

Lecture 11, Introduction to Black Hole Astrophysics (PHYS480) Hsiang-Yi Karen Yang, NTHU, 5/11/2021

ANNOUNCEMENTS

- HW5 is due today.
- Please search for black hole news for the oral presentation and paste the news link here:

https://docs.google.com/spreadsheets/d/l_aYyMjlwf_uGheZ7zp_hvthmy4mdmPwI xFDdZOMG-nc/edit?usp=sharing

• For the final team report (research proposal), please start discussing with your teammates and gather ideas! Due date: 6/11 (Fri) at 5pm on iLMS.

PREVIOUS LECTURE...

- Advancement in technology (adaptive optics, interferometry with long baselines) has allowed us to study Sgr A* with unprecedented details and learn about SMBHs
- Currently, Sgr A* is a dormant SMBH with occasional flares
- We might see accretion events from gas clouds like G2, but unlikely to see tidal disruption of stars by Sgr A*
- Tidal disruption events (TDEs)
 - A star would be disrupted by tidal forces when it passes within the tidal disruption radius
 - About half of the materials would fall back, form accretion disks, and shine
 - Predicted lightcurve follows a t^{-5/3} decay and can be super-Eddington
- Evidences (X-ray light echoes, Fermi bubbles) suggest elevated past activity of Sgr A*
- GR effects have been confirmed. EHT image of Sgr A* is coming soon!

THIS LECTURE

- Overview of jets
- Observed properties of BH jets
- How do we know jets are relativistic?
- The many different looks of jets
- How are jets produced?
- How do jets propagate to large distances?
- Open questions

OVERVIEW OF BH JETS

Astronomy and astrophysics [edit]

Main article: List of unsolved problems in astronomy

• Astrophysical jet: Why do only certain accretion discs surrounding certain astronomical objects emit relativistic jets along their polar axes?

Heber Curtis in 1918: "curious straight ray ... apparently connected with the nucleus by a thin line of matter."

BASIC PROPERTIES OF BH JETS

- Jets occur in ~10% of AGN and slowly-accreting X-ray binaries
- Typically observed in *radio*, sometimes optical/X-ray/gamma-rays
- Primary emission mechanism -- synchrotron radiation when relativistic particles gyrate around magnetic field lines
- **Relativistic** with typical Lorentz factor $\gamma \sim 10$ or $v \sim 0.995c$

HOW DO WE KNOW JETS ARE RELATIVISTIC?

- Many jets appear to be *one-sided* (e.g., M87, Centaurus A)!
- Such powerful jets should be created symmetrically
- In fact, the approaching jet appears much brighter than the receding jet – *relativistic beaming (Lecture 2)*
 - Relativistic aberration -- when an emitting object moves close to light speed, the light rays would be beamed in the direction it is moving
 - Relativistic Doppler's effect approaching photons would be blue-shifted, i.e., shifted to higher energies

HOW DO WE KNOW JETS ARE RELATIVISTIC?

- High-resolution observations of jets show that there are knots moving away from center
- Knots appear to move faster than the speed of light!
- Apparent speed could be up to ~40c !??
- This is called *superluminal motions* (超光速 運動)

SUPERLUMINAL MOTIONS

- Assuming an emitting object is moving at ~light speed from A to B, where the distance between A and B is 5 light years
- Assuming we are observing the object from Earth, the apparent speed = (distance on the sky) / (time between photons received on Earth)
- Distance on the sky = BC = 3 light years
- Time between photons = 1 year (because the photon emitted at A is delayed by 4 years)
- So the apparent speed = 3c!
- This is strong evidence for relativistic speed!

MANY LOOKS OF JETS

Some start bright and then darken to edge

Some start dim and then brighten to edge

Some just look weird!

 The X-shaped radio galaxies could form due to jet reorientation or interactions with motions in the ambient gas

Some just look weird!

 The "head-tail" radio sources are swept back because the galaxy is moving through the ambient medium

NGC1265

TWO TYPES OF RADIO GALAXIES -- FRI & FRII

Fanaroff-Riley (FR) types (1974)

• *FRI*:

- Brighter towards center
- Two-sided jets
- Plumes (羽狀結構) /lobes
- Lower jet power ($L_{bol} < ~10^{42} \text{ erg/s}$)

• FRII:

- Edge-brightened
- One-sided jets
- Lobes (辦狀結構)
- Hot spots
- Higher jet power ($L_{bol} > ~ 10^{42} \text{ erg/s}$)

BLAZARS

- Blazars are radio-loud AGNs with jets pointing to us
- Very bright due to relativistic beaming
- Highly variable (on hours-days timescales)
- Two types: BL Lac (analog of FRI jets) and FSRQ (flat spectrum radio quasars, analog of FRII jets)
- One of the important sources in the gamma-ray sky

Conception of a blazar

GAMMA-RAY ALL-SKY MAP BY FERMI

BLAZARS ARE SOURCES FOR HIGH-ENERGY NEUTRINOS

- On Sep. 22, 2017, the *IceCube* Neutrino Observatory detected a high-energy neutrino near the constellation Orion
- They sent alerts to the community and ~20 observatories made follow-up observations
- It is detected in gamma-rays, X-rays, optical and radio
- This event was found to coincide with blazar TXS 0506+056
- This is the first evidence that blazars (aka AGN jets) could produce high-energy neutrinos!
- This shows the power of the *multi-messenger* astrophysics

Blazar as one source of high-energy cosmic rays and neutrinos

**Read more about this event by clicking here

THANKS TO RADIO TELESCOPES

- Telescope resolution limited by diffraction (繞射): $\theta \propto \lambda/D$
- Can reach higher resolution by observing at shorter wavelengths or by increasing D, e.g., linking radio telescopes across the globe
- Can reach resolutions of <1 milliarcsec using Very Long Baseline Interferometry (VLBI)!

Because of diffraction, a point source would be blurred into a disk, limiting our ability to resolve two sources

HOW ARE JETS FORMED?

HOW ARE JETS FORMED?

- Blandford and Payne (BP) mechanism (1982) outflows driven by magneto-centrifugal force
- As gas in the accretion disk approach the BH, the rotation would drag and twist the magnetic field
- The centrifugal force would fling materials outward along field lines
- The tightly wound magnetic fields would tend to unwind and exert pressure force to accelerate the gas outward
- Jet energy comes from rotational energy of accretion disk

HOW ARE JETS FORMED?

- Blandford-Znajek (BZ) mechanism (1977)
 jets driven by BH spin
- Magnetic field carried by the accretion disk within the ergosphere twisted due to the frame-dragging effect
- Electric field is induced due to the rotating magnetic field lines, developing a voltage difference between the poles and the equator like a battery
- The electric current driven by the voltage drop can extract energy from the BH spin and transformed into outflowing jets
- Jet energy comes from the BH spin energy

GRMHD SIMULATION OF JET LAUNCHING

Credit: M. Liska & A. Tchekhovskoy

HOW DO JETS PROPAGATE TO LARGE DISTANCES?

THE EXTREME RANGE OF SCALES OF JETS

For M87, $M_{BH} = 6.5 \times 10^9 M_{sun}$, d = 16 Mpc, 1 milliarcsec ~ 0.1pc ~ 160 Rs, $R_{inf} \sim 4 \times 10^5 Rs \sim 300 pc$

(I) SMALL SCALES -- BLACK HOLE JETS

- Black hole jets: Rs < R < R_{inf}, where R_{inf} is the BH sphere of influence
- On this scale, the jet dynamics is dominated by BH potential & inflow/outflow of the accretion disk
- After jets are launched, they can be further accelerated
 - For example, the M87 jets accelerate from ~0.01c at ~200 Rs to ~6c at R_{inf}, and decelerate afterwards
- On this scale, the jets can be *collimated* by outflows from the accretion disk

(II) INTERMEDIATE SCALES – GALAXY JETS

- Galaxy jets: $R_{inf} < R < 0.1 R_{lobe}$, where R_{lobe} is the size of the lobes
- On this scale, the jet dynamics is dominated by stellar/dark matter potential within the host galaxy
- Many jets show superluminal motions on this scale, meaning that they have been accelerated before reaching R_{inf}

(III) LARGE SCALES - LOBE JETS

- Lobe jets: 0.1 R_{lobe} < R < R_{lobe}
- Controlled by interaction between the jets and the circumgalactic medium
- This is the scale where we could clearly see the morphological difference of FR1 vs. FRII jets

SOME OPEN QUESTIONS

- Observational evidences for BZ or BP mechanisms?
 - No strong evidence for spin dependence of jet power predicted by the BZ theory
- Why do some AGN have jets and others do not? What are the optimal conditions/environments for jet formation?
 - Spin is probably not a sufficient condition; other factors (e.g., magnetic flux) are important too
 - They tend to live in elliptical galaxies (?)

SOME OPEN QUESTIONS

- What is the origin of the FRI/FRII dichotomy? Do all radio galaxies fall into one category or the other?
- What is the composition of the jets (magnetic, high-energy particles, kinetic)? How/where does the energy conversion occur?
- Can we apply what we learned from the M87 jets to other AGN jets in general?
- How do jets affect the formation and evolution of galaxies? (Lecture 12)

SUMMARY

- Jets occur in ~10% of AGN and slowly-accreting X-ray binaries
- Jets emit in radio and other wavebands due to synchrotron radiation
- BH jets are *relativistic* because we observe (1) one-sided jets due to relativistic beaming, and (2) superluminal motions
- Jets can look very different due to interactions with the ambient medium
 - **FRI** sources: lower power, plumes, edge-darkened
 - **FRII** sources: higher power, lobes, edge-brightened, hot spots
- Jet launching mechanisms:
 - Blandford-Payne (BP) mechanism: outflows driven by magneto-centrifugal force from disks
 - Blandford-Znajek (BZ) mechanism: jets powered by BH spin
- Jet propagation (acceleration, collimation, energy conversion) is an extreme multiscale and complex problem!

PRESENTATIONS 5/11

 <u>Tiny newfound 'Unicorn' is</u> <u>closest known black hole to</u> <u>Earth by Shang-Jing Lin 林上景</u>

https://qrgo.page.link/Tkjy2

 Staring down the throat of an ancient, extremely distant black hole by Ming-Xue Xie 謝明學

https://qrgo.page.link/kceZf

 The Milky-Way's central black hole may have turned nearby red giant stars blue by Shao-Yi Guo 郭紹儀

https://qrgo.page.link/RhNNp

