Evidence, Candidates, and Searches for Dark Matter

Chung-Lin Shan

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

High Energy Seminar Department of Physics, National Tsing Hua University September 13, 2007

based on arXiv:0707.0488 [astro-ph]

Introduction Evidence for Dark Matter Candidates for Dark Matter

Dark Matter Searches Direct detection

Summary

Evidence Candidates

Evidence for Dark Matter

Evidence Candidates

Evidence for Dark Matter

• Clusters of galaxies

▲ The masses of the clusters of galaxies required to bind these galaxies are much larger than the sum of the luminous masses of the individual galaxies (1930s).

[F. Zwicky (1933); S. Smith (1936)]

Evidence for Dark Matter

• Rotation curves of spiral galaxies

▲ The rotation curves of spiral galaxies are flat or even rising at distances far away from their stellar and gaseous components (1970s).

[V. C. Rubin, W. K. Ford (1970, 1980); S. M. Faber, J. S. Gallagher (1979)]

Evidence Candidates

Evidence for Dark Matter

• Rotation curves of spiral galaxies

▲ The rotation curves of spiral galaxies are flat or even rising at distances far away from their stellar and gaseous components (1970s).

[K. G. Begeman, A. H. Broeils, R. H. Sanders (1991); R. P. Olling, M. R. Merrifield (2000)]

Evidence Candidates

Evidence for Dark Matter

• Escape velocity from the Milky Way

▲ The escape velocity from the Milky Way is much larger than can be accounted for by the luminous matter in our Galaxy (1990s).

[M. Fich, S. Tremaine (1991)]

Evidence for Dark Matter

- Dark: neither emits nor absorbs electromagnetic radiation.
- The observational evidence for the existence of Dark Matter are gravitational.
 - ▲ The masses of the clusters of galaxies required to bind these galaxies are much larger than the sum of the luminous masses of the individual galaxies (1930s).
 - ▲ The rotation curves of spiral galaxies are flat or even rising at distances far away from their stellar and gaseous components (1970s).
 - ▲ The escape velocity from the Milky Way is much larger than can be accounted for by the luminous matter in our Galaxy (1990s).
 - ➡ The observed luminous objects can not have enough mass to support the observed gravitational effects.

Evidence for Dark Matter

- Astronomical measurements
 - ▲ Cosmic microwave background (CMB)
 - ▲ Anisotropy of the CMB radiation (CMBR)
 - ▲ Age of the Universe
 - ▲ Present expansion rate of the Universe, Hubble constant
 - \blacktriangle Abundances of the light elements: D, ³He, ⁴He, ⁷Li
 - \blacktriangle Opacity of the Lyman- α forest toward high-redshift quasars
 - ▲ Gas-to-total mass ratio
 - ▲ Mass-to-light ratio
 - ▲ Peculiar velocities of galaxies
 - ▲ Shape of the present power spectrum of density perturbations
 - ▲ Supernovae type Ia (SNe Ia) at high-redshift

Evidence for Dark Matter

• Anisotropy of the CMB radiation

[M. S. Turner, arXiv:astro-ph/9904051 (1999); NASA/WMAP Science Team]

Evidence for Dark Matter

• Abundances of the light elements

[Review of Particle Physics 2006]

Evidence Candidates

Evidence for Dark Matter

• Supernovae type Ia at high-redshift

[Supernova Cosmology Project]

Evidence for Dark Matter

- A large fraction of the mass/energy in our Universe is Dark!
 - ▲ Dark Energy: 76%
 - ▲ Dark Matter: 20%
 - \blacktriangle Ordinary baryonic matter: 4%
 - ▲ Luminous matter: $\simeq 1\%$
 - \blacktriangle Stars: $0.2\% \sim 0.5\%$
 - \blacktriangle CMB photons: 0.0046%
 - ▲ Neutrinos: < 1.4%

[Review of Particle Physics 2006]

Candidates for Dark Matter

- Non-luminous, non-baryonic, non-relativistic (cold), collisionless elementary particles which have not yet been discovered.
 - ▲ Dark Matter should move non-relativistically in the early Universe in order to allow it to merge to galactic scale structures.
 - ▲ So far we can observe (or "feel") the existence of Dark Matter only through its gravitational effects.
 - ▲ Dark Matter forms halos with an approximately spherical distribution around galaxies.
 - ▲ Dark Matter must be stable on cosmological time scales.
 - ▲ Dark Matter must have the right relic cosmological density.

- Candidates for Dark Matter
 - Cold Dark Matter (CDM)
 - ▲ moved non-relativistically at the matter-radiation decoupling time in the early Universe.
 - ▲ would form some small galactic scale structures due to their relatively slower velocities.
 - Hot Dark Matter (HDM)
 - ▲ moved relativistically at the matter-radiation decoupling time in the early Universe.
 - ▲ would cover great distances and then form some very large scale structures due to their fast velocities.
 - Dark baryons

Supersymmetry has been considered to solve the hierarchy problem in the Standard Model of particle physics: Why is the electroweak scale $(E_{\rm EW} \simeq \mathcal{O}(100 \text{ GeV}))$ so small compared to the other known scales such as the grand unification scale $(E_{\rm GUT} \simeq 10^{16} \text{ GeV})$ or the Planck scale $(E_{\rm Pl} \simeq 10^{19} \text{ GeV})$?

Outline			
Introduction			
DM Searches			
Summary			

Candidates for Dark Matter

Particles of the Standard Model

SM particles		
Name	Symbol	
up-quarks	u, c, t	
down-quarks	d, s, b	
leptons	$e,\ \mu,\ \tau$	
neutrinos	ν_e, ν_μ, ν_τ	
gluons	g	
photon	γ	
Z boson	Z^0	
Higgs boson	h	
W bosons	W^{\pm}	

Outline		
Introduction		
DM Searches		
Summary		

Candidates for Dark Matter

Particles of typical supersymmetric models

Normal particles SUSY partne		rs		
Name	Symbol	Name		Symbol
up-quarks	u, c, t	up-squarks		$\widetilde{u}_L,\ \widetilde{u}_R,\ \widetilde{c}_L,\ \widetilde{c}_R,\ \widetilde{t}_L,\ \widetilde{t}_R$
down-quarks	d, s, b	down-squarks		$\widetilde{d}_L,\ \widetilde{d}_R,\ \widetilde{s}_L,\ \widetilde{s}_R,\ \widetilde{b}_L,\ \widetilde{b}_R$
leptons	$e,~\mu,~\tau$	sleptons		$\tilde{e}_L,~\tilde{e}_R,~\tilde{\mu}_L,~\tilde{\mu}_R,~\tilde{\tau}_L,~\tilde{\tau}_R$
neutrinos	$\nu_e, \ \nu_\mu, \ \nu_\tau$	sneutrinos		$\widetilde{\nu}_e,~\widetilde{\nu}_\mu,~\widetilde{\nu}_\tau$
gluons	g	gluinos		\widetilde{g}
photon	γ	photino $\tilde{\gamma}$		
Z boson	Z^0	Z-ino \widetilde{Z}		~0 ~0 ~0 ~0
light scalar Higgs	h^0	neutral higgsings $\tilde{h}^0 = \tilde{H}^0$	neutralinos	$\chi_1^{\circ}, \chi_2^{\circ}, \chi_3^{\circ}, \chi_4^{\circ}$
heavy scalar Higgs	H^0	neutral niggsinos n , 11		
pseudoscalar Higgs	A^0			
charged Higgs	H^{\pm}	charged higgsinos \tilde{H}^{\pm}	charginos	$\tilde{\chi}_1^{\pm}, \; \tilde{\chi}_2^{\pm}$
W bosons	W^{\pm}	gauginos, W-inos \widetilde{W}^{\pm}		
graviton	G	gravitino		\widetilde{G}
axion	a	axino		ã

Candidates for Dark Matter

- Weakly Interacting Massive Particles (WIMPs) χ
 - ▲ arise in supersymmetric extensions of the Standard Model of electroweak interactions.
 - ▲ are stable particles and interact with ordinary matter only via weak interactions.
 - \blacktriangle have masses typically presumed to be between 10 GeV and a few TeV.
- Neutralinos
 - ▲ are linear combinations of photino, Z-ino and neutral higgsinos.
 - ▲ The lightest neutralino is the most widely studied candidate for WIMP Dark Matter.
 - ▲ has the desired thermal relic density in at least four distinct regions of parameter space.

Outline	
Introduction	
DM Searches	
Summary	

 $\mathbf{Evidence}$ **Candidates**

Candidates for Dark Matter

Particles of typical supersymmetric models

Normal part	icles	SUSY partne		rs
Name	Symbol	Name		Symbol
up-quarks	u, c, t	up-squarks		$\widetilde{u}_L,\ \widetilde{u}_R,\ \widetilde{c}_L,\ \widetilde{c}_R,\ \widetilde{t}_L,\ \widetilde{t}_R$
down-quarks	d, s, b	down-squarks		$\widetilde{d}_L, \ \widetilde{d}_R, \ \widetilde{s}_L, \ \widetilde{s}_R, \ \widetilde{b}_L, \ \widetilde{b}_R$
leptons	$e,\ \mu,\ \tau$	sleptons		$\tilde{e}_L, \ \tilde{e}_R, \ \tilde{\mu}_L, \ \tilde{\mu}_R, \ \tilde{\tau}_L, \ \tilde{\tau}_R$
neutrinos	$\nu_e, \ \nu_\mu, \ \nu_\tau$	sneutrinos		$\widetilde{\nu}_e, \ \widetilde{\nu}_\mu, \ \widetilde{\nu}_\tau$
gluons	g	gluinos		\widetilde{g}
photon	γ	photino $\tilde{\gamma}$		
Z boson	Z^0	Z-ino \widetilde{Z}	<u> </u>	$\sim 0 \sim 0 \sim 0 \sim 0$
light scalar Higgs	h^0	\tilde{L}_{0}	neutralinos	$\chi_1^{*}, \chi_2^{*}, \chi_3^{*}, \chi_4^{*}$
heavy scalar Higgs	H^0	neutral niggsinos n^{-} , H^{-}		
pseudoscalar Higgs	A^0			
charged Higgs	H^{\pm}	charged higgsinos \tilde{H}^{\pm}	1	~± ~±
W bosons	W^{\pm}	gauginos, W-inos \widetilde{W}^\pm	charginos	x_1, x_2
graviton	G	gravitino		\widetilde{G}
axion	a	axino		ã

Dark Matter Searches

WIMPs should have small, but non-zero couplings to ordinary matter.

Direct detection: elastic WIMP-nucleus scattering

- WIMPs could scatter elastically from target nuclei and produce nuclear recoils which deposit energy in the detector.
 - ▲ The event rate depends on the WIMP density near the Earth, the WIMP-nucleus cross section, the WIMP mass and the velocity distribution of the incident WIMPs.
 - ▲ In typical SUSY models with neutralino WIMPs, WIMP-nucleus cross section is about $10^{-6} \sim 10^{-4}$ pb, the expected event rate is then at most 1 event/kg/day, or even less than 1 event/ton/yr.
 - ▲ The event rate drops approximately exponentially and most events should be with energies less than 40 keV.
 - ▲ Typical background noise due to cosmic rays and ambient radioactivity is much larger.

Direct detection

Direct detection: elastic WIMP-nucleus scattering

• Annual modulation of the event rate

[Y. Ramachers, Nucl. Phys. Proc. Suppl. 118, 341 (2003)]

- ▲ due to the orbital motion of the Earth around the Sun.
- ▲ cosinusoidal function with a one-year period, peaks around June 2nd, and a modulation amplitude ~ 5%.
- ▲ The signal identification should also be performed, since the much larger background can also be subject to modulation!

Direct detection

Direct detection: elastic WIMP-nucleus scattering

• Diurnal modulation of the event rate

[Y. Ramachers (2003); M. de Jesus, Int. J. Mod. Phys. A 19, 1142 (2004)]

- ▲ due to the rotation of the Earth.
- ▲ Directionality of the WIMP wind

A daily forward/backward asymmetry of the nuclear recoil direction.

▲ Shielding of the detector by the Earth of the incident WIMP flux.

Direct detection: elastic WIMP-nucleus scattering

- Target material dependence
 - ▲ Spin-independent (SI) coupling

a scalar (and/or vector) interaction, the cross section for scalar interaction scales approximately as the square of the mass of the nucleus, so higher mass nuclei, e.g. Ge or Xe, are preferred for this search.

- ▲ Spin-dependent (SD) coupling an axial-vector (spin-spin) interaction, the useful target nuclei are ¹⁹F and ¹²⁷I.
- ▲ For nuclei with $A \ge 30$, the scalar interaction almost always dominates the spin interaction.
- ▲ The scattering event rate depends on the atomic mass of the target material directly.

Direct detection: elastic WIMP-nucleus scattering

- Induced signals
 - ▲ Ionization (charges)
 - ▲ Scintillation (light)
 - ▲ Heat (phonons)
 - ▲ Quenching factor (nuclear recoil relative efficiency) measured recoil energy: keV_{ee}, true recoil energy: keV_r
 - ▲ Combinations of two different signals a powerful event-by-event rejection method for the background discrimination down to 5 to 10 keV recoil energy.

Direct detection: elastic WIMP-nucleus scattering

- Background and background discrimination
 - ▲ Cosmic muons
 - ▲ External/Internal natural radioactivity
 - ▲ Neutron induced nuclear recoils
 - ▲ Multiple-scatter events
 - ▲ Electron recoils
 - ▲ Surface events
 - ▲ Incomplete charge collection

Direct detection: elastic WIMP-nucleus scattering

- Cyrogenic detectors
 - \blacktriangle CDMS

Ge and Si, Soudan Underground Laboratory, Minnesota, USA.

▲ CRESST

CaWO₄, Gran Sasso National Laboratory (LNGS), Italy.

- ▲ DAMA/NaI, DAMA/LIBRA NaI(Tl), LNGS, Italy.
- ▲ EDELWEISS (EDW)

Ge, Laboratoire Souterrain de Modane (LSM), France.

▲ KIMS

CsI(Tl), Yangyang Laboratory (Y2L), South Korea.

▲ PICO-LON

NaI(Tl), Oto Cosmo Observatory, Japan.

Direct detection: elastic WIMP-nucleus scattering

- Liquid noble gas detectors
 - ▲ ArDM

dual-phase (gas-liquid) Ar, CERN, Switzerland.

▲ WARP

dual-phase Ar, LNGS, Italy.

▲ XENON

dual-phase Xe, LNGS, Italy.

▲ XMASS

single-phase Xe, SuperKamiokande, Japan.

▲ ZEPLIN

single-/dual-phase Xe, Boulby Laboratory, UK.

Direct detection: elastic WIMP-nucleus scattering

- Superheated droplet detectors (SDD)
 - ▲ COUPP

 CF_3I , C_3F_8 , and C_4F_{10} , USA.

▲ DRIFT

low pressure Xe-CS₂ gas mixture TPC (time projection chamber), Boulby Laboratory, UK.

▲ MIMAC-He3

³He, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), France.

▲ PICASSO

¹⁹F, SNO Underground Laboratory, Canada.

▲ SIMPLE

 $\rm C_2 ClF_5$ and $\rm CF_3 I,$ Laboratoire Souterrain à Bas Bruit (LSBB), France.

Direct detection

Direct detection: elastic WIMP-nucleus scattering

• Results of the DAMA/NaI experiment

[R. Bernabei et al., arXiv:astro-ph/0305542, arXiv:astro-ph/0311046 (2003)]

- WIMP mass $m_{\chi} \simeq 52 \text{ GeV}/c^2$
- ▲ WIMP-proton cross section $\sigma_{\chi p} \simeq 7.2 \times 10^{-6} \text{ pb}$
- ▲ These results have been (almost) excluded!

2-4 keV

• Exclusion limits on the SI WIMP-nucleon cross section

• Projected sensitivities of the SI WIMP-nucleon cross section

• Exclusion limits on the SD WIMP-proton cross section

• Exclusion limits on the SD WIMP-neutron cross section

Summary

- Astronomical observations and measurements show the existence of Dark Matter.
 - ▲ Rotation curves of spiral galaxies.
 - ▲ Anisotropy of the CMB radiation.
- Models in particle physics offer candidates for Dark Matter.
 - ▲ The lightest neutralino in most SUSY models.
- We are searching for Dark Matter by
 - ▲ producing new particle(s) at colliders.
 - ▲ indirect detection of the products of WIMP annihilations.
 - ▲ direct detection through the elastic WIMP-nucleus scattering.

Summary

Thank you very much for your attention.

[http://www.th.physik.uni-bonn.de/th/People/cshan/]