2017 Fall PHYS2310 電磁學 (Electromagnetism) Final Exam. (double sides) [Griffiths Chs. 4-7.1] 2018/01/11, 10:10am – 12:00am, 教師:張存續

- \diamond Answer the questions as complete as possible.
- 1. (20%) Two long coaxial cylindrical metal tubes (inner radius *a*, outer radius *b*) stand vertically in a tank of dielectric oil (susceptibility χ_e , mass density ρ). The inner one is maintained at potential *V*, and the outer one is grounded (See the figure).
- (a) Find the electric field E in the air part and the oil part? (8%)
- (b) Find the capacitance? (6%)
- (c) Find the height (h) that the oil rises in the space between the tubes? (6%)

2. (20%) Consider a uniformly polarized dielectric sphere of radius R. $\mathbf{P} = P_0 \hat{\mathbf{z}}$

(a) Find the surface bound charge density σ_b and the volume bound charge density ρ_b . (10%) (b) Find the potential V of the dipole sphere for $r \ge R$. (10%)

[Hint: Use the dipole approximation, or $V = \frac{1}{4\pi\varepsilon_0} \oint_{S} \frac{\sigma_b}{c} da' + \frac{1}{4\pi\varepsilon_0} \int_{v} \frac{\rho_b}{c} d\tau'$].

- 3. (20%) Boundary conditions and applications.
- (a) $\nabla \cdot \mathbf{D} = \rho_f$. Find the boundary condition for the normal component of \mathbf{D} , D^{\perp} . (6%)
- (b) $\nabla \times \mathbf{H} = \mathbf{J}_{f}$. Find the boundary condition for the tangential component of \mathbf{H} , $\mathbf{H}^{\prime\prime}$. (6%)
- (c) Consider the interface between two dielectric materials with ε_1 and ε_2 as shown in the figure. Find the relations between the normal and the tangential components of the electric fields. Assume that there is no surface charge, i.e., $\sigma_f = 0.$ (8%)

$$\varepsilon_1, E_1^{\perp}, E_1^{\#}$$

 $\varepsilon_2, E_2^{\perp}, E_2^{\#}$

- 1 -

- 4. (20%) An infinitely long solenoid with air core having a radius *a* and *n* closely wound turns per unit length, as shown in the figure. The windings are slanted (傾斜) at an angle θ and carry a current *I*.
- (a) Find the z-component of the magnetic flux density (B_z) both inside and outside the solenoid. (10%) [Hint: Use Ampere's law.]
- (b) Find the ϕ -component of the magnetic flux density (B_{ϕ}) both inside and outside the solenoid. (10%) [Hint: Use cylindrical coordinates, r, ϕ, z .]

- 5. (20%) A long cylinder of radius *R* carries a magnetization $\mathbf{M}=M_0 \hat{\mathbf{z}}$, where M_0 is a constant.
- (a) Find \mathbf{J}_{b} within the material and \mathbf{K}_{b} on the surface of the material. (10%)
- (b) Find the magnetic field **B** due to **M** for points inside $(r \le R)$ and outside the cylinder $(r \ge R)$. (10%)

