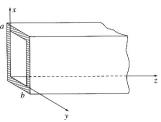
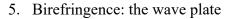

2019 Spring PHYS	2320 電磁學	e (Electromagneti	sm) Midterm	(double sides)
[Griffiths Chs. 7.2-9]	2019/04/23,	10:10am - 12:00am,	教師:張存續	满分100

- 1. Find the self-inductance L of a solenoid (radius R, length l, current I, and n turns per unit length),
- (a) Using the flux relation $\Phi = LI$. (10%)
- (b) Using the energy relation $W = \frac{1}{2}LI^2$. (10%)

2. (a) Calculate the resistance of a conical shaped object, of resistivity ρ , with length *L*, radius *a* at one end and radius *b* at the other. The two ends are flat, and are taken to be equipotentials. The suggest method is to slice it into circular disks of width *dz*, find the resistance of each disk, and integrate to get the total. Calculate *R* this way. (10%)

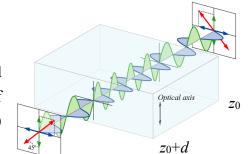

(b) Suppose the ends are, instead, spherical surfaces, centered at the apex of the cone. Calculate the resistance in this case. (Let L be the distance between the centers of the circular perimeters of the caps.) (10%)



- 3. (a) Consider two equal point charges q, separated by a distance 2a. Construct the plane equal-distant from the two charges. By integrating Maxwell's stress tensor over this plane, determine the force of one charge on the other. (10%)
 - (b) Do the same for charges that are opposite in sign. (10%)

[Hint:
$$\mathbf{F} = \oint_{S} \ddot{\mathbf{T}} \cdot d\mathbf{a} - \varepsilon_{0} \mu_{0} \frac{d}{dt} \int_{V} \mathbf{S} d\tau$$
 and $T_{ij} \equiv \varepsilon_{0} (E_{i} E_{j} - \frac{1}{2} \delta_{ij} E^{2}) + \frac{1}{\mu_{0}} (B_{i} B_{j} - \frac{1}{2} \delta_{ij} B^{2})$]

- 4. A wave is propagating in a rectangular waveguide with fundamental TE₁₀ mode. $B_z(x, z, t) = B_0 \cos(\pi x / a) \cos(kz - \omega t)$.
- (a) Find E_x , E_y , B_x , and B_y ? (10%) [Hint: Express in real components.]
- (b) Find the surface current **K** on the bottom of the inner wall (the *yz* plane)? (10%) [Hint: **K** is a vector.]



Linearly polarized light entering a wave plate can be resolved into two waves, parallel and perpendicular to the optical axis of the wave plate. In the plate, assume that the parallel wave (k_y) propagates slightly slower than the perpendicular one (k_x) .

propagates slightly slower than the perpendicular one (k_x) . Near side: $f_0 = A_0 \cos(k_x z_0 - \omega t) \hat{\mathbf{x}} + A_0 \cos(k_y z_0 - \omega t) \hat{\mathbf{y}}$

Far side: $f_d = A_0 \cos(k_x(z_0 + d) - \omega t)\hat{\mathbf{x}} + A_0 \cos(k_y(z_0 + d) - \omega t)\hat{\mathbf{y}}$

- (a) At the far side of the plate, can we change the polarization of the resulting combination orthogonal to its entrance state? At what condition? (10%)
- (b) Is it possible to form a right or left hand circular polarization? At what condition? (10%)

