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Chapter 1 Vector Analysis
1.1 Vector Algebra:  1.1.1 Vector Operations (I)

Vectors: Quantities have both magnitude and direction, 
denoted by boldface (A, B, and so on). 

Scalars: Quantities have magnitude but no direction 
denoted by ordinary type. 

In diagrams, vectors are denoted by arrows: the length of 
the arrow is proportional to the magnitude of the vector, 
and the arrowhead indicates its direction. 
Minus A (−A) is a vector with the same magnitude as A
but of opposite direction.
Vectors have magnitude and direction but not location.

Khan Academy:  https://www.khanacademy.org/math/linear-algebra
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1.1.1 Vector Operations (II)

(i) Addition of two vectors: 
Place the tail of B at the head of A. 
Commutative: A + B = B + A
Associative: (A + B) + C = A + (B + C)

A − B = A + (−B)
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1.1.1 Vector Operations (III)

(ii) Multiplication by a scalar: 
Multiplies the magnitude but leaves the direction unchanged.

Distributive:   a(A + B) = aA + aB

(iii) Dot product of two vectors (scalar product): 
The dot product of two vectors is defined by A·B ≡ AB cosθ,
where θ is the angle they form when placed tail-to-tail.

Commutative:   A·B = B·A

Distributive:   A·(B + C) = A·B + A·C

A

Bθ
|A|cosθ



4

1.1.1 Vector Operations (IV)

(iv) Cross product of two vectors (vector product): 
The cross product of two vectors is defined by 

A×B ≡ AB sinθ , where     is a unit vector pointing 
perpendicular to the plane of A and B. 

A hat is used to designate the unit vector and its direction is 
determined by the right-hand rule. 

not commutative:   A×B = − B×A

Distributive:   A×(B + C) = A×B + A×C

n̂ n̂
(pronounced “n-hat")
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1.1.2 Vector Algebra: Component form (I)

Let       be unit vectors parallel to the x, y, and z
axes, respectively. An arbitrary vector A can be expressed in 
terms of these basis vectors.

The numbers Ax, Ay, and Az are called components.  

ˆ ˆ ˆ,  and x y z

ˆ ˆ ˆx y zA A A= + +A x y z
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1.1.2 Vector Algebra: Component form (II)

Reformulate the vector operations as a rule for manipulating 
components:  

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

x y z x y z

x x y y z z

A A A B B B
A B A B A B

+ = + + + + +
= + + + + +

A B x y z x y z
x y z

(i) To add vectors, add like components.   

(ii) To multiply by a scalar, multiply each component.   

ˆ ˆ ˆ( )
ˆ ˆ ˆ
x y z

x y z

a a A A A
aA aA aA

= + +
= + +

A x y z
x y z



7

1.1.2 Vector Algebra: Component form (III)

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y z

x x y y z z

A A A B B B
A B A B A B

⋅ = + + ⋅ + +
= + +

A B x y z x y z

(iii) To calculate the dot product, multiply like components, 
and add.   

(iv) To calculate the cross product, form the determinant 
whose first row is                    , whose second row is A
(in component form), and whose third row is B.     

ˆ  ( )ˆ ˆ ˆ
ˆ( )
ˆ( )

y z z y

x y z z x x z

x y y xx y z

A B A B

A A A A B A B
A B A BB B B

−

× = = + −
+ −

xx y z
A B y

z

ˆ ˆ ˆ,  and x y z
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1.1.3 Triple Products (I)

)()()( BACACBCBA ×⋅=×⋅=×⋅

Since the cross product of two vectors is itself a vector, 
it can be dotted or crossed with a third vector to form a 
triple product.

(i) Scalar triple product: A·(B×C). Geometrically,                         
|A·(B×C)| is the volume of a parallelepiped generated by 
these three vectors as shown below.     

In component form    

( )
x y z

x y z

x y z

A A A

B B B

C C C

⋅ × =A B C Parallelepiped
平行六面體

A
C
B

B×C
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1.1.3 Triple Products (II)

)()()( BACCABCBA ⋅−⋅=××

(ii) Vector triple product: A×(B×C). The vector triple 
product can be simplified by the so-called BAC-CAB
rule.     

Notice that     

)()()()( CABCBABACCBA ⋅+⋅−=××−=××

)()( CBACBA ××≠××

Problem 1.6 Under what conditions does 

?)()( CBACBA ××=××
Ans: Either A is parallel to C, 

or B is perpendicular to A and C.

https://en.wikipedia.org/wiki/Triple_product
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1.1.4 Position, Displacement, and Separation 
Vectors (I)

zyxr ˆˆˆ zyx ++≡
Position vector: The vector to point P from the origin O.   

Its magnitude (the distance from the origin)   

Its direction unit vector (pointing radially outward) 

222 zyxr ++≡⋅= rr

222

ˆˆˆˆ
zyx
zyx

r ++
++== zyxrr

The infinitesimal displacement vector, from (x, y, z) to 
(x+dx, y+dy, z+dz), is   

zyxl ˆˆˆ dzdydxd ++=

O

P
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1.1.4 Position, Displacement, and Separation 
Vectors (II)

, magnitude 

ˆunit vector in the direction from  to  is  

′ ′≡ − = −
′−′ = =
′−

r r r r
r rr r
r r




r

r

r
rr

In electrodynamics one frequently encounters problems 
involving two points:
A source point, r′, where an electric charge is located. 
A field point, r, at which you are calculating the electric field.

A short-hand notation for the 
separation vector from the source 
point to the field point is   
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1.2 Differential Calculus  
1.2.1 “Ordinary” Derivatives

Suppose we have a function of 
one variable, f(x). What does the 
derivative, df/dx, do for us?

In words, if we change x by an amount dx, then, f changes 
by an amount df.
The derivative df/dx is the slope of the graph of f versus x.

Ans: It tells us how rapidly the function f(x) varies when 
we change the argument x by a tiny amount, dx.

dx
dx
dfdf 






=

f

x

df
dx

df
dx
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1.2.2 Gradient (I)
Suppose we have a function of three 
variables. What does the derivative 
mean in this case?

The gradient of H is a vector quantity, with three components.

A theorem on partial derivatives states that  

),,(
hillmountain A 

zyxH

Khan Academy:      Gradient

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

( ) ( )

H H HdH dx dy dz
x y z
H H H dx dy dz
x y z
H d

∂ ∂ ∂= + +
∂ ∂ ∂
∂ ∂ ∂= + + ⋅ + +
∂ ∂ ∂

= ⋅

x y z x y z

l∇

ˆ ˆ ˆH H HH
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

x y z∇
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1.2.2 Gradient (II)

Geometrical interpretation: Like any vector, the gradient 
has magnitude and direction.
A dot product in abstract form is: 

If we fix the magnitude |dl| and search around in various 
directions (that is, vary θ ), the maximum change in dH
eventually occurs when θ = 0). The gradient ∇H points in 
the direction of maximum increase of the function H.

Analogous to the derivative of one variable, a vanishing 
derivative signals a maximum (a summit), a minimum (a 
valley), or an inflection (a saddle point or a shoulder). 

where  is the angle between  and . H dθ l∇
cosdH H d H d θ= ⋅ =l l∇ ∇
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Example 1.3 & Problem 1.13
Example 1.3 Find the gradient of  

Problem 1.13 Let                                                          
Show that

222 zyxr ++=

rrzyxzyx ˆˆˆˆˆˆˆ  :Ans
222

==
++
++=

∂
∂+

∂
∂+

∂
∂=∇

rzyx
zyx

z
r

y
r

x
rr

ˆ ˆ ˆ( ') ( ') ( ')x x y y z z≡ − + − + −x y zr

2(a) ?∇ =r 2 2 2 2[( ') ( ') ( ') ]
ˆ ˆ ˆ2( ') 2( ') 2( ') 2

x x y y z z
x x y y z z

∇ = ∇ − + − + −
= − + − + − =x y z r

r

(b) (1 ) ?∇ =r
2 2 2

2 2 2 2

31
2

2

( ') ( ') ( ')1
( ') ( ') ( ')

ˆ ˆ ˆ[2( ') 2( ') 2( ') ] /
ˆ

x x y y z z
x x y y z z

x x y y z z

−∇ − + − + −−∇∇ = =
− + − + −

= − − + − + −

= −

x y z

r
r r

r

r
r
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1.2.3 The Operator ∇ (I)

The gradient has the formal appearance of a vector, ∇, 
“multiplying”, a scalar H.

∇ mimics the behavior of an ordinary vector in virtually 
every way, if we translate “multiply” by “act upon”.
It is a marvelous piece of notational simplification. 

del
∇ is a vector operator that acts upon H, not a vector that 
multiplies H.

ˆ ˆ ˆ( )H H
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

x y z∇

ˆ ˆ ˆ
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

x y z∇
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1.2.3 The Operator ∇ (II)

An ordinary vector A can multiply in three ways:
1. Multiply a scalar a : aA
2. Multiply another vector (dot product): A·B
3. Multiply another vector (cross product): A×B

1. On a scalar function H: ∇H (gradient 梯度)

2. On a vector function (dot product): ∇· v (divergence 散度)

3. On a vector function (cross product): ∇×v (curl 旋度)

Correspondingly, there are three ways the operator ∇ can act:
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1.2.4 The Divergence 

Divergence of a vector v is: 

∇·v is a measure of how much the vector v spreads out 
from the point in question.

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z

yx z

v v v
x y z

vv v
x y z

∂ ∂ ∂⋅ = + + ⋅ + +
∂ ∂ ∂

∂∂ ∂
= + +

∂ ∂ ∂

v x y z x y z∇

zero positivepositive

Khan Academy:      Divergence
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Example 1.4

Ans:  3;

0 0 1 0;

0 0 1.

a

b

c

x y z
x y z

x y z
z

x y z

∂ ∂ ∂⋅ = + + =
∂ ∂ ∂
∂ ∂ ∂⋅ = + + =
∂ ∂ ∂
∂ ∂ ∂⋅ = + + =
∂ ∂ ∂

v

v

v

∇

∇

∇

Example 1.4 Suppose the functions in above three figures 
are                                                     Calculate their 
divergences.

2 2ˆ ˆ ˆ(a) 3 2
 

Prob. 1

?

.15

a

a

x xz xz= + −
⋅ =
v x y z
v∇

ˆ ˆ ˆ ˆ ˆ,  ,  .a b cx y z z= + + = =v x y z v z v z
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1.2.5 The Curl 

Curl of a vector v is: 

∇×v is a measure of how much the vector v curls around 
the point in question.

Khan Academy:      Curl

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )y yx xz z

x y z

v vv vv v
x y z y z z x x y

v v v

∂ ∂∂ ∂∂ ∂∂ ∂ ∂× = = − + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

x y z

v x y z∇
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Example 1.5

Example 1.5 Suppose the functions in above two figures 
are                                          .  Calculate their curls.ˆ ˆ ˆ,    a by x x= − + =v x y v y

0 ( ) 0 ( )ˆ ˆ ˆ ˆ Ans:   ( ) ( ) ( ) 2

0 0 0 0 0ˆ ˆ ˆ ˆ            ( ) ( ) ( )

a

b

x y x y
y z z x x y

x
y z z x x y

∂ ∂ ∂ − ∂ ∂ ∂ −∇× = − + − + − =
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∇× = − + − + − =
∂ ∂ ∂ ∂ ∂ ∂

v x y z z

v x y z z
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1.2.6 Product Rules (I) 

The sum rule: 

The rule for multiplying by a constant k:

dx
dfkkf

dx
d =)( fkkf ∇=∇ )(

AA ×∇=×∇ kk )(AA ⋅∇=⋅∇ kk )(

dx
dg

dx
dfgf

dx
d +=+ )( gfgf ∇+∇=+∇ )(

BABA ×∇+×∇=+×∇ )(BABA ⋅∇+⋅∇=+⋅∇ )(
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1.2.6 Product Rules (II) 

The product rule: 

ABBAABBABA )()()()()( ∇⋅+∇⋅+×∇×+×∇×=⋅∇

)()()()()( ABBABAABBA ⋅∇−⋅∇+∇⋅−∇⋅=××∇

)()()( BAABBA ×∇⋅−×∇⋅=×⋅∇





Af
fg

 :vector
 :scalar





×
⋅

BA
BA

 :vector
 :scalar

dx
dgf

dx
dfgfg

dx
d +=)( gffgfg ∇+∇=∇ )(

)()( AAA ×∇+×∇=×∇ fff)()( AAA ⋅∇+⋅∇=⋅∇ fff

Chaps. 
8 and 10
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1.2.6 Product Rules (III) 

The quotient rule: 





gg
f A :vector :scalar

2)(
g

dx
dgf

dx
dfg

g
f

dx
d −

=

2)(
g

gffg
g
f ∇−∇=∇

22
)()()()(
g

gg
g

gg
g

∇×+×∇=×∇−×∇=×∇ AAAAA

2
)()(
g

gg
g

∇⋅−⋅∇=⋅∇ AAA
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1.2.7 Second Derivatives (I) 

By applying ∇ twice, we can construct five species of 
second derivatives.

Chaps. 8 and 10

very important 

always zero

always zero

reduce to others

Three first derivatives  ,    ,    T ⋅ ×v v∇ ∇ ∇

(1) Divergence of gradient: ( )T⋅∇ ∇

(2) Curl of gradient: ( )T×∇ ∇

(3) Gradient of divergence: ( )⋅ v∇ ∇

(4) Divergence of curl: ( )⋅ × v∇ ∇

(5) Curl of curl: ( )× × v∇ ∇
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1.2.7 Second Derivatives (II) 

The Laplacian of a vector is similar:

T
z
T

y
T

x
T

z
T

y
T

x
T

zyx
T

2
2

2

2

2

2

2

)ˆˆˆ()ˆˆˆ()( )1(

∇=
∂
∂+

∂
∂+

∂
∂=

∂
∂+

∂
∂+

∂
∂⋅

∂
∂+

∂
∂+

∂
∂=∇⋅∇ zyxzyx

TT )()( )2( ∇×∇≠∇×∇

the Laplacian of T

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y zv v v v v v∇ ⋅∇ ≡ ∇ + + = ∇ + ∇ + ∇v x y z x y z

The proof hinges on the equality of cross derivatives:

 )()(   ),()(   ),()(

0)ˆˆˆ()ˆˆˆ()(

z
T

xx
T

zy
T

zz
T

yx
T

yy
T

x

z
T

y
T

x
T

zyx
T

∂
∂

∂
∂=

∂
∂

∂
∂

∂
∂

∂
∂=

∂
∂

∂
∂

∂
∂

∂
∂=

∂
∂

∂
∂

=
∂
∂+

∂
∂+

∂
∂×

∂
∂+

∂
∂+

∂
∂=∇×∇ zyxzyx
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1.2.7 Second Derivatives (III) 

0

)()()(

))(ˆ(ˆ))(ˆ(ˆ ))(ˆ(ˆ)( )4(

=
∂
∂−

∂
∂

∂
∂+

∂
∂−

∂
∂

∂
∂+

∂
∂

−
∂
∂

∂
∂=

∂
∂−

∂
∂

∂
∂+

∂
∂−

∂
∂

∂
∂+

∂
∂

−
∂
∂

∂
∂=×∇⋅∇

y
v

x
v

zx
v

z
v

yz
v

y
v

x

y
v

x
v

zx
v

z
v

yz
v

y
v

x

xyzxyz

xyzxyz zzyyxxv

always zero

vv

zyxzyxv

2)(

))(ˆ)(ˆ)(ˆ()ˆˆˆ()(

∇−⋅∇∇==
∂
∂−

∂
∂

+
∂
∂−

∂
∂+

∂
∂

−
∂
∂×

∂
∂+

∂
∂+

∂
∂=×∇×∇


y
v

x
v

x
v

z
v

z
v

y
v

zyx
xyzxyz

Can we use the following vector identity?)( )5( v×∇×∇

We will encounter this derivative when dealing with 
the vector potential (magnetism).

)()()( BACCABCBA ⋅−⋅=××

TA
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1.3 Integral Calculus  
1.3.1 Line, Surface, and Volume (I)

In electrodynamics, the line (or path) integrals, surface
integrals (or flux), and volume integrals are the most 
important integrals.

,d⋅
b
a

v l
P

(a) Line integrals: a line integral is an expression of the 
form

where v is a vector function, dl is the infinitesimal 
displacement vector, and the integral is to be carried out 
along a prescribed path P from point a to point b.

Put a circle on the integral, in the path in question 
forms a closed loop. 

d⋅ v l
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1.3.1 Line, Surface, and Volume (II)
The value of a line integral depends critically on the 
particular path taken from a to b, but there is an important 
special class of vector functions for which the line integral 
is independent of the path, and is determined entirely 
by the end points, e.g., 

W d= ⋅
b
a

F l
P

A force that has this property is called conservative.
P
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Example 1.6 Calculate the line integral of the function         
from the point a = (1,1,0) to the point 

b = (2,2,0), along the paths (1) and (2) in Fig.1.21. What is  
the loop integral that goes from a to b along (1) and returns 
to a along (2)?

,ˆ)1(2ˆ2 yxv ++= yxy

The strategy here is to get everything 
in terms of one variable.

non-conservative 
TA
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1.3.1 Line, Surface, and Volume (III)

 ⋅
S

,av d

(b) Surface integrals: a surface integral is an expression 
of the form

where v is a vector function, and da is 
the infinitesimal patch of area, with 
direction perpendicular to the surface. 

The value of a surface integral depends on the particular 
surface chosen, but there is a special class of vector 
functions for which it is independent of the surface, and is 
determined entirely by the boundary.
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Example 1.7 Calculate the surface integral of the function         
over five sides of the 

cubical box. Let “upward and outward” be the positive 
direction, as indicated by the arrow.

zyxv ˆ)3(ˆ)2(ˆ2 2 −+++= zyxxz

2 2
0 0

 Sol: Taking the sides one at a time:
ˆ(i) 2,   ,     2 4

4 16

x d dydz d xzdydz zdydz

d dy zdz

= = ⋅ = =

⋅ = =  

a x v a

v a

2

2 2
0 0

ˆ(v) 2,   ,     ( 3)

4

z d dxdy d y z dxdy ydxdy

d dx ydy

= = ⋅ = − =

⋅ = =  

a z v a

v a
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1.3.1 Line, Surface, and Volume (IV)

v ,τTd

(c) Volume integrals: a volume integral is an expression 
of the form

where T is a scalar function, and dτ is an infinitesimal 
volume element. In Cartesian coordinates, dτ = dxdydz

The volume integrals of vector functions:

For example, if T is a density of a substance, then the 
volume integral would give the total mass.




++=

++=

τττ

ττ

dvdvdv

dvvvd

zyx

zyx

zyx

zyxv

ˆˆˆ

)ˆˆˆ(
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Example 1.8 Calculate the volume integral of the function         
over the prism in Fig. 1.24.2xyzT =

3 1 12 2
0 0 0

1 2
0

 Sol: Let's do  first (0 to 3); then  from 0 to 1 ;
 finally  from 0 to 1.

( )

19 ( (1 ) )
2

1 1 39( )( )
2 12 8

x

z y x
x

xyz dxdydz z dz x ydy dx

x x dx

−

−

=

 = − 
 

= =
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1.3.2 The Fundamental Theorem of Calculus
Fundamental theorem of calculus: 

Geometrical Interpretation: two ways to determine the total 
change in the function:
1. go step-by-step adding up all the tiny increments as you go.
2. subtract the values at the ends.

The integral of a derivative over an interval is given by the 
value of the function at the end points (boundary).

( ) ( )
b b
a a

df dx df f b f a
dx

= = − 
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1.3.3 The Fundamental Theorem for Gradients
A scalar function of three variables T(x, y, z) changes by 
a small amount. 

The total change in T in going from a to b along the path 
selected is: 

1)( ldTdT ⋅∇=

( ) ( ) ( ) T d T T∇ ⋅ = −
b
a

l b a

Fundamental theorem for gradient.

Geometrical Interpretation: Measure the high of a skyscraper. 
1. Measure the high of each floor and add them all up.
2. Place an altimeter at the top and the bottom, subtract the 
readings at the ends.
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1.3.3 The Fundamental Theorem for Gradients (II)

the right side of this equation makes 
no reference to the path---only to the end points.  
Thus gradients have special property that their line integrals 
are path independent.  

A conservative force may be associated with a scalar potential 
energy function, whereas a non-conservative force cannot.

( ) ( ) ( )T d T T∇ ⋅ = −
b
a

l b a

Corollary 1:                      is independent of path taken from 
a to b.  
Corollary 2:                         , since the beginning and end 
points are identical, and hence T(b)−T(a) = 0. 

( )T d∇ ⋅
b
a

l

( ) 0T d∇ ⋅ = l

KK:[ˈkɒrǝˌlɛrɪ] 推論
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Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the 
associated conservative force.

*Conservative forces tend to minimize the potential 
energy within any system: If allowed to, an apple falls 
to the ground and a spring returns to its natural length.

sF dUU
B

A cAB ⋅−=− 

Non-conservative force does not imply it is dissipative, 
for example, magnetic force, and also does not mean it 
will decrease the potential energy, such as hand force.
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Distinction Between 
Conservative and Non-conservative Forces

sF dUU
B

A cAB ⋅−=− 

The distinction between conservative and non-
conservative forces is best stated as follows: 
A conservative force may be associated with a scalar 
potential energy function, whereas a non-conservative 
force cannot.

Uc −∇=F
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Conservative Force and 
Potential Energy Function

Fc U= −∇

How can we find a conservative force if the associated 
potential energy function is given?

A conservative force can be derived from a scalar 
potential energy function.

The negative sign indicates that the force points in the 
direction of decreasing potential energy.

2

Gravity  ;

1Spring    ;
2

g
g y

sp
sp x

dU
U mgy F mg

dy
dU

U kx F kx
dx

= = − = −

= = − = −
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1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

The integration of a derivative (in this case the divergence) 
over a region (in this case a volume) is equal to the value of 
the function at the boundary (in this case the surface that 
bounds the volume)

( )
v

S
d dτ∇ ⋅ = ⋅ v v a

This theorem has at least three special names: Gauss’s 
theorem, Green’s theorem, or the divergence theorem.

Geometrical Interpretation: Measure the total amount of 
fluid passing out through the surface, per unit time. 
1. Count up all the faucets, recording how much each put out.
2. Go around the boundary, measuring the flow at each point, 
and add it all up.

Feynman: 
Gauss’ theorem
Stokes’ theorem

Griffiths:
Gauss’s theorem
Stokes’ theorem

Jackson:
Gauss’s theorem
Stokes’s theorem
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Gauss’s divergence theorem
(Transformation between volume integrals and surface integrals)

ˆ( )
v

S
d daτ∇ ⋅ = ⋅ v v n

Supplementary

Rough
proof:

ˆˆ ˆ ˆ ˆ ˆ ˆ  and  cos cos cos
ˆwhere ,  ,  and  are the angles between  and -, -  

and - axis, respectively.

x y zv v v

x y
z

α β γ
α β γ

= + + = + +v x y z n x y z
n

( ) ( )

( )

ˆ( cos cos cos )

yx z
v

v

x y z
S

x y z
S S

vv vd dxdydz
x y z

v dydz v dzdx v dxdy

v v v da da

τ

α β γ

∂∂ ∂∇ ⋅ = + +
∂ ∂ ∂

= + +

= + + = ⋅

 



 

v

v n

Rigorous proof can be found in: Erwin Kreyszig, Advanced Engineering 
Mathematics (John Wiley and Sons, New York, 1993), 7th ed. Chap. 9, 
pp. 546-547.
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Example 1.10 Check the divergence theorem using the 
function      
and the unit cube situated at the origin.

zyxv ˆ)2(ˆ)2(ˆ 22 yzzxyy +++=


 

  

=⋅∇∴

=+=+=

+=+

+=⋅∇

v

v

d

dyydyy

dxdyyxdzdxdydzyx

yx

2

2)(2)(2

)(2)(2

)(2caseIn this :Sol 

1

0

1

0 2
1

1

0 2
1

1

0

1

0

1

0

τv

v

To evaluate the surface integral we must consider 
separately the six sides of the cube. The total flux is…
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1.3.5 The Fundamental Theorem for Curls (I)
The fundamental theorem for curls---Stokes’ theorem---
states that:

The integration of a derivative (here, the curl) over a region 
(here, a patch of surface) is equal to the value of the 
function at the boundary (in this case the perimeter of the 
patch).

( )
S

P
d d∇× ⋅ = ⋅ v a v l

Geometrical Interpretation: 
Measure the “twist” of the 
vectors v; a region of high 
curl is a whirlpool. 

KK:[pǝˈrɪmǝtɚ]
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1.3.5 The Fundamental Theorem for Curls (II)
Ambiguity in Stokes’ theorem: Concerning the boundary 
line integral, which way are we supposed to go around 
(clockwise or counterclockwise)? The right-hand rule.

Corollary 1:                      depends only on the boundary 
lines, not on the particular surface used.   
Corollary 2:                           for any closed surface, since 
the boundary line shrinks down to a point. 

av d⋅×∇ )(

( ) 0d∇× ⋅ = v a

These corollaries are analogous to 
those for the gradient theorem.
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Stokes’ theorem
(Transformation between surface integrals and line integrals)

Supplementary

Rigorous proof can be found in: 
Erwin Kreyszig, Advanced Engineering Mathematics 
(John Wiley and Sons, New York, 1993), 
10th ed. Chap. 10, pp. 464-467.

( )
S

P
d d∇× ⋅ = ⋅ v a v l
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Comments: graduate level (reference only)

• Green’s theorems: 
2

2

2 2

Let     ( )
ˆ ˆ( )

Green's first formula: ( )

Green's second formula: ( ) ( )

v
S

v
S

f g f g f g f g
f g

gf g f g d f da
n

g ff g g f d f g da
n n

τ

τ

= ∇  ∇ ⋅ = ∇ ⋅ ∇ = ∇ + ∇ ⋅∇
⋅ = ⋅∇

∂∇ + ∇ ⋅∇ =
∂

∂ ∂∇ − ∇ = −
∂ ∂

 

 

v v
v n n




• Green’s theorem in the plane as a special case of 
Stokes’  theorem

Let  be a vector function in the -plane.

ˆ( )       ( ) ( )y yx x
x y

S P

xy
v vv v da v dx v dy
x y x y

∂ ∂∂ ∂
∇× ⋅ = −  − = +

∂ ∂ ∂ ∂ 

v

v n 
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Example 1.11 Suppose      
Check Stokes’ theorem for the square surface shown below.

zyv ˆ)4(ˆ)32( 22 yzyxz ++=

  ==⋅×∇

=+−=×∇
1

0

1

0

2

2

3
44)(

ˆ    ;ˆ2ˆ)24( :Sol 

dydzzd

dydzdzxz

av

xazxv

segmentsfour   theof integral line The
1
0
1
0

0
1

0

2

1

2 2

2

2 2

(i) 0, 0, 3 ,  3 1,

4(ii) 0, y 1, 4 ,  4 ,
3

(iii) 0, 1, 3 ,  3 1,

(iv) 0, y 0, 0,  0 0.

x z d y dy d y dy

x d z dz d z dz

x z d y dy d y dy

x d d dz

= = ⋅ = ⋅ = =

= = ⋅ = ⋅ = =

= = ⋅ = ⋅ = = −

= = ⋅ = ⋅ = =

 

 

 

 

v l v l

v l v l

v l v l

v l v l
4 41 1 0 .
3 3

d⋅ = + − + = v l
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1.3.6 Integration by Parts

( )

Integrating both sides and 
invoking the fundament

)

al theorem

Left  

1

  ( )

Ri

 

ght

58

 

( .

 

 

b b
aa

b b
a a

b b b
aa a

d df dgfg g f
dx dx dx

d fg dx fg
dx

dg dff

g

d d

dg dff
x

x g x
dx

dx dx fg
dx d

dx

= +

=

+

= − +





 

( ) ( )
Integrate it over a volume and 
invoking the divergence theor

)

em.
Left    ( ) ( )

Right ( ( ))

( )

)( ) ( (  

(

)  (1 59

)

.

f f f

f d f d

f f d

f

f d f d f

d f d

d

τ

τ

τ

τ

τ

τ

∇ ⋅ = ∇ ⋅ + ∇ ⋅

∇ ⋅ = ⋅

∇ ⋅ + ∇ ⋅

= ∇ ⋅

∇ ⋅ = − ∇ ⋅ + ⋅

+ ∇ ⋅



 




 



A A A

A A a

A A

A

A

A a

A

A
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Applications of Stokes’ and Divergence Theorems 
)( :gradient of Curl )2( T∇×∇

)( :curl of Divergence )4( v×∇⋅∇ always zero
always zero

( ) ( ) ( ) 0
S

P

T d T d T T∇×∇ ⋅ = ∇ ⋅ = − = a l a a

Stokes’ theorem ( )
S

P
d d∇× ⋅ = ⋅ v a v l

( )
v

S
d dτ∇ ⋅ = ⋅ v v aDivergence theorem

( ( )) ( ) 0
v

S P

d d dτ∇ ⋅ ∇× = ∇× ⋅ = ⋅ =  v v a v l 
for any closed surface, since the boundary

line shrinks down to a point.
( ) 0d∇× ⋅ = v a

Optional
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 Prove the  rule by writing out both sides in component
form.
Problem 1.5 BAC - CAB

 Find the separation vector  from the source point (2,8,7) to the field
ˆpoint (4,6,8). Determine its magnitude ( ), and construct the unit vector .

Problem 1.7 

r r
r

2

2

 Let  be the separation vector from a fixed point ( ',  ', ' ) to the
point ( ,  ,  ), and let  be its length. Show that
(a) ( ) = 2 .

ˆ(b) (1/ )= / .
(c) What is the  formula

x y z
x y z

general

∇
∇ −

Problem 1.13 



r

r
r

r
r
r r

 for ( )?n∇ r

 Test the divergence theorem for the function
ˆ ˆ ˆ = ( ) + (2 )  +(3 ) . Take as your volume the cube 

shown in Fig. 1.30, with sides of length 2.
xy yz zx

Problem 1.33
v x y z

2

 Sketch the vector function
ˆ

                                                          v ,

and compute its divergence. The answer may surprise you. . . can you explain it?
r

=

Problem 1.16
r

Homework of Chap. 1 (part I)
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1.4 Curvilinear Coordinates  
1.4.1 Spherical Polar Coordinates (I)

The spherical (polar) coordinates (r, θ, φ) of a point P are 
defined below;
r : the distance from the origin (the magnitude of the 
position vector).
θ : the angle down from the z-axis (the polar angle).
φ : the angle around from the x-axis (the azimuthal angle).









=
=
=

θ
φθ
φθ

cos
sinsin
cossin

rz
ry
rx

Murray R Spiegel, Vector Analysis
(McGraw-Hill, New York, 1989), 6th ed. Chap. 7.

EM
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1.4.1 Spherical Polar Coordinates (II)

The direction of the coordinates: the unit vector
They constitute an orthogonal (mutually perpendicular) 
basis set (just like             ). 
So any vector A can be expressed in terms of them: 

ˆ ˆˆ, , θ φr

zyx ˆ ,ˆ ,ˆ

ˆ ˆˆ
In terms of Cartesian unit vector 

rA A Aθ φ= + +A r θ φ

(Or you can see Appendix A for more details.)

ˆ ˆ ˆ ˆsin cos sin sin cos
ˆ ˆ ˆ ˆcos cos cos sin sin
ˆ ˆ ˆsin cos

θ φ θ φ θ
θ φ θ φ θ

φ φ

= + +

= + −

= − +

r x y z
x y z

x y
θ
φ
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1.4.1 Spherical Polar Coordinates (III)

Warning: are associated with particular point P,  
and they change direction as P moves around.
For example,     always points radially outward, but “radially 
outward” can be the x direction, the y direction, or any other 
direction, depending on where you are.

ˆ ˆˆ, , θ φr

r̂

Notice: Since the unit vectors are function of position, we 
must handle the differential and integral with care.
1. Differentiate a vector that is expressed in spherical 
coordinates.
2. Do not take the unit vectors outside an integral. 
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1.4.1 Spherical Polar Coordinates (IV)

The general infinitesimal displacement:
ˆ ˆˆ sind dr rd r dθ θ φl r= + +θ φ

2

The infinitesimal surface element  for the surface
of a sphere.

ˆ ˆ( )( ) sin

d

d dl dl r d dθ φ θ θ φ

a

a r r= =

2
The infinitesimal volume element 

( )( )( ) sinr

d

d dl dl dl r drd dθ φ

τ

τ θ θ φ= =
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1.4.1 Spherical Polar Coordinates (V)
The vector derivatives in spherical coordinates:
Gradient :

Divergence :

Curl :

Laplacian :

1 1ˆ ˆˆ .
sin

T T TT
r r rθ θ φ

∂ ∂ ∂= + +
∂ ∂ ∂

∇ θ φr

2
2

1 1 1( ) (sin ) .
sin sinr

v
r v v

r r rr
φ

θθ
θ θ θ φ

∂∂ ∂⋅ = + +
∂ ∂ ∂

∇ v

1 1 1 ˆˆ(sin ) ( )
sin
1 ˆ            ( ) .

sin
r

r

v vv rv
r r

vr
r

r

v
r

θ
φ φ

θ

θ
θ θ φ θ φ

θ

∂   ∂∂ ∂× = − + −   ∂ ∂ ∂ ∂   
∂∂ + − ∂ ∂ 

∇ θ

φ

v r

2
2 2

2 2 2 2 2
1 1 1sin .

sin sin
T T TT r

r rr r r
θ

θ θθ θ φ
∂ ∂ ∂ ∂ ∂   = + +   ∂ ∂ ∂ ∂    ∂

∇
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1.4.2 Cylindrical Coordinates (I)
The cylindrical coordinates (s, φ, z) of a point P are defined 
below: 
s: the distance from the z axis.
φ: the same meaning as in spherical coordinates.
z: the same as Cartesian.

cos ,    sin ,    x s y s z zφ φ= = =

The unit vectors are 

The infinitesimal displacement:
ˆˆ ˆd ds sd dzφ= + +l s zφ

ˆ ˆ ˆ= cos sin ,
ˆ ˆ ˆsin cos ,
ˆ ˆ.

x y

x y
z

φ φ
φ φ

+

= − +
=

s

z
φ
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1.4.2 Cylindrical Coordinates (II)

The vector derivatives in cylindrical coordinates:
Gradient :

Divergence :

Curl :

Laplacian :

1 ˆˆ ˆ.T T TT
s s zφ

∂ ∂ ∂= + +
∂ ∂ ∂

∇ φs z

1 1( ) .z
s

v vsv
s s s z

φ
φ

∂ ∂∂⋅ = + +
∂ ∂ ∂

∇ v

1 1ˆˆ ˆ( ) .z s szv v vv v
s z

s
z s s s

vφ
φφ φ

∂  ∂ ∂ ∂ ∂ ∂ × = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    
∇ φv s z

2 2
2

2 2 2
1 1 .T T TT s
s s s s zφ

∂ ∂ ∂ ∂ = + + ∂ ∂  ∂ ∂
∇
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1.5 The Dirac Delta Function  
1.5.1 The Divergence of   

Consider a vector function  2/ˆ rrv =

2/ˆ rr

The divergence of this vector function is:  

0)1(1)1(1
22

2
2 =

∂
∂=

∂
∂=⋅∇

rrr
r

rr
v

The surface integral of this function is:  
2 2

20 0
2

0 0

1( sin )

sin 4 ( )
v

d r d d
r

d d d

π π

π π

θ θ φ

θ θ φ π τ

⋅ =

= = ≠ ∇ ⋅

  

  

v a

v

The divergence theorem is false?
No  The Dirac delta function
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1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as 
an infinitely high, infinitesimally narrow “spike”, with area just 1.


∞+

∞
=





=∞
≠

=
-

1)(       with  
0 if
0 if0

)( dxx
x
x

x δδ

Technically, δ (x) is not a function at all, since its value is 
not finite at x = 0. Such function is called the generalized 
function, or distribution.
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1.5.2 The One-Dimensional Dirac Delta Function (II)

If f(x) is some “ordinary” function (let’s say that it is 
continuous), then the product f(x)δ(x) is zero everywhere 
except at x = 0. It follows that f(x)δ(x) = f(0)δ(x). In particular, 


+∞

∞

+∞

∞
==

--
)0()()0()()( fdxxfdxxxf δδ

We can shift the spike from x = 0 to some other point x = a. 


∞+

∞
=−





=∞
≠

=−
-

1)(       with  
 if
 if0

)( dxax
ax
ax

ax δδ

A generalized integration equation: 


+∞

∞

+∞

∞
==−

--
)()()()()( afdxxafdxaxxf δδ
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1.5.2 The One-Dimensional Dirac Delta Function (III)

Although δ(x) is not a legitimate function, integrals over δ(x)
are perfectly acceptable.
It is best to think of the delta function as something that is 
always intended for use under an integral sign. 
In particular, two expressions involving delta function are 
considered equal if:

).( offunction  )ordinary"(" allfor 

)()()()(
- 2- 1

xf

dxxDxfdxxDxf 
+∞

∞

+∞

∞
=

Example 1.14 Evaluate the integral    )2( (a)
3

0

3 − dxxx δ
 −

3

0

3 )4( (b) dxxx δ



63

Example 1.15 Show that       
where k is any (nonzero) constant.

 Sol: Consider the integral for an arbitrary test function ( ),

( ) ( )
Let ,  so that ,  1

: the integration runs from  to 
: the integration runs from  to 

f x

f x kx dx

y kx x y k dx k dy
positive

k
negative

f

δ
∞

−∞
≡ ≡ ≡

− ∞ ∞
=  ∞ − ∞



1 1( ) ( ) ( / ) ( ) (0)

1So ( ) serves the same purpose as ( ) and ( ) ( ) .

x kx dx f y k y dy f
k k

kx x x x
k

δ δ

δ δ δ δ

∞ ∞

−∞ −∞
= ± =

− =

 

)(1)( x
k

kx δδ =
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Prob. 1.45

)())((  a)( xx
dx
dx δδ −=

)( that Show       
0 if   ,0
0 if   ,1

)(             

 :function step  thebe )(Let   )(

xdxd
x
x

x

xb

δθ

θ

θ

=




<
>

=
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1.5.3 The three-Dimensional Dirac Delta Function 

The generalized 3D delta function 

)()()()(3 zyx δδδδ =r
where r is the position vector. It is zero everywhere 
except at (0,0,0), where it blows up. 
Its volume integral is:  

3
all space

( ) ( ) ( ) ( ) 1d x y z dxdydzδ τ δ δ δr
+∞ +∞ +∞

−∞ −∞ −∞
= =   

3
all space

( ) ( ) ( )f d fδ τ− = r r a a

As in the 1-D case, the integral with delta function picks 
out the value of the function at the location of the spike.
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1.5.3 The three-Dimensional Dirac Delta Function (II) 

We found that the divergence of          is zero everywhere 
except at the origin, and yet its integral over any volume 
containing the origin is a constant of 4π. The Dirac delta 
function can be defined as:

)(4)
ˆ

( 3
2 rr πδ=⋅∇

rMore generally, 

2/ˆ rr

3
2

ˆ
( ) 4 ( )πδ∇ ⋅ =
r

r r
where is the separation vector             . Note that the 
differentiation here is with respect to r, while r′ is held 
constant.

2 3
2

ˆ1 1( ) ( ( )) ( ) 4 ( )πδ∇ = ∇ ⋅ ∇ = ∇ ⋅ − = − 
r r r

r r

′= −r rrr
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1.6 The Theory of Vector Fields  
1.6.1 The Helmholtz Theorem 

To what extent is a vector function F determined by its 
divergence and curl? 
The divergence of F is a specified scalar function D,

and the curl of F is a specified vector function C,

Can you determine the function F?

D=⋅∇ F

CF =×∇ (i.e.,  ( ) 0)∇ ⋅ ∇× = ∇ ⋅ =F C

Helmholtz theorem guarantees that the field F is uniquely 
determined by the divergence and curl with appropriate 
boundary conditions. (For more details, see Appendix B 
of Griffiths)
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1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then 
F can be written as the gradient of a scalar potential (V):

V−∇==×∇ FF          0
conventional

If the divergence of a vector field (F) vanishes (everywhere), 
then F can be expressed as the curl of a vector potential (A):

AFF ×∇==⋅∇          0
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 Compute the divergence of the function
ˆ ˆˆ                               (  cos )  + (  sin ) (  sin cos ) .

Check the divergence theorem for this function, using as your volume
the i

r r rθ θ θ φ= +
Problem 1.40

v r θ φ

nverted hemispherical bowl of radius , resting on the  plane 
and centered at the origin (Fig. 1.40).

R xy

? ? ?

ˆ ˆˆ ˆ ˆ ˆ Express the unit vectors , ,  in terms of , ,  (that is, derive

ˆ ˆ ˆ ˆˆ ˆ ˆEq. 1.64). Check your answers several ways ( 1,   0,  ,...).
Also work out the inverse formulas

⋅ = ⋅ = × =

Problem 1.38 r x y z

r r r

θ φ

θ φ θ φ
ˆ ˆˆˆ ˆ ˆ, giving , ,  in terms of , ,  (and , ).θ φx y z r θ φ

2

 
(a) Find the divergence of the function

ˆˆ ˆ                                   (2 sin )  +  sin  cos  3  .
(b) Test the divergence theorem for this function, using the quarter-cyli

s s zφ φ φ= + +

Problem 1.43

v s zφ
nder

      (radius 2, height 5) shown in Fig. 1.43.
(c) Find the curl of .v

Homework of Chap. 1 (part II)
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(a) Show that

                                  ( ( )) ( ).

      [ : Use integration by parts.]
(b) Let ( ) be the :

1,
                                            ( )

dx x x
dx

Hint
x

x

δ δ

θ

θ

= −

≡

Problem 1.46

step function
      if  0

.                                     (1.95)
0,       if  0

      Show that / x ( ).  

x
x

d d xθ δ

> 
 ≤ 

=

2

Evaluate the integral
ˆ

                                               

(where  is a sphere of radius , centered at the origin) by two different methods,
as in Ex. 1.16.

r
v

J e d
r

V R

τ−  = ∇ ⋅ 
 

Problem 1.49
r

Homework of Chap. 1 (part III)


