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• Hadron potentials: NN, YN and BB

• Lattice QCD

• BB potentials from lattice QCD

• Perturbative Coulomb corrections

• Finite volume effects



Hadron potentials

• Not uniquely defined: r?, unitary equivalence

• Encode of information about scattering amplitude

• Successful phenomenology

• Fit NN potential from scattering data

• Add 3N, 4N forces (tuned to more data)

• Accurate description of A<10 spectrum



GFMC caclulations

[Carlson, Pieper, Wiringa,...]



YN scattering
• Λ(Σ)N interactions important in EOS in NS

• Poorly known experimentally







• Static limit for heavy quark: mb → ∞

• B meson (bd) mass is infinite

• B and B* degenerate

• Heavy quark spin decouples

Static heavy quarks

Mb = mb + Λ +O(1/mb)



• Static hadrons: defined, observable potential

• LDOF quantum numbers ⊃ NN

• EFT: potential has same form for 

• Short range very different:         Coulomb

• Shallow bound states, molecular states, ...

Static BB potentials?

|!r| > Λ−1
χ

VNN (|!r| > Λ−1
χ ) −→ #

g2
πNN

f2

e−mπ|#r|

|!r|

1/|!r|
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• Numerical solution of QCD field equations

• QCD partition function 

• Quark functional integral done exactly

• Observable 

Lattice QCD

Z ∼
∫
DAµDψDψ e−SQCD[A,ψ,ψ]

〈O〉 ∼ 1
Z

∫
DAµ det[M[A]]O[A,M]e−Sg[A]



Lattice QCD
• Numerical method to solve QCD non-

perturbatively [K Wilson 1974]

• Computers are finite but space-time is 
infinite

• To make progress

• Discretise space-time: a

• Compactify space-time: L

• Euclidean space



Space-time

a

L



Lattice QCD

• Quarks live on lattice sites, gluons on the links 
between them

• Functional integral is finite dimensional but still too 
many integrals (>107 !) to do exactly

• Estimate using importance sampling (Monte Carlo) 

• Configurations          generated with
Boltzmann weight 

• Observable:                                 errors〈O〉 → 1
N

N∑

i=1

O[φi]

{φi}
det[M] exp(−SQCD)

∼ 1/
√

N



Huge computers

• Calculations use worlds largest computers

• Measured in millions of CPU hours

• Specifically designed processors for LQCD



• Measure correlator (χ = source with q# of hadron)

• Long times: only ground state survives 

Ex: energy spectrum

G2(p, t) =
∑

x

eip·x〈0|χ(x, t)χ(0, 0)|0〉

t→∞−→ e−E0(p)t〈0|χ(0, 0)|E0,p〉〈E0,p|χ(0, 0)|0〉
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Extrapolations

• To get real world physics from the lattice 
calculations we need to take:

• Lattice spacing to zero 

• Lattice volume to infinity

• Quark masses to their physical values 

• Physical masses too demanding

• Mostly ignore today...



Heavy-light systems



• O(300) quenched DBW2 lattices:163x32, a=0.1 fm

• Wilson light quark propagators at a single mass

• Light hadron spectrum [MeV]:

• Static heavy quarks:

Lattice parameters

mN = 1140mρ = 743mπ = 403

SQ(x, t; t0) =
(

1 + γ4

2

) t∏

t′=t0

U4(x, t′)



Lattice correlators

• Single particle correlation functions: C(t)

• Energy: plateau in effective mass ratio

aE(t) = log
[
C(t− 1)

C(t)

]

Λb, Σb
B t0



Single particle energies
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• Byproduct of r=(0,0,0) potential

• Binding energy of exotic hadron states:

• Two exotic states:      ,

• Considered long ago: viable BSM 
[Karl, Wilczek&Zee, Marciano,... 70s]

Exotic hadrons

(3⊗ 3)Q ⊗ (3⊗ 3)q → 3Q ⊗ 3q + 6Q ⊗ 6q

Σ6 Λ6



Exotic particle energies
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LDOF energies: 
• Lattice energies are unphysical ~ a-1

•     : interaction of static quark with gluons

•    : energy of light degrees of freedom

Λ

Λ

Elatt = δm + Λ

δm

+...



Lattice PT: improved glue

S. Capitani / Physics Reports 382 (2003) 113–302 191

transformations in which the lattice spacing is doubled at each step. A perturbative calculation gives
the action proposed by Iwasaki (1983a, b), which is similar to Eq. (11.23) but with

c1 =−0:331 : (11.24)

There have also been nonperturbative calculations which use Schwinger–Dyson equations, that lead
to the so-called DBW2 action (Takaishi, 1996; de Forcrand et al., 2000), which corresponds to
Eq. (11.23) with 45

c1 " −1:40686 : (11.25)

There are other proposals in which c2 and c3 are nonzero, which we will not consider here.
The main drawback of all these improved gauge actions is that they have no re!ection positivity

(L"uscher and Weisz, 1984). This means it is not possible to construct a transfer matrix at #nite a.
This also causes problems with numerical simulations. The violation of physical positivity in fact
leads to unphysical poles in the propagators, corresponding to unphysical states that create a sizeable
disturb while extracting physical observables (Necco, 2002b).
Another problem is that perturbation theory is not very manageable. The gluon propagator in a

covariant gauge for generic c1 is given by

G!"(k) =
1

(k̂2)2

(
#k̂!k̂" +

∑

$

(k̂$%!" − k̂"%!$)k̂$A$"(k)
)

(11.26)

with

A!"(k) =A"!(k) = (1− %!")&(k)−1


(k̂2)2 − c1k̂2


2
∑

'

k̂4' + k̂
2
∑

' "=!;"
k̂2'





+ c21




(
∑

'

k̂4'

)2
+ k̂2

∑

'

k̂4'
∑

( "=!;"
k̂2( + (k̂

2)2
∏

' "=!;"
k̂2'







 (11.27)

and

&(k) =

(
k̂2 − c1

∑

'

k̂4'

)[
k̂2 − c1

(
(k̂2)2 +

∑

(

k̂4(

)
+
1
2
c21

(
(k̂2)3 + 2

∑

(

k̂6( − k̂2
∑

(

k̂4(

)]

− 4c31
∑

'

k̂4'
∑

( "='
k̂2( : (11.28)

The gluon vertices are quite complicated, and we will not report them here. They can be found in
Weisz and Wohlert (1984). The quark–gluon vertices are of course untouched.
Perturbative calculations using improved gauge actions have been recently presented in Aoki et al.

(2000) for three-quark operators and in DeGrand et al. (2002) for two- and four-quark operators,
and they have even been employed in connection with domain wall calculations (Aoki et al., 2002).
The reason for using improved gauge actions in this context is the fact that they seem to lead to a
decrease of the residual chiral symmetry breaking left behind when one is working at #nite Ns.

45 The acronym DBW2 stands for doubly blocked Wilson 1 × 2 plaquette. We remark that in this case the relation
between the coe$cients is not linear, and the coe$cients that are used represent rather crude estimates.

c1 = Improvement coeff

[Weisz & Wohlert 84]

q̂i = 2 sin
qi

2



LDOF energies: 
• Lattice energies are unphysical ~ a-1

•     : interaction of static quark with gluons

• Evaluate numerically

•    : energy of light degrees of freedom

Λ

Λ

Elatt = δm + Λ

δm

q̂i = 2 sin
qi

2

δm(α)
f =

α(µ)
3π2a

∫

BZ
d3q G(f)

00 (q̂x, q̂y, q̂z, 0)



Scale setting

• Scale of one loop contribution not well-
defined

• Brodsky-Lepage-Mackenzie procedure

• Sum vacuum polarisation effects

• Subtlety: depends on choice of action

[BLM ‘83/LM ‘93]



Binding energies

• Extracted physical binding energies [MeV]

B 649(31)(10)

Λb 1123(36)(04)

Σb 1250(38)(15)

Λ6 1364(64)(04)

Σ6 1413(65)(10)



B meson potentials



[cf  bb potential: Derek Leinweber]



BB potentials
• Lattice energies for BB(I,sl):

• Perturbative QCD contribution

• “Continuum” potential

• Infinite volume continuum potential

V latt
I,sl

(r, L) = Elatt
I,sl

(r, L)− 2Elatt
B (L)

Elatt
I,sl

(r, L) = ΛI,sl(r, L) + 2δm− δVR(r, L)

VI,sl(r, L) = ΛI,sl(r, L)− 2Λ = V latt
I,sl

(r, L) + δVR(r, L)



Central & tensor potentials

• Separate central and tensor S=1 potentials

• Tensor potentials: 

• Expect nonzero for NN

• Treat off-axis points as if central

Ŝ12 = 3
2

(
Ŝ+(r̂x − ir̂y) + Ŝ−(r̂x + ir̂y) + 2Ŝz r̂z

)2
− 2Ŝ2

V (S=1)(!r) = VC(|!r|) + Ŝ12 VT (|!r|)

|VT | < 40 MeV ∀!r



BB correlators

• Each spin-isospin channel

• Calculate for separations

r

!r = n(1, 0, 0), n(0, 0, 1) [n = 0, . . . 8]
!r = (1, 0, 1), (2, 0, 1)

t



BB correlators

• Each spin-isospin channel

• Calculate for separations

r

!r = n(1, 0, 0), n(0, 0, 1) [n = 0, . . . 8]
!r = (1, 0, 1), (2, 0, 1)

t

512 propagators/lattice!



Effective mass plots
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Effective mass plots
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Effective mass plots
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Lattice V = EBB - 2EB
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Coulomb potential
• OGE Coulomb potential: modified by a

• Subtract lattice, add continuum

• BLM improve, FV effects

• Shift by 150 MeV at |r|=1 (∞ at r=0)

δV (α)

f ;3
=

α(µ)
3π2a

[∫
eiq·r d3q

|q|2 −
∫

BZ
eiq·rG(f)

00 (q̂x, q̂y, q̂z, 0)d3q

]



Coulomb potential
• OGE Coulomb potential: modified by a

• Subtract lattice, add continuum

• BLM improve, FV effects

• Shift by 150 MeV at |r|=1 (∞ at r=0)

δV (α)

f ;3
=

α(µ)
3π2a

[∫
eiq·r d3q

|q|2 −
∫

BZ
eiq·rG(f)

00 (q̂x, q̂y, q̂z, 0)d3q

]



“Continuum” potentials
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NB: residual O(a, α2(a)/a) effects



Michael & Pennanen ‘99

[Richards... ‘90, Mihály... ‘97, Stewart... ‘98, Fiebig... ‘02, Takahashi/Doi... ‘06]
Figure 6: Results for the binding energy between two B mesons with light
quarks in (Iq, Sq)=(1,1) at separation R in units of R0 ≈ 0.5fm. The light
quark mass used corresponds to strange quarks. Results from variational
method using basis from t 4:3 and effective mass in that basis from t 6:5.
Results at different spatial lattice sizes are displaced in R for legibility.

27

Figure 7: Results for the binding energy between two B mesons with light
quarks in (Iq, Sq)=(0,0) at separation R in units of R0 ≈ 0.5fm. The light
quark mass used corresponds to strange quarks. Results from variational
method using basis from t 4:3 and effective mass in that basis from t 6:5.

28

Figure 8: Results for the binding energy between two B mesons with light
quarks in (Iq, Sq)=(1,0) at separation R in units of R0 ≈ 0.5fm. The light
quark mass used corresponds to strange quarks. Results from variational
method using basis from t 4:3 and effective mass in that basis from t 6:5.

29

Figure 9: Results for the binding energy between two B mesons with light
quarks in (Iq, Sq)=(0,1) at separation R in units of R0 ≈ 0.5fm. The light
quark mass used corresponds to strange quarks. Results from variational
method using basis from t 4:3 and effective mass in that basis from t 6:5.

30

a=0.18 fm
163x24
20 cfgs



Michael & Pennanen ‘99
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Figure 2. BB potentials. Here 2MBR0 =
4.98(1), 5.83(3) for quenched, unquenched re-
spectively and aR0 = 0.49 fm.

3. STRING BREAKING

In our quenched and unquenched calculations
the ground state BB̄ and QQ̄ potentials cross at
r ≈ 1.2 fm. We are investigating the break-
ing of the QQ̄ string by using a variational ap-
proach similar to that used in Higgs models by
several groups. The cross correlator between two-
meson and two-quark states allows us to study
their mixing also in the quenched theory – in the
unquenched case additional fermion bubbles in-
duce corrections. The quenched mixing matrix
element can then be used to estimate the splitting
of energy levels at the string breaking point, even
though no actual splitting occurs with quenching.
With an unquenched calculation the energy split-
ting can be studied directly using the full varia-
tional approach.

One might think that an excited string would
break at a smaller distance than the ground state.
This is not necessarily the case, as e.g. the first
excited state has Jz = 1 with quark separation
along z and only breaks into mesons BLB̄L′ with
L + L′ > 0. In general it is an open question if
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Figure 3. BB̄ potentials. For small R a state with
a QQ̄ and a pion should be lighter.

a state with particular quantum numbers has the
lowest energy at a particular heavy quark separa-
tion as a) a hybrid QQ̄ meson with excited glue,
b) a ground state QQ̄ meson and a qq̄ meson or c)
two heavy-light mesons. These energy levels and
their mixing can be studied on the lattice with
our techniques.
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t-channel potentials
• Potentials with t-channel quantum numbers

V1 =
1
16

(V0,0 + 3V0,1 + 3V1,0 + 9V1,1)

Vσ =
1
16

(−V0,0 + V0,1 − 3V1,0 + 3V1,1)

Vστ =
1
16

(V0,0 − V0,1 − V1,0 + V1,1 )

Vτ =
1
16

(−V0,0 − 3V0,1 + V1,0 + 3V1,1)

VI,sl(|r|) = V1 + σ1 · σ2 Vσ + σ1 · σ2 τ1 · τ2 Vστ + τ1 · τ2 Vτ
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t-channel potentials
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t-channel potentials
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t-channel potentials

Coulomb corrected
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Periodic lattice



Periodic lattice



Periodic lattice



Periodic lattice



Finite volume effects
• Periodicity of lattice modifies potentials:

assuming single particle exchange

• Strictly: V from V(L) impossible

• Long range potential from EFT 

• Short range: FV effects smallest

V (L)(r) = V (r) +
∑

n !=0

V (r + nL)



Periodic potential
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Periodic potential
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Periodic potential
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Periodic potential
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Infinite volume:  Vστ
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Infinite volume:  Vτ
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Infinite volume
• BBπ/BBρ couplings extracted

•           consistent with direct calculations

• Other channels problematic

• Quenching effects

• Noise: vacuum quantum numbers

gρ = 2.6± 0.1± 0.4gBB∗π = 0.63± 0.05± 0.06

gBB∗π

0.42(4)(8), 0.69(18), 0.48(3)(11), 0.517(16)
[‘98, ’02, ’03, ’06]



Summary
• BB potentials from lattice QCD

• t-channel potentials measured cleanly

• Leading lattice spacing artefacts removed

• Infinite volume extraction attempted

• Future improvements

• Unquenched

• Multiple volumes/lattice spacings/mq

• Heavy baryon potentials




