cosmic rays
(replacing the name ultra-radiation). At first, on the basis of his own experi-
ments, Millikan doubted Hess’s results, but later on he turned around, and in
fact became more prominent in the public eye than Hess. The Swedes however
recognized the facts and awarded half of the 1936 Nobel prize to Hess for the
discovery of cosmic rays (the other half to Anderson). Perhaps they should
have included Wulf.
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James Chadwick — Hideki Yukawa Cecil Powell

(1891-1974) (1907-1981)  (1903-1969)

Fig. 13.4 Chadwick discovered the ncutron in 1932, Yukawa predicted

the 7 meson in 1934, and Powell observed it iu cosniice yavs in 1947.

__|sidor Isaac Rabi (1898-1968).

Fig. 13.5 “Who ordered the p-meson?”
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. " Feynman
diagrams showing how the
exchange of ', 7, and 7' give
rise to proton-nucleon
scattering. (a) In the exchange
of a 7° the nucleons do not
change charge. In (b) and (c)
there is an exchange of charge
among the nucleons.

14 n
// s ~
7 7 AN
’70 ‘at 7N
n n P
4 4 "
(a) {b) (c)

Any quantum that can be exchanged could also be expected to be produced
as a physical particle in a reaction with sufficient energy. This condition set the
stage for experimental efforts to prove the existence of pions by their direct
production. When the pion was discovered in the late 194Cs, experiments
showed that the spin was 0. The mass turned out to be in the vicinity of
140 MeV/c‘ remarkably close to the predicted value. Pions come in three charge
forms, 7, 7%, and 7, which allows them to mediate the forces between nyu-
cleons and antmucleons (eFig. 16-10).

The Yukawa hypothesis has an importance that transcends its direct ap- .

plication to nuclear forces. Calculations in relativistic quantum mechamcs—
the calculations that use Feynman diagrams—show that

(i) any particle that is exchanged by two particles (¢Fig. 16-10) gives rise to a
force between the two particles and

(ii) the only consistent way to construct interactions between sets of particles
is by postulating the exchange of some particle between them.

Itis understood that the emission and absorption of the particle being exchanged
must not violate any conservation laws. For example, n — p + 7~ and
7 + p — n,which occur in the interaction leading to thereactionn + p - p + n
(Fig. 16-10) are permissible, whereasn — p + 7" and #* + p — n, each of
which violates charge conservation, are not. If the latter reaction were allowed it
would in turn allow the (forbidden) processn + n — p + p.

There was a brief and interesting detour along the way to the discovery of
pions: Particles for which mc* = 110 MeV were discovered in cosmic rays in
1936—after Yukawa's suggestion. Although their mass was about right for them
to be pions, measurements of their absorption in matter showed that they did
not interact strongly enough with nuclei to give rise to the nuclear force. They
were a new and unexpected particle dubbed the muon, symbol x. When the
physicist L. I. Rabi first heard of them he asked, “Who ordered that?” It turned
out that muons were just like electrons, only heavier, and that they had very lit-
tle to do with nuclear forces. We shall see later that they nevertheless play an

important role in elementary particle physics.
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Wolfgang (Pief) Panofsky (1919). Pief created the Stanford Linear Accelerator
Centre, and developed a linear electron (and positron) accelerator. SLAC is
arguably the most successful particle physics laboratory, generating three
Nobel prizes. He was SLAC director from 1961 till 1984. | was there in 1963
during SLAC’s building phase, and | was deeply impressed by Pief’s leadership,
knowledge and intelligence.

Educated in Princeton and Caltech (PhD), he participated in the Manhattan
Project (atomic bomb) and after a period in Berkeley joined the Stanford Uni-
versity faculty in 1951. He very much involved himself in arms control issues,
and remains an important US government advisor to this day.

His achievements are immense, and he received a large number of distinc-
tions. Ironically not the Nobel prize. .

His father, Erwin Panofsky (1892-1968), was a most famous German art
historian. Being Jewish, he fled Nazi Germany in 1934 and after a short while
went to the Institute for Advanced studies in Princeton. He had another son,
Hans Panofsky (1917-1988), also very intelligent, who advanced the under-
standing of clear-air turbulence and the dispersion of pollutants. When both
sons studied at Princeton University their intelligence was quickly recognized,
as one of them appeared slightly smarter than the other they were dubbed the
smart and the dumb Panofsky.

Pief, being in Munich, was once asked if he wanted to go to some museum
He answered: my father often spent hours explaining pictures to me and at
some point | decided not to see anv more of them
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Elementary Particles 131
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Fig. 13.6 The elementary particle spectrum as of 1947, the triumphant
year of QED.
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Ernest Stiickelberg von Breidenbach zu Breidenstein und Melsbach
(1905-1984). This brilliant physicist who introduced the idea of baryon number
(as we call it today) did several things that were Nobel prize worthy; as he
published mostly in a rather inaccessible journal (Helvetica Physica Acta), and
moreover not in English, his work went largely unnoticed. He suggested a
finite range for the nuclear forces (Nobel prize to Yukawa, 1949) and he also
developed a formulation of quantum field theory as also done later by
Feynman (see Chapter 9 on particle theory).

Stiickelberg suffered from cyclothymie. This leads to manic depressive
periods, and he had to be hospitalized periodically. In his later years he was
always accompanied by a little dog that was claimed to be there to guide him
home in case he lost his way. The dog was always present when his master
gave a seminar, and | have actually witnessed that the dog answered to a
question from the public (in fact, from T. D. Lee) with a short bark while
Stiickelberg just watched.

Whenever Stiickelberg travelled he took along all of his books and papers
that he might conceivably need. This led to a large number of heavy and big
suitcases and trunks for even the smallest of trips.

In the book by R. Crease and C. Mann, The Second Creation, on page 140,
there is a very nice interview with Baron Stiickeiberg. Memorable is one of his
parting words in that interview: “We live too long.”
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Richard Feynman (1918-1988). The most important contribution of Feynman,
in my view, is his introduction of the diagram method named after him, and the
theoretical tool, path integrals, that he developed. Truly wonderful work.

Part of the formal theory associated with those diagrams was published
before, in French, by Stickelberg in the somewhat inaccessible journal, Helve-
tica Physica Acta. This including the idea that a positron may be viewed as an
electron going backwards in time (this is basically the idea of crossing). It is
unlikely that Feynman knew of that work, yet when he learned of it he dutifully
acknowledged that in his papers. There are some anecdotes associated with
that, not necessarily true.

On the evening of the day (in 1965) that Feynman celebrated his Nobel
prize he received a telegram during the party: “Send back my notes, please”,
signed Stlckelberg. According to my scurce (unpublished biography of
Stlickelberg by Ruth Wenger) the originator of the joke was Gell-Mann. | asked
Gell-Mann if he had sent this telegram, but he denied that, adding that it was
a nice idea.

When Feynman, after receiving his prize in Stockholm, gave a lecture at
CERN, Geneva, he was afterwards introduced to Stlckelberg. He asked
Stickelberg: “Why did you not draw diagrams?” To which Stickelberg
answered: “I had no draughtsman”. Stiickelberg, always the perfect gentleman
and very conscious of his standing as a baron, apparently felt it below his
dignity to draw those simple figures himself.

Feynman was a very charming person to talk to, and he was a gifted
teacher. Well-known are his textbooks on physics, and he came very much in
the public eye in connection with hic mart im s~ oo
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Fig. 12.9 Bethe, Schwinger. Feynman. and Weisskopf (with student —
J. Bruce French) calculated the Lamb shift independently during 1947-
194%, using renormalization to circumvent the “ultraviolet catastrophe”.
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As'if all this were not enough, a new class of particles, dubbed the strange
particles, was discovered.’ These particles were counterparts of the pions, the
nucleons, and the other resonances involving pions and nucleons, but they dif-
fered in that their production patterns required the existence of a new label, or
quantum number, something suggested by the American physicist M. Gell-
Mann (sFig. 16-16) and the Japanese physicist K. Nishijima. This new quantum
label, the strangeness, was assigned so that its conservation would make the
production and decay pattern consistent—in much the same way that baryon
number is assigned. Particles with nonzero strangeness are termed strange
particles. For example, a strange particle called the A® (A is a capital Greek
lambda), of mass m, = 1,115 MeV/ ¢, decays in a pattern similar to that of the
A; that is,

A > p+ 7 (16-9)

However, this decay is 10" times slower than A decay. One assigns a nonzero
strangeness to the A” and a zero strangeness to the pion and the proton and
postulates that strangeness is conserved in the production reactions and vio-
lated in the decay reactions. This postulate allows for the systematic explanation
of all the production and decay rates of strange particles.

As the number of particles, strange and nonstrange, grew, people began to
look for ways of explaining their proliferation.
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Abraham Pais (1918-2000). Pais, the author of the books mentioned in the
introduction, was a very accomplished physicist. Together with Gell-Mann he
published a paper introducing the idea of particle mixing. This was in connec-
tion with K9—K® mixing, a very curious system indeed. When producing a Kj it
would after a while become an K° and the other way around. In the end this
resolved itself into a combination of two mixtures, called Ks and K;. They have
very different properties; Ks decays quite quickly, while K, lives much longer.

Pais introduced the idea of associated production, which is in fact the idea
of a new quantum number now called strangeness which had to be conserved
in all but weak interactions. Actually, several Japanese physicists published
similar ideas at about the same time. This rule explains why certain particles
were always produced in pairs (one with strangeness +1, the other -1, so that
the sum was 0), given that the initial particies would have no strangeness. This
was generally the case, because proton and neutron have strangeness zero,
and the new particles were seen in collisions of protons with the protons
or neutrons in a nucleus.

Pais, Jewish, living in the Netherlands during World War |l, barely survived.
He was released from jail just before the end of the war, after an appeal by a
very courageous lady armed with a letter from Kramers to Heisenberg (who did
not intervene). Perhaps the commanding officer saw the end coming, reason
for a leniency extremely rarely seen. A friend of Pais, arrested at the same
time, was shot.
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Luis Alvarez (1911-1988). After Glaser came up with the idea of a bubble
chamber Alvarez was quick to realize the potentialities of such an instrument.
With considerable energy he put himself to the task of building bubble
chambers, and to use them for physics purposes. With his group of very
talented engineers and physicists (the distinction was not always clear) at
Berkeley he started constructing a then relatively large hydrogen bubble
chamber (10 inch = 25 c¢m long), with which a large amount of physics was
done. They discovered many of the particles mentioned in this section. Alvarez
received the 1968 physics Nobel prize.

In a subsequent daring step the Berkeley group went on to construct a
much larger hydrogen bubble chamber (72 x 20 x 15 inch -~ 183 x 51 = 84 cm)
for the then large sum of $2.5 million. The problems were huge: liquid
hydrogen (or deuterium) had to be kept at a temperature of -250°C, and
the magnet surrounding the bubble chamber,was very large (100 tons, using
some 2 Megawatts to power it).

The first very significant result obtained with the 72-inch chamber was
due to Pevsner and his group at Johns Hopkins University. The chamber
(filled with deuterium) was exposed to a beam of piocns from the Bevatron
(a 6-GeV accelerator in Berkeley) and photographs were taken and sent
to Johns Hopkins, The result was the discovery of the n, which particle
completed the octet of mesons as described in this Chapter.

The relation of Alvarez with the then director of LBL (Lawrence Berkeley
National Laboratory), Edwin MacMillan, deteriorated to the point that it inter-
fered with the physics done. So it goes.

e
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The discovery of pions in the late 1940s coincided with a return of many physi-
cists from defense-related work in World War II, and their successes brought
with them a national commitment to the growth of science, including such es-
oteric fields as elementary particle physics. The construction of accelerators of
ever-increasing energy allowed an exploration of the interactions of pions with
nucleons. Already in 1952 the elastic scattering of 7* by protons (an analogue
of Compton scattering of light by electrons) yielded an interesting phenomenon:
The incoming pion and the proton formed a new “particle” of mass
1,232 MeV /c?, which then decayed back into a proton (or neutron) and a single
pion (Fig. 16-12). The “particle” was not stable; indeed, its lifetime was ex-
ceedingly short. One can think about such particles by analogy to spectral lines
in atoms. For example a photon impinging on one particle (the ground state of
hydrogen) “produces” an excited state 6f hydrogen, which then decays back to
the ground state. If hf is the excitation energy, the light that is emitted has a fre-
quency f + Af and an energy spread 2hAf (the width of the spectral line). A

/
/
P ft
/
)
:
Aart
z
R
N
\
p \. at
\
\
Feynman

diagrams for the formation of a
A*" particle in the collision of a
m* and a proton. The A** bears
some resemblance to the
“compound nucleus”
described in Chapter 15.
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The “width” of the A™" 2 : The existence of the A particle

appears in the shape of the cross section for the
reaction m* + p — 7 + p. The initial collision
produces the A particle, which exists for a
time At determined by the energy uncertainty,

is independent of how it is produced, as
shown by the fact that it can be produced (a) .
by photons impinging on a proton and (b) in k
nucleon-nucleon collisions.

which we call the “width” (here about

120 MeV) in this context.

The p meson is
produced in the reaction
7 + nucleon — p + nucleon.
The p decays quickly to a pair
of pions. The energy
distribution of the two pions in
the final state shows clearly
that they are the decay
products of a single particle.

measurement of the energy spread can be used, via the relation At = /AE, to
determine the lifetime of the excited state. For the 1,232-MeV/c? particle, sub-
sequently named the A particle, a measurement of the energy of the outgoing
pion showed that the width of the line was in the vicinity of 120 MeV /¢
(*Fig. 16-13), so that the lifetime is /
“any34 7.
e L5 X 10 s = 5 X 105,
AE (120 MeV)(1.6 x 1073 ]/MeV)

This lifetime is so short—smaller than the time it takes a photon to traverse the
diameter of a proton—that one is reluctant to use the term “particle.” In fact,
the object is more commonly called a resonance. Nevertheless, the description
of the A™* and its nearly-equal-mass partners A*, A’, and A™ as particles has
much justification. For example, the A’s have a definite spin S = 3/2. More-
over, they can be produced in other ways—for instance, in photoproduction
and in production by virtual pions (*Fig. 16-14). The characteristics of the A do
not depend on how it is produced.

More experiments uncovered many other unstable particles. An example
is the p-meson (see Example 16-3), which comes in three charge states (p*, p°,
and p~) and has spin 1 and mass m,c* = 770 MeV. This particle decays pri-
marily into a pair of pions with AE = 150 MeV (*Fig. 16-15).
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TABLE 1.1
Typical Typical Typical
Interaction coupling constant Cross sections lifetimes
Strong g’fhe ~ 10 | 1072¢ cm? = 10* ub 10723 sec
Electromagnetic e*lhe = 14+ 1072% cm? = 10 ub 107 1€ sec
Weak ~1077 1073% cm? = 1078 ub 1078 sec
Gravitational ~10743 ! = =

A summary of the couplings in the various interactions is given in Table 1.1.
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Conversation Laws and Quaridfym Numbers o
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TABLE 1.2
! In:eraction
|
Conserved quantity | Strong Electromagnetic | Weak
B (baryon no.)  Yes Yes Yes
L (lepton no.) | Yes Yes Yes
1 (isospin) . Yes | No | No(Al = lord)
G (G-parity)  Yes Ne No
S (strangeness) Yes Yes No(AS = 1)
P (parity) | Yes Yes ' No
C (charge conjugation parity) Yes Yes - No
CcP ‘ " Yes Yes ‘ Yes (but 1072 viglation
| in K° decay)
CPT Yes \ Yes | Yes
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Transformation - | Conserved quantity, or eigenvalue
Space displacement Momentum
- o Time displacement Energy ——
Spatial rotation Angular momentum
Space inversion Parity, +1
Rotation in isospin space Isospin
e Charge conjugation C-parity, +1 .
e * G-conjugation G-parity, +1
Gauge transformation Electric charge, baryon number, o
lepton number
 Absolute conservation laws o

| 4 S . .
obeyed by all f2roceSIes S o

= = fneg)( -~ momentum _Can.mryaﬂmL R .

Afju.dar momentum meczaﬂa&;_ R
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A . p . . sl = ddnite ] ]
e ls ¢ 4y 2 JL2¢ L ¢ A" 2L )
S I _Qa_/cm‘u/ momentum and ?1__ a L angular mo; 2L/,

 Flectric charg vation - S
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4
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Bruno Pontecorvo (1913-1993) and Melvin Schwartz (1932). Pontecorvo
has had essentialiy all the ideas for neutrino experiments. He was the first to
think of the so-called chlorine-argon method for detecting neutrinos (including
neutrinos from the sun), and he also introduced neutrino mixing (in 1957). The
chlorine-argon method was put into practice and further developed by Dauvis,
who demonstrated that reactor antineutrinos were different from neutrinos, and
who detected neutrinos from the sun (Nobel prize 2002).

The idea for neutrino experiments at the big machines is due to both
Schwartz and Pontecorvo. Schwartz went on to do the experiment, together
with Lederman, Steinberger, Goulianos, Gaillard, Mistry and Danby. Lederman,
Schwartz and Steinberger received the 1988 Physics Nobel prize for this
landmark experiment.

Pontecorvo, a devoted communist, already politically active in the thirties,
moved to Russia in 1950 in a somewhat fugitive way. He was one of those
scientists who were blamed for defecting to Russia taking along atomic bomb
secrets. In his case there is not much substance tb that; he was never actually
involved in weapons research. He just believed in communism. | guess he paid
the price.

Schwartz later suggested beam dump experiments at SLAC, and he had
in fact a short run. He showed me a few pictures (dubbed Melons by some)
at the time of the 1971 Amsterdam conference, and to me it was immediately
clear that he had observed neutral current neutrino events. Conflicts with the
SLAC directorate (Panofsky) led a somewhat embittered Schwartz to leave
physics, and he started a successful electronics company called Digita! Path-
ways. Personally | believe that he was a better physicist than businessman. He
is too honest.

T —— e —————————— =
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Leon Lederman (1922) and Jack Steinberger (1921). They shared with

Schwartz the 1988 Nobel prize for the discovery of the muon-neutrino at the
Brookhaven neutrino experiment.
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Tsung Dao Lee (1926) and Chen Ning Yang (1922). They shared the 1959
Nobel prize for their work on parity violation This concerns the behaviour
of physics laws when considered through a mirror. Thus do two sets of
experiments, and observe the results directly, but also, independently, in a
mirror. The question is whether the laws deduced from such experiments
will be the same. They analyzed the situation assuming that this is not so,
and indeed it is not. When observing the decay of a pion at rest into a muon
(and an antineutrino) the muon spins in a left-handed way along the direction
of movement in ordinary space, while in the mirror one observes a muon
spinning in the opposite way. .

Lee and Yang collaborated till 1962, when they broke apart for reasons of
their own. In my opinion the sum was better than the two individually, an
example of synergy. They had just started on a systematic investigation of
vector bosons (the W and Z of weak interactions), and there is no telling how
far they could have gone in developing the Standard Model. Lee was very
strong on Feynman diagrams, while Yang was together with Mills the originator
of gauge theories (also called Yang-Mills theories) that are an essential ingre-
dient of the Standard Model.

The idea of Schwartz for a neutrino experiment caused Lee and Yang to
analyze the situation in precise detail. Their work, published in 1960, became
the guiding light for both the Columbia and CERN neutrino physicists. Together
with Markstein from IBM Lee and Yang did one of the first large scale computer
calculations concerning the possible detection of the vector bosons in a neu-
trino experiment. None were actually seen, they were too heavy.
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Fig. 14.1  Upper left: Chien-Shiung Wu (
that discovered parity violation. Upper right: Tsung-D
together with Chen-Ning Yang. su
it in terms of the two-component neutrino.
at the Institute for Advanced Study. Prince

violation.

(1912-1997) led the experiment
a0 Lee (1926-). who,
iggested the experiment, and explained
Bottom: Lee and Yang in 1957
ton. possibly discussing parity
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The Fall of Parity

James W. Cronin Val L. Fitch

(1931-) (1925-)
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Enrico Fermi (1901-1954). in 1934 he published the first theory of weak inter-
actions. He made an analogy between a proton emitting a photon (proton —
proton + photon) and a neutron emitting an electron-neutrino pair (neutron —
proton + electron + neutrino). Thus he treated the electron-neutrino pair analo-
gously to a photon. This is in fact quite in line with modern ideas according to
which neutron decay essentially goes in two steps: neutron — proton + W~ —
proton + electron + neutrino. In addition to that Fermi was one of the most
successful experimental physicists of his era. He directed the construction of the
first nuclear reactor and essentially started a whole new chapter of physics by
studying pion-proton and pion-neutron collisions.

Fermi was of tremendous importance to US physics as an educator. In
1938 he was told by Bohr that he would get the Nobel prize; since his wife,
Laura, was Jewish, they decided not to return from Stockholm to Italy but
instead switch to New York, where Fermi became a professor at Columbia
University. He later moved to Chicago. Among his students there were Cham-
berlain, T. D. Lee and Steinberger, to name a few. Thus also through his stu-
dents did Fermi have a tremendous influence on physics in the US.

Chen-Ning—Yang (1922-)

Fig. 9.1 From Maxwell to non-Al

wlian gauge theory.
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The Quark Model

What to do? One is confident in calling certain particles elementary only as
long as there are not too many of them. The very existence of 100 chemical el-
ements suggests that atoms have an underlying structure. The search for a pat-
tern in the particles we have described was spearheaded by Gell-Mann. The
end result was a picture in which all the hadrons—the strongly interacting
states, all the states we have described thus far except the photon, the electron,
and the close partners of the electron—are constructed from a set of basic build-
ing blocks: the quarks and their antiparticles.*

% A term such as this responds in a whimsical fashion to a necessity. Later in the book we'll meet
others: color, flavor, charm, and so forth. Such terms refer, for the most part, to something that is
either exactly or approximately conserved. You might say that we need a word to express a con-
servation law for something we had not earlier seen to be conserved; any word for the conserved
quantity will serve the purpose.

“The word “quark” was taken by Gell-Mann from a phrase in James Joyce’s novel Finnegans Wake.

e Figure 16-16  Murray GeH'—
Mann made enormous contrib-
utions to the developmeqt of
elementary particle physics.

For more than two decades he
blazed trails in almost every
area of that field.
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Michoias Samios (1936-)

Fig. 16.4 The last piece fell into place: in 1964, the Omega minus was
discovered at the AGS (Alternating Gradient Synchrotron) at Brookhaven
National Laboratory. Clockwise from left: teamn leader Nicholas Samios: the

60" bubble chamber used for detection; photograpli of track in the reaction
recorded; diagram of tracks. in which the Omega minus is seen at Jower left, B

just above the incident. K minus.
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. (Courtesy, Brookhaven National Laboratory.)

The first Q™ event (Barnes et a/., 1964)

K™ +p->Q + K" +K°
E% + 77 (AS = | weak decay)
L 7° + A (AS = 1 weak decay)

L 7~ + p (AS = 1 weak decay)

|_, 7 + 7 (E.m. decay)

f



Baryons are constructed of three quarks, because that is the only way to
make a state with B = 1. A look at the way three quarks can be combined to
make the proper electric charges would suggest that

p = uud and = udd. (16-11)

As far as angular momentum is concerned, the three quarks are arranged in
combinations with no orbital angular momentum and with one quark’s spin
aligned in the direction opposite to the spins of the two others. In this way the
nucleons would have spin 1/2. From that point of view, the A-states are easy
to understand: They are the same sort of combination of up and down quarks
as the nucleons, but with the spins aligned, so that the A is a spin-3/2 particle.
For example,

A" = uyu. (16-12)

*Figure 16-17 shows how production of the A™ state appears in the quark model.
Strange baryons such as the A° would involve a single strange quark:

A = usd. (16-13)

The A%is also a spin-1/2 particle, so the same remarks about angular momen-
tum that we made for the nucleons apply to it.

The quark model of the observed particles has turned out to be very use-
ful both for classification and for making predictions. Entire series of mesons
and baryons are explained by including orbital angular momentum in the
wave functions. Or we can predict that any state with B = 0 can be made
only with equal numbers of quarks and antiquarks, so that such states must
have integer spin. Or we can understand the differences in mass among var-
ious particles in terms of the differences in mass among the quarks that con-
stitute them.

A++

.—"_‘.

H U i

uoud d u

—_—
P T

L Quark model
depiction of the production of
A" in a w*-p collision. The
annihilation of the d and the d
is accompanied by the
production of virtual gluons,
not shown here.




o
%35
w3k

— The " Color~ Quantum Number o N

L'Qda&'ft.éﬁ to the “flavor’ ouantum .au)nééﬁr discovered

in above seclion . the %MMMQ@ S

number . » S
_ Owiapm - _ B
S _;f_i':v"?‘ A = ut ut ut ) -
( the orbital a_rgglar momentum amp__f'g_;am'@_ o
- = 0)
2 ?_aané_ﬁa.{_.%m& should obey the fermi=Dirac
- statistics o o S

~ Jhe above éz.r.r_z'jnmmf violale the [fermi ~Dirac statistics.

 The resolution > each guar/z possesses q new quanium
number  "color” ( If the three e _?_ga:zé_[_ﬂ_zlicaz;zé/zj different
quark _number then iE will not violate [xclusion Principle
But  wusually when rew fuqaét@_gﬂmwmdémfz—
o lhe numé/c:r of hadrons will also tncrease in

o _ﬂlgmmmi_udfﬁ_m/am‘mﬂaa—

- Aj f_c:f/urﬂzu qud);;_ / qgfzd_téqri%ﬁgcﬁ _?m;/z )

_____ Cowld _/Q;&JQJ,E three ,oJ.rf;_Lc:_Q(o_{' . (Sor convenience , ine

- choose them Lo be red,_béue_a_adfjmm&md_aéé%r__
Zi ’

B are_color Ja?kt_,_tém_tbc_mg_ﬂojizﬂm_muam__
: cly

can be reac .ceéyﬁdJQnAééanemsﬁ V.

. The color _ijémtm_/; baryons Am_égej(allma‘@ii

form

Y~ _(_tgb_—zé g jbr—_—-jcb +brg - 6;_4-._7 )

) The colar__wq;éj@nc&mj&r mesons  Aas gz//orm .
. PP |

 The type of quarks increase by lhrecfold, yet the.

8 T T .

____ th erimental  sup _Of't ‘ot e —all)
- ﬁféc__ decay r_zﬂg/ Z°2»24 and R = Z::ae_-..ja_;.au will
~ disagree __mééé_&/@cr_cm_mfaLLe.mlé of %Maat_;ﬁdgded

... .and in excelleal. ggrcgmggz'; ff “eolor” i included. .

By AERBYEBRFIHMEELLE




A

% 3%,

3%

Hcm;y Quartes

._-Z:."g;_a;m’ Richter

charmed QQQL/Z C

4

botlom M b

overy o Lop #gré ¢ (/995

F- NAL CDF md_.&_}mgg.r

m& ~ /785 GeV/c*?

BURAEXBNER(FHWEEKLHE



=
&

63

discovery of the charm quark in 1974. Actually, they did not discover that
quark, but a bound state of a charm quark and an anticharm quark; the _
- ! interpretation in terms of a new quark took a few years. Richter and Ting ; —
shared the Nobel prize in 1976. ]
Richter (and his group) did the experiment at SLAC (Stanford Linear
i Accelerator Center near San Francisco) using electron-positron collisions. Ting
_______ (and his group) studied proton collisions at BNL (Brookhaven National
Laboratory, Long Island). The discovered quark bound state was called y by
Richter and J by Ting; today it is known as the J/y.
1 The discovery of the J/y was precisely what theory was waiting for. The
charm quark was theoretically predicted, but no one had expected a charm- |
anticharm particle with the properties as measured. It was unstable, but it lived '
too long. It took some time before it was understood that this was indeed a
— charm-anticharm bound state, and what precisely the mechanism was. The —-
SLAC people in their unmatched PR skill spoke of the discovery as the '
“November revolution that turned the wheel”. Well, the wheel had aiready
turned a few years before, _
— CERN failed to discover the J/y at the intersecting storage rings where it — -
was produced copiously, and you can understand the tumultuous discussions
at CERN after the J/y had been discovered. | tried to find out who or what was
— — to blame, but everybody pointed to everybody. Most of the wisdom was after
= the fact. There was also miserv at Fraseati ac dacrrinad in Mhantae =

l
E Burton Richter (1931) and Samuel Ting (1936) are credited with the
i

— e
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Martin Perl (1927) (left, Nobel prize 1995
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tau particle, in 197
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neutrinos. The coupling constants involved are e
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argued in 1973 that there shoul
on considerations of quark mixing
they were really hard to swallow although strictly logical.

The Italian physicist Antonino Zichichi
to Perl. He had already been searching
antiprotons  colliding wi
Frascati. Perl, at stanford, profited from the hi
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th protons as we

electron machine at SLAC.

) is credited with the discovery of the
muon and the electron but much
f the time into an electron and a
larly goes into a muon and a pair of
qual within the experimental

personally that there had to be &
bayashi and Maskawa had already
d be a third family. Their arguments were based
(discussed in Chapter 3), and at the time

(1929) was in & sense a forerunner
for new types of leptons, using
Il as electron-pasitron collisions at
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Standard Model of Fundamental Particles and Interactions

The Standard Model summarizes the current knowledge in Particle Physics. Tt is the quantum theory that includes the theory of strong interactions (quantum
chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the
fundamental interactions even though not part of the “Standard Model.”

FERMIONS &5n 252%z...

 Leptons spin-12 [l Quarks spin- 12

Mass_  Efectric 1o | Mass_ ' Electric
Flavor  govie? charge Flavor | gevic? charge
.. @lectron | _
'® nautring | = 1xt0® 0 U up 0.003 2/3
& elactron | 0.000511 -1 d down 0.006 =143
. mucn
' neutring | <0-0002 0 C charm 1.3 | 23
AL muon 0106 =] S strange 0.1 —1/3
tau v fau +
¥ neutring | <0.02 Z retring 175 23
T lau 1.7771 1 b tau 43 143

Spin is the intrinsic angular momentum of particles.
Spin is given in units of , which is the quantum
unit of angular momentum, where #i = h/27 = 6.58
X 107B GeVs =1.05Xx 1077 s.

Electric charges are given in units of the proton's
charge. In SI units the electric charge of the proton is
1.60 X 1071° coulombs.

The energy unit of particle physics is the electron
volt (eV), the energy gained by one electron in
crossing a potential difference of one volt. Masses
are given in GeV/c? (remember E = mc?), where 1
GeV = 10%eV = 1.60 x 107 "% joule. The mass of the
proton is 0.938 GeV/e2 =167 x107% kg.

Quark

Size = 10" m

If the protons and neutrons in this picture were each
10 cm across, then the quarks and electrons would
be less than 0.1 mm in size and the entire atom
would be about 10 km across!

BOSONS 570>

Unified Electrowsak spin = 1

Strohy (color) — spin =
“Mass_ | Electrié
GeVic? | chatge

Mase  Eisclric
GeVic* | charge

Name Name

¥ photon 0 0 g gluon
w A0.4 1
w' BO.4 #1
r 81187 0

Color Charge Each quark catries one of the three
types of “strong charge,” also called “color charge.”
These charges have nothing to do with the colors of
visible light. There are eight possible types of color
charge for gluons. Just as electrically-charged parti-
cles interact by exchanging photons, in strong inter-
actions color-charged particles interact by exchang-
ing gluons. Leptons, photons, and W and Z bosons
have no strong interaction and hence no color
charge.

Residual Strong Interaction The strong binding
of color-neutral protons and neutrons to form nuclei
is due to residual strong interactions between their
color-charged constituents. It is similar to the
residual electrical interaction which binds
electrically neutral atoms to form molecules. It can
also be viewed as the exchange of mesons between
the hadrons

Quarks Confined in Mesons and Baryons One cannot isolate quarks and gluons; they are confined in
color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons
among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the ener-
gy in the color force between them increases. This energy eventually is converted into additional quark-an-
tiquark pairs. The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge
Two types of hadrons have been observed in nature: mesons qg and baryons qqq.
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Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons

Gravitational i85

There are about 120 types of baryons Acts on: Mass - Energy Flavor Electric charge | Color Charge e St
. E inlerachon note
Quark | Electric'. Mass, ‘Particles experiencing: . = Quarks, Electricall —— —
Symbol Name . oo\ charge (Gevict| SPIn Particles _‘”‘?Eﬂa"mg' : e A Leptons charged’ | Quarks, Gluons | Hadrons
Traau Particles mediating: i ! Gravitation - =
p p:)l;)n 1 038 = Particies ok a“ng" M - (not yel observed) WHw- z0 Y Gluons Mesons
= nti- ; A AOET R ik Wi -
P pm[(',n =1 D938 | 12 _.Stren_g‘th_.r‘elanv\e fo eleciromag? [ 40-18 m 10-4 08 1 25 Nol applicable
f nelion 0 oosn | 12 for two u guarks at: { SR o quarks
A fambda 0 1118 | 12 iR N e V1 0"17"‘ 107 10 1 60
a- omega 1 1.672 | 32 lor two protons in nucleus ; 10-% 1 Q=i 1 Nl appheable 20
lo hadrons
Baryons are a type of hadron composed of
three quarks (or three antiquarks). n—-pe te— -~ RORO assorted
K 9 p e e'e B B p p - ZO ZO + hadrons
Mesons qq
Mesons are bosonic hadrons.
There are about 140 types of mesons
Quark | Electric! Mass |
Symbol Name content charge  GeV/c®! S_PI" oo ‘BU 14,
w* d 0140 | 0 P g . 1 4 oy
K™ 0,494 a B " 3 y .E\'-" Q > O hadrunsJ:
.‘. - P @i ot
P 0.770 1 0 W < € > ST Q 00 A quarks & — =
BO 5270 | © e e % ¥ 2 v tluons ==
g ~& % @ 0o -
e 2580 o \ Z \ \"’ ~ .g hadrons
e 0 W ¥zo
Matter and Antimatter For every particle . A
type there is a cortesponding antiparticle type, R -

denoted by a bar over the particle symbol (un-
less + or 0 charge is shown). Particle and anti-
particle have identical mass and spin but op-
posite charges. Some electrically neutral
bosons (e.g., Z8 gamma, and 7. = c¢, but not
K" = ds) are their own antiparticles.

This chart has been made possible by the generous support of:
US Department of Energy

Lawrence Berkeley National Laboratory

Stanford Linear Accelerator

American Physical Society, Division of Particles and Fields
Burle Industries, Inc

A neutron decays to a proton,
an electron, and an
antineutrino via a vitual
(mediating) W boson. This is
neutron B decay

An electron and positron
(antielectron) colliding at high
energy can annihilate to
produce B” and B” mesons via
a virtual Z boson or a virtual
photon.

Two protons colliding at high
energy can produce various
hadrons plus very high mass
particles such as Z bosons
Events such as this one are
rare but can veild vilal clues to
the structure of matter

* Figure 16-27 A summary chart for many of the phenomena and properties discussed in this chapter. (Copyright 1999 by the Contemporary Physics

Education Project, Lawrence Berkeley National Laboratory, Berkeley, CA. Reprinted by permission.)
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Davis in his chemistry lab at Brookhaven,

with a component of a neutrino detection Sys$- r - -y -
7o . s
tem. (Image courtesy Brookhaven National }? B
Laboratory.) 7 —andy
i Ao,

Masatoshi Koshiba
(1926—)

Fig. 14.4 Distarbing 1he order:

CP violation (( onin and Fitch. 1964):
neutring mass (Noslilh 109983
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