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Fig. 1. RC circuits with a two-pole switch used to charge and discharge a capacitor.  

(a) Original circuit (b) Charging capacitor (c) Discharging capacitor 

Lab 19 

 RC and RLC circuits 

A. Purpose 

To study the charge relaxation in the RC circuit and the damped charge oscillation and the 

resonance in the RLC circuit. 

B. Introduction 

An RC circuit is a circuit with a resistor and a capacitor. Fig. 1 shows a simple RC circuit 

with a DC source  , a resistor R , a capacitor C , and a two-position switch. The circuit allows 

the capacitor to be charged or discharged, depending on the position of the switch.  

  

 

 

 

 

 

 

 

 

If an inductor L  is connected in series to the circuit, as Fig. 2(a) shows, this circuit is called 

the RLC circuit. Given the capacitor is initially fully charged, the charge oscillation begins when 

the switch is closed, as Fig. 2(b) shows. As you can see from the figure, the oscillating pattern 

is the same as a damped mass-spring system. This is the general dynamics for any linearly-

damped oscillator.  

 

 

 

 

 

 

 

 

This experiment first focuses on the charging and discharging of RC circuits to understand the 

behavior of RC circuits and then turns to a simple RLC circuit to learn the dynamics of a linearly-

damped oscillator. Besides, you will learn how to simulate the dynamical systems by iterations 

(Euler’s method).  

(a) RLC circuit (b) Damped oscillations of the capacitor charges 

Fig. 2. RC circuits with a two-pole switch  
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C. Theory 

1. RC circuit 

While charging a capacitor (Fig.1(b)), with Kirchhoff’s loop rule, one has 

0 0R C
dq q

V V R
dt C

 − − =  − − =                      (1) 

This differential equation can be integrated to find the function of time for the charging. 

Therefore, the charge on the charging capacitor as a function of time is 

( ) ( ) ( )
max1 1t RC tq t C e q e  − −= −  −                     (2) 

where for t → , the charge approaches the maximum charge maxq C= , and since the unit 

of RC   is the second, unit of time, this quantity is known as the relaxation time constant 

RC = . 

 As for discharging the capacitor (Fig.1(c)), with Kirchhoff’s loop rule, one has 

0R C
dq q

V V R
dt C

− − =  = −                           (3) 

Therefore, the discharging as a function of time is 

( )
max

tq t q e −=                               (4) 

Moreover, the time for maxq q=  to  max 2q q=  is called the half-life period 1 2T .  

1 2 ln 2T =                                (5) 

The charging function and discharging function are as shown in Fig. 3. 

    

 

 

 

 

This lab uses a square wave from a function generator as the voltage source. As you can imagine, 

the first half period of the square provides the condition of charging while the second half is 

about the discharging.  

   

 

 

 

 

 

Fig. 3. Charging and discharging function of RC circuit 

Fig. 4. (a) RC circuit with a square wave as the 

voltage source (b) charging and discharging 

behavior for the period  of the square wave 

larger than .  

(a) 
(b) 
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 2. RLC circuit 

 Consider a simple RLC circuit shown in Fig. 2. Again, with Kirchhoff’s loop rule, one has 

2

2

1
0 0

dI q d q dq
L IR L R q

dt C dt Cdt
+ + =  + + =                 (6) 

 Now recall the equation of motion for a damped mass-spring system. 

2

2
0

d x dx
m b kx

dtdt
+ + =                           (7) 

As we discussed in Lab 9, the solution of this differential equation depends on whether the 

natural frequency ( )0 k m =  of the undamped mass-spring system is greater than, equal to, 

or less than the damping coefficient ( )2b m =  . Therefore, the result can be underdamped 

( )0  , critically damped ( )0 = , or overdamped ( )0  . Analogously, the solution 

( )Q t  to the RLC differential equation has the same feature. By replacing m  by L , b  by 

R , k  by 1 C , and x  by q , the charge vs. time ( )q t  for the underdamped condition is 

( ) ( )0 1costq t q e t  − = −                          (8) 

As you can see from eq(8), the amplitude is exponentially decaying with the oscillating 

frequency1 1 . That is, if we connect all the peaks (valleys) of the charge curve, the envelope 

will be formed and be decaying exponentially as shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

If we focus on the envelope, the time for 0q q=  to 0 2q q=  is, as we do in the RC circuit,  

called the half-life period 1 2T . Again, the half-life period is related to the time constant   of 

the circuit. 

1 2 ln 2 ln 2T  = =                           (9) 

During the experiment, 1 2T  is measured to calculate the damping coefficient  . 

 
1 Although we call it the oscillating frequency, the oscillator (charge) does not go back to the initial state after a period. 

Fig. 5. Damped oscillation of charge in the RLC circuit with . ( ) 

○1 Envelope of peaks ○2  (without damping) 

○3  (underdamped) ○4  Envelope of valleys 
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If the damping coefficient is increased by modulating the total resistance, capacitance, of 

inductance of the circuit, the RLC circuit will become critically-damped when 

( )2 2
0 1or 0  = =  , and overdamped when ( )2 2

0 1or  becomes imaginary    . For these 

two cases, charges will not oscillate but gradually decrease to zero as Fig. 6 shows.  

 

 

 

 

 

If the RLC circuit is connected to a DC source 0 , one has 

0
dI q

L IR
dt C

+ + =                           (10) 

The charge oscillation can be solved to be 

( ) ( )
( )

( )
0 0

0
1 12 2 2

0 0 0

1 cos 1 cos
q t

t tL a a
q t Ae t e t


 

  
  

= = →
− −   = − − → − →        (11) 

Fig. 7 shows the charge oscillation in RLC circuit of the DC source with different  . In the 

experiment, the square wave from the function generator provides the charging (first-half period) 

and discharging (second-half period) condition of the capacitor as Fig. 8 shows.  

 

 

 

 

 

 

 

 

 

 

 

  If the RLC circuit is connected to an AC source 0 sin t  , one has 

0 sin
dI q

L IR t
dt C

 + + =                          (12) 

Fig. 6. Damped oscillation of charge in the RLC circuit. 

○1 Critical damping ( ) ○2 Overdamping ( ) 

 

Fig. 8. Circuit diagram of RLC circuit 

with square wave source 

Fig. 7. Charge oscillation of RLC 

circuit with the DC power source  

○1   ○2  ○3  

(dotted) 

(solid) 
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The solution to this differential equation has two parts: the transient part and the steady part. 

Here we only focus on the steady state of the charge, and the solution is 

( )

( )
( ) ( )0

2
2 2 2 2
0

sin sin

4

s

L
q t t q t


   

   

= − = −

− +

           (13) 

( ) ( )

( )
( )0

22
cos sin

1
sI t q t t

R C L


    

 

 = − = −

+ −

            (14) 

 where  

( )
1 1

2 2
0

2
tan tan

1

R

C L




  

− −= =
−−

 and 1 1
tan

2

L C

R

  
  − −
= + =     (15) 

The charge oscillates with the same frequency of the driving force as you can see from eq(13). 

Moreover, the amplitude of the oscillation and the phase difference between the charge and the 

voltage is also related to the driving frequency as indicated by eq (15), where   is the phase 

difference between the current and the voltage. Fig. 9 shows the results of charge oscillation in 

the series RLC circuit. As indicated by Fig. 9(b), there exists a peak in amplitude, and the 

frequency for the maximum amplitude is called the resonant frequency R .  

 

 

 

 

 

For the alternating current (AC) circuit, it’s more convenient to define the reactances for resistor, 

inductor, and capacitor. Consider a resistor in an AC circuit 0 sin t  =   with current 

0 sini i t=  as Fig. 10 (a) shows. The instantaneous potential difference across the resistor is 

0 sin sinR R Rv i R i R t V t = =                       (16) 

The current and the potential difference are in phase as Fig. 11(a) shows. Replace the resistor by 

a inductor as Fig. 10(b) shows. The potential difference across the inductor is 

0 0cos sin sin
2 2

L L L
di

v L Li t i X t V t
dt

 
   

   
= =  + = +   

   
         (17) 

Fig. 9. Relationship between the driving frequency and (a) the phase and 

(b) amplitude, where  
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where LX  is called the reactance of an inductor. For this case, the potential difference leads 

the current by 90  as shown in Fig. 11(b). Finally, for the capacitor case as Fig. 10(c) shows, 

the potential difference across the capacitor is 

0
0cos sin sin

2 2
C C C

iq
v t i X t V t

C C

 
  



   
= = −  − = −   

   
          (18) 

where CX  is called the reactance of a capacitor. For this case, the potential difference lags the 

current by 90  as shown in Fig. 11(c). 

 

 

 

 

 

 

 

 

 

Let’s go back to the series RLC circuit. If we put the voltage differences across R, L, and C in a 

phasor diagram as phasors as Fig. 12 shows, then since the phasors , ,R L CV V V  are in phase, 

90  ahead of, and 90  behind the phasor of the current, respectively, the relation between the 

voltage and the current is 

( )
22

0 0 0L CV i R X X i Z= + −                      (19) 

 where Z  is the impedance of the circuit.  

 

 

 

(a) (b) (c) 

Fig. 10. Three simple AC circuits. (a) resistive load (b) inductive load (c) capacitive load 

(a) (b) (c) 

Fig. 11. Relationship between the current and (a) resistor (b) inductor (c) capacitor 
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One should try to relate the phasor diagram to eq(14), which is obtained by directly solving the 

differential equation. 

D. Procedures 

1. Pre-lab assignments (hand in before the experiment) 

(1) Make a flowchart of this experiment and answer the questions below.  

(2) Prove eq (14) by the phasor diagram given in Fig. 12. 

(3) Prove that the resonant frequency R  of the series RLC circuit with AC source is 

2 2
0 2R  = −                         (20) 

 Also prove that when the damping is small ( )R L C , the amplitude maxA  is 

0
max

0

A
R




=                           (21) 

 which indicates the relationship between the resistance and the max amplitude. 

(4) Following (3), in physics, the quality factor (Q-factor)2 is a dimensionless parameter 

defined as 

2

RQ



                             (22) 

 The bandwidth (BW)    of a resonant system is defined as the total number of 

cycles below and above the resonant frequency R  for which the amplitude is equal 

to or greater than max 2A  . The two frequencies    in the curve that are at 

max 2A  are called half-power frequencies or cutoff frequencies. With eq (13) and 

eq (21), prove that for 2 2
0  , the Q-factor and the BW have the relation 

=R RQ
 

  + −


 −

                        (23) 

(5) Consider a spring-mass system with the spring constant 1 N mk =   and the mass 

1 kgm = . Given the initial condition of the mass is 0 1 mx =  and 0 0 m sv = . After 

the release, the mass is under a damping force  (N)f v= − .  

 
2 High Q factor corresponds to the less energy loss of an oscillator or a resonator. 

 

  

  

 

 

Fig. 12. Phasor diagram of the series 

RLC circuit.  are in phase 

with,   ahead of, and  

behind the phasor of the current, 

respectively. 
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(i) Simulate the system with 0.5, 1.0, 1.5, 2.0, 2.5 kg s = . Put the results in one 

graph with a legend that specifies the curves.  

(ii) Following (i), if the system is under a driving force sin  (N)F t=  , do the 

simulation again. Observe the result with different time scales. You will see the 

transient state and the steady state of the mass. 

2. In-lab activities  

 For each part, take pictures as the proof of your work. Also note that the output 

impedance of the function generator is 50   , and the inductors of 10 mH   and 

22 mH  have resistances about 30   and 50  , respectively.  

 (1) Charging and discharging behavior of the capacitor (an RC circuit) 

(i) Connect the 10 k  resistor, the 0.1 F  capacitor, the function generator, and 

the scope as Fig. 13 shows. Set the output voltage source to be a square wave 

with Ampl 5 VPP= , and the period of the square wave to be 0 10T RC= . 

(ii) Use BNC T adapter so that the output of the function generator can be the source 

of the circuit and simultaneously be the signal to CH1 of the scope. Use CH2 of 

the scope to observe the voltage signal across the capacitor.  

(iii) Press “MATH” to subtract the two signals in CH1 and CH2. Observe the signal 

of the square function from the function generator and the signals across both the 

capacitor and the resistor at the same time.  

(iv) Measure the half-life periods for the circuits and use the results to determine the 

relaxation time constants.  

(v) Compare the results with the product of the given R  and C .  

 

 

 

 

 

 

 

 

  (6) Change the period of the square wave to 0T RC= . Observe the difference. 

 (2) (Optional) Frequency response of an RC circuit (an RC low passfilter) 

(i) With the same setup in the previous experiment (1), measure the peak-to-peak 

difference diffV of the voltage signal across the capacitor under the conditions 

that 0 0.1,  0.2,  0.3, ......, 0.9, 1.0, 2.0, ......, 9.0, 10.0T RC = . 

(ii) Draw a graph of the gain versus the period (in log scale) with the gain defined as  

( )0Gain (in dB) 20 log diffV = −  . 

Fig. 13. Electrical circuit of the observation of charging and discharging the RC circuit 
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 This graph is known as the gain plot of the Bode diagram, usually used to show 

the pass-band of a filter, indicating the measure of how much the initial input 

signal is allowed to pass through the circuit. Conventionally, the 3dB−  point is 

defined as the cutoff, corresponding to the output amplitude of max 2A . 

(iii) Change to the sine wave input, do the steps (i) and (ii) again, and compare the 

results. For those who want to explore the result theoretically, see Q4 below. 

(iv) How about the signals across the resistor? (It’ll become a high passfilter.) 

(3) Damped oscillation of the series RLC circuit 

(i) Connect a 22 mH   inductor, a 0.001 F   capacitor, and a 100    resistor in 

series as shown in Fig. 14. Use the oscilloscope to observe the voltage difference 

across the capacitor with the period of output square wave from the function 

generator being 100   . Measure 1 2T   and 1   by the cursors for the 

underdamped case and compare the results with the theoretical value. 

(ii) Replace the resistor by a 30 k  variable resistor. Slowly increase the resistance 

until you find the critical damping. Measure the total resistance of the circuit and 

compare with the theoretical value. (What is the theoretical value?) 

 

 

   

 

 

 

 

 

(4) RLC resonance (voltage difference across the capacitor versus the frequency) 

Following exp 3.(i), change the output of the function generator to the sine wave of 

1 VPPV =  . Replace the inductor and the capacitor by the 10 mH   and 0.001 F  

one. 

(i) Set the driving frequency to be 100, 300, 1k, 3k, 10k, 30k, 100k, and 300 kHz. 

Record the amplitudes and the phase differences. 

(ii) Find the resonant frequency that makes the maximum amplitude. Record the 

amplitude 𝐴𝑚𝑎𝑥  and the phase difference 𝛿. 

(iii) Centered at the resonant frequency, increase and decrease the driving frequency 

by 500 Hz for at least 20 times. Record the amplitude and the phase difference 

for each trial. Also, find and record the amplitude as well as the phase difference 

for the amplitude being 0.2𝐴𝑚𝑎𝑥 , 0.4𝐴𝑚𝑎𝑥 , 0.6𝐴𝑚𝑎𝑥 , 0.8𝐴𝑚𝑎𝑥 

(iv) Find the two frequencies that make the amplitude max 2A  . Record the 

amplitude and the phase difference. Calculate the quality factor of this RLC 

Fig. 14. Electrical circuit of the observation of charge oscillation in RLC circuit 
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circuit. Compare the result with the theory. (This can be known as the bandpass 

filter, compared with an RC passfilter.) 

(v) Collect the data from all the trials above. Draw the semi-log graphs of the 

amplitude versus the driving frequency and phase difference versus the driving 

frequency. The driving frequency should be in the log scale. 

  (5) Matlab Simulation 

Simulate the electrical circuits in each experiment.  

(Optional) Compare the simulation graphs of amp vs. freq and phase diff vs. freq with 

experimental results by putting the data in the Matlab simulation graph. 

3. Post-lab report 

(1) Recopy and organize your data from the in-lab tables in a neat and more readable form. 

(2) Analyze the data you obtained in the lab and answer the given questions  

E. Questions 

1. Suppose the output function in Fig. 4 is a square wave whose amplitude is 0V  in the first 

half period and 0 in the second half. Find the theoretical expression of the potential drop 

across the resistor. Graph the potential drop versus time via Matlab. 

2. For the series RLC circuit with AC source, the potential difference across the capacitor is 

said to lag the current by a phase. Show it by your experimental results and explain it by a 

physical picture without mathematics. 

3. In the experiment, we study the frequency response of the voltage difference across the 

capacitor. Similarly, we can see the frequency response of the voltage difference across the 

resistor or the inductor. Suppose the input voltage is a sinusoid with phasor 1V . 

(1) Find the units of resistance, inductance, and capacitance in SI units. Prove that 

R C L  and LC  are dimensionless. 

(2) Suppose you are given three different apparatus with 0.2,0.5,1R C L =  . The 

simulated frequency response across the capacitor, the inductor, or the resistor are 

shown below.  

(i) Which graph is for capacitor? for inductor? and for resistor? Explain. 

 (ii) Find the corresponding R C L  value of each data in each graph. Explain. 

   

 

4. (Optional) Suppose the output function in Fig. 3 (a) is a square wave whose amplitude is 
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0  in the first half period and 0 in the second half. If the period 0T  of the output function 

is under the condition 0T RC , before the steady state, the charging and discharging are 

in the transient state. Given ,P NQ  being the N-th  peak value of the charging and ,V NQ  

being the N-th  valley value of the discharging,  

(1) Derive that 

0

00

,

0 22
V,N

11

1

NT RC
P N

T RCT RC

Q e
C

Q ee


−

−−

   −
=   

+   
. 

 Also, from the result, prove that the average voltage of the steady state is always 0 2C .  

(2) Simulate the RC circuit with this transient effect. 

(3) Comare the theoretical gain plot of the Bode diagram with the measurement. 
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Appendix: Matlab codes --- Euler Method 

Consider a spring-block system with the equation of motion 

2

2

d x
m kx

dt
= −  

Since it is a 2nd order differential equation, to simulate this by the iterations, we first rewrite it into 

two 1st order ordinary differential equations 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3

2 3

1 1
......

2 6

1 1
......

2 6

dx
v x t t x t x t t x t t x t t

dt

dv k
x v t t v t v t t v t t v t t

dt m

 
= +  = +  +  +  +  

 
 = − +  = +  +  +  +
  

 

With the given initial conditions, the system can evolve using Euler method (keep only linear term) 

1 0 0 2 1 1

1 0 0 2 1 1

2 3

...

...

t t t t t t

x x v t x x v t

k k
v v x t v v x t

m m

=  =  = 

= +  = + 

   
= + −  = + −    

   

 

From this, we can use for loop in Matlab to simulate this simple harmonic oscillation. 

    

 


