Chapter 1 Vector Analysis 1.1 Vector Algebra: 1.1.1 Vector Operations (I)

Vectors: Quantities have both magnitude and direction, denoted by **boldface** (A, B, and so on).

Scalars: Quantities have magnitude but no direction denoted by ordinary type.

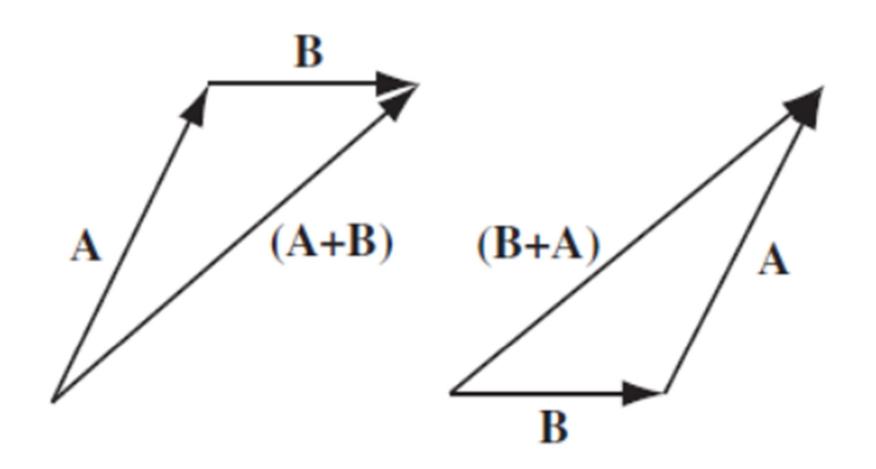
In diagrams, vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of the vector, and the arrowhead indicates its direction.

Minus A (–A) is a vector with the same magnitude as A but of opposite direction.

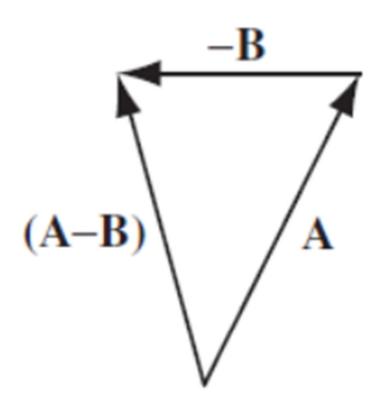
Vectors have magnitude and direction but not location.

Khan Academy: https://www.khanacademy.org/math/linear-algebra

(i) Addition of two vectors: Place the tail of **B** at the head of **A**. Commutative: A + B = B + AAssociative: (A + B) + C = A + (B + C)



- 1.1.1 Vector Operations (II)



1.1.1 Vector Operations (III)

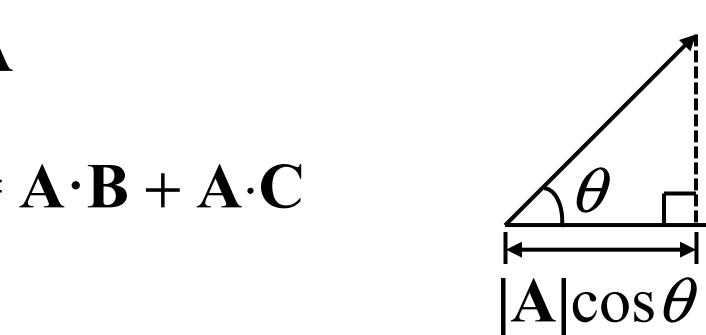
(ii) Multiplication by a scalar: Distributive: $a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B}$

(iii) Dot product of two vectors (scalar product): where θ is the angle they form when placed tail-to-tail. Commutative: $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$

Distributive: $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$

- Multiplies the magnitude but leaves the direction unchanged.

- The dot product of two vectors is defined by $\mathbf{A} \cdot \mathbf{B} \equiv AB \cos\theta$,



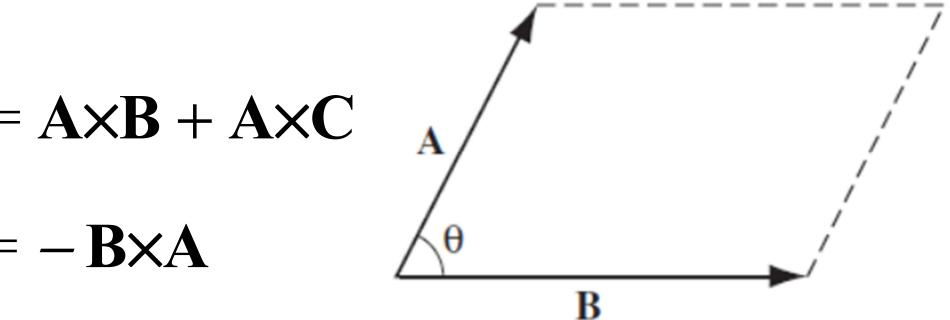
→B

(iv) Cross product of two vectors (vector product): The cross product of two vectors is defined by perpendicular to the plane of A and B. determined by the **right-hand** rule.

Distributive: $A \times (B + C) = A \times B + A \times C$

not commutative: $A \times B = -B \times A$

- 1.1.1 Vector Operations (IV)
- $\mathbf{A} \times \mathbf{B} \equiv AB \sin\theta \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ is a unit vector pointing – (pronounced "n-hat")
- A hat is used to designate the unit vector and its direction is

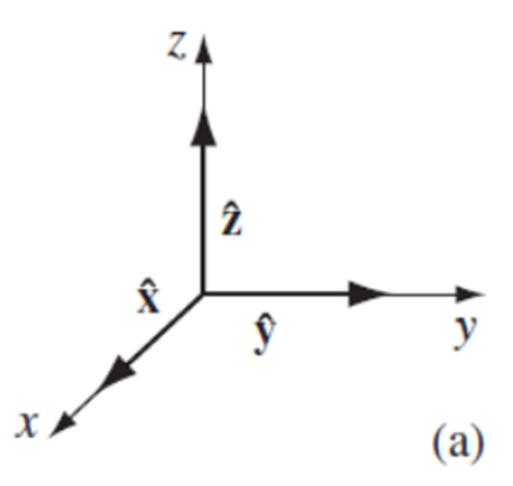


1.1.2 Vector Algebra: Component form (I)

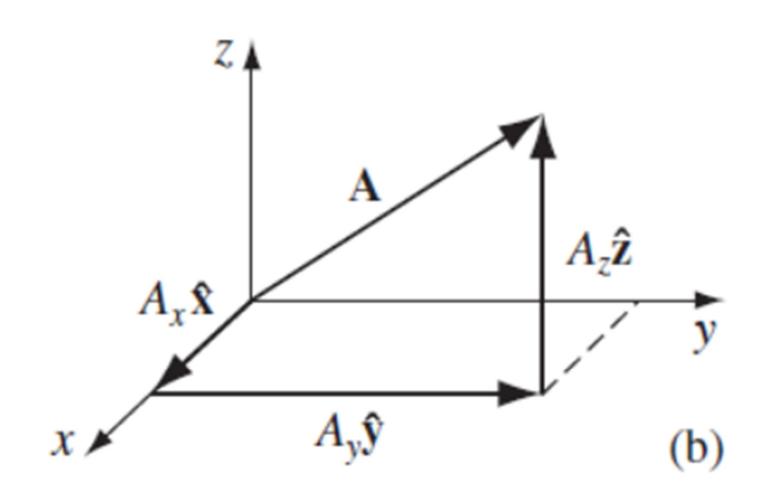
Let $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ be unit vectors parallel to the x, y, and z terms of these basis vectors.

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$$

The numbers A_x , A_y , and A_z are called components.



axes, respectively. An arbitrary vector A can be expressed in



1.1.2 Vector Algebra: Component form (II)

components:

(i) To add vectors, add like components. $\mathbf{A} + \mathbf{B} = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} +$ $= (A_{\chi} + B_{\chi})\hat{\mathbf{x}} + ($

$$a\mathbf{A} = a(A_x\hat{\mathbf{x}} + A_y\hat{\mathbf{y}} + A_z\hat{\mathbf{z}})$$
$$= aA_x\hat{\mathbf{x}} + aA_y\hat{\mathbf{y}} + aA_z\hat{\mathbf{z}}$$

- Reformulate the vector operations as a rule for manipulating

$$(A_{z}\hat{\mathbf{z}}) + (B_{x}\hat{\mathbf{x}} + B_{y}\hat{\mathbf{y}} + B_{z}\hat{\mathbf{z}})$$
$$(A_{y} + B_{y})\hat{\mathbf{y}} + (A_{z} + B_{z})\hat{\mathbf{z}}$$

(ii) To multiply by a scalar, multiply each component.

1.1.2 Vector Algebra: Component form (III)

(iii) To calculate the dot product, multiply like components, and add.

$$\mathbf{A} \cdot \mathbf{B} = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}) \cdot (B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}})$$
$$= A_x B_x + A_y B_y + A_z B_z$$

(in component form), and whose third row is **B**.

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = +(A_z B_x - A_x B_z) \hat{\mathbf{y}} +(A_x B_y - A_y B_x) \hat{\mathbf{z}}$$

(iv) To calculate the cross product, form the determinant whose first row is $\hat{x},\,\hat{y}$ and \hat{z} , whose second row is A

1.1.3 Triple Products (I)

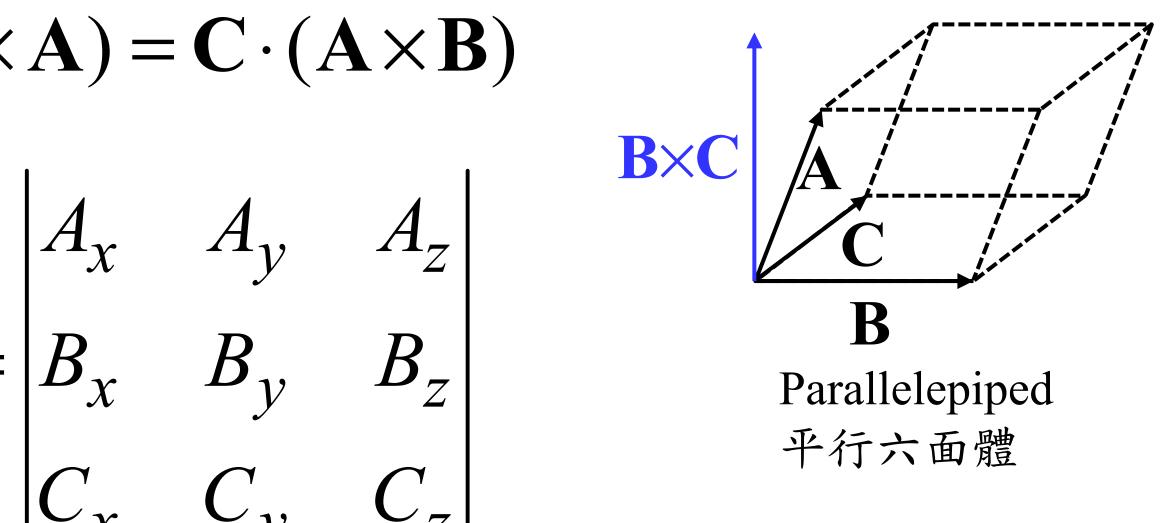
Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a third vector to form a triple product.

(i) Scalar triple product: $A \cdot (B \times C)$. Geometrically, $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$ is the volume of a parallelepiped generated by these three vectors as shown below.

 $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$

In component form

 $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) =$



product can be simplified by the so-called **BAC-CAB** rule.

Notice that $(A \times B) \times C \neq A \times (B \times C)$

Problem 1.6 Under what conditions does

Ans: Either A is parallel to C,

or **B** is perpendicular to **A** and **C**.

- 1.1.3 Triple Products (II)
- (ii) Vector triple product: $A \times (B \times C)$. The vector triple
 - $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B} (\mathbf{A} \cdot \mathbf{C}) \mathbf{C} (\mathbf{A} \cdot \mathbf{B})$
 - $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = -\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = -\mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{B}(\mathbf{A} \cdot \mathbf{C})$
 - https://en.wikipedia.org/wiki/Triple product

 - $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = \mathbf{A} \times (\mathbf{B} \times \mathbf{C})?$

$$\mathbf{r} \equiv x\hat{\mathbf{x}} +$$

Its magnitude (the distance from the origin)

$$r = \sqrt{\mathbf{r} \cdot \mathbf{r}} \equiv \mathbf{v}$$

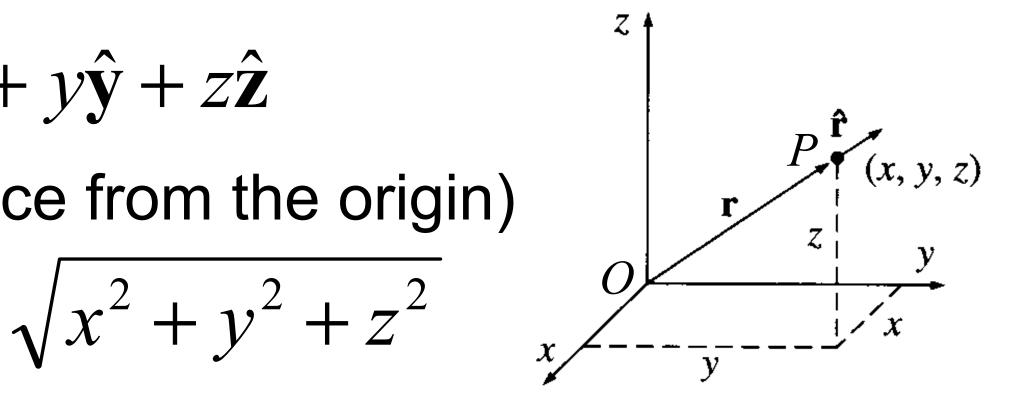
Its direction unit vector (pointing radially outward)

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{r} = \frac{x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}}{\sqrt{x^2 + y^2 + z^2}}$$

(x+dx, y+dy, z+dz), is $d\mathbf{l} = dx\hat{\mathbf{x}} +$

1.1.4 Position, Displacement, and Separation Vectors (I)

Position vector: The vector to point *P* from the origin *O*.



The infinitesimal displacement vector, from (x, y, z) to

$$dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$$

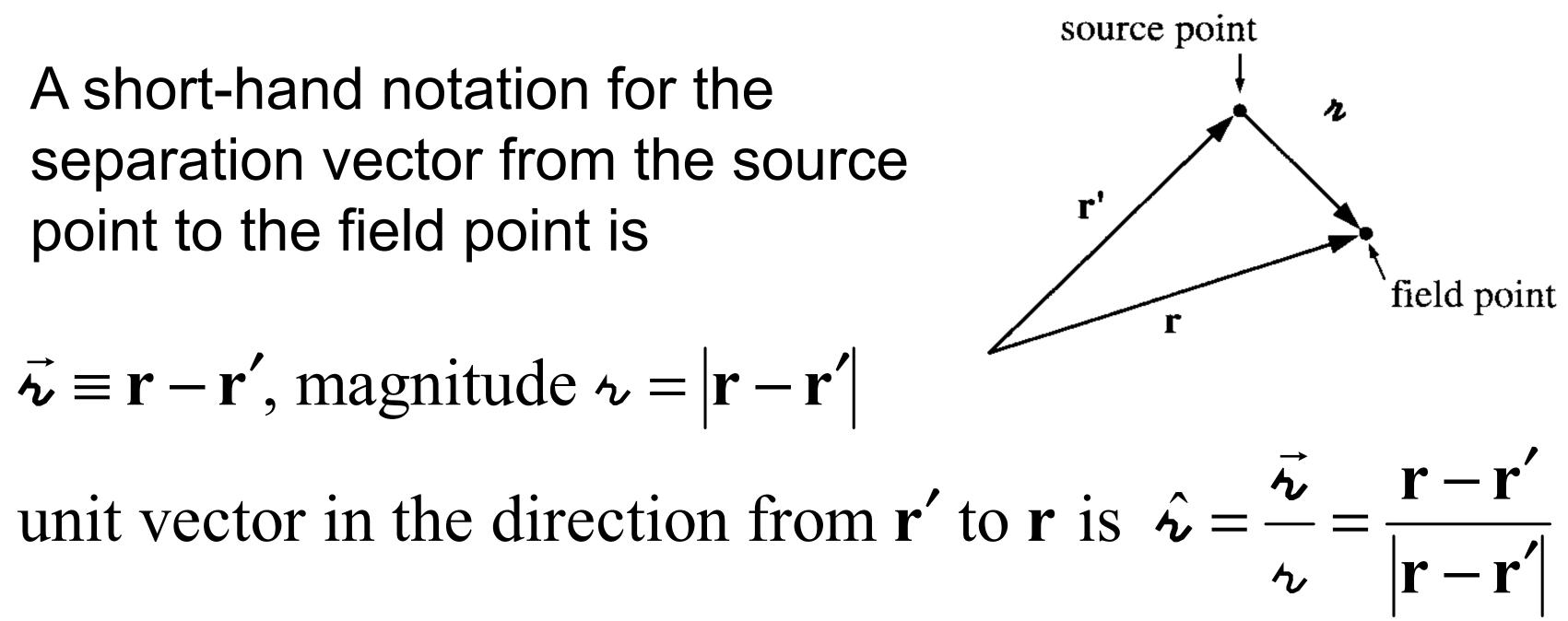
1.1.4 Position, Displacement, and Separation Vectors (II)

In electrodynamics one frequently encounters problems involving two points:

A source point, r', where an electric charge is located. A field point, r, at which you are calculating the electric field.

A short-hand notation for the separation vector from the source point to the field point is

 $\vec{\nu} \equiv \mathbf{r} - \mathbf{r}', \text{ magnitude } \nu = |\mathbf{r} - \mathbf{r}'|$



Suppose we have a function of one variable, f(x). What does the derivative, df/dx, do for us?

Ans: It tells us how rapidly the function f(x) varies when we change the argument x by a tiny amount, dx.

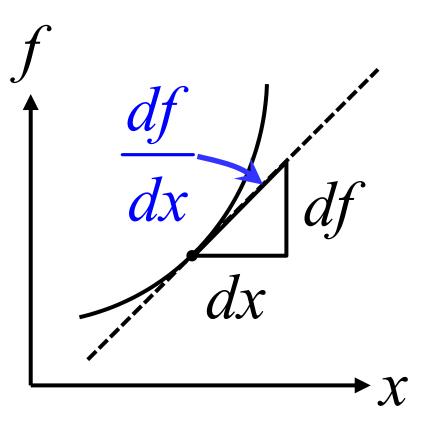
 $df = \int$

In words, if we change x by an amount dx, then, f changes by an amount df.

The derivative df/dx is the slope of the graph of f versus x.

1.2 Differential Calculus 1.2.1 "Ordinary" Derivatives

EM Tsun-Hsu Chang 清華物理 張存續



$$\left(\frac{df}{dx}\right)dx$$

Suppose we have a function of three variables. What does the derivative mean in this case?

A theorem on partial derivatives states that

$$dH = \frac{\partial H}{\partial x} dx + \frac{\partial H}{\partial y} dy + \frac{\partial H}{\partial z} dz$$
$$= \left(\frac{\partial H}{\partial x}\hat{\mathbf{x}} + \frac{\partial H}{\partial y}\hat{\mathbf{y}} + \frac{\partial H}{\partial z}\hat{\mathbf{z}}\right) \cdot \left(dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}\right)$$
$$= (\nabla H) \cdot (d\mathbf{I})$$

The gradient of H is a vector quantity, with three components.

$$\nabla H = \frac{\partial H}{\partial x}\hat{\mathbf{x}} + \frac{\partial H}{\partial y}\hat{\mathbf{y}} +$$

1.2.2 Gradient (I) Khan Academy: Q Gradient

A mountain hill H(x, y, z)

 $+\frac{\partial H}{\partial z}\hat{\mathbf{z}}$

1.2.2 Gradient (II)

Geometrical interpretation: Like any vector, the gradient has magnitude and direction. A dot product in abstract form is: $dH = \nabla H \cdot d\mathbf{I} = |\nabla H| |d\mathbf{I}| \cos \theta$

where θ is the angle between ∇H and $d\mathbf{I}$.

If we fix the magnitude $|d\mathbf{l}|$ and search around in various directions (that is, vary θ), the maximum change in dHeventually occurs when $\theta = 0$). The gradient ∇H points in the direction of maximum increase of the function H.

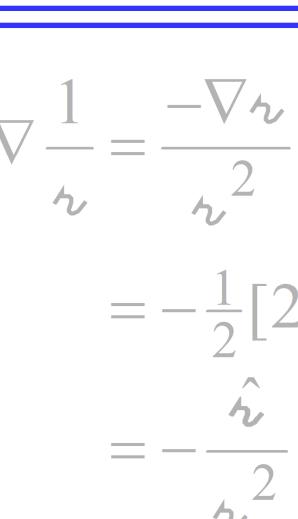
Analogous to the derivative of one variable, a vanishing derivative signals a maximum (a summit), a minimum (a valley), or an inflection (a saddle point or a shoulder).

$\hat{\mathbf{z}} = \frac{x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}}{\sqrt{x^2 + y^2 + z^2}} = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}}$

Example 1.3 & Problem 1.13 **Example 1.3** Find the gradient of $r = \sqrt{x^2 + y^2 + z^2}$

Ans:
$$\nabla r = \frac{\partial r}{\partial x} \hat{\mathbf{x}} + \frac{\partial r}{\partial y} \hat{\mathbf{y}} + \frac{\partial r}{\partial z} \hat{\mathbf{z}}$$

Problem 1.13 Let $\vec{v} \equiv (x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}$ Show that (a) $\nabla \kappa^2 = ?$ $\nabla \kappa^2 = \nabla [(x - x)]$ = 2(x - x)



$$x')^{2} + (y - y')^{2} + (z - z')^{2}] z')\hat{\mathbf{x}} + 2(y - y')\hat{\mathbf{y}} + 2(z - z')\hat{\mathbf{z}} = 2\vec{\mathbf{x}}$$

(b) $\nabla(1/2) = ?$ $\nabla \frac{1}{2} = \frac{-\nabla 2}{2} = \frac{-\nabla \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}{(x-x')^2 + (y-y')^2 + (z-z')^2}$ = $-\frac{1}{2} [2(x-x')\hat{\mathbf{x}} + 2(y-y')\hat{\mathbf{y}} + 2(z-z')\hat{\mathbf{z}}]/2$

The gradient has the formal appearance of a vector, ∇ , "multiplying", a scalar H.

 $\nabla H = (\hat{\mathbf{x}} \frac{\partial}{\partial x})$

multiplies H. $\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} +$

 ∇ mimics the behavior of an ordinary vector in virtually every way, if we translate "multiply" by "act upon".

It is a marvelous piece of notational simplification.

1.2.3 The Operator ∇ (I)

$$(+\hat{\mathbf{y}}\frac{\partial}{\partial y}+\hat{\mathbf{z}}\frac{\partial}{\partial z})H$$

 ∇ is a vector operator that acts upon H, not a vector that

$$+\hat{\mathbf{y}}\frac{\partial}{\partial y}+\hat{\mathbf{z}}\frac{\partial}{\partial z}$$

An ordinary vector A can multiply in three ways:

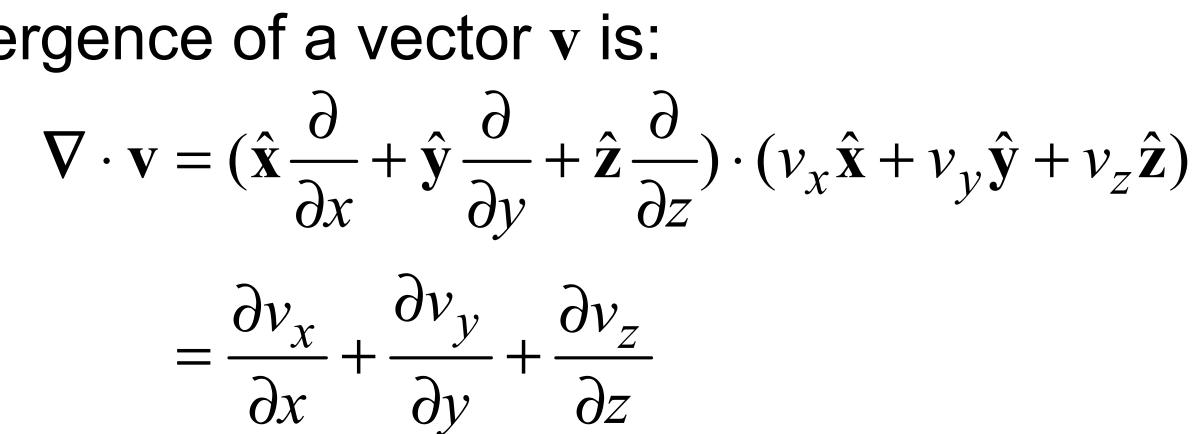
- 1. Multiply a scalar *a* : *a*A
- 2. Multiply another vector (dot product): **A**·**B**
- 3. Multiply another vector (cross product): $A \times B$

- 1. On a scalar function H: ∇H (gradient 梯度)
- 2. On a vector function (dot product): $\nabla \cdot \mathbf{v}$ (divergence 散度)
- 3. On a vector function (cross product): V×v (curl 旋度)

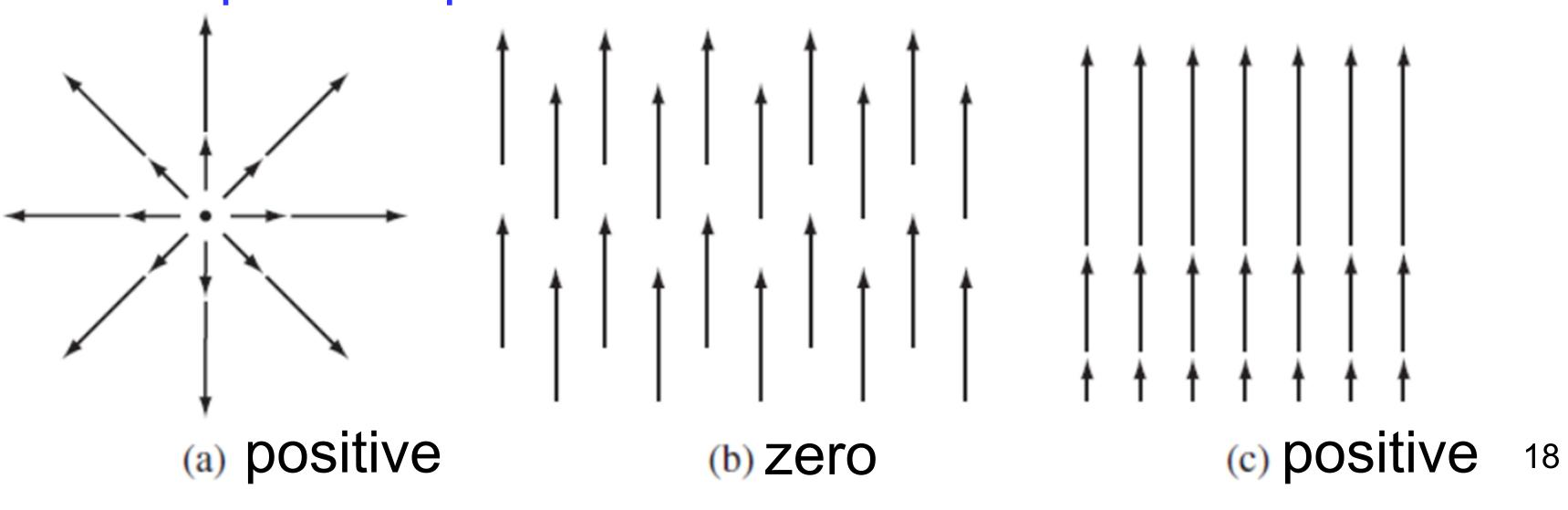
- 1.2.3 The Operator ∇ (II)

Correspondingly, there are three ways the operator ∇ can act:

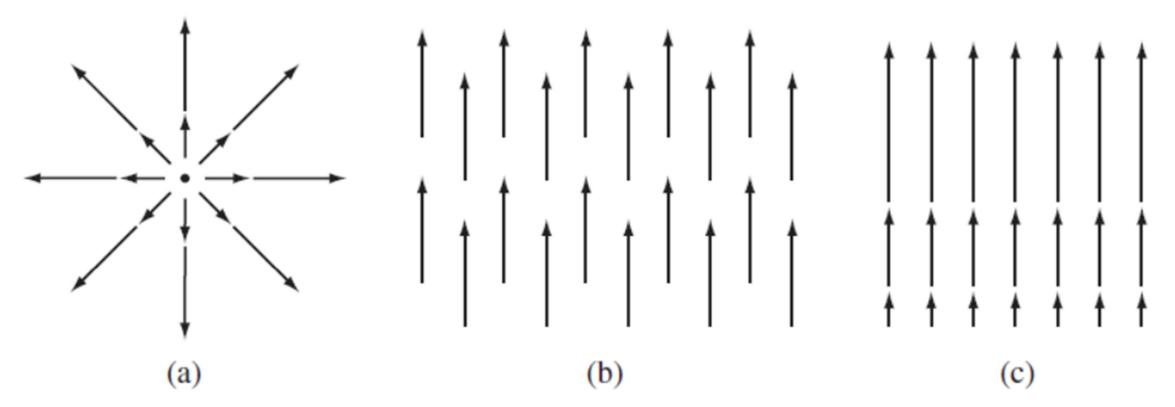
Divergence of a vector v is:



from the point in question.



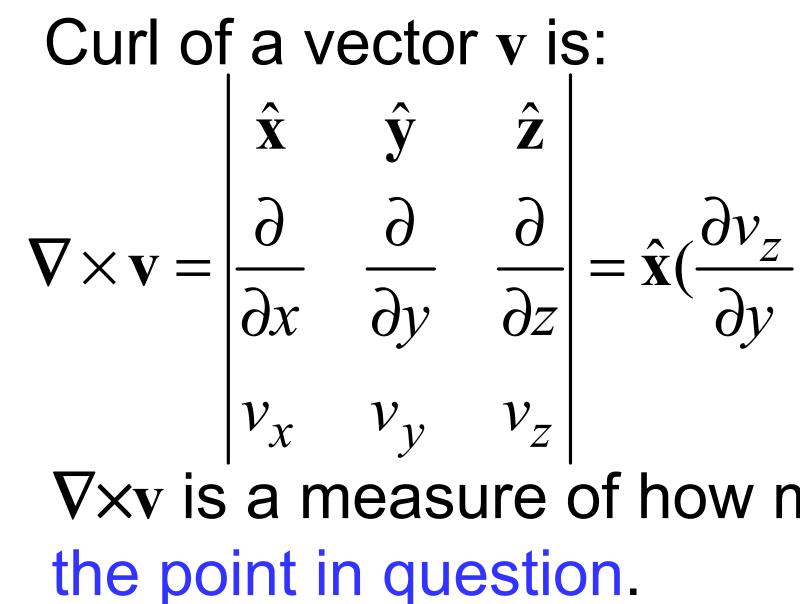
$\nabla \mathbf{v}$ is a measure of how much the vector \mathbf{v} spreads out

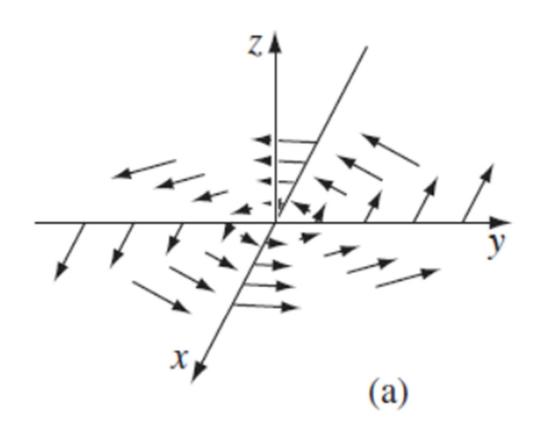


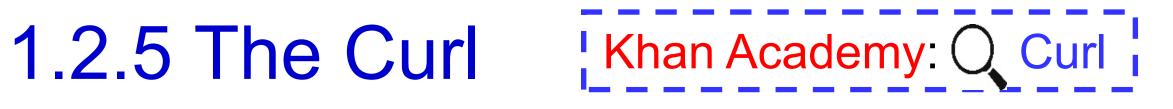
Example 1.4 Suppose the functions in above three figures are $\mathbf{v}_a = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}, \ \mathbf{v}_b = \hat{\mathbf{z}}, \ \mathbf{v}_c = z\hat{\mathbf{z}}$. Calculate their divergences.

Ans:
$$\nabla \cdot \mathbf{v}_{a} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3;$$
 Prob. 1.15
 $\nabla \cdot \mathbf{v}_{b} = \frac{\partial 0}{\partial x} + \frac{\partial 0}{\partial y} + \frac{\partial 1}{\partial z} = 0;$ (a) $\mathbf{v}_{a} = x^{2}\hat{\mathbf{x}} + 3xz^{2}\hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$
 $\nabla \cdot \mathbf{v}_{c} = \frac{\partial 0}{\partial x} + \frac{\partial 0}{\partial y} + \frac{\partial z}{\partial z} = 1.$

Example 1.4

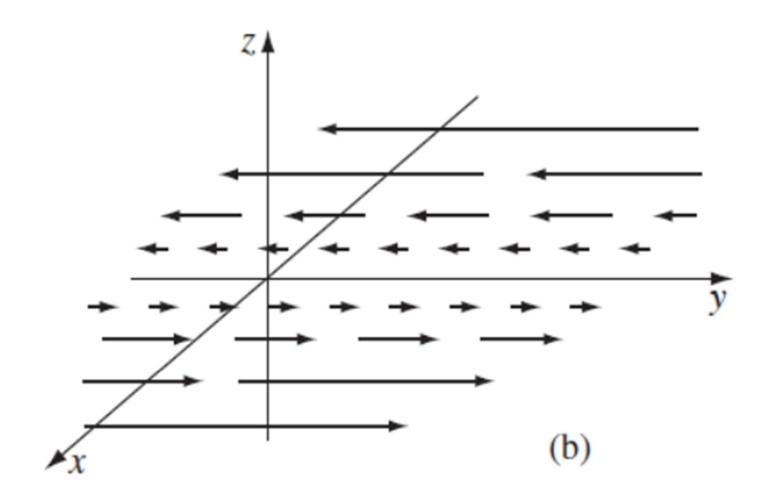


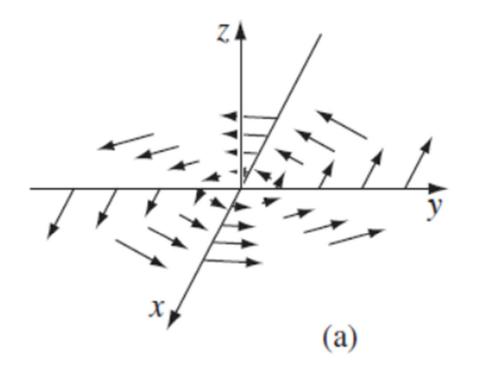




$$\frac{\partial v_y}{\partial z} + \hat{\mathbf{y}}(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}) + \hat{\mathbf{z}}(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y})$$

 $\nabla \times \mathbf{v}$ is a measure of how much the vector \mathbf{v} curls around



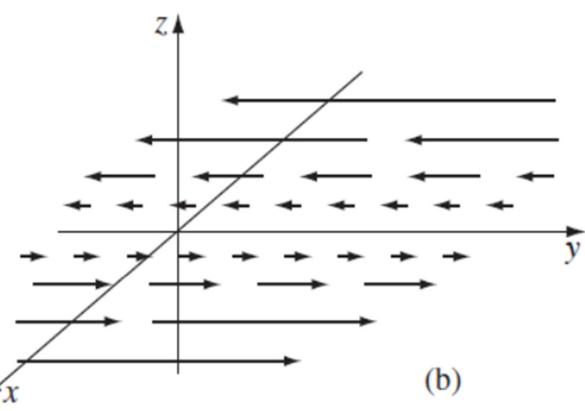


are $\mathbf{v}_a = -y\hat{\mathbf{x}} + x\hat{\mathbf{y}}$, $\mathbf{v}_b = x\hat{\mathbf{y}}$. Calculate their curls.

Ans:
$$\nabla \times \mathbf{v}_a = \hat{\mathbf{x}} (\frac{\partial 0}{\partial y} - \frac{\partial x}{\partial z}) + \hat{\mathbf{y}} (\frac{\partial (-y)}{\partial z} - \frac{\partial 0}{\partial x}) + \hat{\mathbf{z}} (\frac{\partial x}{\partial x} - \frac{\partial (-y)}{\partial y}) = 2\hat{\mathbf{z}}$$

 $\nabla \times \mathbf{v}_b = \hat{\mathbf{x}} (\frac{\partial 0}{\partial y} - \frac{\partial 0}{\partial z}) + \hat{\mathbf{y}} (\frac{\partial 0}{\partial z} - \frac{\partial 0}{\partial x}) + \hat{\mathbf{z}} (\frac{\partial x}{\partial x} - \frac{\partial 0}{\partial y}) = \hat{\mathbf{z}}$

Example 1.5



Example 1.5 Suppose the functions in above two figures

1.2.6 Product Rules (I)

The sum rule:

$$\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$$
$$\nabla \cdot (\mathbf{A} + \mathbf{B}) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}$$

The rule for multiplying by a constant *k*:

$$\frac{d}{dx}(kf) = k\frac{df}{dx}$$

 $\nabla \cdot (k\mathbf{A}) = k\nabla \cdot \mathbf{A}$

$\nabla (f + g) = \nabla f + \nabla g$ $\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}$

 $\nabla(kf) = k\nabla f$

 $\nabla \times (k\mathbf{A}) = k\nabla \times \mathbf{A}$

1.2.6 Product Rules (II) The product rule: $\begin{cases} \text{scalar}: fg \\ \text{vector}: fA \end{cases}$

$$\frac{d}{dx}(fg) = g\frac{df}{dx} + f\frac{dg}{dx}$$
$$\nabla \cdot (f\mathbf{A}) = \nabla f \cdot \mathbf{A} + f(\nabla \cdot \mathbf{A})$$
$$\begin{cases} \mathbf{S} \\ \mathbf{V} \end{cases}$$

 $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$

$$\nabla(fg) = g\nabla f + f\nabla g$$

 $\nabla \times (f\mathbf{A}) = \nabla f \times \mathbf{A} + f(\nabla \times \mathbf{A})$

- scalar: $\mathbf{A} \cdot \mathbf{B}$
- $vector: \mathbf{A} \times \mathbf{B}$
- $\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} \leftarrow \mathbf{A} \cdot \mathbf{A}$
 - Chaps. 8 and 10
- $\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) \mathbf{B} (\nabla \cdot \mathbf{A}) \checkmark$

1.2.6 Product Rules (III)

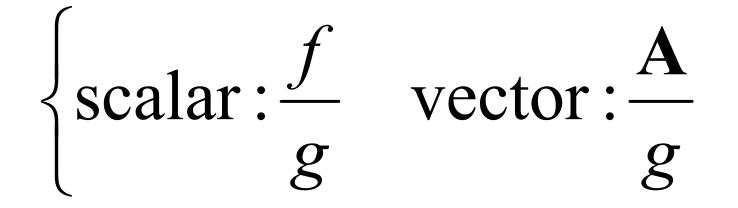
The quotient rule:

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g\frac{df}{dx} - f\frac{dg}{dx}}{g^2}$$

$$\nabla(\frac{f}{g}) = \frac{g\nabla f - f\nabla g}{g^2}$$

$$\nabla \cdot (\frac{\mathbf{A}}{g}) = \frac{g(\nabla \cdot \mathbf{A}) - \mathbf{A} \cdot \nabla g}{g^2}$$

$$\nabla \times (\frac{\mathbf{A}}{g}) = \frac{g(\nabla \times \mathbf{A}) - (\nabla g)}{g^2}$$



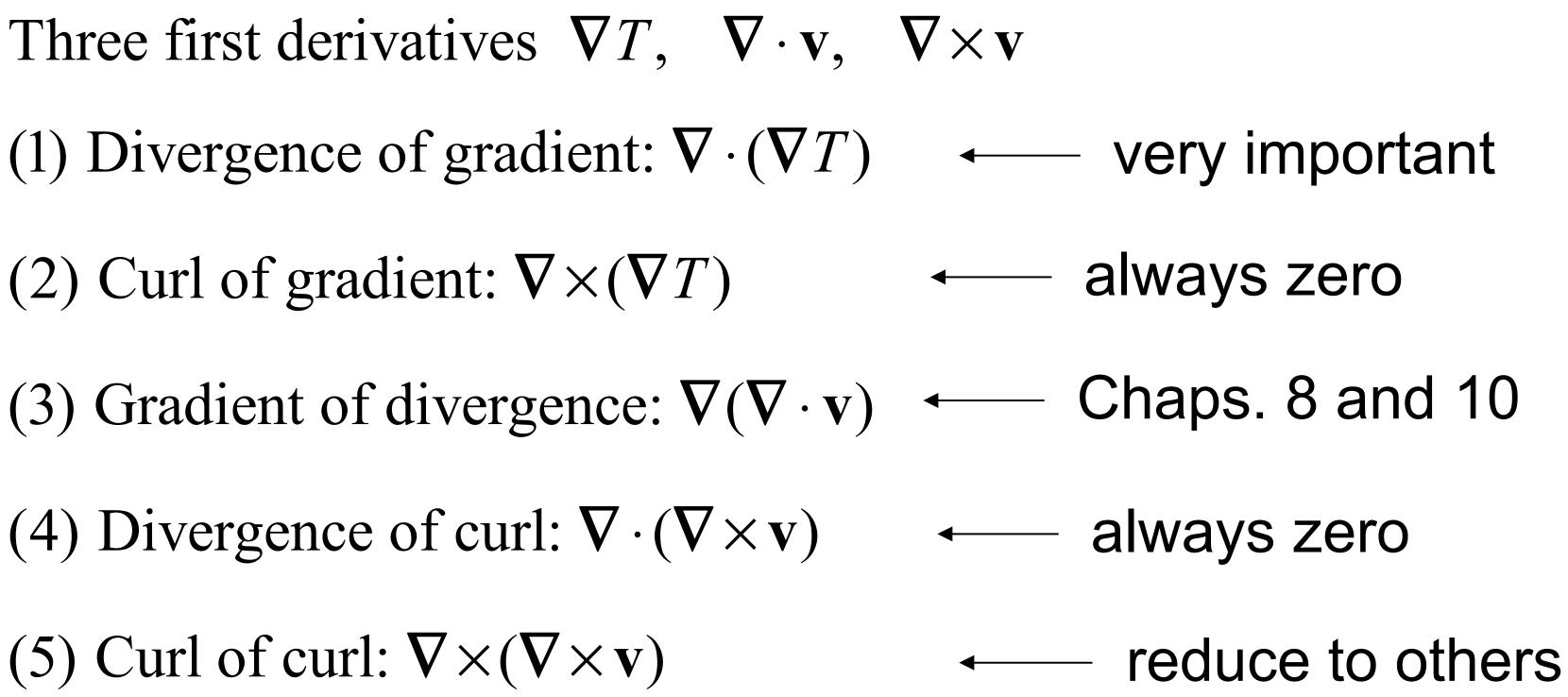
 $\frac{g \times A}{g} = \frac{g(\nabla \times A) + A \times \nabla g}{g^2}$

24

1.2.7 Second Derivatives (I)

- second derivatives.
- Three first derivatives ∇T , $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$

By applying ∇ twice, we can construct five species of



(1)
$$\nabla \cdot (\nabla T) = (\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}) \cdot (\hat{\mathbf{x}} \frac{\partial T}{\partial x} + \hat{\mathbf{y}} \frac{\partial T}{\partial y} + \hat{\mathbf{z}} \frac{\partial T}{\partial z})$$

$$= \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \nabla^2 T \longleftarrow \text{ the Lapla}$$

The Laplacian of a vector is similar:

$$(\nabla \cdot \nabla)\mathbf{v} \equiv \nabla^2 (\hat{\mathbf{x}} v_x + \hat{\mathbf{y}} v_y + \hat{\mathbf{z}} v_z) = \hat{\mathbf{x}} \nabla^2 v_x + \hat{\mathbf{y}} \nabla^2 v_y + \hat{\mathbf{z}} \nabla^2 v_z$$

(2) $\nabla \times (\nabla T) \neq (\nabla \times \nabla)T$ $\nabla \times (\nabla T) = (\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} +$ $\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial T}{\partial x} \right), \quad \frac{\partial}{\partial y} \left(\frac{\partial T}{\partial y} \right)$

1.2.7 Second Derivatives (II)

acian of T

The proof hinges on the equality of cross derivatives:

$$\hat{z} \frac{\partial}{\partial z} \times (\hat{x} \frac{\partial T}{\partial x} + \hat{y} \frac{\partial T}{\partial y} + \hat{z} \frac{\partial T}{\partial z}) = 0$$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial z} (\frac{\partial T}{\partial y}), \quad \frac{\partial}{\partial z} (\frac{\partial T}{\partial x}) = \frac{\partial}{\partial z} (\frac{\partial T}{\partial z})$$

26

$$(4) \nabla \cdot (\nabla \times \mathbf{v}) = \hat{\mathbf{x}} \frac{\partial}{\partial x} (\hat{\mathbf{x}} (\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z})) + \hat{\mathbf{y}} \frac{\partial}{\partial y} (\hat{\mathbf{y}} (\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x})) + \hat{\mathbf{z}} \frac{\partial}{\partial z} (\hat{\mathbf{z}} (\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}))$$
$$= \frac{\partial}{\partial x} (\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}) + \frac{\partial}{\partial y} (\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}) + \frac{\partial}{\partial z} (\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y})$$
$$= 0 \quad \longleftarrow \text{ always zero}$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) =$$

$$\nabla \times (\nabla \times \mathbf{v}) = (\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}) \times (\hat{\mathbf{x}} (\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}) + \hat{\mathbf{y}} (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial x}) + \hat{\mathbf{z}} (\frac{\partial v_y}{\partial x} - \frac{\partial v_z}{\partial y}))$$
$$= \dots = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v} \quad \text{TA}$$

We will encounter this derivative when dealing with the vector potential (magnetism).

1.2.7 Second Derivatives (III)

- (5) $\nabla \times (\nabla \times \mathbf{v})$ Can we use the following vector identity?
 - $= \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$

In electrodynamics, the line (or path) integrals, surface integrals (or flux), and volume integrals are the most important integrals.

 $\int_{\mathbf{a}\mathcal{P}}^{\mathbf{b}}\mathbf{v}\cdot d\mathbf{l},$ form

where v is a vector function, $d\mathbf{l}$ is the infinitesimal displacement vector, and the integral is to be carried out along a prescribed path P from point **a** to point **b**.

Put a circle on the integral, in the path in question forms a closed loop.

1.3 Integral Calculus 1.3.1 Line, Surface, and Volume (I)

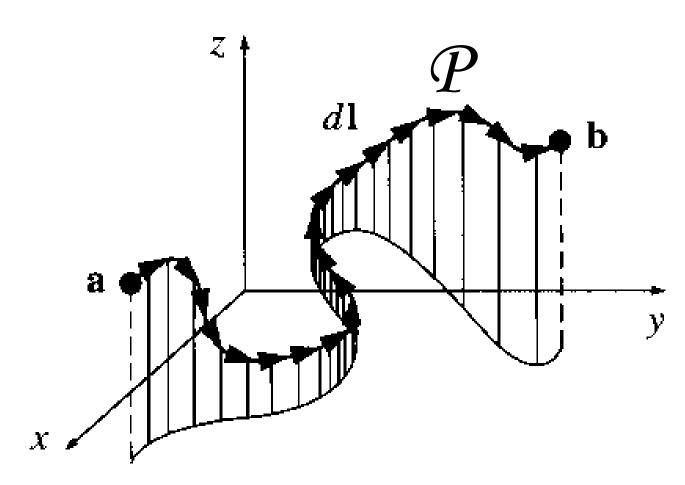
(a) Line integrals: a line integral is an expression of the

 $\oint \mathbf{v} \cdot d\mathbf{l}$

1.3.1 Line, Surface, and Volume (II)

The value of a line integral depends critically on the particular path taken from a to b, but there is an important special class of vector functions for which the line integral is independent of the path, and is determined entirely by the end points, e.g.,

A force that has this property is called **conservative**.



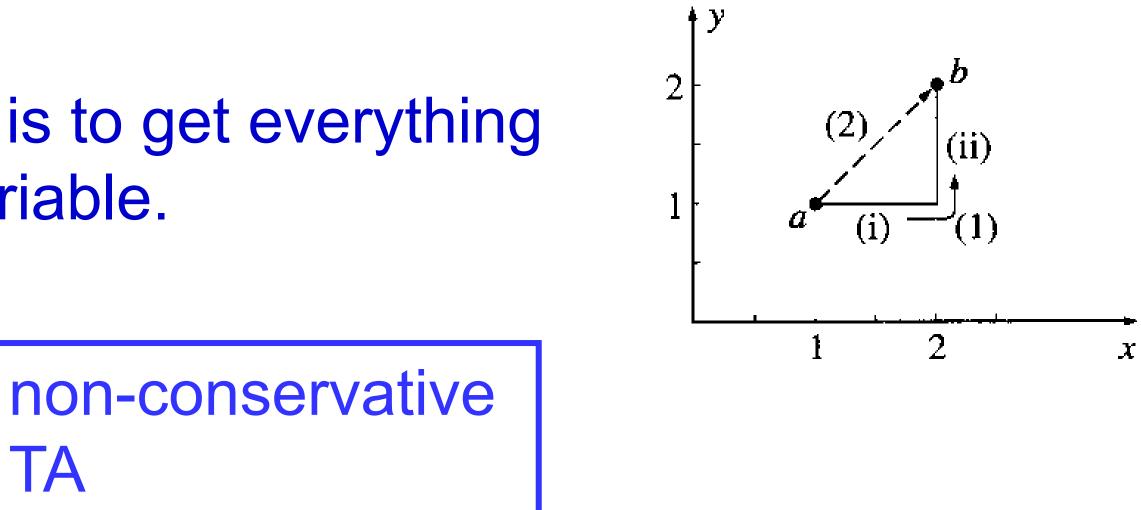
$$W = \int_{\mathbf{a}\mathcal{P}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{I}$$

Figure 1.20

Example 1.6 Calculate the line integral of the function $\mathbf{v} = y^2 \hat{\mathbf{x}} + 2x(y+1)\hat{\mathbf{y}}$, from the point $\mathbf{a} = (1,1,0)$ to the point to a along (2)?

The strategy here is to get everything in terms of one variable.

b = (2,2,0), along the paths (1) and (2) in Fig.1.21. What is the loop integral that goes from a to b along (1) and returns



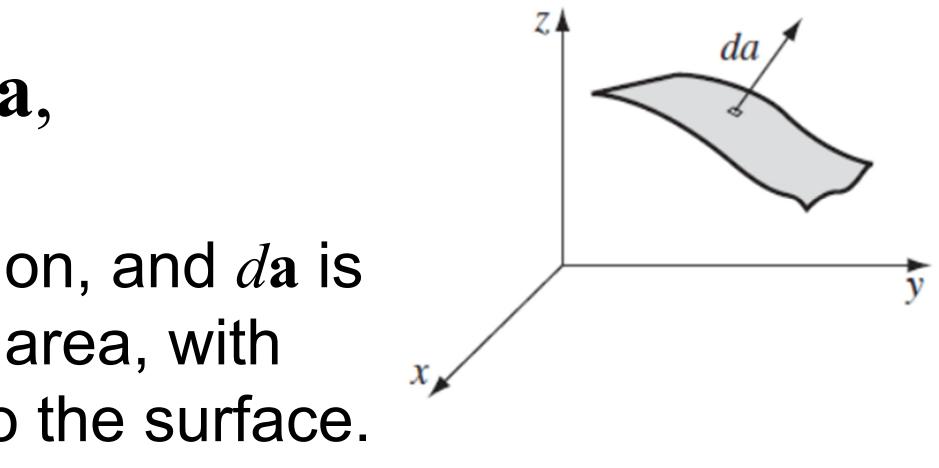
1.3.1 Line, Surface, and Volume (III)

(b) **Surface integrals**: a surface integral is an expression of the form

 $\int_{S} \mathbf{v} \cdot d\mathbf{a},$

where \mathbf{v} is a vector function, and $d\mathbf{a}$ is the infinitesimal patch of area, with direction perpendicular to the surface.

The value of a surface integral depends on the particular surface chosen, but there is a special class of vector functions for which it is independent of the surface, *and is determined entirely by the boundary.*



$$\mathbf{v} = 2xz\hat{\mathbf{x}} + (2+x)\hat{\mathbf{y}} + y(z^2 - y)\hat{\mathbf{y}} + y(z^2 - y$$

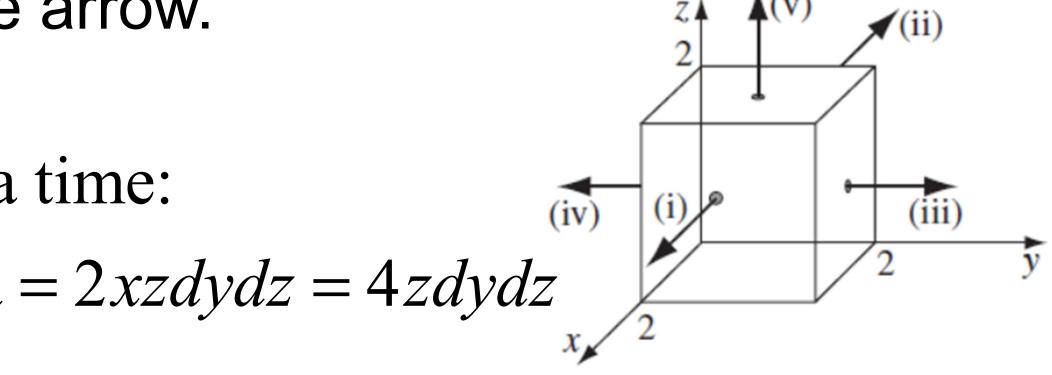
cubical box. Let "upward and outward" be the positive direction, as indicated by the arrow.

Sol: Taking the sides one at a time: (i) x = 2, $d\mathbf{a} = dydz\hat{\mathbf{x}}$, $\mathbf{v} \cdot d\mathbf{a} = 2xzdydz = 4zdydz$ $\int \mathbf{v} \cdot d\mathbf{a} = 4 \int_0^2 dy \int_0^2 z dz = 16$

(v)
$$z = 2$$
, $d\mathbf{a} = dx dy \hat{\mathbf{z}}$, $\mathbf{v} \cdot d\mathbf{a}$
$$\int \mathbf{v} \cdot d\mathbf{a} = \int_0^2 dx \int_0^2 y dy$$

Example 1.7 Calculate the surface integral of the function

 $-3)\hat{\mathbf{z}}$ over five sides of the



 $\mathbf{a} = v(z^2 - 3)dxdy = ydxdy$

= 4

1.3.1 Line, Surface, and Volume (IV)

of the form

volume integral would give the total mass.

The volume integrals of vector functions:

$$\int \mathbf{v} d\tau = \int (v_x \hat{\mathbf{x}} + v_y \hat{\mathbf{y}} + v_z \hat{\mathbf{z}}) d\tau$$
$$= \hat{\mathbf{x}} \int v_x d\tau + \hat{\mathbf{y}} \int v_y d\tau + \hat{\mathbf{z}} \int v_z d\tau$$

(c) Volume integrals: a volume integral is an expression

 $Td\tau$,

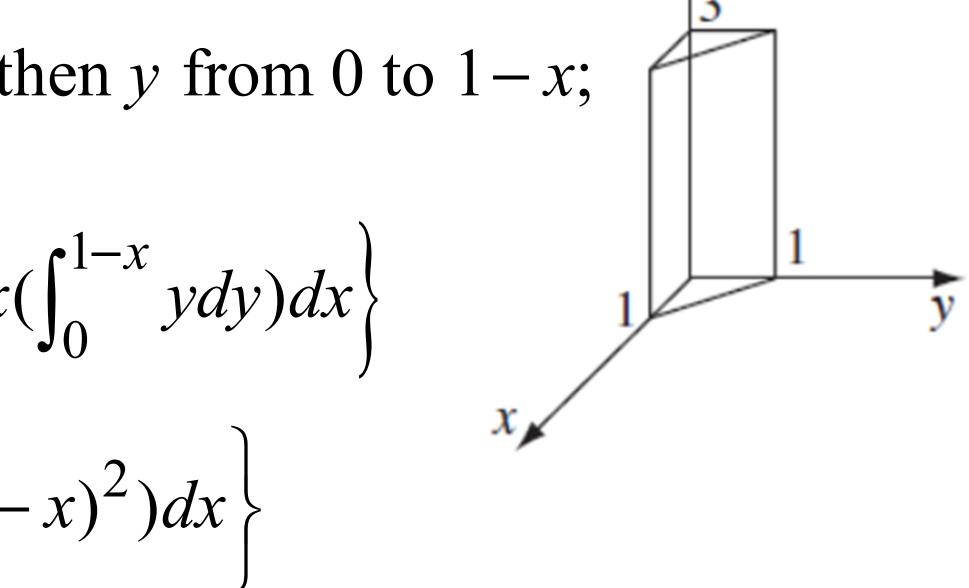
- where T is a scalar function, and $d\tau$ is an infinitesimal volume element. In Cartesian coordinates, $d\tau = dxdydz$
- For example, if T is a density of a substance, then the

 $T = xyz^2$ over the prism in Fig. 1.24.

Sol: Let's do z first (0 to 3); then y from 0 to 1-x; finally x from 0 to 1.

 $\iiint xyz^2 dx dy dz = \int_0^3 z^2 dz \left\{ \int_0^1 x (\int_0^{1-x} y dy) dx \right\}$ $=9\left\{\int_{0}^{1} x(\frac{1}{2}(1-x)^{2})dx\right\}$ $=9(\frac{1}{2})(\frac{1}{12})=\frac{3}{2}$

Example 1.8 Calculate the volume integral of the function



- \mathbf{O}

1.3.2 The Fundamental Theorem of Calculus

Fundamental theorem of calculus:

$$\int_{a}^{b} \frac{df}{dx} dx = \int_{a}^{b}$$

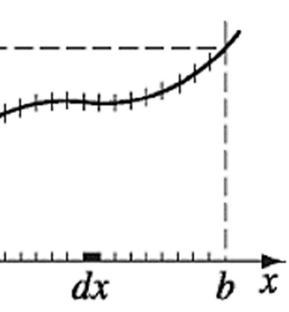
change in the function:

- 1. go step-by-step adding up all the tiny increments as you go. 2. subtract the values at the ends.

$$f(b) = ---$$

value of the function at the end points (boundary).

- df = f(b) f(a)
- Geometrical Interpretation: two ways to determine the total



The integral of a derivative over an interval is given by the

1.3.3 The Fundamental Theorem for Gradients

a small amount.

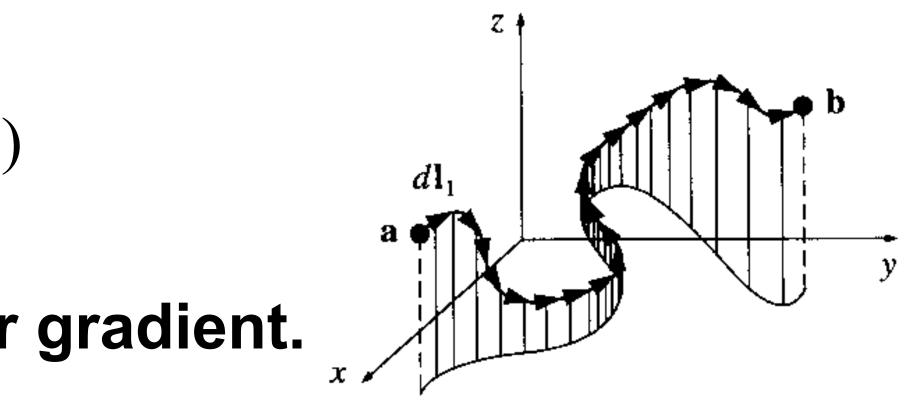
selected is:

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla T) \cdot d\mathbf{l} = T(\mathbf{b}) - T(\mathbf{a})$$

Fundamental theorem for gradient.

1. Measure the high of each floor and add them all up. readings at the ends.

- A scalar function of three variables T(x, y, z) changes by
 - $dT = (\nabla T) \cdot d\mathbf{I}_1$
- The total change in T in going from a to b along the path



Geometrical Interpretation: Measure the high of a skyscraper. 2. Place an altimeter at the top and the bottom, subtract the

1.3.3 The Fundamental Theorem for Gradients (II)

are path independent.

Corollary 1: $\int_{a}^{b} (\nabla T) \cdot d\mathbf{l}$ is independent of path taken from a to b.

points are identical, and hence $T(\mathbf{b})-T(\mathbf{a}) = 0$. KK:['kprə lɛrɪ] 推論

- $\int_{a}^{b} (\nabla T) \cdot d\mathbf{l} = T(\mathbf{b}) T(\mathbf{a})$ the right side of this equation makes no reference to the path---only to the end points. Thus gradients have special property that their line integrals
- Corollary 2: $\oint (\nabla T) \cdot d\mathbf{l} = 0$, since the beginning and end
- A conservative force may be associated with a scalar potential energy function, whereas a non-conservative force cannot.

Potential Energy and Conservative Forces

associated conservative force.

$$U_B - U_A = -\int_A^B \mathbf{F}_c \cdot d\mathbf{s}$$

Potential energy defined in terms of work done by the

- *Conservative forces tend to *minimize* the potential energy within any system: If allowed to, an apple falls to the ground and a spring returns to its natural length.
- Non-conservative force does not imply it is dissipative, for example, magnetic force, and also does not mean it will decrease the potential energy, such as hand force.

Distinction Between Conservative and Non-conservative Forces

The distinction between conservative and nonconservative forces is best stated as follows:

force cannot.

$$U_B - U_A$$

F

- A conservative force may be associated with a scalar
- potential energy function, whereas a non-conservative

$$= -\int_{A}^{B} \mathbf{F}_{c} \cdot d\mathbf{s}$$
$$= -\nabla U$$

potential energy function is given?

potential energy function.

direction of *decreasing* potential energy.

Gravity $U_g = mgy$;

Spring $U_{sp} = \frac{1}{2}kx^2$

- **Conservative Force and Potential Energy Function**
- How can we find a conservative force if the associated
- A conservative force can be derived from a scalar
 - $F_{c} = -VU$
- The negative sign indicates that the force points in the

$$F_{y} = -\frac{dU_{g}}{dy} = -mg$$

$$^{2}; \qquad F_{x} = -\frac{dU_{sp}}{dx} = -kx$$

40

EM 1.3.4 The Fundamental Theorem for Divergences **Tsun-Hsu Chang**

 $\int_{V} (\nabla \cdot \mathbf{v}) d\tau = \oint_{S} \mathbf{v} \cdot d\mathbf{a}$ The integration of a derivative (in this case the divergence)

bounds the volume)

fluid passing out through the surface, per unit time. and add it all up.

The fundamental theorem for divergences states that:

$$d\tau = \oint \mathbf{v} \cdot d\mathbf{a}$$

- over a region (in this case a volume) is equal to the value of the function at the boundary (in this case the surface that
- This theorem has at least three special names: Gauss's theorem, Green's theorem, or the divergence theorem.
- Geometrical Interpretation: Measure the total amount of 1. Count up all the faucets, recording how much each put out. 2. Go around the boundary, measuring the flow at each point,
- Feynman: Gauss' theorem Stokes' theorem
- Griffiths: Gauss's theorem Stokes' theorem
- Jackson: Gauss's theorem Stokes's theorem

Supplementary Gauss's divergence theorem (Transformation between volume integrals and surface integrals) $\int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d\tau$ Rough $\mathbf{v} = v_x \hat{\mathbf{x}} + v_y \hat{\mathbf{y}} + v_z \hat{\mathbf{z}}$ and $\hat{\mathbf{n}} =$ proof: where α , β , and γ are the angles between $\hat{\mathbf{n}}$ and x-, yand z - axis, respectively. $\int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d\tau = \iiint \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right)$ $= \iint_{S} (v_x dy dz + v_y)$ $= \iint (v_x \cos \alpha + v_y)$ S

Rigorous proof can be found in: Erwin Kreyszig, Advanced Engineering Mathematics (John Wiley and Sons, New York, 1993), 7th ed. Chap. 9, pp. 546-547.

$$\tau = \oint \mathbf{v} \cdot \hat{\mathbf{n}} da$$

= $\cos \alpha \hat{\mathbf{x}} + \cos \beta \hat{\mathbf{y}} + \cos \gamma \hat{\mathbf{z}}$

$$+\frac{\partial v_z}{\partial z})dxdydz$$

$$, dzdx + v_z dxdy)$$

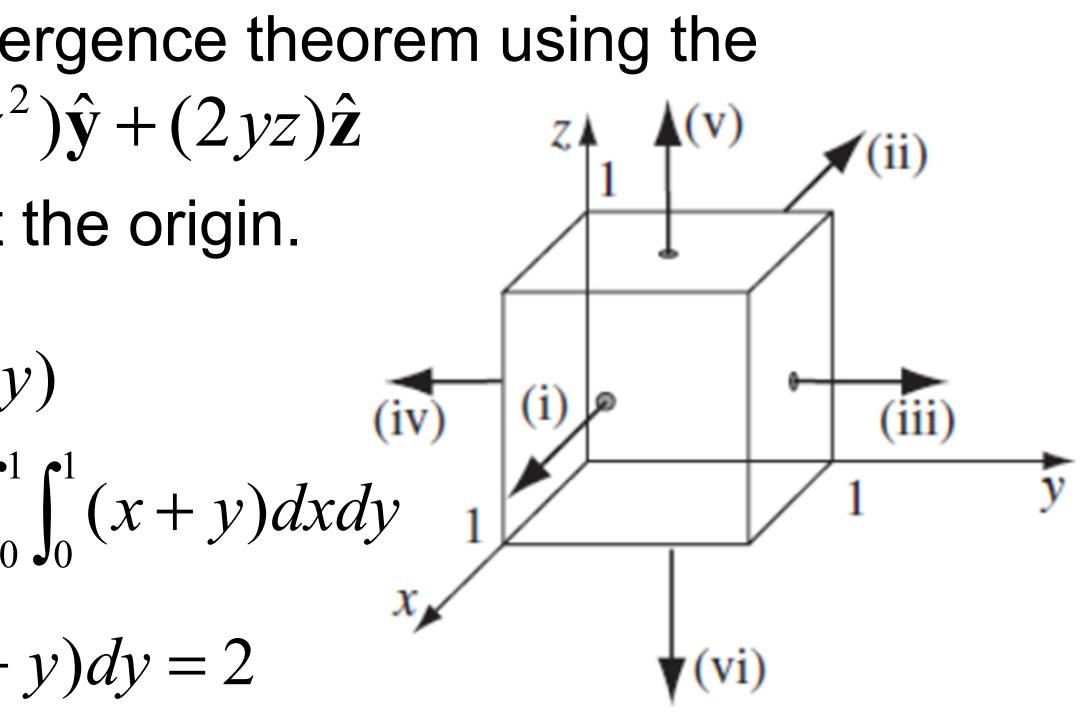
$$v_y \cos \beta + v_z \cos \gamma) da = \iint_S \mathbf{v} \cdot \hat{\mathbf{n}} da$$

Example 1.10 Check the divergence theorem using the function $\mathbf{v} = y^2 \hat{\mathbf{x}} + (2xy + z^2) \hat{\mathbf{y}} + (2yz) \hat{\mathbf{z}}$

and the unit cube situated at the origin.

Sol: In this case $\nabla \cdot \mathbf{v} = 2(x+y)$ $\int_{v}^{2} (x+y) dx dy dz = 2 \int_{0}^{1} dz \int_{0}^{1} \int_{0}^{1} (x+y) dx dy$ $= 2 \int_{0}^{1} \int_{0}^{1} (\frac{1}{2}+y) dy = 2 \int_{0}^{1} (\frac{1}{2}+y) dy = 2$ $\therefore \int_{v} \nabla \cdot \mathbf{v} d\tau = 2$

To evaluate the surface integral we must consider separately the six sides of the cube. The total flux is...



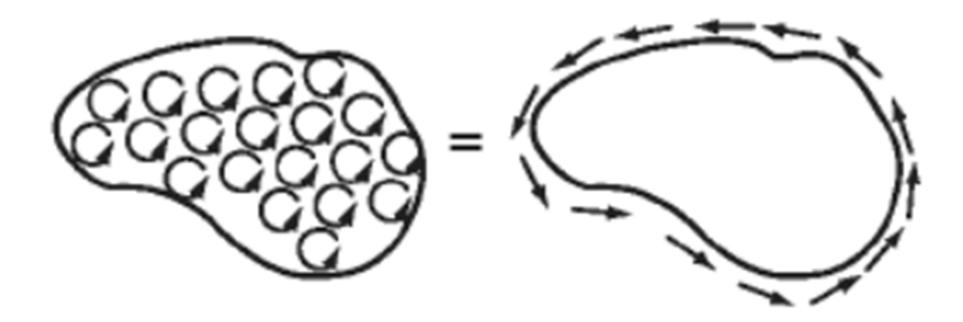
1.3.5 The Fundamental Theorem for Curls (I)

states that:

(here, a patch of surface) is equal to the value of the patch).

Geometrical Interpretation: Measure the "twist" of the vectors v; a region of high curl is a whirlpool.

- The fundamental theorem for curls---Stokes' theorem---
- $\int_{S} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint \mathbf{v} \cdot d\mathbf{l}$ The integration of a derivative (here, the curl) over a region function at the boundary (in this case the perimeter of the KK:[pə'rɪmətə-]



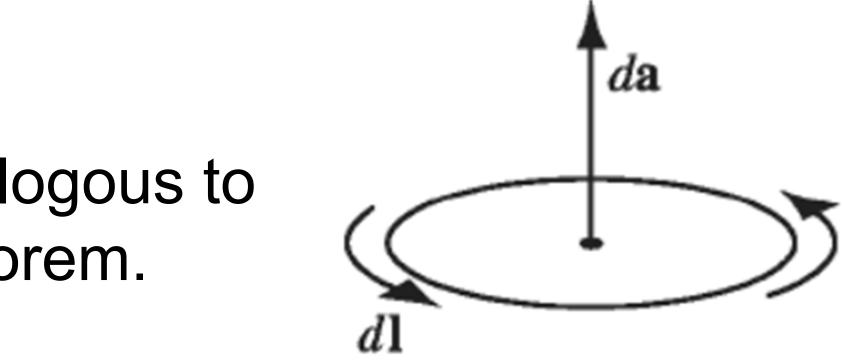
1.3.5 The Fundamental Theorem for Curls (II)

Ambiguity in Stokes' theorem: Concerning the boundary line integral, which way are we supposed to go around (clockwise or counterclockwise)? The right-hand rule.

Corollary 1: $\int (\nabla \times \mathbf{v}) \cdot d\mathbf{a}$ depends only on the boundary lines, not on the particular surface used. the boundary line shrinks down to a point.

These corollaries are analogous to those for the gradient theorem.

Corollary 2: $\oint (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = 0$ for any closed surface, since



Supplementary

Stokes' theorem (Transformation between surface integrals and line integrals)

 $\int_{S} (\nabla \times \mathbf{v}) \cdot \mathbf{v}$

Rigorous proof can be found in: (John Wiley and Sons, New York, 1993), 10th ed. Chap. 10, pp. 464-467.

$$d\mathbf{a} = \oint_{P} \mathbf{v} \cdot d\mathbf{l}$$

Erwin Kreyszig, Advanced Engineering Mathematics

Comments: graduate level (reference only)

• Green's theorems:

Let $\mathbf{v} = f \nabla g \implies \nabla \cdot \mathbf{v} = \nabla \cdot (f$ $\mathbf{v} \cdot \hat{\mathbf{n}} = f(\hat{\mathbf{n}} \cdot \nabla g)$

Green's first formula: $\int_{V} (f \nabla^2 g)$

Green's second formula: $\int_{M} (f)$

 Green's theorem in the plane as a special case of Stokes' theorem

Let v be a vector function in the xy-plane.

$$(\nabla \times \mathbf{v}) \cdot \hat{\mathbf{n}} = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \implies$$

$$f\nabla g) = f\nabla^2 g + \nabla f \cdot \nabla g$$

$$f'g + \nabla f \cdot \nabla g)d\tau = \oint_{S} f \frac{\partial g}{\partial n} da$$
$$f'\nabla^{2}g - g\nabla^{2}f)d\tau = \oint_{S} (f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n})da$$

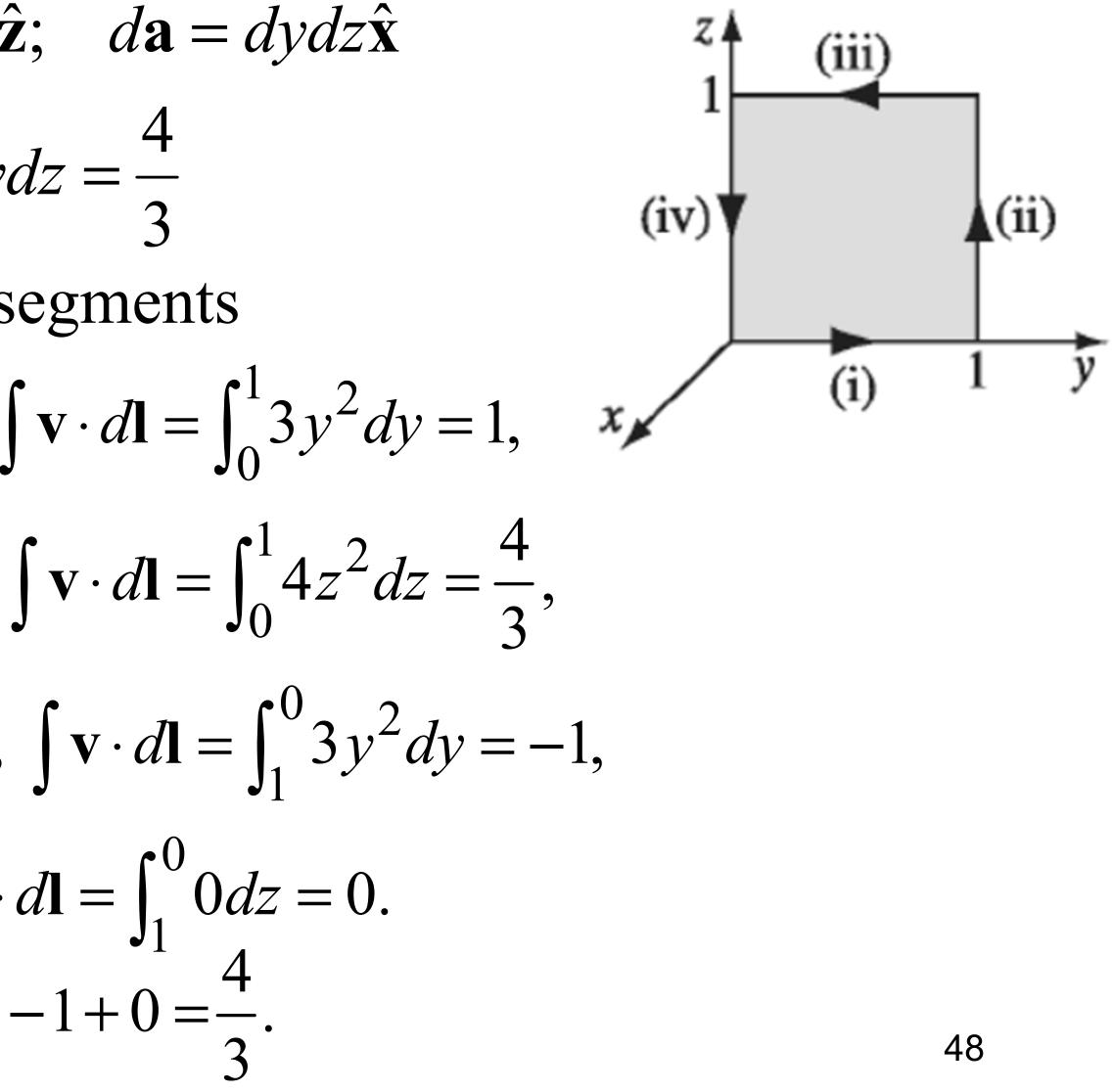
$$\iint_{S} \left(\frac{\partial v_{y}}{\partial x} - \frac{\partial v_{x}}{\partial y}\right) da = \oint_{P} \left(v_{x} dx + v_{y} dy\right)$$

47

Example 1.11 Suppose V Sol: $\nabla \times \mathbf{v} = (4z^2 - 2x)\hat{\mathbf{x}} + 2z\hat{\mathbf{z}}; \quad d\mathbf{a} = dydz\hat{\mathbf{x}}$ $\int (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \int_0^1 \int_0^1 4z^2 dy dz = \frac{4}{2}$ The line integral of the four segments (i) $x = 0, z = 0, \mathbf{v} \cdot d\mathbf{l} = 3y^2 dy, \quad \int \mathbf{v} \cdot d\mathbf{l} = \int_0^1 3y^2 dy = 1,$ (ii) $x = 0, y = 1, v \cdot d\mathbf{l} = 4z^2 dz, \int v \cdot d\mathbf{l} = \int_0^1 4z^2 dz = \frac{4}{2},$ (iii) $x = 0, z = 1, \mathbf{v} \cdot d\mathbf{l} = 3y^2 dy, \quad \int \mathbf{v} \cdot d\mathbf{l} = \int_1^0 3y^2 dy = -1,$ (iv) x = 0, y = 0, $\mathbf{v} \cdot d\mathbf{l} = 0$, $\int \mathbf{v} \cdot d\mathbf{l} = \int_{1}^{0} 0 dz = 0$. $\oint \mathbf{v} \cdot d\mathbf{l} = 1 + \frac{4}{3} - 1 + 0 = \frac{4}{3}.$

$$\mathbf{y} = (2xz + 3y^2)\hat{\mathbf{y}} + (4yz^2)\hat{\mathbf{z}}$$

Check Stokes' theorem for the square surface shown below.



1.3.6 Integration by Parts

$$\frac{d}{dx}(fg) = g \frac{df}{dx} + f \frac{dg}{dx}$$

Integrating both sides and
invoking the fundamental theorem
Left $\int_{a}^{b} \frac{d}{dx}(fg)dx = fg\Big|_{a}^{b}$
Right $\int_{a}^{b} f \frac{dg}{dx}dx + \int_{a}^{b} g \frac{df}{dx}dx$

$$\int_{a}^{b} f \frac{dg}{dx} dx = -\int_{a}^{b} g \frac{df}{dx} dx + fg\Big|_{a}^{b} \quad (1.58)$$

$$\nabla \cdot (f\mathbf{A}) = \nabla f \cdot \mathbf{A} + f(\nabla \cdot \mathbf{A})$$

Integrate it over a volume and
invoking the divergence theorem.
Left $\int \nabla \cdot (f\mathbf{A}) d\tau = \oint (f\mathbf{A}) \cdot d\mathbf{a}$
Right $\int (\nabla f \cdot \mathbf{A} + f(\nabla \cdot \mathbf{A})) d\tau$
 $= \int (\nabla f \cdot \mathbf{A}) d\tau + \int f(\nabla \cdot \mathbf{A}) d\tau$

 $\int f(\nabla \cdot \mathbf{A}) d\tau = -\int (\nabla f \cdot \mathbf{A}) d\tau + \oint (f\mathbf{A}) \cdot d\mathbf{a} \quad (1.59)$

Optional

(2) Curl of gradient : $\nabla \times (\nabla T)$ — always zero (4) Divergence of curl: $\nabla \cdot (\nabla \times \mathbf{v})$ - always zero

 $\int_{\mathcal{S}} (\nabla \times$ Stokes' theorem $\int_{S} (\nabla \times \nabla T) \cdot d\mathbf{a} = \oint_{D} \nabla T$ **Divergence theorem** $\int_{\Omega} (\nabla$ $\int_{v} (\nabla \cdot (\nabla \times \mathbf{v})) d\tau = \oint_{\Omega} (\nabla \cdot \mathbf{v}) d\tau$

line shrinks down to a point.

Applications of Stokes' and Divergence Theorems

$$\mathbf{x} \mathbf{v} \cdot d\mathbf{a} = \oint \mathbf{v} \cdot d\mathbf{l}$$

$$P$$

$$\mathbf{v} \cdot d\mathbf{l} = T(\mathbf{a}) - T(\mathbf{a}) = 0$$

$$\nabla \cdot \mathbf{v} d\tau = \oint_{S} \mathbf{v} \cdot d\mathbf{a}$$
$$(\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{P} \mathbf{v} \cdot d\mathbf{l} = 0$$

 $\oint (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = 0$ for any closed surface, since the boundary

Homework of Chap. 1 (part I)

Problem 1.5 Prove the **BAC - CAB** rule by writing out both sides in component form.

Problem 1.7 Find the separation vector $\vec{\nu}$ from the source point (2,8,7) to the field point (4,6,8). Determine its magnitude (κ), and construct the unit vector $\hat{\kappa}$.

Problem 1.13 Let \vec{k} be the separation vector from a fixed point (x', y', z') to the point (x, y, z), and let \sim be its length. Show that (a) $\nabla(\tau^2) = 2\vec{\mathbf{r}}$.

(b) $\nabla(1/r) = -\hat{r}/r^2$

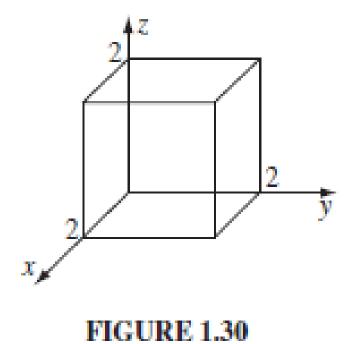
(c) What is the general formula for $\nabla(\gamma^n)$?

Problem 1.16 Sketch the vector function

 $v = \frac{r}{r^2}$,

and compute its divergence. The answer may surprise you. . . can you explain it?

Problem 1.33 Test the divergence theorem for the function $\mathbf{v} = (xy)\hat{\mathbf{x}} + (2yz)\hat{\mathbf{y}} + (3zx)\hat{\mathbf{z}}$. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.



1.4 Curvilinear Coordinates 1.4.1 Spherical Polar Coordinates (I)

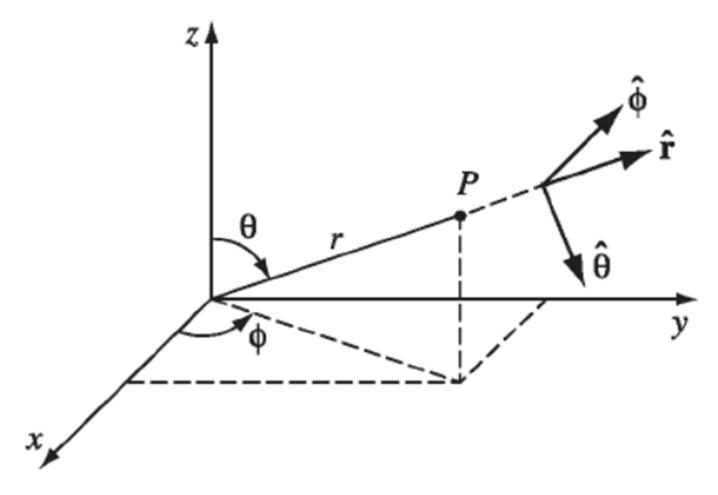
defined below:

position vector).

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

Murray R Spiegel, Vector Analysis (McGraw-Hill, New York, 1989), 6th ed. Chap. 7.

- The spherical (polar) coordinates (r, θ, ϕ) of a point P are
- r: the distance from the origin (the magnitude of the
- θ : the angle down from the z-axis (the polar angle). ϕ : the angle around from the x-axis (the azimuthal angle).



1.4.1 Spherical Polar Coordinates (II)

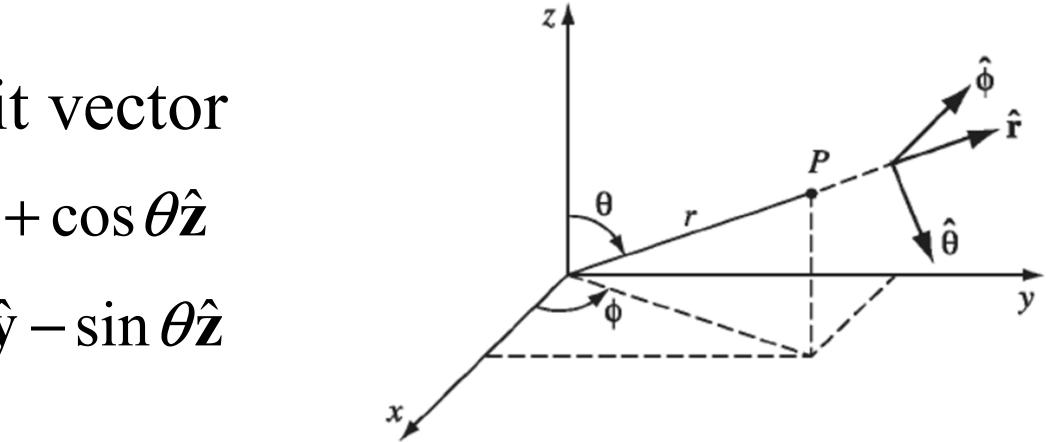
basis set (just like $\hat{x}, \hat{y}, \hat{z}$).

$$\mathbf{A} = A_r \hat{\mathbf{r}} + A_\theta \hat{\boldsymbol{\theta}} + A_\phi \hat{\boldsymbol{\phi}}$$

In terms of Cartesian unit vector

- $\hat{\mathbf{r}} = \sin\theta\cos\phi\hat{\mathbf{x}} + \sin\theta\sin\phi\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}$
- $\hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\hat{\mathbf{x}} + \cos\theta\sin\phi\hat{\mathbf{y}} \sin\theta\hat{\mathbf{z}}$
- $\hat{\phi} = -\sin\phi\hat{\mathbf{x}} + \cos\phi\hat{\mathbf{y}}$

- The direction of the coordinates: the unit vector $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$
- They constitute an orthogonal (mutually perpendicular)
- So any vector A can be expressed in terms of them:



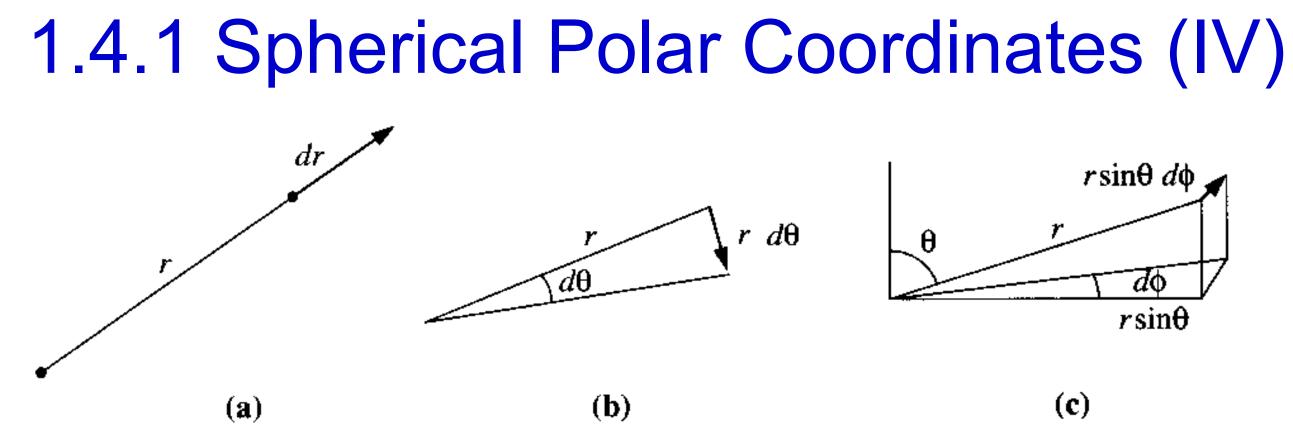
(Or you can see Appendix A for more details.)

1.4.1 Spherical Polar Coordinates (III)

and they change direction as P moves around. direction, depending on where you are.

coordinates.

- Warning: $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$ are associated with particular point *P*,
- For example, $\hat{\mathbf{r}}$ always points radially outward, but "radially" outward" can be the x direction, the y direction, or any other
- Notice: Since the unit vectors are function of position, we must handle the differential and integral with care.
- 1. Differentiate a vector that is expressed in spherical
- 2. Do not take the unit vectors outside an integral.



The general infinitesimal displacement: $d\mathbf{l} = dr\hat{\mathbf{r}} + rd\theta\hat{\boldsymbol{\theta}} + r\sin\theta d\phi\hat{\boldsymbol{\phi}}$

of a sphere.

 $d\mathbf{a} = (dl_{\theta})(dl_{\phi})\hat{\mathbf{r}} = r^2 \sin\theta d\theta d\phi \hat{\mathbf{r}}$

The infinitesimal volume element $d\tau$

$$d\tau = (dl_r)(dl_\theta)(dl_\phi) = r^2$$

The infinitesimal surface element da for the surface

sin $\theta dr d\theta d\phi$

1.4.1 Spherical Polar Coordinates (V)

The vector derivatives in spherical coordinates: Gradient: $\nabla T = \frac{\partial T}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial T}{\partial \theta}\hat{r}$

Divergence :

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}.$$

Curl: $\nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (\sin \theta v_{\phi}) \right)$ $+\frac{1}{r}\left(\frac{\partial}{\partial r}(rv_{\theta})-\frac{\partial v_{\eta}}{\partial \theta}\right)$

Laplacian :

$$\nabla^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}.$$

$$\hat{\boldsymbol{\theta}} + \frac{1}{r\sin\theta} \frac{\partial T}{\partial\phi} \hat{\boldsymbol{\phi}}.$$

$$(\psi_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \hat{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (rv_{\phi}) \right] \hat{\theta}$$

 $(\psi_r) \frac{\partial v_r}{\partial \phi} \hat{\phi}.$

1.4.2 Cylindrical Coordinates (I)

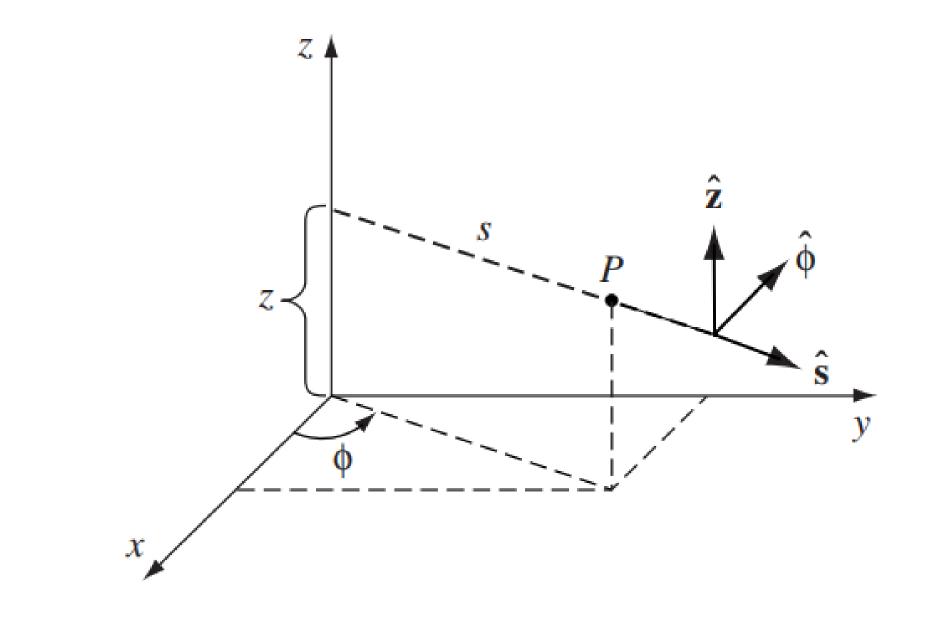
below: $x = s \cos \phi$, $y = s \sin \phi$, z = zs: the distance from the z axis. ϕ : the same meaning as in spherical coordinates. z: the same as Cartesian.

The unit vectors are $\hat{\mathbf{s}} = \cos\phi \hat{x} + \sin\phi \hat{y},$ $\hat{\phi} = -\sin\phi \hat{x} + \cos\phi \hat{y},$

 $\hat{\mathbf{z}} = \hat{z}.$

The infinitesimal displacement: $d\mathbf{l} = ds\hat{\mathbf{s}} + sd\phi\hat{\phi} + dz\hat{\mathbf{z}}$

- The cylindrical coordinates (s, ϕ , z) of a point P are defined



1.4.2 Cylindrical Coordinates (II)

The vector derivatives in cylindrical coordinates: Gradient :

$$\nabla T = \frac{\partial T}{\partial s}\hat{s} + \frac{1}{s}\frac{\partial T}{\partial \phi}\hat{\phi}$$

Divergence :

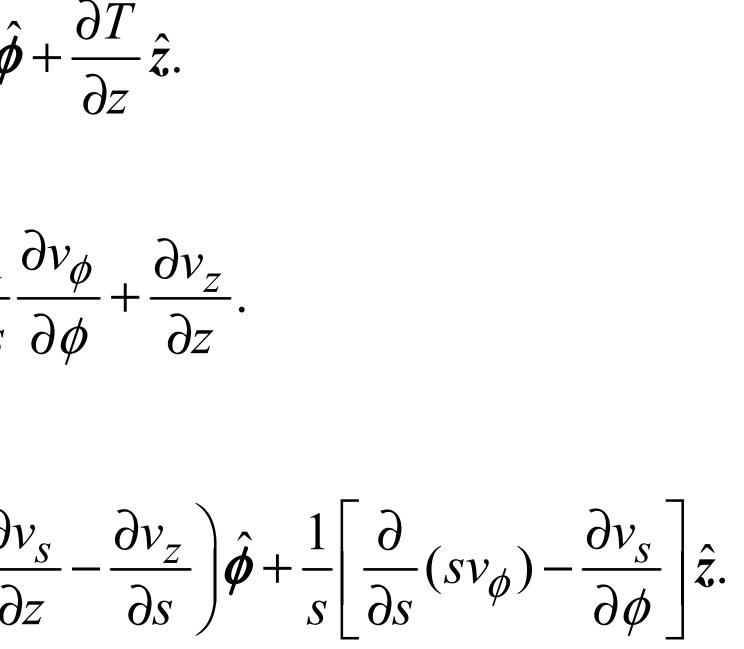
$$\nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (sv_s) + \frac{1}{s}$$

Curl :

$$\nabla \times \mathbf{v} = \left(\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z}\right) \hat{\mathbf{s}} + \left(\frac{\partial v_z}{\partial z}\right) \hat{\mathbf$$

Laplacian :

$$\nabla^2 T = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial T}{\partial s} \right) + \frac{1}{s^2}$$



$$\frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}.$$

Consider a vector function

The divergence of this vector function is:

$$\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} (1) = 0$$

The surface integral of this function is:

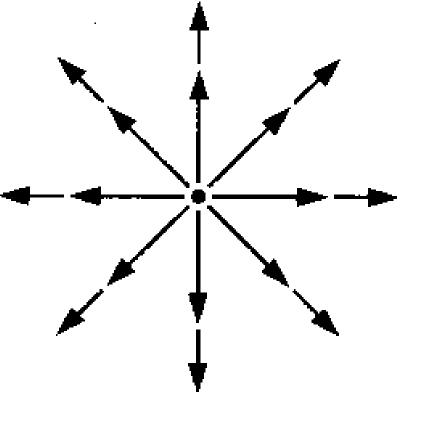
$$\oint \mathbf{v} \cdot d\mathbf{a} = \int_0^{\pi} \int_0^{2\pi} \left(\frac{1}{r^2} r^2 \sin\theta\right) d\theta d\phi$$
$$= \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\phi = 4\pi \neq \int_v (\nabla \cdot \mathbf{v}) d\tau$$

The divergence theorem is false?

1.5 The Dirac Delta Function 1.5.1 The Divergence of $\hat{\mathbf{r}} / r^2$

$$\mathbf{v} = \hat{\mathbf{r}} / r^2$$

No -> The Dirac delta function

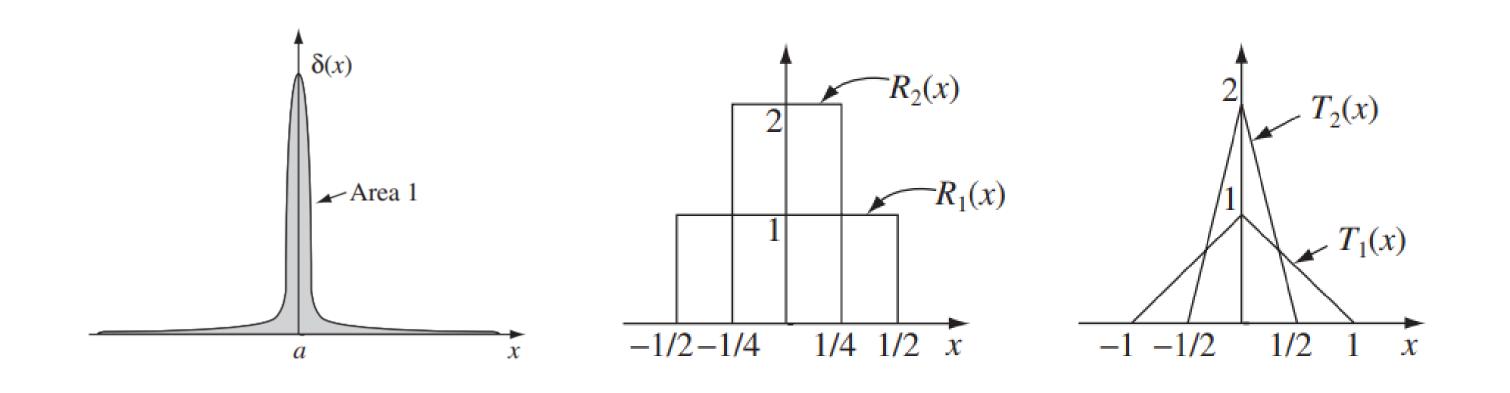


1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as an infinitely high, infinitesimally narrow "spike", with area just 1.

$$\delta(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases}$$

function, or distribution.



with
$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

Technically, $\delta(x)$ is not a function at all, since its value is not finite at x = 0. Such function is called the **generalized**

60

1.5.2 The One-Dimensional Dirac Delta Function (II)

If f(x) is some "ordinary" function (let's say that it is continuous), then the product $f(x)\delta(x)$ is zero everywhere except at x = 0. It follows that $f(x)\delta(x) = f(0)\delta(x)$. In particular,

$$\int_{-\infty}^{+\infty} f(x)\delta(x)dx = f(0)\int_{-\infty}^{+\infty}\delta(x)dx = f(0)$$

$$\delta(x-a) = \begin{cases} 0 & \text{if } x \neq a \\ \infty & \text{if } x = a \end{cases} \text{ with } \int_{-\infty}^{+\infty} \delta(x-a) dx = 1$$

A generalized integration equation:

$$\int_{-\infty}^{+\infty} f(x)\delta(x-a)dx = f(a)\int_{-\infty}^{+\infty}\delta(x)dx = f(a)$$

We can shift the spike from x = 0 to some other point x = a.

1.5.2 The One-Dimensional Dirac Delta Function (III)

are perfectly acceptable.

always intended for use under an integral sign.

considered **equal** if:

$$\int_{-\infty}^{+\infty} f(x) D_1(x) dx = \int_{-\infty}^{+\infty} f(x) D_2(x) dx$$

(b) $\int_{0}^{3} x^{3} \delta(x-4) dx$

- Although $\delta(x)$ is not a legitimate function, integrals over $\delta(x)$
- It is best to think of the delta function as something that is
- In particular, two expressions involving delta function are

- for all ("ordinary") function of f(x).
- Example 1.14 Evaluate the integral (a) $\int_{0}^{3} x^{3} \delta(x-2) dx$

Example 1.15 Show that where *k* is any (nonzero) co

Sol: Consider the integral f $\int_{-\infty}^{\infty} f(x)\delta(kx)dx$ Let $y \equiv kx$, so that $x \equiv y$ $k = \begin{cases} positive : \text{the integ} \\ negative : \text{the integ} \\ negative : \text{the integ} \end{cases}$ $\int_{-\infty}^{\infty} f(x)\delta(kx)dx = \pm \frac{1}{k}\int_{-\infty}^{\infty} f(x)\delta(kx)dx = \pm \frac{1}{k}\int_$

So $\delta(kx)$ serves the same p

$$\delta(kx) = \frac{1}{|k|} \delta(x)$$

Sol: Consider the integral for an arbitrary test function f(x),

$$y/k$$
, $dx \equiv 1/k \, dy$
egration runs from $-\infty$ to ∞
egration runs from ∞ to $-\infty$
 $f(y/k)\delta(y)dy = \frac{1}{|k|}f(0)$
urpose as $\frac{1}{|k|}\delta(x)$ and $\delta(-x) = \delta(x)$

Prob. 1.45

(a)
$$x \frac{d}{dx}(\delta(x)) = -\delta$$

(b) Let $\theta(x)$ be the step function : $\theta(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x < 0 \end{cases}$ Show that $d\theta/dx = \delta(x)$

1.5.3 The three-Dimensional Dirac Delta Function

The generalized 3D delta function

except at (0,0,0), where it blows up.

Its volume integral is:

$$\int_{\text{all space}} \delta^3(\mathbf{r}) d\tau = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(x) \delta(y) \delta(z) dx dy dz = 1$$

 $\int_{\text{all space}} f(\mathbf{r}),$

- $\delta^3(\mathbf{r}) = \delta(x)\delta(y)\delta(z)$
- where r is the position vector. It is zero everywhere

As in the 1-D case, the integral with delta function picks out the value of the function at the location of the spike.

$$\delta^{3}(\mathbf{r}-\mathbf{a})d\tau = f(\mathbf{a})$$

1.5.3 The three-Dimensional Dirac Delta Function (II)

function can be defined as: More generally, $\nabla \cdot (\frac{\hat{\mathbf{r}}}{r^2})$ $\nabla \cdot (\frac{\hat{\mathbf{r}}}{r^2})$

constant.

$$\nabla^2(\frac{1}{2}) = \nabla \cdot (\nabla(\frac{1}{2})) = \nabla \cdot (-\frac{\hat{\nu}}{2}) = -4\pi\delta^3(\vec{\nu})$$

We found that the divergence of $\hat{\mathbf{r}} / r^2$ is zero everywhere except at the origin, and yet its integral over any volume containing the origin is a constant of 4π . The Dirac delta

$$=4\pi\delta^3(\mathbf{r})$$

$$=4\pi\delta^3(\vec{\kappa})$$

where \vec{k} is the separation vector $\vec{k} = r - r'$. Note that the differentiation here is with respect to r, while r' is held

66

1.6 The Theory of Vector Fields 1.6.1 The Helmholtz Theorem

divergence and curl?

 $\nabla \cdot \mathbf{F} = D$

and the curl of F is a specified vector function C,

Can you determine the function **F**?

Helmholtz theorem guarantees that the field F is uniquely determined by the divergence and curl with appropriate boundary conditions. (For more details, see Appendix B of Griffiths)

- To what extent is a vector function **F** determined by its
- The divergence of **F** is a specified scalar function D,
 - $\nabla \times \mathbf{F} = \mathbf{C}$ (i.e., $\nabla \cdot (\nabla \times \mathbf{F}) = \nabla \cdot \mathbf{C} = 0$)

 $\nabla \times \mathbf{F} = 0 \implies$

 $\nabla \cdot \mathbf{F} = 0 \implies$

- 1.6.2 Potentials (simple example)
- If the curl of a vector field (\mathbf{F}) vanishes (everywhere), then F can be written as the gradient of a scalar potential (V):

$$F = -\nabla V$$
conventional

If the divergence of a vector field (\mathbf{F}) vanishes (everywhere), then F can be expressed as the curl of a vector potential (A):

$$\mathbf{F} = \nabla \times \mathbf{A}$$

Homework of Chap. 1 (part II)

Problem 1.38 Express the unit vectors $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$ in terms of $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ (that is, derive

Also work out the inverse formulas, giving $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ (and $\boldsymbol{\theta}$, $\boldsymbol{\phi}$).

Problem 1.40 Compute the divergence of the function $\mathbf{v} = (r \cos \theta) \hat{\mathbf{r}} + (r \sin \theta) \hat{\boldsymbol{\theta}} + (r \sin \theta \cos \phi) \hat{\boldsymbol{\phi}}.$ Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R, resting on the xy plane and centered at the origin (Fig. 1.40).

Problem 1.43

(a) Find the divergence of the function

(b) Test the divergence theorem for this function, using the quarter-cylinder (radius 2, height 5) shown in Fig. 1.43. (c) Find the curl of v.

Eq. 1.64). Check your answers several ways $(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = 1, \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} = 0, \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}, ...).$

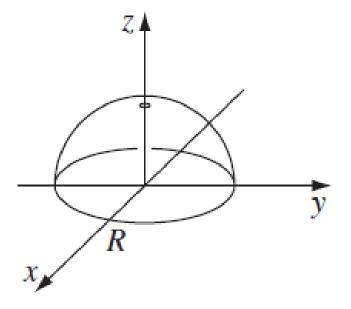
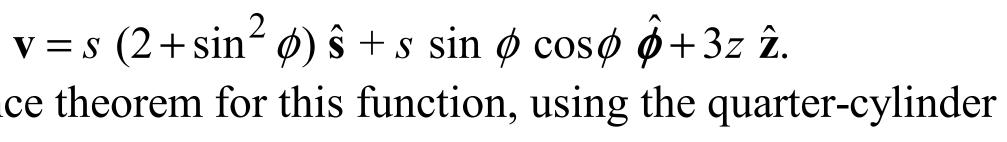


FIGURE 1.40



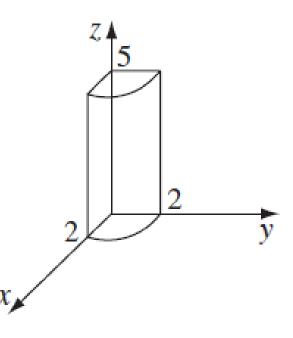


FIGURE 1.43

Homework of Chap. 1 (part III)

Problem 1.46

(a) Show that

$$x\frac{d}{dx}(\delta(x)) = -\delta(x).$$

[*Hint*: Use integration by parts.] (b) Let $\theta(x)$ be the step function:

 $\theta(x) \equiv \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}.$

Show that $d\theta/dx = \delta(x)$.

Problem 1.49 Evaluate the integral

$$J = \int_{\mathcal{V}} e^{-r} \bigg(\nabla$$

(where V is a sphere of radius R, centered at the origin) by two different methods, as in Ex. 1.16.

(1.95)

$$\left(\frac{\hat{\mathbf{r}}}{r^2}\right) d\tau$$