B meson potentials in quenched lattice QCD

William Detmold

National Tsing-Hua University, Oct 11th 2007

WD, K Orginos and M Savage, hep-lat/0703009

- Hadron potentials: NN,YN and BB
- Lattice QCD
- BB potentials from lattice QCD
 - Perturbative Coulomb corrections
 - Finite volume effects

Hadron potentials

- Not uniquely defined: r?, unitary equivalence
- Encode of information about scattering amplitude
- Successful phenomenology
 - Fit NN potential from scattering data
 - Add 3N, 4N forces (tuned to more data)
 - Accurate description of A<10 spectrum

GFMC caclulations

[Carlson, Pieper, Wiringa,...]

YN scattering

- $\Lambda(\Sigma)N$ interactions important in EOS in NS
- Poorly known experimentally

Static heavy quarks

Static limit for heavy quark: mb→∞
B meson (bd) mass is infinite

$$M_b = m_b + \overline{\Lambda} + \mathcal{O}(1/m_b)$$

• B and B* degenerate

• Heavy quark spin decouples

Static BB potentials?

- Static hadrons: defined, observable potential
 LDOF quantum numbers ⊃ NN
 EFT: potential has same form for |r| > Λ_χ⁻¹ V_{NN}(|r| > Λ_χ⁻¹) → # g²_{πNN} e^{-m_π|r|} f² |r|
- Short range very different: $1/|\vec{r}|$ Coulomb
- Shallow bound states, molecular states, ...

Static BB potentials?

- Static hadrons: defined, observable potential
 LDOF quantum numbers ⊃ NN
 EFT: potential has same form for |r| > Λ_χ⁻¹ V_{BB}(|r| > Λ_χ⁻¹) → # g²_{BB*π} e^{-m_π|r|} f² |r|
- Short range very different: $1/|\vec{r}|$ Coulomb
- Shallow bound states, molecular states, ...

Lattice QCD

- Numerical solution of QCD field equations
- QCD partition function

 $\mathcal{Z} \sim \int \mathcal{D}A_{\mu} \mathcal{D}\psi \, \mathcal{D}\overline{\psi} \, e^{-S_{QCD}[A,\psi,\overline{\psi}]}$

- Quark functional integral done exactly
- Observable

 $\langle \mathcal{O} \rangle \sim \frac{1}{\mathcal{Z}} \int \mathcal{D}A_{\mu} \det[\mathcal{M}[A]] \mathcal{O}[A, \mathcal{M}] e^{-S_g[A]}$

Lattice QCD

- Numerical method to solve QCD nonperturbatively [K Wilson 1974]
- Computers are finite but space-time is infinite
- To make progress
 - Discretise space-time: a
 - Compactify space-time: L
 - Euclidean space

Space-time

Lattice QCD

- Quarks live on lattice sites, gluons on the links between them
- Functional integral is finite dimensional but still too many integrals (>10⁷ !) to do exactly
- Estimate using importance sampling (Monte Carlo)
 - Configurations $\{\phi_i\}$ generated with Boltzmann weight $det[\mathcal{M}] exp(-S_{QCD})$

• Observable: $\langle \mathcal{O} \rangle \to \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[\phi_i]$ errors $\sim 1/\sqrt{N}$

Huge computers

- Calculations use worlds largest computers
- Measured in millions of CPU hours
- Specifically designed processors for LQCD

Ex: energy spectrum

• Measure correlator (χ = source with q# of hadron)

$$G_2(\mathbf{p}, t) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle 0|\chi(\mathbf{x}, t)\overline{\chi}(0, 0)|0\rangle$$

Long times: only ground state survives

 $\stackrel{t \to \infty}{\longrightarrow} e^{-E_0(\mathbf{p})t} \langle 0|\chi(0,0)|E_0,\mathbf{p}\rangle\langle E_0,\mathbf{p}|\overline{\chi}(0,0)|0\rangle$

Extrapolations

- To get real world physics from the lattice calculations we need to take:
 - Lattice spacing to zero
 - Lattice volume to infinity
 - Quark masses to their physical values
 - Physical masses too demanding
- Mostly ignore today...

Heavy-light systems

Lattice parameters

- $\mathcal{O}(300)$ quenched DBW2 lattices: $16^3 \times 32$, a=0.1 fm
- Wilson light quark propagators at a single mass
- Light hadron spectrum [MeV]:

 $m_{\pi} = 403 \quad m_{\rho} = 743 \quad m_N = 1140$

• Static heavy quarks:

$$S_Q(\mathbf{x}, t; t_0) = \left(\frac{1+\gamma_4}{2}\right) \prod_{t'=t_0}^t U_4(\mathbf{x}, t')$$

Lattice correlators

• Single particle correlation functions: C(t)

• Energy: plateau in effective mass ratio

$$aE(t) = \log\left[\frac{C(t-1)}{C(t)}\right]$$

Single particle energies

Exotic hadrons

- Byproduct of r=(0,0,0) potential
- Binding energy of exotic hadron states:

 $(\mathbf{3}\otimes\mathbf{3})_Q\otimes(\overline{\mathbf{3}}\otimes\overline{\mathbf{3}})_q
ightarrow\overline{\mathbf{3}}_Q\otimes\mathbf{3}_q+\mathbf{6}_Q\otimes\overline{\mathbf{6}}_q$

- Two exotic states: $\Sigma_{\overline{6}}$, $\Lambda_{\overline{6}}$
- Considered long ago: viable BSM [Karl,Wilczek&Zee, Marciano,... 70s]

Exotic particle energies

LDOF energies: $\overline{\Lambda}$

• Lattice energies are unphysical ~ a^{-1}

 $E_{latt} = \delta m + \overline{\Lambda}$

• δm : interaction of static quark with gluons

• $\overline{\Lambda}$: energy of light degrees of freedom

Lattice PT: improved glue

$$G_{\mu\nu}(k) = \frac{1}{(\hat{k}^2)^2} \left(\alpha \hat{k}_{\mu} \hat{k}_{\nu} + \sum_{\sigma} (\hat{k}_{\sigma} \delta_{\mu\nu} - \hat{k}_{\nu} \delta_{\mu\sigma}) \hat{k}_{\sigma} A_{\sigma\nu}(k) \right)$$

$$\hat{q}_i = 2\sin\frac{q_i}{2}$$

$$\begin{aligned} A_{\mu\nu}(k) &= A_{\nu\mu}(k) = (1 - \delta_{\mu\nu}) \Delta(k)^{-1} \left[(\hat{k}^2)^2 - c_1 \hat{k}^2 \left(2 \sum_{\rho} \hat{k}_{\rho}^4 + \hat{k}^2 \sum_{\rho \neq \mu, \nu} \hat{k}_{\rho}^2 \right) \right. \\ &+ c_1^2 \left(\left(\sum_{\rho} \hat{k}_{\rho}^4 \right)^2 + \hat{k}^2 \sum_{\rho} \hat{k}_{\rho}^4 \sum_{\tau \neq \mu, \nu} \hat{k}_{\tau}^2 + (\hat{k}^2)^2 \prod_{\rho \neq \mu, \nu} \hat{k}_{\rho}^2 \right) \right] \end{aligned}$$

$$\Delta(k) = \left(\hat{k}^2 - c_1 \sum_{\rho} \hat{k}^4_{\rho}\right) \left[\hat{k}^2 - c_1 \left((\hat{k}^2)^2 + \sum_{\tau} \hat{k}^4_{\tau}\right) + \frac{1}{2}c_1^2 \left((\hat{k}^2)^3 + 2\sum_{\tau} \hat{k}^6_{\tau} - \hat{k}^2 \sum_{\tau} \hat{k}^4_{\tau}\right)\right] - 4c_1^3 \sum_{\rho} \hat{k}^4_{\rho} \sum_{\tau \neq \rho} \hat{k}^2_{\tau} .$$

$$c_1 = \text{Improvement coeff}$$

[Weisz & Wohlert 84]

Scale setting

- Scale of one loop contribution not welldefined
- Brodsky-Lepage-Mackenzie procedure
 - Sum vacuum polarisation effects
- Subtlety: depends on choice of action

BLM '83/LM '93

Binding energies

• Extracted physical binding energies [MeV]

B	649(31)(10)
Λ_{b}	1123(36)(04)
Σ_{b}	1250(38)(15)
$\Lambda_{\overline{6}}$	1364(64)(04)
$\Sigma_{\bar{6}}$	1413(65)(10)

B meson potentials

[cf bb potential: Derek Leinweber]

BB potentials

Lattice energies for $BB(I,s_i)$: $V_{L,s_{I}}^{latt}(\mathbf{r},L) = E_{L,s_{I}}^{latt}(\mathbf{r},L) - 2E_{B}^{latt}(L)$ Perturbative QCD contribution $E_{I,s_{I}}^{latt}(\mathbf{r},L) = \overline{\Lambda}_{I,s_{I}}(\mathbf{r},L) + 2\delta m - \delta V_{\mathbf{R}}(\mathbf{r},L)$ • "Continuum" potential $V_{I,s_{I}}(\mathbf{r},L) = \overline{\Lambda}_{I,s_{I}}(\mathbf{r},L) - 2\overline{\Lambda} = V_{I,s_{I}}^{latt}(\mathbf{r},L) + \delta V_{\mathbf{R}}(\mathbf{r},L)$ Infinite volume continuum potential

Central & tensor potentials

- Separate central and tensor S=1 potentials
- $V^{(S=1)}(\vec{r}) = V_C(|\vec{r}|) + \hat{S}_{12} V_T(|\vec{r}|)$ $\hat{S}_{12} = \frac{3}{2} \left(\hat{S}_+(\hat{r}_x i\hat{r}_y) + \hat{S}_-(\hat{r}_x + i\hat{r}_y) + 2\hat{S}_z\hat{r}_z \right)^2 2\hat{S}^2$
- Tensor potentials: $|V_T| < 40 \,\mathrm{MeV} \,\forall \, \vec{r}$
 - Expect nonzero for NN
 - Treat off-axis points as if central

BB correlators

• Each spin-isospin channel

Calculate for separations

 $\vec{r} = n(1, 0, 0), n(0, 0, 1) [n = 0, \dots 8]$ $\vec{r} = (1, 0, 1), (2, 0, 1)$

BB correlators

Each spin-isospin channel

Calculate for separations

 $\vec{r} = n(1, 0, 0), n(0, 0, 1) [n = 0, \dots 8]$ $\vec{r} = (1, 0, 1), (2, 0, 1)$

512 propagators/lattice!

Effective mass plots

 $ert ec{r} ert = 1$ $egin{array}{c} I, s_l \ \hline 0, 0 & I, 0 \ \hline 0, I & I, I \ \hline 0, I & I, I \end{array}$

Effective mass plots

 $|\vec{r}| = 4$ I, s_l 0,0 | 1,00,1 | 1,1

Effective mass plots

 $|\vec{r}| = \sqrt{2}$ $\frac{I, s_l}{0, 0 \mid 1, 0}$ $0, 1 \mid 1, 1$

Lattice $V = E_{BB} - 2E_B$

Coulomb potential

OGE Coulomb potential: modified by a

• Subtract lattice, add continuum

$$\delta V_{f;\overline{\mathbf{3}}}^{(\alpha)} = \frac{\overline{\alpha}(\mu)}{3\pi^2 a} \left[\int e^{i\mathbf{q}\cdot\mathbf{r}} \frac{d^3q}{|\mathbf{q}|^2} - \int_{BZ} e^{i\mathbf{q}\cdot\mathbf{r}} G_{00}^{(f)}(\hat{q}_x, \hat{q}_y, \hat{q}_z, 0) d^3q \right]$$

BLM improve, FV effects

O(C)

• Shift by 150 MeV at |r|=1 (∞ at r=0)

Coulomb potential

OGE Coulomb potential: modified by a

Subtract lattice, add continuum

$$\delta V_{f;\overline{\mathbf{3}}}^{(\alpha)} = \frac{\overline{\alpha}(\mu)}{3\pi^2 a} \left[\int e^{i\mathbf{q}\cdot\mathbf{r}} \frac{d^3q}{|\mathbf{q}|^2} - \int_{BZ} e^{i\mathbf{q}\cdot\mathbf{r}} G_{00}^{(f)}(\hat{q}_x, \hat{q}_y, \hat{q}_z, 0) d^3q \right]$$

- BLM improve, FV effects
- Shift by 150 MeV at |r|=1 (∞ at r=0)

"Continuum" potentials

NB: residual $\mathcal{O}(a, \alpha^2(a)/a)$ effects

Michael & Pennanen '99

a=0.18 fm 16³x24 20 cfgs

[Richards... '90, Mihály... '97, Stewart... '98, Fiebig... '02, Takahashi/Doi... '06]

Michael & Pennanen '99

Unquenched a=0.14 fm 16³x24 54 cfgs

Potentials with t-channel quantum numbers

 $V_{I,s_l}(|\mathbf{r}|) = V_1 + \sigma_1 \cdot \sigma_2 V_{\sigma} + \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2 V_{\sigma\tau} + \tau_1 \cdot \tau_2 V_{\tau}$

$$\begin{split} V_{\sigma\tau} &= \frac{1}{16} \left(V_{0,0} - V_{0,1} - V_{1,0} + V_{1,1} \right) \\ V_{\tau} &= \frac{1}{16} \left(-V_{0,0} - 3V_{0,1} + V_{1,0} + 3V_{1,1} \right) \\ V_{1} &= \frac{1}{16} \left(V_{0,0} + 3V_{0,1} + 3V_{1,0} + 9V_{1,1} \right) \\ V_{\sigma} &= \frac{1}{16} \left(-V_{0,0} + V_{0,1} - 3V_{1,0} + 3V_{1,1} \right) \end{split}$$

• Potentials with *t*-channel quantum numbers

 $V_{I,s_l}(|\mathbf{r}|) = V_1 + \sigma_1 \cdot \sigma_2 V_{\sigma} + \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2 V_{\sigma\tau} + \tau_1 \cdot \tau_2 V_{\tau}$

$$\begin{split} V_{\sigma\tau} &= \frac{1}{16} \left(V_{0,0} - V_{0,1} - V_{1,0} + V_{1,1} \right) \\ V_{\tau} &= \frac{1}{16} \left(-V_{0,0} - 3V_{0,1} + V_{1,0} + 3V_{1,1} \right) \\ V_{1} &= \frac{1}{16} \left(V_{0,0} + 3V_{0,1} + 3V_{1,0} + 9V_{1,1} \right) \\ V_{\sigma} &= \frac{1}{16} \left(-V_{0,0} + V_{0,1} - 3V_{1,0} + 3V_{1,1} \right) \end{split}$$

Coulomb corrected

Finite volume effects

Periodicity of lattice modifies potentials:

$$V^{(L)}(\mathbf{r}) = V(\mathbf{r}) + \sum_{\mathbf{n}\neq\mathbf{0}} V(\mathbf{r}+\mathbf{n}L)$$

assuming single particle exchange

- Strictly: V from V^(L) impossible
 - Long range potential from EFT
 - Short range: FV effects smallest

Infinite volume: $V_{\sigma\tau}$

Infinite volume: V_{τ}

Infinite volume

• $BB\pi/BB\rho$ couplings extracted

 $g_{BB^*\pi} = 0.63 \pm 0.05 \pm 0.06$ $g_{\rho} = 2.6 \pm 0.1 \pm 0.4$

• $g_{BB^*\pi}$ consistent with direct calculations

0.42(4)(8), 0.69(18), 0.48(3)(11), 0.517(16)

['98, '02, '03, '06]

- Other channels problematic
 - Quenching effects
 - Noise: vacuum quantum numbers

Summary

- BB potentials from lattice QCD
 - t-channel potentials measured cleanly
 - Leading lattice spacing artefacts removed
 - Infinite volume extraction attempted
- Future improvements
 - Unquenched
 - Multiple volumes/lattice spacings/m_q
 - Heavy baryon potentials