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• Please sign up for the oral presentation ASAP via this link:

https://docs.google.com/spreadsheets/d/1_aYyMj1wf_uGheZ7zp_hvthmy4mdmPwI
xFDdZOMG-nc/edit#gid=0

• For students who asked questions during or after class, please don’t forget to tell 
the TA to receive the class participation points!

• HW1 will be posted today on iLMS and course website. Please hand in your 
solutions or submit online through iLMS by 13:20 next Tuesday (3/9).  



§ How black holes were predicted
§ Escape velocities and idea of dark stars in Newtonian gravity

§ GR’s view of BHs – spacetime is so curved that light cannot escape within the 
Schwarzschild radius

§ Theoretical advancement in stellar evolution and relativity as well as observational 
discovery of pulsars sparkled interests in the search of astrophysical BHs

§ How black holes were discovered
§ First candidate of stellar-mass BHs – the X-ray binary Cygnus X-1

§ BHs shine due to thermal radiation from heated gas within accretion disks

§ Quasars are found, later known as accreting supermassive black holes (SMBHs) or 
active galactic nuclei (AGN)

§ Every massive galaxy hosts a SMBH at the center



§ Why study black holes?
§ They are simply cool!
§ They are important for understanding physics at extreme conditions 
§ The radiation and jets from SMBHs can influence the formation and evolution of galaxies

§ Another golden age for studying BHs
§ First image of BHs taken by the Event Horizon Telescope
§ Detections of gravitational waves due to BH mergers – the birth of multi-messenger 

astrophysics



§ What people know before 1905
§ Newton’s laws of motion and Galilean transformation
§ Newtonian gravity and the weak equivalence principle
§ The speed of light problem

§ Two postulates of Einstein’s theory of special relativity (SR) 

§ Consequences of SR
§ Time dilation
§ Length contraction
§ Lorentz transformation
§ Relativity of simultaneity and causality
§ Relativistic expressions for mass and energy

§ Astrophysical effects of SR





§ 1st law: v = constant if F = 0 (慣性定律：在無外力狀況下，靜者恆靜，動者恆動)
§ This is a major change of Galileo’s thinking that “being at rest” is a natural state

§ 2nd law: If a body of mass M is acted upon by a force F, then its acceleration a is 
given by F = Ma
§ This law defines the “inertial mass (慣性質量)”, which represents the degree to which a 

body resists being accelerated by a force

§ 3rd law: If a body A exerts a force F on body B, then body B exerts a force –F on 
body A (作用力與反作用力)



• Momentum: p = Mv

Total momentum of a system is conserved: ptot = M1v1 + M2v2 + …

• Newton’s 2nd law: the rate of change of momentum of a body is equal to the force applied to 
that body

• Newton’s 1st law: a special case of the 2nd law – the momentum of a body is unchanged if 
there is no force acting on the body

• Newton’s 3rd law: the momentum of an isolated system of objects is conserved

• Note that terms like x, v, a, need to be expressed by coordinates in some reference frame



§ Consider two inertial (non-accelerating) frames of reference (慣性座標系) that differ by 
some uniform velocity difference u (note that we are not considering accelerating frames 
of reference)

§ This is called Galilean transformation:
𝑥" = 𝑥 − 𝑢𝑡	

𝑣" =
𝑑𝑥"

𝑑𝑡 = 𝑣 − 𝑢

𝑎" =
𝑑𝑣"

𝑑𝑡 = 𝑎

§ For a system with no external force, momentum is conserved under Galilean transformation
§ This is a result of spatial-translation symmetry
§ Noether’s theorem: if a system has a continuous symmetry property, then there is a corresponding 

conserved quantity

Simple velocity addition rule -> 



§ Galilean invariance: laws of physics are the same under Galilean transformation

§ Newton’s 1st law comes directly from Galilean invariance: there is no difference 
between a state of rest and a state of motion

§ Newton’s 2nd and 3rd laws are what’s needed to make sure that momentum is 
conserved and thus is related to the symmetry of space



§ A particle with mass m1 will attract another particle with mass m2 and distance r 
with a force F given by 

§ G = gravitational constant = 6.67 x 10-8 cm3 g-1 s-2

§ It is universal and a long-range force (every particle in the universe attracts every 
other particle)

§ Gravity often dominates in astrophysical systems 

§ This law defines the “gravitational mass (重力質量)” of a body

𝐹 =
𝐺𝑚.𝑚/
𝑟/



§ Newton’s 2nd law:

§ Newton’s law of gravitation:

§ So, acceleration due to gravity is:

§ Note that mI and mG don’t necessarily need to be equal 

§ If they are equal, it implies that acceleration due to gravity is independent 
of the object’s mass

𝐹 =
𝐺𝑀𝑚2
𝑟/

𝐹 = 𝑚3𝑎

𝑎 =
𝑚2
𝑚3

𝐺𝑀
𝑟/

mI = inertial mass

mG = gravitational mass



Watch the modern version of experiment here:
https://www.youtube.com/watch?v=E43-CfukEgs



§ In July 1971, at the end of the last Apollo 15 
moon walk, Commander David Scott 
performed a live test of mI/mG for the 
television cameras

https://en.wikipedia.org/wiki/File:Apollo_1
5_feather_and_hammer_drop.ogv



§ Verified by various experiments (drop tower, pendulum…)

§ mI = mG for all bodies – the “weak equivalence principle (弱等效原理)”



§ The ISS orbits about 500km above Earth’s 
surface. Radius of Earth is 6300km

§ Gravitational acceleration at ISS is 86% of 
that on the Earth’s surface!

§ They feel weightless because the astronauts 
“fall” toward Earth at the same rate as the 
space station

§ This is another example of the weak 
equivalence principle



§ Relativity: how to relate measurements in different frames of references

§ Galilean relativity – simple velocity addition law
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Today’s class 

n  Speed of light problem 
n  Einstein’s postulates 
n  Time dilation – time is not absolute!!! 

I: THE SPEED OF LIGHT 
PROBLEM 

n  Recap 
l  “Relativity” tells us how to relate 

measurements in different frames of 
reference 

l  Galilean relativity 
§  Simple velocity addition law :   vtotal=vrun+vtrain 



§ In the 1860’s, James Clerk Maxwell (1831-1879) developed theory of 
electromagnetic fields, i.e., the Maxwell’s equations

§ Light – waves of electromagnetic energy

§ The speed of light “c” appears as a fundamental constant in the equations

§ c = 299,792,458 km/s

§ But, what frame of reference is this speed measured relative to?



§ In the 19th century, it was believed that light travels in “Aether”, a hypothetical 
substance that fills space through which light travels

§ It was presumed that “c” should be measured w.r.t the rest frame of the Aether

§ Albert Michelson & Edward Morley attempted to measure change of speed of light 
due to Earth’s motion through Aether (1887)





§ Travel time difference measured using interference fringes of light from two paths

§ Repeated at different times of year (Earth’s orbital speed around the Sun is 
~30km/s)

§ Results showed that speed of light is the same in any direction within 5 km/s

§ Modern versions of the experiment show consistency better than 1 micron/s!



§ Albert Einstein abandoned:
§ The idea of Aether
§ Galilean relativity

§ Two postulates:
1) Laws of physics are invariant in all inertial (non-

accelerating) frames of reference
2) The speed of light in a vacuum is the same for all 

observers







§ Imagine a “light clock” which ticks each 
time when the light hits one of the mirrors

§ In (a), 

§ In (b), 

§ => 

clock gives out a “tick”. Let us make a pair of these, and give
one to our friend to take abord his spaceship, while we keep
the other on Earth. The clock on the spaceship is mounted
perpendicular to the direction of motion, just like the ruler
that we used last time.

(b)

v

(a)

Figure 3.1: A “light clock”, as seen in its rest frame (a) and from a frame (b) in which it is moving
with velocity v.

As our friend flies past, we watch the light bouncing between
the mirrors. But to us, instead of just going up and down, the
light makes a zigzag motion, which means that it has to go
further. Between “ticks”, therefore, whereas the light in our
clock covers a distance l in time

t = l/c,

the light in the clock on board the spaceship covers a distance√
l2 + v2t′2,

29

𝑡4 = 𝑙/𝑐

𝑡 =
𝑙/ + 𝑣/𝑡′/�

𝑐

𝑡 =
𝑡4

1 − 𝑣//𝑐/�



§ Time is relative! The moving clock ticks 
more slowly by the Lorentz factor 

§ t0 = proper time = time measured when 
clock is at rest
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1

1 − 𝑣//𝑐/�



8 

n  The moving clock ticks more slowly by a 
factor 

n  This effect is called time-dilation, and 
the quantity “γ” is the Lorentz factor. 

n  There is nothing “wrong” with the 
moving clock!  Time really is flowing 
more slowly in the moving frame. 

Lorentz factor 

Lorentz factor goes to infinity when V→c! 

But it is very close to 1 for V/c small 

A 1% effect at  
v = 0.14 c, or 
42,000 km/s 

§ Goes to infinity as g -> 1

§ Close to 1 for small v/c

§ A 1% effect at v=0.14c or 42,000 km/s

§ A 10% effect at v=0.42c or 126,000 km/s

𝛾 =
1

1 − 𝑣//𝑐/�



§ Muons are fundamental particles produced 
when cosmic rays (relativistic charged 
particles) hit the Earth’s atmosphere 

§ Muons decay with a half life of 2.2 µs

§ Muons travel at 0.99995c

§ Rossi & Hall (1940) and Frisch & Smith (1963) 
compared number of muons at the top of 
mountain to that at sea level

𝑁 = 𝑁42
?	 @@A/B



§ They found 560 muons/hour at top of a 2000m 
mountain

§ At v = 0.99995c, it takes 6.7µs for muons to 
travel 2000m

§ More than 3 half lives, so less than 1/8 of 
particles should be left at sea level

§ But they measured 543 muons/hour at bottom!



§ Muons travel at v=0.99995c => g = 100 

§ Muon’s half life measured in its rest frame is 2.2 
µs, which is dilated in Earth’s frame to 2.2x10-4 s

§ 6.7µs is only 0.03 x half life is passed as viewed by 
an observer on Earth

§ Number consistent with time dilation predicted by 
special relativity! 



§ The muons see the mountain moving at v=0.99995c towards them

§ For the muons, t = 0.03 x (half life of 2.2 µs) = 6.7 x 10-2 µs has passed 

§ It would think the height of the mountain is H = 0.99995c x t ~ 20m!  



§ Space is also relative! A moving object 
contracts by a factor of g in the direction 
of motion

§ L0 = proper length = length measured in a 
reference frame where the object is at rest
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II: Relativity of Simultaneity 

n  Consider an observer in a room.   Suppose 
there is a flash bulb exactly in the middle of 
the room. 

n  Suppose sensors on the walls record when the 
light rays hit the walls. 

 
n  Since speed of light is constant, light rays 

will hit opposite walls at precisely the same 
time. Call these events A and B. 

𝐿 = 𝐿4 1 −
𝑣/

𝑐/
�

= 𝐿4/𝛾



§ Based on Einstein’s two postulates, one can derive the Lorentz transformation:

§ Note that space and time are interconnected to form a 4-dimensional spacetime



§ In matrix representation:

§ (x, y, z, ct) is the position-time 4-vector

§ b = v/c

• ...and define β = v/c, so

γ =
1√

1− β2
.

The complete Lorentz transformations are therefore

x′ = γ (x− β.ct) (3.5)

y′ = y

z′ = z

ct′ = γ (ct− βx) .

The inverse transformations are then

x = γ (x′ + β.ct′)

ct = γ (ct′ + βx′) ,

with the y and z coordinates remaining unaffected as before.
Using ct instead of just t gives all of the variables the dimen-
sions of distance, and displays the implicit symmetry between
the first and last transformation equations.

Notice, as usual, the limiting speed of light: if one frame
moves faster than light with respect to another, γ becomes
imaginary, and one or other frame would then have to have
imaginary coordinates x′, t′.

3.4.1 Matrix Formulation

It is clear that (3.5) can be written as
⎛

⎜⎜⎝

x′

y′

z′

ct′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x
y
z
ct

⎞

⎟⎟⎠ .

38



§ Consider an observer in a room. Suppose there is a flash bulb exactly in the 
middle of the room

§ Sensors are put on the walls to record when the light rays hit the walls

§ The light rays will hit opposite walls at precisely at the same time. Call these events 
A and B.
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II: Relativity of Simultaneity 

n  Consider an observer in a room.   Suppose 
there is a flash bulb exactly in the middle of 
the room. 

n  Suppose sensors on the walls record when the 
light rays hit the walls. 

 
n  Since speed of light is constant, light rays 

will hit opposite walls at precisely the same 
time. Call these events A and B. 



§ Now perform the same experiment on a moving spacecraft, and observe it from the ground

§ Astronauts in spacecraft think events are simultaneous

§ For the observer on the ground, the light rays will NOT strike the walls at the same time; A 
will happen before B.

§ Therefore, the concept of “events being simultaneous” is different for different observers
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Change frames… 

n  Imagine performing same experiment aboard a moving 
spacecraft, and observing it from the ground. 

n  For the observer on the ground, the light rays will not strike 
the walls at the same time (since the walls are moving!).  
Event A will happen before event B. 

n  But astronaut in spacecraft thinks events are simultaneous. 
n  Concept of “events being simultaneous” (i.e. simultaneity) is 

different for different observer 

Change frames again! 

l  What about perception of a 3rd observer 
who is moving faster than spacecraft? 

l  3rd observer sees event B before event A 
l  So, order in which events happen can 

depend on the frame of reference. 



§ What would a 3rd observer think who is moving faster than the spacecraft?

§ He would see event B happens before event A

§ Therefore, order of events can depend on the frame of reference

5 
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§ Suppose there is a laser gun at one end of 
spacecraft, targeted at a victim at the other end

§ Laser gun fires (event A) and then victim gets 
hit (event B)

§ Can we change the order of these events by 
changing the frame of reference? That is, can 
the victim get hit before the gun fires?
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The laser gun experiment 
n  Suppose there is a laser gun at one end of spacecraft, 

targeted at a victim at the other end. 

n  Laser gun fires (event A) and then victim gets hit (event 
B). 

n  Can we change the order of these events by changing 
the frame of reference? i.e., can the victim get hit 
before the gun fires? 

n  This  is a question of causality. 
n  The events described are causally-

connected (i.e. one event can, and 
does, affect the other event). 

n  In fact, it is not possible to change the 
order of these events by changing 
frames, according to Special Relativity 
theory. 

Group discussion:
Please break into groups of 3-4 people. Discuss 
your answers and provide an argument/proof. 
Write down your names and answers on a piece of 
paper and submit it to the TA.



§ One can show that, because events A and B are 
causally connected, their orders cannot be 
changed by changing to any reference frames 
unless the observer is moving faster than c

§ Since nothing could move faster than light, 
causality is preserved 
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The laser gun experiment 
n  Suppose there is a laser gun at one end of spacecraft, 

targeted at a victim at the other end. 

n  Laser gun fires (event A) and then victim gets hit (event 
B). 

n  Can we change the order of these events by changing 
the frame of reference? i.e., can the victim get hit 
before the gun fires? 

n  This  is a question of causality. 
n  The events described are causally-

connected (i.e. one event can, and 
does, affect the other event). 

n  In fact, it is not possible to change the 
order of these events by changing 
frames, according to Special Relativity 
theory. 

§ In contrast, the events A and B in the previous 
example (light hitting opposite walls) do NOT 
have any causal relationship, so it is possible to 
change their order
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Change frames… 

n  Imagine performing same experiment aboard a moving 
spacecraft, and observing it from the ground. 

n  For the observer on the ground, the light rays will not strike 
the walls at the same time (since the walls are moving!).  
Event A will happen before event B. 

n  But astronaut in spacecraft thinks events are simultaneous. 
n  Concept of “events being simultaneous” (i.e. simultaneity) is 
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Change frames again! 

l  What about perception of a 3rd observer 
who is moving faster than spacecraft? 

l  3rd observer sees event B before event A 
l  So, order in which events happen can 

depend on the frame of reference. 



§ Diagram used to show when and where events 
occur in the 4-D spacetime

§ For Minkowski (flat) spacetime, a light ray 
would travel along a trajectory with slope of 1

§ Light cone -- path of light rays traveling in all 
directions emanating from a single event 

§ World line – path of an object in the 4-D 
spacetime



§ Consider the quantity “spacetime interval”:

§ It is a Lorentz invariant – the value does not 
change by changing frames

§ Spacetime can be divided into three regions:
§ S2 = 0: lightlike; this defines the light cones
§ S2 > 0: timelike; region inside the light cones
§ S2 < 0: spacelike; region outside the light cones

𝑆/ = (𝑐𝑡)/−𝑥/ − 𝑦/ − 𝑧/



§ Event B is within the light cone of event A and 
can communicate by sending a signal at, or 
less than, the speed of light -> causally 
connected. Cannot change order by changing 
frames of reference

§ Events C and A are causally disconnected. 
Possible to change their order by changing 
reference frames

§ For any event, the light cones clearly define 
past, future, and elsewhere

A

B

C



§ Recall Lorentz transformation:

§ The primed axes could be found by 
setting x’=0 or ct’=0

§ The axes are oblique 

§ This is useful when thinking about 
events from different reference frames 

Tick...
   Event E(x,t)
   or  E(x′,t′)

Clock A;
 vel. vt′

t

x

x′

θx′
θ0

Tick...
   Event E(x,t)
   or  E(x′,t′)

t′

(b)

(a)

x

x′

Figure 4.7: The oblique axes required to describe moving objects.
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§ A train moves at 0.8c. A person is firing a bullet with 0.6c relative to the train. How 
fast does it move relative to the ground?

§ Galilean transformation: 0.8c + 0.6c = 1.4 c -> clearly wrong!
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Today’s class 

n  Speed of light problem 
n  Einstein’s postulates 
n  Time dilation – time is not absolute!!! 

I: THE SPEED OF LIGHT 
PROBLEM 

n  Recap 
l  “Relativity” tells us how to relate 

measurements in different frames of 
reference 

l  Galilean relativity 
§  Simple velocity addition law :   vtotal=vrun+vtrain 

0.6c

0.8c

? 



§ From the Lorentz transformation, one can derive:

§ Note that the transverse velocities in y and z directions (if nonzero) are also altered!

Since

x = γ (x′ + β.ct′)

y = y′

ct = γ (ct′ + βx′) ,

we have

dx = γ (dx′ + β.cdt′) = γ (u′x + v) dt′

dy = dy′ = u′y.dt′

dt = γ
(
dt′ + v.dx′/c2

)
= γ

(
1 + v.u′x/c

2
)
dt′.

Therefore,

ux =
dx

dt
=

u′x + v

1 + v.u′x/c
2

(5.1)

uy =
dy

dt
=

u′y
γ (1 + v.u′x/c

2)

uz =
dz

dt
=

u′z
γ (1 + v.u′x/c

2)

and, correspondingly,

u′x =
ux − v

1− v.ux/c2
(5.2)

u′y =
uy

γ (1− v.ux/c2)

u′z =
uz

γ (1− v.ux/c2)
.

Note that velocities in the transverse direction are altered.
We can now answer the question about the bullet in the

train; an object moving with velocity u′x = 0.6c in a frame
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§ Bullet speed seen from ground:

§ What about light itself, i.e., firing a laser gun? 
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0.6c
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? 

that is itself moving at velocity v = 0.8c moves (in our, un-
primed, frame) at a velocity

ux =
u′x + v

1 + v.u′x/c
2

=
(0.6 + 0.8) c

1 + (0.6) (0.8)
= 0.95c.

What about light itself? Suppose, instead of a bullet, the man
fires a laser; the photons move at u′x = c. In this case, we find
that

ux =
(1.0 + 0.8) c

1 + (1.0) (0.8)
= c,

as we expect. This is a nice cross-check.

5.3 Successive Lorentz Transformations

Consider three reference frames, S, S ′ and S ′′ — say, of some-
one standing on the ground; of someone moving past in a
train; and of someone moving past in a train. What happens
if we Lorentz transform from the first to the second frame,
and then again from the second to the third? Is it consistent
with transforming directly from the first to the third frame?

Let S ′ move along the x axis of frame S with velocity v =
βc, so

x′ = γ (x− βct)

ct′ = γ (ct− βx) .

Likewise, let S ′′ move along the x′ axis (which is the same as
the x axis) with velocity v′ = β′c, so

x′′ = γ′ (x′ − β′ct′)

ct′′ = γ′ (ct′ − β′x′) .
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§ One can show that, in a collision of two particles, the following “mass” is conserved:

§ Note that the relativistic mass goes to Infinity as v->c

§ It takes infinite energy to pull an object as v->c => nothing can move past c!

mr: “relativistic mass”
m: “rest mass”

𝑚I =
𝑚

1 − 𝑣//𝑐/� = 𝛾𝑚



§ Do a binomial expansion in v/c:

§ We obtain the total energy:

§ Consequences:
§ Mass and energy are equivalent!!
§ Conservation of mass is the same as conservation of energy 

common nowadays) to consider the mass to be defined as be-
ing measured at rest, and the γ is always written explicitly
when required. From now on, m or m0 will refer to
the rest mass only. We shall drop the notation mv and
the idea of “mass” varying with velocity; so-called “relativistic
mass” will be written explicitly as γm.

For the above problem, then, if we redefine the (rest) mass
of the parent to be M , and the (rest) mass of each of the
daughter products to be m, we find that everything is consis-
tent if M = 2γm.

What happens to this quantity γm at low velocities? Let
us do a binomial expansion:

γm = m
(
1− v2/c2

)−1/2

= m +
1

2
m.v2.

1

c2
+

3

8
m

v4

c4
...

The second term is the classical kinetic energy, divided by
the constant c2. This suggests that, if we multiply the entire
expression by c2, we will obtain an energy:

E = γmc2 = mc2 +
1

2
mv2 +

3

8
m

v4

c2
... (5.4)

(We have dropped the subscript v from m). The first term of
this expansion is called the “rest energy”, and the second term
is, as we noticed, the classical kinetic energy. However, we see
that the true kinetic energy – literally, movement energy, so
total energy minus the energy that the object has anyway
when it’s standing still – is

T = E −mc2
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common nowadays) to consider the mass to be defined as be-
ing measured at rest, and the γ is always written explicitly
when required. From now on, m or m0 will refer to
the rest mass only. We shall drop the notation mv and
the idea of “mass” varying with velocity; so-called “relativistic
mass” will be written explicitly as γm.

For the above problem, then, if we redefine the (rest) mass
of the parent to be M , and the (rest) mass of each of the
daughter products to be m, we find that everything is consis-
tent if M = 2γm.

What happens to this quantity γm at low velocities? Let
us do a binomial expansion:
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(We have dropped the subscript v from m). The first term of
this expansion is called the “rest energy”, and the second term
is, as we noticed, the classical kinetic energy. However, we see
that the true kinetic energy – literally, movement energy, so
total energy minus the energy that the object has anyway
when it’s standing still – is

T = E −mc2
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𝑚I =
𝑚

1 − 𝑣//𝑐/� = 𝛾𝑚

“rest mass energy” “relativistic kinetic energy” T = E – mc2



§ Define the relativistic momentum: 

§ Useful formula:

For photons:  

§ Another useful formula: 

That is,                                is Lorentz invariant

𝑝 = 𝛾𝑚𝑣

𝑝𝑐 = 𝛾𝑚𝑣𝑐 = 𝐸𝛽
𝐸 = 𝑝𝑐

𝐸/ = 𝑝/𝑐/ +𝑚/𝑐M

𝐸/ − 𝑝/𝑐/



§ Lorentz transformation of momentum and energy:

§ Transformation of the momentum-energy 4 vector using 
matrix form:  

E

c

′
= γ

(
E

c
− βpx

)
(5.11)

as we found above. Again, it is easy to show that

E2 − p2c2,

which is simply the rest mass squared times c2, is invariant
under the Lorentz transformation.

5.7.3 Matrix Notation

Using matrices, the transformation (5.11) may be written as
⎛

⎜⎜⎝

p′x
p′y
p′z
E
c

′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

⎞

⎟⎟⎠

⎛

⎜⎜⎝

px

py

pz
E
c

⎞

⎟⎟⎠ .

5.8 Example: Collision Threshold Energies

Consider the reaction

p + p→ p + n + π+,

in which an incoming proton p (mass≈ 938 MeV/c2) of (total)
energy Ep hits a target proton at rest, to create a proton,
a neutron (also of mass ≈ 938 MeV/c2) and a positive pion
(mass 139 MeV/c2). What is the minimum (threshold) kinetic
energy that the incident proton requires for this reaction to
take place?

• The Trap to Avoid: the simple, obvious answer — that
the sum of the masses afterwards is 139 MeV greater than
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In other words, the transverse component of momentum is
unchanged. Let’s look at the energy again for this case:

E ′ = γ′mc2

=
mc2

√
(1− u2/c2)

1√
(1− v2/c2)

= γE.

This time, there is no γvp term, so we were correct previously
in writing the transformation using the x component only.

In total, then, the energy and momentum transformations
are

p′x = γ

(
px − β.

E

c

)
(5.8)

p′y = py

p′z = pz

E

c

′
= γ

(
E

c
− βpx

)
.

It is no coincidence that this set of transformations is just
like those for x and t. If we replace E/c by ct and px by x,
etc., we regain the original transformations.

Recall that the interval

S2 = c2t2 − x2 − y2 − z2

was an invariant under Lorentz transformations. If we make
the same substitutions here, and then divide by c2, we obtain

E2 − p2c2 = const = m2
0c

4.

The invariant corresponding to the interval is therefore the
rest energy of the object, which is naturally the same whichever
frame you calculate it in.
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§ Classical case:

𝜈" =
𝜈

(1 − 𝛽)
𝜈" =

𝜈
(1 + 𝛽)



§ With SR, since the source is moving with v, its clock runs more slowly by a factor of 

𝜈" =
𝜈

𝛾(1 − 𝛽)

= 𝜈
1 + 𝛽
1 − 𝛽

�

𝜈" =
𝜈

𝛾(1 + 𝛽)

= 𝜈
1 − 𝛽
1 + 𝛽

�

𝛾 =
1

1 − 𝛽/�



§ Stellar aberration: apparent motion of stars about their 
true positions due to velocity of the observer

§ This effect causes the stellar positions to vary 
periodically over the course of a year by ~20 arcseconds

§ Galilean relativity:



§ With the new velocity addition law in SR:



§ Because of aberration, light rays emitted by a source moving close to c 
would be beamed toward the observer

§ This effect would make the source appear much brighter! 



BLACK HOLE JETS

Chandra X-ray image of SMBH jets in 
Centaurus A galaxy

HST image of SMBH jets in M87 galaxy

Radio galaxy 3C31



§ Also called “Doppler beaming” or “Doppler boosting”

§ Refers to how apparent luminosity of emitting matter moving 
close to c is modified by SR effects

§ It includes the combined effects of relativistic Doppler’s 
effect and relativistic aberration

§ This is why the approaching jet of the BH is much brighter 
than the receding jet and is more easily observable

§ This is one of the hints that BH jets are relativistic!

Radio galaxy 3C31



§ Before 1905…
§ The transformation between inertial (non-accelerating) frames is described by 

Galilean transformation
§ Newton’s three laws of motions come from symmetry of space and conservation 

of momentum
§ Weak equivalence principle: mI = mG, or that gravitational acceleration is 

independent of mass
§ Michelson-Morley experiment showed that speed of light is constant

§ Two postulates of Einstein’s theory of special relativity:
1) Laws of physics are invariant in all inertial frames of reference
2) The speed of light in a vacuum is the same for all observers



§ Consequences of SR:
§ Time dilation
§ Length contraction
§ Relativity of simultaneity
§ New velocity addition law
§ Mass and energy equivalence

§ Astrophysical effects of SR:
§ Relativistic Doppler’s effect = Classical Doppler’s effect + time dilation
§ Relativistic aberration = Classical aberration + new velocity addition law
§ Relativistic beaming = relativistic Doppler’s effect + relativistic aberration 

=> could explain why we often see one-sided/brighter BH jets


