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Introduction and Motivation

AdS/CFT correspondence and Wilson loop

@ The AdS/CFT correspondence states the equivalence of string
theory on AdSs x S° to the A/ = 4 supersymmetric Yang-Mills.

@ According to this correspondence, there exists a map between gauge
invariant operators in the field theory and states in the string theory.
e.g. half BPS local operators where the dual string states are
D-branes in the bulk.

@ The Wilson loop operator is another important class of gauge
invariant observable which is non-local. It measures the dynamical
effects of external quark source and acts as an order parameter for
confinement.
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@ BPS Wilson loop operators in the fundamental representation is dual
to a fundamental string worldsheet (minimal surface) ending on the
AdSs boundary.

< W> _ efArea

@ Later it was found that Wilson loop in the symmetric or
antisymmetric representation has supergravity dual in terms of
D3-brane or D5-brane with worldvolume RR flux.

@ Most generally, Wilson loop in a general representations (described
by a Young tableaus) has a SUGRA dual which is a bound state of a
certain array of D3 branes or D5-branes.
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Wilson loop in N/ = 4 SYM theory

@ A general Wilson loop operator in the N' = 4 SYM theory:
1 .
Wg[C] = NTrR P exp <?§ dr(iAx" + <,0,-)'/')> .
c
R is the representation of the gauge group G = U(N).

@ The loop C is parametrized by the variables:

x*(7) : actual loop in four dimensions

y'(7)) : six arbitrary functions

(y'(7)) can be thought of as determining the shape of the loop in
the tranverse 6 dimensions (hidden from 4d point of view).

e (x*(7),y'(7)) determine the coupling to the gauge fields and the
scalar fields. It has to satisify the constraint

xX“=y

(Drucker, Gross, Ooguri)
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The constraint can be understood in a number of ways:

@ Dynamical effect of external quark. Breaking
U(N +1) — U(N) x U(1) . The gauge boson in the adjoint
decomposes into a gauge boson and a quark in fundamental
representation. The Wilson loop can be derived from a certain
correlation function.

@ Perturbation theory. The vev of the Wilson loop is divergent unless
the constraint is satisfied.

@ Requirement of local susy. The scalar field and the gauge boson are
in the same A/ = 4 multiplet. SUSY transformation relates them to
each other. The Wilson loop satisfying the constraint is locally half
BPS.

@ Using minimal surface in AdSs x S°.
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Perturbation theory

@ In general the Wilson loop is divergent unless the constraint is satisfied.
To see this, in the leading order of g2, N,

(W) =1- g%M/vjf dsffds’ [ %"(s)%"(s")Guv(x(s) — x(s))
=5 ()7 (s") Gy (v (s) = ()],

where G, (x) = Xg‘ﬁ, Gji(x) = X;S_"jéz are gauge and scalar prop.
@ Contribution from A, contains
T A L
d ds’x* =2 _¢d
87r2 sy{ s’ xH (s)x" (s' oy j{ s|x| = (27r)

@ Similarly, contribution from scalars contains

)\ ﬁ /el v ! 6U _ )\ f - }./2
2 %dsj{f ds'y"(s)y (s)62 = oy ds\x|),<2

@ Combining these terms together,

A L.
(r)e % ds|x|(1 — y—z) + finite

(W) =1-
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ii. Supersymmetry

The Wilson loop satisfying the constraint is half BPS locally.

@ The supersymmetry transformations in N' = 4 is given by
0A, = iy A, 0¢p = iey A
@ Preservation of half of the Poincare supersymmetries yields
Pe = (v, 5" +vy)e=0

Therefore there are invariant spinors at each point of the loop iff
2 _ 2
X% =y,

@ It is natural to associate the UV finiteness of the Wilson loop as
being due to the existence of local SUSY. However we will see that
this is not true.
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iii. Minimal surface in AdSs x S°

o AdS/CFT correspondence states that
Wil = [ DXew(-VASIX)
aX=C

@ In the large N limit,
(WIC]) ~ exp(—V/AS)

where S is the Legendre transformation of the minimal surface in
AdS bounded by the loop.

@ Boundary condition of the string is specified by:

X*(01,0) = x*(01)
S0, Y (01,0) = y'(01)

where J8 = %gme”ﬁ is the complex structure on the worldsheet
and g,z is the induced metric.
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@ The loop constraint is most easily derived using the Hamilton-Jacobi form
of the equation of equation (more later):

0A A / J
G’ = G X o x.
SXT 5X7 1101 1
One can show that the minimal surface can terminates at the boundary

only if the consraint x*> = y? is satisfied.

@ Moreover we need to use the Legendre transform of the area functional.
A:A—%dmﬂw

This new action processes the same EOM and still solved by minimal
surface.

Reason: the Nambu-Goto action is a functional of X* and Y’ and is

appropriate for full Dirichlet BC. Now with our mixed BC, we need to
perform the Legendre transformation.

@ However this "regulated” action has different values. In particular, it gives
finite area for smooth loop when the constraint is satisfied.
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Our motivation

@ Recently some new minimal surface, as well as D3 and D5 brane
solution have been constructed in the Lunin-Maldacena background.
These solutions have been proposed as dual to Wilson loops in the
corresponding N' =1 SYM theory.

However the form of the field theory operators that are in dual with
the supergravity configurations has not been identified.

@ Supersymmetry is usually a guidance. However since A/ =1 SUSY
does not mix scalars and gauge bosons, hence there does not seem
that locally BPS Wilson loop operator could exist.

@ Q. What is the appropiate form of the Wilson loop operator?

@ Q. What happens in a more generic less/non supersymmetric
setting?

Our goal is to construct the appropriate Wilson loop operator and to
study its AdS/CFT correspondence.



[-deformed SYM

@ The -deformation of the N' =4 SYM is obtained by replacing the
superpotential as

W = tl’[¢1¢2¢3 — ¢1¢3¢2]
- tr[e ™ b1 0,03 — e ™D d3by),

@ The resulting theory preserves N' = 1 superconformal symmetry and
has a global U(1) x U(1) symmetry

u(1): - (D1, Pz, B3) — (P1, €Dy, 671 Ds)
U(1)2 : (¢1,¢2,¢3) — (eii62¢1,ei62¢'2,¢'3).
The U(1)g symmetry acts as
UL)r: (01, P2, P3) — (D1, Py, b3)

o All together, the A/ = 1 3-deformed SYM theory is invariant under a
U(1)3 symmetry. It's action on the scalar components is

&y — e/% &, for arbitrary constants 0y, (k =1,2,3).
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Lunin-Maldacena supergravity background

@ Lunin-Maldacena proposed the following SUGRA dual:

ds? = R? | ds3ys, + > (di? + Gu2do?) + 526333 (Y do)? |

1 1

e*? = &G,
B = R*3 G (pipsddr A dop + pspiden A dds + p3p3idgs A dey)
G, G #0

where R* = 4wgN and G71 = 1+ 32(pp3 + pdp3 + p3u?) .
@ The SUGRA description is valid in the limitof R > 1, RO« 1
with
R?j3 := 4 fixed

e The background has the U(1)3 symmetry

b — €%y, for arbitrary constant &, (k =1,2,3).

This is in correspondence with the U(1)3 symmetry of the
(-deformed SYM theory.
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@ For the studies of minimal surface dual to the Wilson loop, it is
more convenient to write the metric in the Cartesian form. Introduce
Cartesian coords:

Y= Y0' = Yprcosgr,  Y* = Y0 = Ypuising,
Y2 = Y0 =Ypscosga, Y®=Y0 = Ypussingo,
Y} =Y0®=Yuscosps, Y°®=Y0® = Ypussings.
R? 3 N 1 3 6 .
ds® = Ve (Z dX"dX* +dY? + V2dQ§> = R? <Y2 > dX"dX" + ) GidY'd
n=0 n=0 i=1
@ The metric satisfies a remarkable identity
YGiY =1,
which leads to S
0'gi# =1, where Gy = g;i/Y>.

@ Another interesting property of the deformed metric is that

0'(0agi)® =0, where 8, is an arbitrary derivative.

@ The B-field also satisfies an interesting identity:
Bxd, Y¥Y' = 0.
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Form of the Wilson loop operator

@ We propose to consider Wilson loop operator of the same form with
the same loop constraint as in the A/ = 4 theory.

@ In perturbation theory, one can show that the Wilson loop operator
has a expectation value that is free from UV divergence up to order
(g2N)? when the constraint is satisfied.

Crare
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Figure: Feynman diagrams of leading and next-to-leading orders
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@ The finiteness is not true for a generic non-BPS Wilson loop.
@ We call this operator a near BPS Wilson loop operator.

@ An analogous example is the BMN operator in the N' = 4 SYM
theory. The BMN operator is not a BPS operator, but it has a finite
anomalous dimensions in a particular double scaling limit.

Next let us look at SUGRA side for justification of the constraint.
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Hamilton-Jacobi equation

@ The HJ eqn is basically the EOM written in Hamiltonian form.
o Consider the action for the string

S= /dzo(\/detg — iByoy X'9,X7)

where go5 := Gy0aX'03X?, o, 3 =1,2. The conjugate momentum
is
0S 1

| = i<

50X " '

@ The Hamiltonian is

Giy(g1102 X7 —g1201 X?)+iB01 X7 := P +iBj,0. X7,

H = YE(GUPP, — gn).
811

And we obtain the HJ equation H =0,
G"PPy = GoX'o X,
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Deformed BC

@ For the LM background, the Hamilton-Jacobi equation takes the form
Gih“hP0.Y 05Y) + W HP O X 0X" = gL Y OL Y + (01XM),

@ Due to the presence of the B-field, the general mixed boundary condition
takes the form

J0aY*(01,0) + iB 101 Y (01,0) = A, ¥/ (01)
for some invertible matrix A,

@ For a minimal surface to terminate at the boundary of AdSs, we have the
Dirichlet conditions Y'(o1,0) = 0, which means 81 Y'(¢1,0) = 0. And so

00 Y (01,0) = Ny (01).

Also we have
XH(O'l,O) = XM(Ul).

@ Inserting the boundary conditions in the HJ equation we find

)-(2 o /\km/\lngkl }-/m‘)-/n — (Jlaaax,u,)Z.
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@ As usual the term (J;%9,X*)? has to be zero near a smooth
boundary, otherwise it costs infinite area. Therefore, we arrived at
the constraint

32 = g Ny ymy".
@ In particular, the constraint derived from supergravity agrees with
the constraint derived from field theory considerations if
gk//\km/\/n - 5mn-

This means that the boundary condition matrix N, is the vielbein
of the deformed metric gy.
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@ Moreover, one can identify the UV divergences in the Wilson loop
and find that they cancel provided the identities for the metric and
the B-field are satisfied:

0'gitV =1,
0'(0ugi)? =0,
and _
Biud,Y<Y = 0.

@ The fact that the UV divergence cancels and a well-defined Wilson
loop is obtained for both small and large A leads us to the
conjecture that the Wilson loop is well-defined and has finite vev in
the N/ =1 (3-deformed SYM theory.
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BPS Wilson loop and Matrix model

@ For NV = 4 theory, it is possible to construct globally supersymmetric
Wilson. These are circular Wilson loop with a path of radius Ry in space

x* =Ry CoSs T, x? = Rysin T,
and the coupling to the three scalars @1, 2, s is parametrized by
o' = cos by, 62 = sin 0 cos 7, 6° =sinfysinT,

with an arbitrary fixed 6y. The operator is 1/2 BPS (6o = 0) or 1/4 BPS
(6 #0).
@ The circular loop is related to the straight line by a conformal

transformation, one can therefore relate the circular Wilson loop to the
expectation value 1 of the Wilson straight line.

@ However due to a conformal anomaly, the gluon propagator is modified by
a singular total derivative which gives non-zero contribution only when
both ends of the propagator are located at the point which is conformally
mapped to the infinity.



Near-1/4 BPS Wilson Loop and Matrix Model

o It was conjectured that diagrams with internal vertexes cancel
precisely. This is supported by a direct calculation at order g*N?.

@ Assuming this is true, the sum of all the non-interacting diagrams
can be written as a Hermitian matrix model

(Wgr) = <I:tITrR /DI\/I TrR } exp ( — %Tr/\/ﬂ).

This is exact to all order in A and 1/N.
@ Explicit evaluation of the integral and hence the Wilson loop
expectation value has been performed. For example for fundamental

reps.,
!

!
I1(\/)\>) + 1812

<Wcircular> = /2(\/y) + ..

2
VN
where X = \cos? 6.
@ In the large N and large A limit, this gives
<VV(:irculm-> ~ eﬁ cos Og

This agrees with the (regulated) area of the dual minimal surface
constructed in SUGRA.
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SUGRA computation for 3 # 0

@ For the [B-deformed case, the circular Wilson loop operator is not BPS.
@ The Euclidean AdSs metric is

ds® = du® + cosh® u(dp® + sinh® pde)®) + sinh? u(dx’ + sin® xd¢?). (2)
and we parametrize the deformed sphere’s p; coord. via
p1 =cosf, pux=sinfcosa, p3z=sinfsina

@ The action reads

s = g / dodr |:p/2 + % +sinh? p(¢p"? + ¥°) + 0> + 67 + G cos” (¢, + $7)
+Gsin® 0(¢h° + ¢3) — 2i7G sin® O cos” O(d1¢a’ — p1' o) |
@ Consider an ansatz
p=p(c), v=1, 0=0(0), ¢1=¢i(o), ¢2=T1.

Solving the equation of motion and Virasoro constraints, we obtain

1’ =4sin®0, p? =sinh®p, 67 =sin?0.
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@ Substituting back to the action, we find that the G-depedence
disappears

T
Sphulk = \QL / dodr(sinh? p + sin® ) = \f)\(coth Prax F costp).
T

@ Hence the vev is the same as in the undeformed case

(W) ~exp (£ \f/\coséo),
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@ Remark: in addition to this supergravity solution which involves 3
angles in S°, one can also construct a solution which involves only
the two angles

0=0(c), a=r.

This solution is exactly the same as the undeformed one! Moreover
it gives rises to the same expectation value for the dual Wilson loop.

@ This is nontrivial since we do not have anymore the SO(6)
symmetry!

@ Although the SO(6) symmetry is broken by the (-deformation, it
seems that the ability to construct SO(6) invariant like constraint is
reasonable for this coincidence.
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Discussions

o In A/ =4 SYM, Wilson loop satisfing the loop constraint is locally
BPS and has finite vev. It was previously thought that the existence
of local susy is responsible for the finiteness. We show that this is
not true.

@ For -deformed SYM, we provided a definition of a Wilson loop
operator which has finite vev. The finiteness of the Wilson loop
relies on some remarkable properties satisfied by the metric and the
B-field of the Lunin-Maldacena background.
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@ More generally, as long as these identities holds, the SUGRA
minimal surface will have finite regulated area, suggesting that the
Wilson loop operator has finite vev.

- For example, one can show that these identities holds also for the
multi-parameters 3-deformations. These background is
non-supersymmetric! On the other hand, those A" =1 SCFT with
Sasaki-Einstein dual does not satisify these identities.

@ Perhaps it is integrability which guarantee the finiteness of the
Wilson loop. Will be interesting to establish this link.
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