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Evidence for Dark Matter

● Clusters of galaxies

▲ The masses of the clusters of galaxies required to bind these
galaxies are much larger than the sum of the luminous masses of
the individual galaxies (1930s).

[F. Zwicky (1933); S. Smith (1936)]
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Evidence for Dark Matter

● Rotation curves of spiral galaxies

▲ The rotation curves of spiral galaxies are flat or even rising at
distances far away from their stellar and gaseous components
(1970s).

[V. C. Rubin, W. K. Ford (1970, 1980); S. M. Faber, J. S. Gallagher (1979)]
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Evidence for Dark Matter

● Rotation curves of spiral galaxies

▲ The rotation curves of spiral galaxies are flat or even rising at
distances far away from their stellar and gaseous components
(1970s).
[K. G. Begeman, A. H. Broeils, R. H. Sanders (1991); R. P. Olling, M. R. Merrifield (2000)]
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● Escape velocity from the Milky Way

▲ The escape velocity from the Milky Way is much larger than can
be accounted for by the luminous matter in our Galaxy (1990s).

[M. Fich, S. Tremaine (1991)]
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Evidence for Dark Matter

● Dark: neither emits nor absorbs electromagnetic radiation.

● The observational evidence for the existence of Dark Matter are
gravitational.

▲ The masses of the clusters of galaxies required to bind these
galaxies are much larger than the sum of the luminous masses of
the individual galaxies (1930s).

▲ The rotation curves of spiral galaxies are flat or even rising at
distances far away from their stellar and gaseous components
(1970s).

▲ The escape velocity from the Milky Way is much larger than can
be accounted for by the luminous matter in our Galaxy (1990s).

➥ The observed luminous objects can not have enough mass to
support the observed gravitational effects.
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Evidence for Dark Matter

● Astronomical measurements

▲ Cosmic microwave background (CMB)

▲ Anisotropy of the CMB radiation (CMBR)

▲ Age of the Universe

▲ Present expansion rate of the Universe, Hubble constant

▲ Abundances of the light elements: D, 3He, 4He, 7Li

▲ Opacity of the Lyman-α forest toward high-redshift quasars

▲ Gas-to-total mass ratio

▲ Mass-to-light ratio

▲ Peculiar velocities of galaxies

▲ Shape of the present power spectrum of density perturbations

▲ Supernovae type Ia (SNe Ia) at high-redshift
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Evidence for Dark Matter

● Anisotropy of the CMB radiation

[M. S. Turner, arXiv:astro-ph/9904051 (1999); NASA/WMAP Science Team]
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Evidence for Dark Matter

● Abundances of the light elements

[Review of Particle Physics 2006]
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Evidence for Dark Matter

● Supernovae type Ia at high-redshift

[Supernova Cosmology Project]
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Evidence for Dark Matter

● A large fraction of the mass/energy in our Universe is Dark!

▲ Dark Energy: 76%

▲ Dark Matter: 20%

▲ Ordinary baryonic matter: 4%

▲ Luminous matter: ' 1%

▲ Stars: 0.2% ∼ 0.5%

▲ CMB photons: 0.0046%

▲ Neutrinos: < 1.4%

[Review of Particle Physics 2006]
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Candidates for Dark Matter

● Non-luminous, non-baryonic, non-relativistic (cold), collisionless
elementary particles which have not yet been discovered.

▲ Dark Matter should move non-relativistically in the early Universe
in order to allow it to merge to galactic scale structures.

▲ So far we can observe (or “feel”) the existence of Dark Matter
only through its gravitational effects.

▲ Dark Matter forms halos with an approximately spherical
distribution around galaxies.

▲ Dark Matter must be stable on cosmological time scales.

▲ Dark Matter must have the right relic cosmological density.
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Candidates for Dark Matter

● Cold Dark Matter (CDM)

▲ moved non-relativistically at the matter-radiation decoupling time
in the early Universe.

▲ would form some small galactic scale structures due to their
relatively slower velocities.

● Hot Dark Matter (HDM)

▲ moved relativistically at the matter-radiation decoupling time in
the early Universe.

▲ would cover great distances and then form some very large scale
structures due to their fast velocities.

● Dark baryons
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Candidates for Dark Matter

" -#
Special relativity

Quantum mechanics

Dirac Charge-conjugation
symmetry

=⇒ Particles ←→ Antiparticles

" -#
General relativity

Quantum field theory

SUSY models
Supersymmetry =⇒ Fermions ←→ Bosonic superpartners

Bosons ←→ Fermionic superpartners

Supersymmetry has been considered to solve the hierarchy problem in the

Standard Model of particle physics: Why is the electroweak scale

(EEW ' O(100 GeV)) so small compared to the other known scales such as the

grand unification scale (EGUT ' 1016 GeV) or the Planck scale (EPl ' 1019 GeV)?
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Candidates for Dark Matter
Particles of the Standard Model

SM particles

Name Symbol

up-quarks u, c, t

down-quarks d, s, b

leptons e, µ, τ

neutrinos νe, νµ, ντ

gluons g

photon γ

Z boson Z0

Higgs boson h

W bosons W±
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Candidates for Dark Matter
Particles of typical supersymmetric models

Normal particles SUSY partners

Name Symbol Name Symbol

up-quarks u, c, t up-squarks ũL, ũR, c̃L, c̃R, t̃L, t̃R

down-quarks d, s, b down-squarks d̃L, d̃R, s̃L, s̃R, b̃L, b̃R

leptons e, µ, τ sleptons ẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R

neutrinos νe, νµ, ντ sneutrinos ν̃e, ν̃µ, ν̃τ

gluons g gluinos g̃

photon γ photino γ̃

Z boson Z0 Z-ino Z̃

light scalar Higgs h0

heavy scalar Higgs H0 neutral higgsinos h̃0, H̃0

neutralinos χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4

pseudoscalar Higgs A0

charged Higgs H± charged higgsinos H̃±

W bosons W± gauginos, W-inos W̃± charginos χ̃±1 , χ̃±2

graviton G gravitino G̃

axion a axino ã
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Candidates for Dark Matter

● Weakly Interacting Massive Particles (WIMPs) χ

▲ arise in supersymmetric extensions of the Standard Model of
electroweak interactions.

▲ are stable particles and interact with ordinary matter only via
weak interactions.

▲ have masses typically presumed to be between 10 GeV and a few
TeV.

● Neutralinos

▲ are linear combinations of photino, Z-ino and neutral higgsinos.
▲ The lightest neutralino is the most widely studied candidate for

WIMP Dark Matter.
▲ has the desired thermal relic density in at least four distinct

regions of parameter space.
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Candidates for Dark Matter
Particles of typical supersymmetric models

Normal particles SUSY partners

Name Symbol Name Symbol

up-quarks u, c, t up-squarks ũL, ũR, c̃L, c̃R, t̃L, t̃R

down-quarks d, s, b down-squarks d̃L, d̃R, s̃L, s̃R, b̃L, b̃R

leptons e, µ, τ sleptons ẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R

neutrinos νe, νµ, ντ sneutrinos ν̃e, ν̃µ, ν̃τ

gluons g gluinos g̃

photon γ photino γ̃

Z boson Z0 Z-ino Z̃

light scalar Higgs h0

heavy scalar Higgs H0 neutral higgsinos h̃0, H̃0

neutralinos χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4

pseudoscalar Higgs A0

charged Higgs H± charged higgsinos H̃±

W bosons W± gauginos, W-inos W̃± charginos χ̃±1 , χ̃±2

graviton G gravitino G̃

axion a axino ã

� �� �
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Dark Matter Searches

WIMPs should have small, but non-zero couplings to ordinary matter.
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Direct detection: elastic WIMP-nucleus scattering

● WIMPs could scatter elastically from target nuclei and produce
nuclear recoils which deposit energy in the detector.

▲ The event rate depends on the WIMP density near the Earth, the
WIMP-nucleus cross section, the WIMP mass and the velocity
distribution of the incident WIMPs.

▲ In typical SUSY models with neutralino WIMPs, WIMP-nucleus
cross section is about 10−6 ∼ 10−4 pb, the expected event rate is
then at most 1 event/kg/day, or even less than 1 event/ton/yr.

▲ The event rate drops approximately exponentially and most events
should be with energies less than 40 keV.

▲ Typical background noise due to cosmic rays and ambient
radioactivity is much larger.
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Direct detection: elastic WIMP-nucleus scattering

● Annual modulation of the event rate

[Y. Ramachers, Nucl. Phys. Proc. Suppl. 118, 341 (2003)]

▲ due to the orbital motion of the Earth around the Sun.

▲ cosinusoidal function with a one-year period, peaks around June
2nd, and a modulation amplitude ∼ 5%.

▲ The signal identification should also be performed, since the much
larger background can also be subject to modulation!
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Direct detection: elastic WIMP-nucleus scattering

● Diurnal modulation of the event rate

[Y. Ramachers (2003); M. de Jesus, Int. J. Mod. Phys. A 19, 1142 (2004)]

▲ due to the rotation of the Earth.

▲ Directionality of the WIMP wind
A daily forward/backward asymmetry of the nuclear recoil
direction.

▲ Shielding of the detector by the Earth of the incident WIMP flux.
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Direct detection: elastic WIMP-nucleus scattering

● Target material dependence

▲ Spin-independent (SI) coupling
a scalar (and/or vector) interaction, the cross section for scalar
interaction scales approximately as the square of the mass of the
nucleus, so higher mass nuclei, e.g. Ge or Xe, are preferred for this
search.

▲ Spin-dependent (SD) coupling
an axial-vector (spin-spin) interaction, the useful target nuclei are
19F and 127I.

▲ For nuclei with A ≥ 30, the scalar interaction almost always
dominates the spin interaction.

▲ The scattering event rate depends on the atomic mass of the
target material directly.
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Direct detection: elastic WIMP-nucleus scattering

● Induced signals

▲ Ionization (charges)

▲ Scintillation (light)

▲ Heat (phonons)

▲ Quenching factor (nuclear recoil relative efficiency)
measured recoil energy: keVee,
true recoil energy: keVr

▲ Combinations of two different signals
a powerful event-by-event rejection method for the background
discrimination down to 5 to 10 keV recoil energy.
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Direct detection: elastic WIMP-nucleus scattering

● Background and background discrimination

▲ Cosmic muons

▲ External/Internal natural radioactivity

▲ Neutron induced nuclear recoils

▲ Multiple-scatter events

▲ Electron recoils

▲ Surface events

▲ Incomplete charge collection
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Direct detection: elastic WIMP-nucleus scattering

● Cyrogenic detectors

▲ CDMS
Ge and Si, Soudan Underground Laboratory, Minnesota, USA.

▲ CRESST
CaWO4, Gran Sasso National Laboratory (LNGS), Italy.

▲ DAMA/NaI, DAMA/LIBRA
NaI(Tl), LNGS, Italy.

▲ EDELWEISS (EDW)
Ge, Laboratoire Souterrain de Modane (LSM), France.

▲ KIMS
CsI(Tl), Yangyang Laboratory (Y2L), South Korea.

▲ PICO-LON
NaI(Tl), Oto Cosmo Observatory, Japan.

' $

& %
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Direct detection: elastic WIMP-nucleus scattering

● Liquid noble gas detectors

▲ ArDM
dual-phase (gas-liquid) Ar, CERN, Switzerland.

▲ WARP
dual-phase Ar, LNGS, Italy.

▲ XENON
dual-phase Xe, LNGS, Italy.

▲ XMASS
single-phase Xe, SuperKamiokande, Japan.

▲ ZEPLIN
single-/dual-phase Xe, Boulby Laboratory, UK.

� �
� �
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Direct detection: elastic WIMP-nucleus scattering

● Superheated droplet detectors (SDD)

▲ COUPP
CF3I, C3F8, and C4F10, USA.

▲ DRIFT
low pressure Xe-CS2 gas mixture TPC (time projection chamber),
Boulby Laboratory, UK.

▲ MIMAC-He3
3He, Laboratoire de Physique Subatomique et de Cosmologie
(LPSC), France.

▲ PICASSO
19F, SNO Underground Laboratory, Canada.

▲ SIMPLE
C2ClF5 and CF3I, Laboratoire Souterrain à Bas Bruit (LSBB),
France.
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Direct detection: elastic WIMP-nucleus scattering

● Results of the DAMA/NaI experiment

[R. Bernabei et al., arXiv:astro-ph/0305542, arXiv:astro-ph/0311046 (2003)]

▲ WIMP mass mχ ' 52 GeV/c2

▲ WIMP-proton cross section σχp ' 7.2× 10−6 pb

▲ These results have been (almost) excluded!
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Direct detection: elastic WIMP-nucleus scattering

● Exclusion limits on the SI WIMP-nucleon cross section

[http://dmtools.berkeley.edu/limitplots/]
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Direct detection: elastic WIMP-nucleus scattering

● Projected sensitivities of the SI WIMP-nucleon cross section

[http://dmtools.berkeley.edu/limitplots/]
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Direct detection: elastic WIMP-nucleus scattering

● Exclusion limits on the SD WIMP-proton cross section

[http://dmtools.berkeley.edu/limitplots/]
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Direct detection: elastic WIMP-nucleus scattering

● Exclusion limits on the SD WIMP-neutron cross section

[http://dmtools.berkeley.edu/limitplots/]
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● Astronomical observations and measurements show the existence
of Dark Matter.

▲ Rotation curves of spiral galaxies.
▲ Anisotropy of the CMB radiation.

● Models in particle physics offer candidates for Dark Matter.

▲ The lightest neutralino in most SUSY models.

● We are searching for Dark Matter by

▲ producing new particle(s) at colliders.
▲ indirect detection of the products of WIMP annihilations.
▲ direct detection through the elastic WIMP-nucleus scattering.
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Thank you very much for your attention.

[http://www.th.physik.uni-bonn.de/th/People/cshan/]
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