2017 Spring PHYS	2320 電磁學	(Electromagnetis	m) Midterm	(double sides)
[Griffiths Chs. 7.2-9]	2018/04/24,	10:10am - 12:00am,	教師:張存續	满分 110

- 1. (20%) A capacitor C is charged up to a potential V and connected to an inductor L. At time t = 0the switch S is closed.
- (a) Find the current in the circuit as a function of time. (10%)
- (b) How does your answer change if a resistor R is included in series with C and L. (10%)

- 2. (20%) Derive the Poynting theorem in matter, starting from the power delivered per unit volume $\frac{dW}{dt} = \int_{V} (\mathbf{E} \cdot \mathbf{J}_{f}) d\tau.$
- (a) Show that the Poynting vector becomes $\mathbf{S} = \mathbf{E} \times \mathbf{H}$. (10%)
- (a) Show that the energy density for linear media is $u_{em} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$. (10%)

- 3. (20%) A charged parallel-plate with uniform electric field ($\mathbf{E} = E \hat{\mathbf{z}}$) is placed in a uniform magnetic field ($\mathbf{B} = B \hat{\mathbf{x}}$) as shown in the figure below.
- (a) Find the electromagnetic momentum in the space between the plates. (10%)
- (b) Now a resistive wire is connected between the plates, along the z axis, so that the capacitor slowly discharges. The wire will experience a magnetic force. What is the total impulse delivered to the system, during the discharge? (10%)

[Hint:
$$\mathbf{F} = \oint_{S} \ddot{\mathbf{T}} \cdot d\mathbf{a} - \varepsilon_{0} \mu_{0} \frac{d}{dt} \int_{V} \mathbf{S} d\tau$$
 and $T_{ij} \equiv \varepsilon_{0} (E_{i} E_{j} - \frac{1}{2} \delta_{ij} E^{2}) + \frac{1}{\mu_{0}} (B_{i} B_{j} - \frac{1}{2} \delta_{ij} B^{2})$]

- 4. (25%) A hollow rectangular waveguide has a cross section of $a \times b = 2.54 \text{ mm} \times 1.27 \text{ mm}$.
- (a) Estimate the cutoff frequencies for the first three modes (TE₁₀, TE₂₀, and TE₀₁). (10%)
- (b) If the waveguide is 5.0 mm long and are closed at both ends (forming a resonant cavity), calculate the resonant frequency of the TE_{101} (m = 1, n = 0, and l = 1) mode. (10%)
- (c) Qualitatively plot the dispersion relation (ωk_z diagram) of the dominant TE₁₀ mode. (5%) [Hint: Detail how to calculate and express your answers in parts (a) and (b) in terms of GHz.]

5. (25%) A plane wave of frequency ω , traveling in the *z* direction with the electric field polarized in the *x* direction, is incident from vacuum (ε_0 and μ_0) to a dielectric with $\varepsilon = 4\varepsilon_0$ and $\mu = \mu_0$. The incident wave is

$$\tilde{\mathbf{E}}_{I}(z,t) = \tilde{E}_{0I}e^{i(k_{1}z-\omega t)}\hat{\mathbf{x}}$$
 and $\tilde{\mathbf{B}}_{I}(z,t) = \frac{1}{c}\tilde{E}_{0I}e^{i(k_{1}z-\omega t)}\hat{\mathbf{y}}$

where k is the corresponding wave number.

- (a) Write down the reflected wave ($\tilde{\mathbf{E}}_{R}(z,t)$, $\tilde{\mathbf{B}}_{R}(z,t)$) and the transmitted wave ($\tilde{\mathbf{E}}_{T}(z,t)$, $\tilde{\mathbf{B}}_{T}(z,t)$). (10%)
- (b) Express the reflected amplitude \tilde{E}_{0R} and transmitted amplitude \tilde{E}_{0T} in terms of the incident amplitude (\tilde{E}_{0I}). (10%)
- (c) Find the reflection coefficient ($R \equiv I_R/I_I$) and the transmission coefficient ($T \equiv I_T/I_I$). (5%) [Hint: $I \equiv \langle S \rangle = \frac{1}{2} v \varepsilon E_0^2$].