AdS/QCD and AdS/Technicolor

Takayuki HIRAYAMA

NCTS & NTNU, Taiwan

October, 2007

based on arXiv:0705.3533 with K. Yoshioka

Outline

 \Box Motivation

□ The idea of (minimal and extended) Technicolor model

□ D-brane construction and Holographic description

 \Box Compute the masses of *W*, *Z* bosons and STU parameters

□ Summary and Discussions

Motivation

- □ Technicolor is an attractive idea to stabilize the weak scale.
- □ It utilizes the strong gauge interactions and then it is difficult to compute quantitatively.
- □ Moreover, simple models are excluded out because of large deviations in precision tests (STU parameters) and large FCNC.
- □ The Walking Technicolor is expected to avoid these problems, but more difficult to compute. For example S-parameter has not been computed as far as I heard.
- □ String realization of Technicolor using D-branes provides a new way to analyze Technicolor strong theory!
- □ This is based on a strong/weak duality. A strong Technicolor theory has a dual in terms of a weak gravitational theory. (AdS/CFT, AdS/QCD, ...)

□ The idea of (minimal and extended) Technicolor model

□ D-brane construction and Holographic description

 \Box Compute the masses of W, Z bosons and STU parameters

□ Summary and Discussions

Minimal Technicolor

 \Box We prepare a gauge theory (technicolor $SU(N_{TC})$ gauge theory) whose gauge coupling becomes strong around the weak scale.

□ Minimal Model [Weinberg '79, Susskind '79] The technicolor sector :

Similar to QCD, the technicolor quarks T condensate $\langle \overline{T}T \rangle = \Lambda^3_{TC}$ which break $SU(2)_L \times SU(2)_R(U(1)_Y) \rightarrow SU(2)_D(U(1)_{EM})$.

The weak scale is stabilized since it is given by the technicolor scale.

►
$$M_W = gF_{TC}/2 = 80.4 \text{ GeV} \rightarrow F_{TC} \sim 250 \text{ GeV}$$

(Pion decay constant $f_{\pi} \sim 100 \text{ MeV}$)

Extended Technicolor

□ To introduce masses of SM quarks and leptons, the Extended Technicolor is proposed.[Eichten-Lane'80,Dimopoulos-Susskind'79] $SU(N+3) \rightarrow SU(N+2) \rightarrow SU(N+1) \rightarrow SU(N) \rightarrow \text{confinement}$

$$m_q \sim rac{g_{ETC}^2 \langle \overline{T}_R T_L \rangle_{m_{ETC}}}{m_{ETC}^2}$$

 $m_C \rightarrow m_{ETC} \lesssim \text{few TeV}$

 $\begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

 \Box However, large FCNC is expected

$$\frac{g_{ETC}^2 \theta_{sd}^2}{m_{ETC}^2} (\bar{s} \Gamma^{\mu} d) (\bar{s} \Gamma'_{\mu} d), \qquad (\Gamma_{\mu}, \Gamma'_{\mu} = \gamma_{\mu} (1 \pm \gamma_5)/2)$$

 $\Delta M_K \rightarrow m_{ETC} \gtrsim 1300 \text{ TeV}$, (with $g_{ETC} \sqrt{Re\theta_{sd}^2} \sim 1$) \Box the Walking Technicolor [Holdom, '81]

$$\langle \overline{T}_R T_L \rangle_{(m_{ETC})} = \langle \overline{T}_R T_L \rangle_{(\Lambda_{TC})} \exp \int_{\Lambda_{TC}}^{m_{ETC}} \gamma_m$$

f $\beta_{TC} \sim 0$, $\gamma_m \sim 1$ and $\langle \overline{T}_R T_L \rangle_{(m_{ETC})} \gg \langle \overline{T}_R T_L \rangle_{(\Lambda_{TC})}$.

□ The idea of (minimal and extended) Technicolor model

D-brane construction and Holographic description

 \Box Compute the masses of W, Z bosons and STU parameters

□ Summary and Discussions

D-brane

□ D-brane is defined as the boundary which open strings can end. The massless modes from open string consist a super Yang-Mills theory.
 e.g. 4 dim. N=4 SU(N_c) SYM on N_c × D3-brane

- □ On the other hand, D-brane is a black hole solution in supergravity. e.g. $AdS_5 \times S^5$ ($R^4 \propto N_c$, after $\alpha' \rightarrow 0$ limit) is the D3-brane near horizon geometry.
- □ Therefore these two different descriptions for D-brane which gives the conjecture [Maldacena '97]

- AdS/CFT, (Holography) -

4 dim. N=4 $SU(N_c)$ SYM \leftrightarrow sugra on $AdS_5 \times S^5$ $\lambda = g_{YM}^2 N_c \qquad \leftrightarrow \qquad R^4/l_s^4 \qquad >$

Technicolor gauge on D-branes

□ We first have to realize pure Yang-Mills gauge theory (which will be identified as technicolor gauge theory).

 $\Box \ N_{TC} \times \ D4\text{-brane} \to 5 \text{ dim. } SU(N_{TC}) \text{ SYM} \\ \downarrow S^1 \text{ with anti-periodic b.c. for fermions} \\ N_{TC} \times \ D4\text{-branes on } S^1 \to 4 \text{ dim. } SU(N_{TC}) \text{ YM } (+ \text{ infinite KK modes})$

 \Box We also know the black hole metric for this.

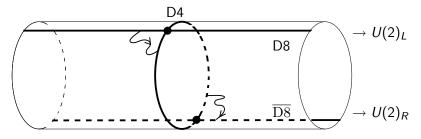
4 dim. $SU(N_{TC})$ YM (+ KK) \leftrightarrow gravity in $N_{TC} \times D4$ on S^1 with large 't Hooft black hole background

 \Box We further need to introduce techni-quarks.

TechniQuarks from D-branes

[e.g. Sakai-Sugimoto '04]

 \Box We introduce 2× D8-branes and 2× anti-D8-branes.

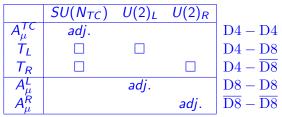


 $2 \times D8$ -branes $\rightarrow U(2) \supset SU(2)_L$ $2 \times$ anti-D8-branes $\rightarrow U(2) \supset SU(2)_R \supset U(1)_Y$ D4-D8 string \rightarrow Left handed massless chiral fermion \rightarrow L-handed techniquark

D4-anti-D8 string \rightarrow Right handed massless chiral fermion \rightarrow R-handed techniquark

Technicolor on D-branes

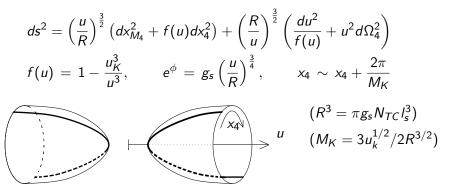
□ The minimal Technicolor is realized on D-branes.



- ► Later, we assume U(2)_L is broken to SU(2)_L and U(2)_R is broken to U(1)_Y by Higgsing at (arbitrary) high energy.
- We can introduce SM quarks and lepton which then becomes the extended technicolor. (But I am afraid there is no time.)

Holographic Dual

 \Box The near horizon geometry of D4-branes on S^1 with anti-periodic b.c. for fermions is [Witten]



The D8-brane in this geometry should already describe the electroweak sym br.

□ Motivation

□ The idea of (minimal and extended) Technicolor model

D-brane construction and Holographic description

 \Box Compute the masses of W, Z bosons and STU parameters

 \Box Summary and Discussions

W and Z boson masses

 $\Box U(2)_L \times U(2)_R$ gauge bosons come from D8-D8 and anti-D8-anti-D8. The action for D8 (anti-D8) branes is given by DBI action in this geometry.

 \Box We first need the induced metric on D8-brane. D8-brane is located at constant x_4 . Then

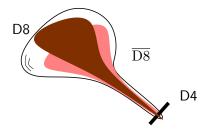
$$ds^{2} = \left[\frac{u_{K}}{R}\right]^{\frac{3}{2}} K(z)^{\frac{1}{2}} dx_{M_{4}}^{2} + R^{\frac{3}{2}} u_{K}^{\frac{1}{2}} K(z)^{\frac{-1}{2}} \left[\frac{4}{9} K(z)^{\frac{-1}{3}} dz^{2} + K(z)^{\frac{2}{3}} d\Omega_{4}^{2}\right]$$
$$u^{3} \equiv u_{K}^{3} K(z), \quad K(z) \equiv 1 + z^{2}$$
$$\Box \text{ The DBI actioon is}$$
$$S = -T_{8} \int d^{9} x e^{-\phi} \sqrt{\det[g_{ab} + \partial_{a} X_{4} \partial_{b} X_{4} + 2\pi \alpha' F_{ab}]}$$

 A_{μ} , A_z , A_{θ} and X_4 are U(2) adjoint gauge and scalar fields on D8-brane.

Integrating over S^4 and keeping quadratic terms, the action becomes YM in a curved space.

$$S = \frac{-1}{g_5^2} \int d^4 x \int_{-z_R}^{z_L} dz \, \operatorname{Tr}\left[\frac{1}{4}K(z)^{\frac{-1}{3}}F_{\mu\nu}^2 + \frac{M_K^2}{2}K(z)F_{\mu z}^2\right] + \cdots,$$

We have the maximal values z_L and z_R because the extra dimensions are assumed to be compactified.



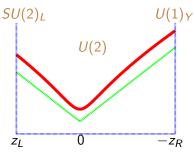
We assume that $U(2)_L$ is broken to $SU(2)_L$ around $z = z_L$ and $U(2)_R$ is broken to $U(1)_Y$ around $z = z_R$.

Higgsless picture

 \Box If we look at the effective 5 dim action, this is similar to a Higgsless model.

- Two UV cuts represent the volumes of D8 and $\overline{\text{D8}}$.
- U(2) gauge fields come from D8 and live in the bulk.
- 5 dim. metric is

 $ds^{2} = \mathcal{K}(Z)^{\frac{2}{3}} dx_{4}^{2} + \mathcal{K}(Z)^{-\frac{2}{3}} dz^{2}$ $\mathcal{K}(Z)^{\frac{1}{3}} = (1+z^{2})^{\frac{1}{3}} \neq z$

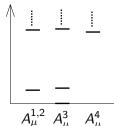


- The b.c. at two UVs determines the gauge symmetry at the UV scale.
- ▶ The b.c. at IR is not given by hand.

W and Z boson masses

 \Box We should get $\gamma,$ W and Z bosons, their masses and coupling constants.

 $\label{eq:approx_state} \begin{array}{l} \square \mbox{ The mode expansions} \\ A^a_\mu(x,z) = \sum_n A^{a,n}_\mu(x) \psi_n(z) \text{:} \\ A^3_\mu & \to \gamma, \ Z, \ \mathsf{KK} \\ A^{1,2}_\mu & \to W, \ \mathsf{KK} \\ A^4_\mu & \to \mathsf{KK} \end{array}$



 $\hfill\square$ The masses and gauge couplings are read

$$\begin{split} m_{\gamma} &= 0, \quad m_{Z} = m_{W}/c_{W}, \quad m_{W} = c \cdot g_{SU(2)_{L}} f_{TC}, \\ g_{SU(2)_{L}} &\simeq g_{5}/z_{L}^{1/6}, \quad g_{U(1)_{Y}} = t_{W} g_{SU(2)_{L}}, \\ t_{W} &= (z_{L}/z_{R})^{1/6}, \quad m_{KK} \sim M_{K}, \end{split}$$

 $(L = \frac{1}{4g^2}F^2)$

STU parameters

 \Box We summarize them into *STU* parameters. To do that, we have to know how many parameters we have. We have four M_K , z_L , z_R , $g_5(l_s, g_s)$.

- ► Two of z_L, z_R and g₅(l_s, g_s) are used to fix SM gauge couplings g_{SU(2)_L} and g_{U(1)} coupling. (This automatically realizes correct Weinberg angle.)
- M_K is fixed to realize the SM Z-boson mass m_Z .

We have one free parameter, say z_L . As z_L large, m_K becomes heavier. Then we expect *STU* are becoming small enough since we can ignore the corrections from composite states. However because of perturbative unitarity, we cannot take arbitrary large z_L .

Numerical results & Oblique parameters

$$\Box \ z_L = 10^6 :$$

$$z_R = 35.26 \cdot z_L, \ M_K = 2.437 \ \text{TeV}$$

$$m_K \ge 2.0 \ \text{TeV}$$

$$S = 0.47, \ T, \ U \sim 0$$

z _L	S	$M_{W'}({ m GeV})$
104	2.26	917
10 ⁵	1.02	1359
10 ⁶	0.47	2002
107	0.22	2943

• exp. $S = -0.13 \pm 0.10$, $T = -0.13 \pm 0.11$, $U = 0.20 \pm 0.12$ Without the fundamental Higgs field, the perturbative unitarity is lost around a few TeV.

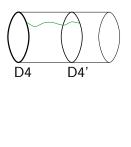
Summary & Discussion

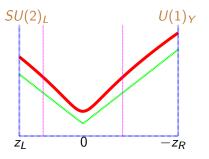
□ We constructed a Technicolor model using various D-branes.

 \Box Applying AdS/CFT, we studied the dynamical electroweak symmetry breaking from gravity side.

 \Box We computed m_W , m_Z and gauge couplings. The oblique *S* parameter is around 0.5.

 \Box SM fermions are introduced by introducing another D4 branes.





- ► *S* is reduced by flavor D4-brane effects.
- We estimated the order of fermion masses. Top and Bottom quark have strong interactions with KK modes which may induce large *Zbb* coupling deviation. FCNC?
- We assumed the stabilization of moduli related with the positions of D-branes.

 \Box We don't know yet how to compute $\langle \overline{T}_R T_L \rangle_{(m_{ETC})}$.

$$\langle \overline{T}_R T_L \rangle_{(m_{ETC})} = \langle \overline{T}_R T_L \rangle_{(\Lambda_{TC})} \exp \int_{\Lambda_{TC}}^{m_{ETC}} \gamma_m$$

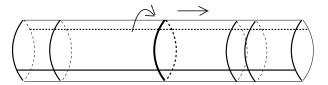
 \Box This is the first step to go to a more realistic model.

D-brane configuration : SM sector

 \Box SM matters are introduced by further adding D4-branes which are parallel to but separated from techni D4-branes. $3_{generation} \times (1_{lepton} + 3_{quark}) \times$ D4-branes

	$SU(N_{TC})$	$SU(2)_L$	$U(1)_R$	$U(1)_{I}$	
q_L				1	L lepton
q_R			(1/2, -1/2)	1	R lepton

 $U(1)_Y = U(1)_R + U(1)_I/2 + U(1)_b/3$



Fermion masses

 $\Box SU(N_{TC} + 3) \rightarrow SU(N_{TC} + 2) \rightarrow SU(N_{TC} + 1) \rightarrow SU(N_{TC}) \rightarrow$ confinement

$$m_q \sim g_{ETC}^2 \frac{\langle Q_L Q_R \rangle}{m_{ETC}^2}$$

 \Box In our D-brane configuration, there is massive gauge fields from open string stretching between the techni D4 and flavor D4-branes.

$$m_{ETC} = I_{s}^{-2} \int_{0}^{z_{i}} dz \sqrt{-\det g} \sim N_{TC} g_{TC}^{2} z_{i}^{\frac{2}{3}} M_{K},$$

$$m_{q} \sim \frac{g_{ETC}^{2} \langle \overline{Q}_{L} Q_{R} \rangle_{ETC}}{N_{TC}^{2} g_{TC}^{4} z_{i}^{\frac{4}{3}} M_{K}^{2}} \propto z_{i}^{\frac{-4}{3}} M_{K}$$

$$M_{K} \sim \text{TeV} \rightarrow z_{i} \sim (10, 10^{2.5}, 10^{4.5})$$

top quark ($z_i \sim 10$) strongly interacts with composite states.