
Chapter 10: Potentials and Fields
10.1 The Potential Formulation 

10.1.1 Scalar and Vector Potentials
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In the electrostatics and magnetostatics,

The electric field and magnetic field can be expressed using 
potential:
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Scalar and Vector Potentials
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In the electrodynamics,

How do we express the fields in terms of scalar and vector 
potentials?
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Scalar and Vector Potentials
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We can further yields.

= ∇×B A

These two equations contain all the information in Maxwell’s 
equations.
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Example 10.1 
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Solution:

Find the charge and current distributions that would give rise 
to the potentials. 20 ˆ for | |<( | |)

0,    4
for | |>0
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Example 10.1 (ii)
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They might originate from surface charge or surface current.

Since the volume charge density and current density are 
both zero, where are the electric and magnetic fields from?

0  and  0ρ = =J

There is a surface current K in the yz plane.
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10.1.2 Gauge Transformations
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We have succeeded in reducing six components (E and B) 
down to four (V and A). However, V and A are not uniquely 
determined. 
We are free to impose extra conditions on V and A, as long 
as nothing happens to E and B.

Suppose we have two sets of potential (V, A) and (V ′, A′), 
which correspond to the same electric and magnetic fields.
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Gauge Transformations

7

Conclusion: For any scalar function λ, we can with impunity 
add ∇λ to A, provided we simultaneously subtract ∂λ/∂t to V.
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Such changes in V and A do not affect E and B, and are 
called gauge transformation.

We have the freedom to choose V and A provided E and B
do not affect --- gauge freedom.



10.1.3 Coulomb Gauge and Lorentz Gauge
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There are many famous gauges in the literature. We will 
show the two most popular ones.

The Coulomb Gauge: 
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unlike electrostatic case.



The Coulomb Gauge
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Advantage: the scalar potential is particularly simple to 
calculate;
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Disadvantage: the vector potential will be very difficult to 
calculate for the non-static case. 

The Coulomb gauge is suitable for the static case.



The Lorentz Gauge
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The Lorentz Gauge: 
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The Lorentz Gauge
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Advantage: It treats V and A on an equal footing and is 
particularly nice in the context of special relativity. It can be 
regarded as four-dimensional versions of Poisson’s equation.

V and A satisfy the inhomogeneous wave equations, with a 
“source” term on the right.

Disadvantage: …

We will use the Lorentz gauge exclusively.
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10.2 Continuous Distributions
10.2.1 Retarded Potentials
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static case
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Retarded Potentials

13

In the nonstatic case, it is not the status of the source right 
now that matters, but rather its condition at some earlier time 
tr when the “message” left.

(called the retarded time)rt t c≡ − r

This heuristic argument sounds reasonable, but is it 
correct? Yes, we will prove it soon.
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Argument: The light we see now 
left each star at the retarded time 
corresponding to that star’s 
distance from the earth.



Retarded Potentials 
Satisfy the Inhomogeneous Wave Equations
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Show that the retarded scalar potentials satisfy the 
inhomogeneous wave equations.
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Retarded Potentials 
Satisfy the Inhomogeneous Wave Equations (ii)
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Retarded Potentials 
Satisfy the Inhomogeneous Wave Equations (iii)
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Retarded Potentials 
Satisfy the Inhomogeneous Wave Equations 
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Show that the retarded vector potentials satisfy the 
inhomogeneous wave equations .
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The Principle of Causality
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This proof applies equally well to the advanced potentials.

The advanced potentials violate the most sacred tenet 
in all physics: the principle of causality.
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Example 10.2 
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An infinite straight wire carries the current

Sol:
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How?
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Retarded Fields?
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Can we express the electric field and magnetic field using the 
concept of the retarded potentials? No, but...

How to correct this problem? 
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10.2.2 Jefimenko’s Equations
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The time-dependent generalization of Coulomb’s law.
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Jefimenko’s Equations (ii)
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Retarded potentials: 
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These two equations are of limited utility, but they provide 
a satisfying sense of closure to the theory.
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10.3 Point Charges
10.3.1 Lienard-Wiechert Potentials
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What are the retarded potentials of a moving point charge q?

Consider a point charge q that is moving 
on a specified trajectory

( ) position of  at time .t q t≡w

The retarded time is:
( )r

r
t

t t c
−
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r w

( ) the retarded position of the charge.rtw
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Communication
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Is it possible that more than one point on the trajectory are 
“in communication” with r at any particular time t?
No, one and only one will contribute.

1 1 2 2( ) and ( )c t t c t t= − = −r r

Suppose there are two such points, with retarded time t1 and 
t2:

This means the average velocity of the particle in the 
direction of r would have to be c.  violate special relativity.

1 2 1 2( )c t t− = −r r

Only one retarded point contributes to the potentials at any 
given moment.



Total Charge
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The retardation,                            ,  obliges us to evaluate ρ
at different times for different parts of the configuration.

The source in motion lead to a distorted picture of the total 
charge.
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Total Charge: a Geometrical Effect

27

A train coming towards you looks a little longer than it really 
is, because the light you receive from the caboose left earlier 
than the light you receive simultaneously from the engine.
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c v v c
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Total Charge: a Geometrical Effect (ii)

28

In general, if the train’s velocity makes an angle θ with your 
line of sight, the extra distance light from the caboose must 
cover is              .

ˆ1 / c
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This effect does not distort the dimensions perpendicular to 
the motion.
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The apparent volume τ′ of the train is 
related to the actual volume τ by
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Lienard-Wiechert Potentials
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It follows that 

The famous Lienard-Wiechert potentials for a moving point 
charge.
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Derivation from Wikipedia (i)
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Derivation from Wikipedia (ii)
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( ) ( ( ( ) ))

( ) =
1 ( ( )) ( ) ( )

( ( ))( ) ˆ   where  and 
ˆ1 ( )

r r

r

r

r r
r

r st t ct t t t

r

s s sc t t

s sr
s

s s t t

t t t tt t
t t t t t

t t
t t

tt t
c t

δ δδ

δ

δ

∂ ∂
′ ′∂ ∂′ ′= =

′=

′=

′ ′− −′ ′− = =
′ ′ ′ ′− − − −

′ −
′ ′+ − ⋅ − −

′′ −−= = =
′− ⋅ −

r r

r r v r r

v r rβ n
β n r r



Derivation from Wikipedia (iii)
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0

0

1( , )
ˆ4 (1 ) ( )

( , )
ˆ4 (1 ) ( )

r

r

s s t t

s

s s t t

qV t
t

c qt
t

πε

μ
π

′=

′=

  
=   ′− ⋅ −  


  =    ′− ⋅ − 

r
β n r r

βA r
β n r r

Lienard-Wiechert Potentials

0

2

1 1( , )
ˆ4 (1 / )

( , ) ( , )               

qV t
c

t V t
c

πε
 = − ⋅

 =


r
v

vA r r

r r

0

( )1( ,
(

)
4 )

r

s
V q t t dt

t
t δ

πε
′ ′− ′=
′ ′− r

r
r



Example 10.3 
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Find the potentials of a point charge moving with constant 
velocity. Assume the particle passes through the origin at time 
t = 0.
Sol: The trajectory is:

First compute the retarded time:

( )t t=w v
( ) ( )r r rt t c t t− = − = −r w r v

2 2 2 2 2 22 ( 2 )r r r rr t v t c t tt t− ⋅ + = − +r v
2 2 2 2 2 2 2( ) 2( ) ( ) 0r rc v t c t t c t r− + ⋅ − + − =r v

2 2 2 2 2 2 2 2

2 2

( ) ( ) ( )( )
( )r

c t c t c v c t r
t

c v
− ⋅ ± ⋅ − − − −

=
−

r v r v Which sign 
is correct?

Consider v = 0 2 2 2 2( / ) /rt t t t r c t r c= ± − − = ±

We want the minus sign
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Contd.:

ˆ( ),  and  
( )

r
r

r

tc t t
c t t

−= − =
−

r vr r

2 2 2 2 2 2 2 2

2 2
( ) ( ) ( )( )

( )r
c t c t c v c t r

t
c v

− ⋅ − ⋅ − − − −
=

−
r v r v

2 2 2 2 2 2 20

1( , )
4 ( ) ( )( )

qcV t
c t c v c t rπε

=
⋅ − − − −

r
r v

2

2 2 2

2 2 2 2 2 2 2

/ ( ) 1 ( ) ( )
( )

1 ( ) ( )

1 ( ) ( )( )

r
r r r

r

r

t vc c t t c t t t
c c t t c c

c t c v t
c

c t c v c t r
c

 − ⋅− ⋅ = − − ⋅ = − − − − 

 = − ⋅ − − 

= ⋅ − − − −

r vv v rv

r v

r v

r r

0
2 2 2 2 2 2 2

( , )
4 ( ) ( )( )

qct
c t c v c t r

μ
π

=
⋅ − − − −

vA r
r v



10.3.2 The Fields of a Moving Point Charge
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Using the Lienard-Wiechert potentials we can calculate the 
fields of a moving point charge.

Find:

tr is a function of r and t.

0

1( , )  
ˆ4 (1 / )
qV t

cπε
=

− ⋅
r

vr r 2and   ( , ) ( , )t V t
c

= vA r r

V
t

∂= −∇ −
∂
AE and   = ∇×B A

( )  and  ( )r rt t′= − = − =r r r w v w rThe separation vector:

The retarded time tr: ( ) ( )r rt c t t− = −r w

EM
Tsun-Hsu Chang



Gradient of the Scalar Potential
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2
0

1 ( / )
4 ( / )

qV c
cπε

−∇ = ∇ − ⋅
− ⋅

v
v


 r

r
r

r

( )r rc t t c t∇ = ∇ − = − ∇r

#1 # #2 #3 4

( ) ( )( ) ( ) ( )∇ ⋅ = + × ∇ × + × ∇ ×⋅∇ + ⋅∇v v vv v 
 

  
 r rr r r

( ) ( )

( )

( )

x y z

r r r
x y z

r r r
r

x y z
t t td d d

dt x dt y dt z
t

∂ ∂ ∂⋅∇ = + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

= ⋅∇

v v

v v v

a





r r r

r r r

r

r

#1

acceleration

See Chap.1 p.23



1.2.6 Product Rules (II) 
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The product rule: 

ABBAABBABA )()()()()( ∇⋅+∇⋅+×∇×+×∇×=⋅∇

)()()()()( ABBABAABBA ⋅∇−⋅∇+∇⋅−∇⋅=××∇

)()()( BAABBA ×∇⋅−×∇⋅=×⋅∇





Af
fg

 :vector
 :scalar





×
⋅

BA
BA

 :vector
 :scalar

dx
dgf

dx
dfgfg

dx
d +=)( gffgfg ∇+∇=∇ )(

)()( AAA ×∇+×∇=×∇ fff)()( AAA ⋅∇+⋅∇=⋅∇ fff

少見

Chap.1 p.23
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( ) ( ) ( ) ( ) ( ) ( )

( ) (1 ( ))

r x y z r

r r r
x y z r

r r r

t v v v t
x y z

t t td d dv v v t
dt x dt y dt z

∂ ∂ ∂⋅∇ = ⋅∇ − ⋅∇ = − + +
∂ ∂ ∂

∂ ∂ ∂= − + + = − ⋅∇
∂ ∂ ∂

v v r v w v w

w w wv v v

r#2

( )

ˆ ˆ ˆ( ) ( ) ( ) ( )y yx xz z

r

v vv vv v
y z z x x y

t

∂ ∂ ∂ ∂∂ ∂× ∇× = × − + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

= × − ×∇

v x y z

a

 



r r

r

#3

( )

( ) ( )( ) ˆ( ) (

( ) ( )( ) ˆ ˆ) ( )
( )

y xz

y xz

r

y w x wz w
y z z

y w x wz w
x x y

t

∂ − ∂ −∂ −
− +

∂ ∂ ∂
∂ − ∂ −∂ −

− + −
∂ ∂ ∂

 
 
 × ∇× = ×
 
 
 

= × ×∇

x

y z
v v

v v

r#4

ˆ ˆ ˆ( ) ( ) ( )y yx xz r r r z r r r

r r r r r r

dv dvdv dvdv t t t dv t t t
dt y dt z dt z dt x dt x dt y

 ∂ ∂ ∂ ∂ ∂ ∂− + − + − ∂ ∂ ∂ ∂ ∂ ∂ 
×= x y zr
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#1 #2 #3 #4

( ) ( ) ( ) ( ) ( )∇ ⋅ = ⋅∇ + ⋅∇ + × ∇ × + × ∇ ×v v v v v    
   r r r r r

( ) ( )
2

( ) (1 ( ))
( )

r r r r

r

t t t t
v t

= ⋅∇ + − ⋅∇ − × × ∇ + × × ∇
= + ⋅ − ∇

a v v a v v
v a

 


r r
r

[ ]

[ ]

1/2
1/2

1/2

1/2

1 1 1( ) ( )
2 ( )

1      2 ( ) ( )
2 ( )

( ) ( )
where 

( ) ( )( ( )) ( )
1 ( ) ( )

( )

  

r

r

r r

r r r

t
c c c c

c
t

t t

t t t
c

∇ = −∇ = − ∇ = − ∇ ⋅ = − ∇ ⋅
⋅

− × ∇ × + ⋅∇
⋅

× ∇ × = × × ∇
 ⋅∇ = ⋅∇ − = − ⋅∇

∇ = − × × ∇ + − ⋅∇
⋅

=

v
r w v

v v

   
 

   
 

  
    

  
 

r r r r r r
r r

r r r r
r r

r r r
r r r r r

r r r
r r

[ ]1   ( ) )  =     r rt t
c c

−= − − ⋅ ∇  ∇
− ⋅

v
v

 
r r
rr r
r

( ) is function of .r rt tw

1 1 ˆP.14,   because  is independet of .r rt t
c c
− ′∇ = ∇ = − rr r
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2 2
3

0

1 ( ) ( )
4 ( )

qcV c c v
cπε

 ∇ = − ⋅ − − + ⋅ − ⋅
v v a

v
  

 r
r

r r r
r

2 23
0

( )( / )1
( )4 ( )

c cqc
c vt c c

πε

− ⋅ − + ⋅ ∂  =
+ − + ⋅ ∂ − ⋅  

v v aA
a vv

 


r
r

r

r r

rr

Similar calculations

2 2
3

0
( ) ( )

4 ( )
qV c v

t πε
∂  = −∇ − = − + × × ∂ ⋅
AE u u a

u



r r

r

ˆwhere c≡ −u vr



Curl of the Vector Potential
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( )2 2

2 2
3

0

2 2
3

0

1 1( ) ( )

1 ( ) ( ) ( )
4 ( )

1 1( ) ( )
4 ( )

V V V
c c

q c v
c

q c v
c c

πε

πε

∇× = ∇× = ∇× − ×∇

 = − × − + ⋅ − ⋅ ⋅

 = × − + × × = × ⋅

A v v v

v a v u a
u

u u a E
u

  


  


r

r

r r r
r

r r r
r

The magnetic field of a point charge is always 
perpendicular to the electric field, and to the 
vector from the retarded point.

where .× = − ×v u r r

1 ˆ
c

= ×B Er



Generalized Coulomb Field
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2 2
3

0
( ) ( )

4 ( ) velocity field acceleration field
radiation field

q c v
πε

 
 
 = − + × ×
 ⋅
 
  

E u u a
u


  
r r

r

3
3 2

0 0

0 and 0
1ˆ ˆ( )

4 4( )
q qc

cπε πε

= =

= =

v a

E r
r r

r r



Example 10.4
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Calculate the electric and magnetic fields of a point charge 
moving with constant velocity.
Solution:

2 2
3

0
( ) ,  since 0.

4 ( )
q c v

πε
= − =

⋅
E u a

u
r

r

2 2 2

ˆ   
 ( ) ( ) ( );

 1 sin /  (Prob. 10.16)
where  is the angle between  and .

r r

c
c c t c t t c t

c Rc v cθ
θ

= −
 = − = − − − = −

 ⋅ = − ⋅ = −

u v
u v r v v r v

u v
R v



 
r r

r

r
r

r r

2 2

2 2 2 3/2 2
0

ˆ1 / ,   where  
4 (1 sin / )

q v c t
v c Rπε θ

−= ≡ −
−

RE R r v



Fields of a Moving Point Charge
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2 2

2 2 2 3/2 2
0

ˆ1 / ,
4 (1 sin / )

where  

q v c
v c R

t
πε θ

−=
−

≡ −

RE

R r v
Obtain the same result by using the 
Lorentz transformation. Chap.12

2
1 1ˆ( ) ( )

( ) ( )ˆsince r r

c c
t t t t

c

= × = ×

− − + −= = = +

B E v E

r v r v v R v
r r r

r

r



Homework of Chap.10
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( )

2 2 20

Show that the scalar potential of a point charge moving 
with constant velocity Eq. 10.49 can be written more simply as? 

1( ,  )  ,                                      
4 1 sin /

qV t
R v cπε θ

=
−

Problem 10.16 

r ( )

( )

( )

2 2

0

   10.51

where  is the vector from the present !  position of the particle
to thefield point ,  and  is the angle between  and . 
Note that for nonrelativistic velocities ( ),

1,  
4

t

v c
qV t
R

θ

πε

≡ −

=

R r v
r R v

r



0 0ˆSuppose  = 0 and  =  sin( ) , where , ,  and  are
constants. Fine  and , and check that they satisfy Maxwell's equations in vacuum.
What condition must you impose on  and ?

V A kx t A k

k

ω ω

ω

−Problem 10.4 A y
E B

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current 
                                                            ( ) ,
      for  > 0. Find the electric and magnetic 

I t kt
t

=

Problem 10.11

0

fields generated.
(b) Do the same for the case of a sudden burst of current:
                                                            ( ) ( ).I t q tδ=



Homework of Chap.10
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A particle of charge  moves in a circle of radius  at constant
angular velocity . (Assume that the circle lies in the  plane, centered at the
origin, and at time 0 the charge is at 

q a
xy

t
ω

=

Problem 10.15 

( ,0),on the positive  axis.) Find the
Lienard-Wiechert potentials for points on the  axis.

a x
z

Check that the potentials of a point charge moving at constant ve-
locity (Eqs. 10.49 and 10.50) satisfy the Lorenz gauge condition (Eq. 10.12).
Problem 10.27 

1
2

 One particle, of charge , is held at rest at the origin. Another
particle, of charge ,  approaches along the  axis, in hyperbolic motion: 

                                            

q
q x

Problem 10.28

2 2

2 2 1

2 2

      ( ) ( ) ;
it reaches the closest point, ,  at time 0,  and then returns out to infinity.
(a) What is the force  on (due to  ) at time ?

(b) What total impulse ( ) is delivere

x t b ct
b t

F q q t

I F dt
∞

−∞

= +
=

=  2 1

1 1 2

1 1 1 2

d to  by ?
(c) What is the force  on (due to  ) at time ?

(d) What total impulse ( ) is delivered to  by ?  [ :  It might
      help to review Prob. 10.17 before doing this inte

q q

F q q t

I F dt q q Hint
∞

−∞
= 

2 1
1 2 0

gral. :   = 
      / 4 ]

Answer I I
q q bcε

− =


