Higgs mass and effects of brane kinetic terms on phenomenologically viable Ga uge-Higgs unification models 2011. 5. 10 @NTHU Jubin Park

Collaboration with Prof. We-Fu Chang

<u>Contents</u>

- Hierarchy problem Higgs mass
- Goals
- Other models about the Hierarchy problem
- A toy example
 - 5D SU(3) Gauge Higgs unification(GHU) model on S₁/Z₂.
- Problems in the toy model
- Possible answers for these problems
- Phenomenologically viable GHU models
- Higgs potential in 6D
- Numerical results.
- Summary

Hierarchy problem

Mass hierarchy, Gauge hierarchy

a hierarchy problem occurs when the fundamental parameters (<u>couplings</u> or masses) of some <u>Lagrangian</u> are vastly different (usually larger) from t he parameters measured by experiment. This can happen because measu red parameters are related to the fundamental parameters by a prescripti on known as <u>renormalization</u>.

Typically the renormalization parameters are closely related to the fundam ental parameters, but in some cases, it appears that there has been a delic ate cancellation between the fundamental quantity and the quantum corre ctions to it. Hierarchy problems are related to <u>fine-tuning problems</u> and pro blems of <u>naturalness</u>.

From Wikipedia, the free encyclopedia

Significant Higgs loop corrections in the

standard Model

$$= -\frac{3}{4\pi} \frac{m_t}{v^2} \Lambda^2 = -\frac{3}{8\pi^2} \lambda_t \Lambda^2$$

 $\frac{\lambda_t}{\sqrt{2}}v = m_t$

So we need incredible fine tuning to explain why the Higgs mass (~ Weak scale order) is so much lighter than other mass parameter sc ales (Planck, GUT or Heavy Majorana scale) when we take the Cuto ff scale \land as P or G or H.

This is not NATURAL. (NATURALNESS problem)

In order to solve the hierarchy problem naturally (without fine tuning), we can expect that there exist at least the new p hysics beyond the Standard Model if we accept the big-desert betwe en weak energy scale and P or G or H..

LEP and Tevatron have probed directly up to a few hundred GeV, an d indirectly between 1 and 10 TeV through the precision measure ments.

Energy scales

<u>Goals</u>

- Stability of the electroweak scale (from the quadratic divergences)
- Higgs potential
 to trigger the electroweak symmetry breakin
 g

Other models

- Composite Higgs
 - Little Higgs (from UV completion)
 - Tecnicolor (new Strong-type interation)
- Extra dimension
 - Large extra dimension (ADD)
 - Universal extra dimension (UED)
 - Small extra dimension
 - With the warped spacetime (RS)
 - Higgsless

Toy example – 5D S_1/Z_2 SU(3)

ORBIFOLD BOUNDARY CONDITIONS

 $A_{\mu}(x,y) = P^{-1}A_{\mu}(x,-y)P, \qquad A_{5}(x,y) = -P^{-1}A_{5}(x,-y)P \qquad P = \text{diag}(-1,-1,+1).$

PURE HIGHER-DIMENSIONAL GAUGE THEORY

$$\mathcal{L}_{5D} = \int d^4x \int dy - \frac{1}{4} (F^a_{MN})^2 \qquad A_M = A^a_M \frac{\lambda^a}{2}$$

$$A^{(0)}_{\mu} = \frac{1}{2} \begin{pmatrix} A^3_{\mu} + \frac{1}{\sqrt{3}} A^8_{\mu} & A^1 - iA^2_{\mu} & 0\\ A^1 + iA^2_{\mu} & -A^3_{\mu} + \frac{1}{\sqrt{3}} A^8_{\mu} & 0\\ 0 & 0 & -\frac{2}{\sqrt{3}} A^8_{\mu} \end{pmatrix} \qquad A^{(0)}_5 = \frac{1}{2} \begin{pmatrix} 0 & 0 & A^4_5 + iA^5_5\\ 0 & 0 & A^6_5 + iA^7_5\\ A^4_5 - iA^5_5 & A^6_5 - iA^7_5 & 0 \end{pmatrix}$$

$$A_{\mu}^{(0)} + A_{5}^{(0)} = \frac{1}{2} \begin{pmatrix} W_{\mu}^{3} + \frac{1}{\sqrt{3}}B_{\mu}^{8} & \sqrt{2}W_{\mu}^{+} & \sqrt{2}H_{5}^{*} \\ \sqrt{2}W_{\mu}^{-} & -W_{\mu}^{3} + \frac{1}{\sqrt{3}}B_{\mu}^{8} & \sqrt{2}H_{5}^{0} \\ \sqrt{2}H_{5}^{-} & \sqrt{2}H_{5}^{*0} & -\frac{2}{\sqrt{3}}B_{\mu}^{8} \end{pmatrix}$$

2011-05-10 @ NCTS 10

 $A_{\mu} = \begin{pmatrix} + & + & - \\ + & + & - \\ - & - & + \end{pmatrix} \qquad A_{5} = \begin{pmatrix} - & - & + \\ - & - & + \\ + & + & - \end{pmatrix}$

We only focus on the zero modes,

$$\mathcal{L}_{5D} = \int d^4x \int_0^{\pi R} dy - \frac{1}{4} (F^{a(0)}_{\mu\nu})^2 + \cdots$$

After we integrate out fifth dimension,

And rescale the gauge field,

$$A^{(0)a}_{\mu} \rightarrow \mathbf{Z}_0 A^{(0)a}_{\mu},$$

$$F_{\mu\nu}{}^{a} = \left(\partial_{\mu} Z_{0} A_{\nu} - \partial_{\nu} Z_{0} A_{\mu} + \frac{g_{5D}}{Z_{0}} f^{abc} Z_{0} A_{\mu}{}^{b} Z_{0} A_{\nu}{}^{c}\right)$$

RELATION BETWEEN 4D AND 5D GAUGE COUPLINGS

$$g_{4D} = \frac{g_{5D}}{Z_0} = \frac{g_{5D}}{\sqrt{\pi R}}$$

Adding to brane kinetic terms

$$\mathcal{L}_{B.K} = \int d^4x \int dy - \frac{1}{4} \delta(y) \left[c_1 (F^a_{\mu\nu})^2 + c_2 (F^b_{\mu\nu})^2 \right] > U(1)$$

We can easily understand that these terms can give a modification to the gauge couplings without any change of given models.

$$\mathcal{L}_{eff.} = (\mathbf{Z}_0^2 + c_1)(-\frac{1}{4} (F_{\mu\nu}^{a(0)})^2)$$

From the effective Lagrangian, we can expect this relation

Similarly, for the U(1) coupling

.

$$g'_{4D, U(1)} = \sqrt{3} \frac{g_4}{\sqrt{Z_2}} ,$$

Final 4D effective Lagrangian

Weak mixing angle

$$\tan \theta_W = \frac{g'}{g} = \sqrt{3} \sqrt{\frac{Z_1}{Z_2}} \,.$$

* Note that the value of tangent angle

for weak mixing angle is
$$\sqrt{3}$$
 when $c_1 = c_2 = 0$.

This number is completely fixed by the analysis of structure constan ts of given Lie group (or Lie algebra) regardless of volume factor Z if there are no brane kinetic terms in given models.

Problems in the toy model

- Wrong weak mixing angle $(\sin^2 \theta_{exp} = 0.22292, \tan \theta_{exp} \approx \frac{1}{\sqrt{3}})$
- No Higgs potential (to trigger the EWSB).
 may generate too low Higgs mass (or top quark) even if we use quantum corrections to make its potential.
- Realistic construction of Yukawa couplings

Possible answers for these problems

- Wrong weak mixing angle
 - Brane kinetic terms

$$\mathcal{L}_{B.K} = \int d^4x \int dy \ -\frac{1}{4} \,\delta(y) \Big[c_1 (F^a_{\mu\nu})^2 + c_2 (F^b_{\mu\nu})^2 \Big] \ ,$$

- Violation of Lorentz symmetry (SO(1,4) -> SO(1,3)) $L(a) = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{a}{4}F_{\mu5}F^{\mu5}$
- Graded Lie algebra (ex. $SU(3) \rightarrow SU(2|1)$)
- Using a non-simple group. an anomalous additional U(1) (or U(1)s)

Abandon the gauge coupling unification s cheme.

- No Higgs potential (to trigger the EWSB).
 - Using a non-simply connected extra-dimensio n (the fluctuation of the AB type phase – loop quantum correction)
 - Using a 6D (or more) pure gauge theory.

$$L \sim tr(F_{56}^{2})$$

- Using a background field like a monopole in e xtra dimensional space.

$$L \sim [A_5, A_B]^2$$

Phenomenologically viable models

Alfredo Aranda and Jose Wudka, PRD 82, 096005

To find phenomenologically viable models the y demand following 4 constraints:

(0) simple group ~ the gauge coupling unification.

(1) three massive gauge bosons W+,W-,Z0 at t he electroweak scale

(2) rho =1 at tree level

(3) existence of representations that can cont ain all Standard Model(SM) particle, especially hyper charge 1/6.

(4) correct weak mixing angle.

POSSIBLE ALL GROUPS THAT SATISFY (0), (1), (2), (3) CONSTRAINTS **EXCEPT (4) – WEAK MIXING ANGLE**

						-	
	group		$s_{\rm w}^2$	lpha	у]	$ an heta_W$
	SU(3l)	3l/((6l - 2)	$oldsymbol{lpha}^1$	$ ilde{oldsymbol{\mu}}_2/2$		$\sqrt{3l/(3l-2)}$
	SO(2n+1)		3/4	$oldsymbol{lpha}^1$	$ ilde{oldsymbol{\mu}}_2/6$		$\sqrt{3}$
	G_2		3/4	$oldsymbol{lpha}^1$	$ ilde{oldsymbol{\mu}}_2/6$		$\sqrt{3}$
	F_4	3/4		$oldsymbol{lpha}^1$	$ ilde{oldsymbol{\mu}}_2/6$		$\sqrt{3}$
E_6		3/8		$oldsymbol{lpha}^{1,5}$	$ ilde{oldsymbol{\mu}}_{2,3}/2$		$\sqrt{3/5}$
E_7		3/4, 3/5		$oldsymbol{lpha}^{1,7}$	$ ilde{oldsymbol{\mu}}_{2,3}/6$		$\sqrt{3},\sqrt{3/2}$
E_8		$9/16, \ 3/8$		$oldsymbol{lpha}^{1,8}$	$ ilde{oldsymbol{\mu}}_{2,3}/6$]	$\sqrt{9/7}, \sqrt{3/5}$
Any GHU m ain correct le.	kpl ng	Simp cor.	le roo to SU(2	ts 2)			
		One cartan generator c					

or. to U(1)

2011-05-10 @ NCTS

Higgs potential in 6D

NOTATIONS OF LIE ALGEBRA SU(2) AND U(1)

$$J_{0} = \frac{1}{|\alpha|^{2}} \alpha \cdot \mathbf{C}, \quad J_{+} = \frac{\sqrt{2}}{|\alpha|} E_{\alpha}, \quad J_{-} = (J_{+})^{\dagger} \implies SU(2) \text{ generators}$$
$$Y = y \cdot \mathbf{C}, \qquad \longrightarrow U(1) \text{ generator}$$

COMMUTATION RELATIONS

$$[\mathbf{C}, \beta] = \beta E_{\beta}, \quad [E_{\beta}, E_{-\beta}] = \beta \cdot \mathbf{C}$$
$$[E_{\beta}, E_{\gamma}] = N_{\beta,\gamma} E_{\beta+\gamma} \quad \text{if } \beta + \gamma \neq 0$$

ORTHONORMAL BASIS

 $\operatorname{tr} C_i C_j = \delta_{i,j}, \quad \operatorname{tr} E_\alpha E_\beta = \delta_{\alpha+\beta,0}, \quad \operatorname{tr} E_\alpha C_i = 0$

A GENERAL FORM OF ZERO MODES IN TERMS OF GENERATORS OF LIE ALGEBRA

$$A_{\mu} = W_{\mu}^{+} E_{\alpha} + W_{\mu}^{-} E_{-\alpha} + W_{\mu}^{0} \hat{\alpha} \cdot \mathbf{C} + B_{\mu} \hat{y} \cdot \mathbf{C} + \cdots$$
$$A_{n} = \sum_{\beta > 0} (\phi_{n,\beta} E_{\beta} + \phi_{n,\beta}^{*} E_{\beta}) + \cdots$$

We focus on the mass term,

$$-\mathrm{tr} \left[A_{\mu}, A_{n}\right]^{2} \supset \sum_{\beta > 0 \ ; \ isodoublets} |\phi_{n,\beta}|^{2} \left\{\frac{1}{2}\alpha^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{4}\alpha^{2} \left(W_{\mu}^{0} - \frac{1}{|\alpha||y|}B_{\mu}\right)^{2}\right\}$$

and the mixing angle,

$$\tan \theta_W = \frac{1}{|\alpha||y|}$$

From previous toy example, we can easily expect that our brane kinetic ter ms can modify the coupling constants, that is, the mixing angle,

$$\tan \theta'_W = \frac{1}{|\alpha||y|} \sqrt{\frac{Z_1}{Z_2}}$$

FROM EXPERIMENTAL VALUE OF WEAK MIXING ANGLE,

VALUES OF C1 AND C2 WHICH ARE CONSISTENT WITH THE PRESENT EXPERIMENT VALUE OF THE WEAK MIXING A NGLE AND EACH GROUP THEORETIC NUMERICAL FACTO R IN 6 DIMENSIONAL SU(3) AND E6 GAUGE H IGGS UNIFICATION MODELS ON \$2/ \$\frac{7}{2}\$.

STRAIGHT, DASHED AND DOTTED LINES COR RESPOND TO THE COMPACTIFICATION SCAL ES 5, 10 AND 20 TEV, RESPECTIVELY.

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{2} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{4} + \lambda|H|^{4}, \quad \lambda = \frac{g^{2}}{2}$$

$$V(H) = -\mu^{2}|H|^{4} + \lambda|H|^{4$$

Af ter the Higgs obtains
$$|H > = v \quad M_H = \sqrt{2\mu} = \sqrt{2\lambda}v, \quad M_W = \frac{gv}{2}$$

Finally, we can get this relation,

LUCCC DOTENIT

$$\frac{M_H}{M_W} = 2\sqrt{Z_1}$$

We can rewrite the equation with previous relation,

$$\frac{M_H}{M_W} = 2\frac{\tan\theta_{exp}}{\tan\theta_W}\sqrt{\left(1+\frac{c_2}{Z_0^2}\right)}$$

Numerical results.

1. POSSIBLE GAUGE GROUPS AND HIGGS MASS UNDER PRESENCE OF GAUGE KINETIC TERMS

Group	α	У	$ an heta_W / \sqrt{rac{Z_1}{Z_2}}$	Higgs mass [GeV], $c_2 = 0$
SU(3l)	α^1	$\tilde{\mu}_2/2$	$\sqrt{3l/(3l-2)}$	$49.7235 \times \sqrt{(3l-2)/l}$
SO(2n+1)	α^1	$ ilde{\mu}_2/6$	$\sqrt{3}$	49.7235
G_2	α^1	$ ilde{\mu}_2/6$	$\sqrt{3}$	49.7235
F_4	α^1	$ ilde{\mu}_2/6$	$\sqrt{3}$	49.7235
E_6	$\alpha^{1,5}$	$\tilde{\mu}_{2,3}/2$	$\sqrt{3/5}$	111.185
E_7	$\alpha^{1,7}$	$ ilde{\mu}_{2,3}/6$	$\sqrt{3},\sqrt{3/2}$	49.7235, 70.3196
E_8	$\alpha^{1,8}$	$ ilde{\mu}_{2,3}/6$	$\sqrt{9/7}, \sqrt{3/5}$	75.9539, 111.185

All masses are smaller than 114.4 GeV.

4. VOLUME FACTORS AND SLOPES OF SEVERAL EXAMPLES IN 6D, 7D AND 8D

Dimension	Space	Volume	M_C	slope at $c_2 = 0$	slope at $c_2 = 10$	Remark
6D	S^2/\mathbb{Z}_N	$4\pi R^2/N$	$0.5~{\rm TeV}$	2.212	2.195	$N=2, E_6$
			$1 { m TeV}$	3.957	3.534	N = 2, SU(3)
			$1 { m TeV}$	8.848	7.903	$N = 2, E_6$
			1 TeV	17.70	12.47	$N = 4, E_6$
			$5~{ m TeV}$	221.2	17.52	$N=2, E_6$
	T^2/\mathbb{Z}_N	$\left(2\pi R/N\right)^2$	$0.5~{\rm TeV}$	3.168	3.118	$N = 3, E_6$
			$1 { m TeV}$	5.668	4.598	$N=3,\ SU(3)$
			$1 { m TeV}$	12.67	10.28	$N = 3, E_6$
			$1 { m TeV}$	50.69	16.61	$N = 6, E_6$
			$5 { m TeV}$	316.8	17.55	$N = 3, E_6$
7D	S^3/\mathbb{Z}_N	$2\pi^2 R^3/N$	$0.5 { m TeV}$	0.7041	0.7035	$N=2, E_6$
			$1 { m TeV}$	5.633	5.364	$N=2, E_6$
			$5~{ m TeV}$	704.1	17.57	$N=2, E_6$
8D	T^4/\mathbb{Z}_N	$\left(2\pi R/N\right)^4$	$0.5 { m TeV}$	0.0357	0.0357	$N=2, E_6$
			$1 { m TeV}$	0.5707	0.5704	$N=2, E_6$
			$5 { m TeV}$	356.7	17.56	$N=2, E_6$

2011-05-10 @ NCTS

Summary

1. A present exclusion bound of the Higgs ma ss always tends to favor exceptional group E6, 7, 8 than other SU(3I), SO(2n+1), G2, and F4 g roups independently of the compactification s cales. Particularly the E6 can always have the largest Higgs mass above the bound except th e very tiny range at the beginning of c2 value compared to all other groups.

2. As the compactification scale lowers below 1 TeV, SU(3I), SO(2n+1), G2, and F4 group mo dels can not easily escape from present boun d without big hierarchical c2 number, this me ans that the introduction of brane kinetic term s just replace the original hierarchy problem b y the new c2 hierarchy problem, and so it does not work correctly in these models.

3. As we go to more higher dimensional case, both two example cases, 7-dimensional(7D) S 3/Z2 and 8-dimensional(8D) T4/Z2, show that e xcept E6 they can not absolutely escape from present bound at lower compactification scale below 1 TeV due to their volume factor in the slope without huge c2 number. However beca use as the compactification scale get larger th an 1 TeV, the slope can get larger dramatically , they can avoid the constraint more easier. Th erefore we can expect that these higher dime nsional GHU models need more larger compa ctification scales above 1 TeV to survive from t he low energy constraints.

