Einstrins theory or SPCCIIL RELATIVITY

Lecture 2, Introduction to Black Hole Astrophysics (PHYS480) Hsiang-Yi Karen Yang, NTHU, 3/2/2021

ANNOUNCEMENTS

- Please sign up for the oral presentation ASAP via this link:
https://docs.google.com/spreadsheets/d/l_aYyM1jlwf_uGheZ7zp_hvthmy4mdmPwI xFDdZOMG-nc/edit\#gid=0
- For students who asked questions during or after class, please don't forget to tell the TA to receive the class participation points!
- HWl will be posted today on iLMS and course website. Please hand in your solutions or submit online through iLMS by 13:20 next Tuesday (3/9).

PREVIOUS LECTURE...

- How black holes were predicted
- Escape velocities and idea of dark stars in Newtonian gravity
- GR's view of BHs - spacetime is so curved that light cannot escape within the Schwarzschild radius
- Theoretical advancement in stellar evolution and relativity as well as observational discovery of pulsars sparkled interests in the search of astrophysical BHs
- How black holes were discovered
- First candidate of stellar-mass BHs - the X-ray binary Cygnus X-1
- BHs shine due to thermal radiation from heated gas within accretion disks
- Quasars are found, later known as accreting supermassive black holes (SMBHs) or active galactic nuclei (AGN)
- Every massive galaxy hosts a SMBH at the center

PREVIOUS LECTURE...

- Why study black holes?
- They are simply cool!
- They are important for understanding physics at extreme conditions
- The radiation and jets from SMBHs can influence the formation and evolution of galaxies
- Another golden age for studying BHs
- First image of BHs taken by the Event Horizon Telescope
- Detections of gravitational waves due to BH mergers - the birth of multi-messenger astrophysics

THIS LECTURE...

- What people know before 1905
- Newton's laws of motion and Galilean transformation
- Newtonian gravity and the weak equivalence principle
- The speed of light problem
- Two postulates of Einstein's theory of special relativity (SR)
- Consequences of SR
- Time dilation
- Length contraction
- Lorentz transformation
- Relativity of simultaneity and causality
- Relativistic expressions for mass and energy
- Astrophysical effects of SR

NEWTON＇S THREE LAWS OF MOTION

－ $1^{\text {st }}$ law： $\mathbf{v}=\mathrm{constant}$ if $\mathbf{F}=0$（慣性定律：在無外力狀況下，靜者沍靜，動者沍動）
－This is a major change of Galileo＇s thinking that＂being at rest＂is a natural state
－ $2^{\text {nd }}$ law：If a body of mass M is acted upon by a force \mathbf{F} ，then its acceleration \mathbf{a} is given by $\mathbf{F}=\mathrm{Ma}$
＂This law defines the＂inertial mass（慣性質量）＂，which represents the degree to which a body resists being accelerated by a force
－ $3^{\text {rd }}$ law：If a body A exerts a force \mathbf{F} on body B，then body B exerts a force $\mathbf{- F}$ on body A（作用力與反作用力）

NEWTON'S LAWS REWRITTEN USING MOMENTUM

- Momentum: $\mathbf{p}=\mathbf{M v}$

Total momentum of a system is conserved: $\mathbf{p}_{\text {tot }}=M_{1} \mathbf{v}_{\mathbf{1}}+M_{2} \mathbf{v}_{\mathbf{2}}+\ldots$

- Newton's $2^{\text {nd }}$ law: the rate of change of momentum of a body is equal to the force applied to that body
- Newton's $1^{\text {st }}$ law: a special case of the $2^{\text {nd }}$ law - the momentum of a body is unchanged if there is no force acting on the body
- Newton's $3^{\text {rd }}$ law: the momentum of an isolated system of objects is conserved
- Note that terms like \mathbf{x}, \mathbf{v}, \mathbf{a}, need to be expressed by coordinates in some reference frame

WHAT HAPPENS IN A DIFFRRENT REFRRENCE FRAME？

－Consider two inertial（non－accelerating）frames of reference（慣性座標系）that differ by some uniform velocity difference \boldsymbol{u}（note that we are not considering accelerating frames of reference）
－This is called Galilean transformation：

－For a system with no external force，momentum is conserved under Galilean transformation
－This is a result of spatial－translation symmetry
－Noether＇s theorem：if a system has a continuous symmetry property，then there is a corresponding conserved quantity

CONNECT NEWTON'S LAWS TO GALILEAN TRANSFORMATION

- Galilean invariance: laws of physics are the same under Galilean transformation
- Newton's ${ }^{\text {st }}$ law comes directly from Galilean invariance: there is no difference between a state of rest and a state of motion
- Newton's $2^{\text {nd }}$ and $3^{\text {rd }}$ laws are what's needed to make sure that momentum is conserved and thus is related to the symmetry of space

NEWTON＇S LAW OF UNIVERSAL GRAVITATION

－A particle with mass m_{1} will attract another particle with mass m_{2} and distance r with a force F given by

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

－ $\mathbf{G}=$ gravitational constant $=6.67 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2}$
－It is universal and a long－range force（every particle in the universe attracts every other particle）
－Gravity often dominates in astrophysical systems
＂This law defines the＂gravitational mass（重力質量）＂of a body

INERTIAL MASS AND GRAVITATIONAL MASS

- Newton's $2^{\text {nd }}$ law: $\quad F=m_{I} a$
$\mathrm{m}_{\mathrm{I}}=$ inertial mass
- Newton's law of gravitation:

$$
F=\frac{G M m_{G}}{r^{2}}
$$

$\mathrm{m}_{\mathrm{G}}=$ gravitational mass

- So, acceleration due to gravity is:

$$
a=\left(\frac{m_{G}}{m_{I}}\right) \frac{G M}{r^{2}}
$$

- Note that m_{I} and m_{G} don't necessarily need to be equal
- If they are equal, it implies that acceleration due to gravity is independent of the object's mass

WHiCH WOULD FALL FASTER?

Watch the modern version of experiment here:
https://www.youtube.com/watch?v=E43-CfukEgs

EXPERIMENT DONE ON THE MIOON IN THE APOLLO 15 MISSION

- In July 1971, at the end of the last Apollo 15 moon walk, Commander David Scott performed a live test of $\mathrm{m}_{\mathrm{I}} / \mathrm{m}_{\mathrm{G}}$ for the television cameras
https://en.wikipedia.org/wiki/File:Apollo_l
5_feather_and_hammer_drop.ogv

EQUIVALENCE OF INERTIAL AND GRAVITATIONAL MASS

－Verified by various experiments（drop tower，pendulum．．．）
－ $\mathrm{m}_{\mathrm{I}}=\mathrm{m}_{\mathrm{G}}$ for all bodies－the＂weak equivalence principle（弱等效原理）＂

WHY DO ASTRONAUTS ON INTERNATIONAL SPACE STATION (ISS) FEEL WEICHTLESS?

- The ISS orbits about 500km above Earth's surface. Radius of Earth is 6300km
- Gravitational acceleration at ISS is 86% of that on the Earth's surface!
- They feel weightless because the astronauts "fall" toward Earth at the same rate as the space station
- This is another example of the weak equivalence principle

THE SPEED OF LIGHT PROBLEM

- Relativity: how to relate measurements in different frames of references
- Galilean relativity - simple velocity addition law

WHAT ABOUT LICHT?

- In the 1860's, James Clerk Maxwell (1831-1879) developed theory of electromagnetic fields, i.e., the Maxwell's equations

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}} & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mu_{0} \mathbf{j}+\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

- Light - waves of electromagnetic energy
- The speed of light "c" appears as a fundamental constant in the equations
- c = 299, $792,458 \mathrm{~km} / \mathrm{s}$
- But, what frame of reference is this speed measured relative to?

LICHT TRAVELS IN AETHER (乙太)?

- In the $19^{\text {th }}$ century, it was believed that light travels in "Aether", a hypothetical substance that fills space through which light travels
- It was presumed that "c" should be measured w.r.t the rest frame of the Aether
- Albert Michelson \& Edward Morley attempted to measure change of speed of light due to Earth's motion through Aether (1887)

Michelson-Morley Experiment

Screen to detect Interference pattern

MICHELSON-MORLEY RESULTS

- Travel time difference measured using interference fringes of light from two paths
- Repeated at different times of year (Earth's orbital speed around the Sun is ~30km/s)
- Results showed that speed of light is the same in any direction within $5 \mathrm{~km} / \mathrm{s}$
- Modern versions of the experiment show consistency better than 1 micron/s!

EINSTEIN'S POSTULATES OF SPECIAL RELATIVITY (1905)

- Albert Einstein abandoned:
- The idea of Aether
- Galilean relativity
- Two postulates:

1) Laws of physics are invariant in all inertial (nonaccelerating) frames of reference
2) The speed of light in a vacuum is the same for all observers

EFFECT OF TIME DILATION

- Imagine a "light clock" which ticks each time when the light hits one of the mirrors
- In (a), $t_{0}=l / c$
- In (b), $t=\frac{\sqrt{l^{2}+v^{2} t^{\prime 2}}}{c}$
$\Rightarrow \quad t=\frac{t_{0}}{\sqrt{1-v^{2} / c^{2}}}$

(a)

(b)

TIME DILATION

$$
t=\frac{t_{0}}{\sqrt{1-v^{2} / c^{2}}}=\gamma t_{0}
$$

- Time is relative! The moving clock ticks more slowly by the Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

- $t_{0}=$ proper time $=$ time measured when clock is at rest

(a)

(b)

LORENTZ FACTOR
 $$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

- Goes to infinity as $\gamma->1$
- Close to 1 for small v/c
- A 1% effect at $v=0.14 \mathrm{c}$ or $42,000 \mathrm{~km} / \mathrm{s}$
- A 10% effect at $v=0.42$ c or $126,000 \mathrm{~km} / \mathrm{s}$

MUUON EXPERIIIENT

- Muons are fundamental particles produced when cosmic rays (relativistic charged particles) hit the Earth's atmosphere
- Muons decay with a half life of $2.2 \mu \mathrm{~s}$
- Muons travel at 0.99995c
- Rossi \& Hall (1940) and Frisch \& Smith (1963) compared number of muons at the top of mountain to that at sea level

$$
N=N_{0} 2^{-\frac{t}{t_{1 / 2}}}
$$

MUUON EXPERINENT

- They found 560 muons/hour at top of a 2000 m mountain
- At v $=0.99995 \mathrm{c}$, it takes $6.7 \mu \mathrm{~s}$ for muons to travel 2000m
- More than 3 half lives, so less than l/8 of particles should be left at sea level
- But they measured 543 muons/hour at bottom!

MUON EXPERIMENT

- Muons travel at $\mathrm{v}=0.99995 \mathrm{c}=>\gamma=100$
- Muon's half life measured in its rest frame is 2.2 $\mu \mathrm{s}$, which is dilated in Earth's frame to $2.2 \times 10^{-4} \mathrm{~s}$
- $6.7 \mu \mathrm{~s}$ is only 0.03 x half life is passed as viewed by an observer on Earth
- Number consistent with time dilation predicted by special relativity!

IN MUON'S REFRRENCE FRAME?

- The muons see the mountain moving at $\mathrm{v}=0.99995 \mathrm{c}$ towards them
- For the muons, $\mathrm{t}=0.03 \times$ (half life of $2.2 \mu \mathrm{~s}$) $=6.7 \times 10^{-2} \mu \mathrm{~s}$ has passed
- It would think the height of the mountain is $\mathrm{H}=0.99995 \mathrm{c} \times \mathrm{t} \sim 20 \mathrm{~m}$!

LENGTH CONTRACTION

- Space is also relative! A moving object contracts by a factor of γ in the direction of motion

$$
L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}=L_{0} / \gamma
$$

- $\mathrm{L}_{0}=$ proper length = length measured in a reference frame where the object is at rest

[^0]
LORENTZ TRANSFORMATION

- Based on Einstein's two postulates, one can derive the Lorentz transformation:

$$
\begin{aligned}
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{v x}{c^{2}}\right)
\end{aligned}
$$

- Note that space and time are interconnected to form a 4-dimensional spacetime

LORENTZ TRANSFORMATION

- In matrix representation:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
c t^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\beta \gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\beta \gamma & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
c t
\end{array}\right)
$$

- ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{ct}$) is the position-time 4-vector
- $\beta=v / c$

SIMULTANEOUS OR NOT?

- Consider an observer in a room. Suppose there is a flash bulb exactly in the middle of the room
- Sensors are put on the walls to record when the light rays hit the walls
- The light rays will hit opposite walls at precisely at the same time. Call these events A and B.

SIMULTANEOUS OR NOT?

- Now perform the same experiment on a moving spacecraft, and observe it from the ground
- Astronauts in spacecraft think events are simultaneous
- For the observer on the ground, the light rays will NOT strike the walls at the same time; A will happen before B.
" Therefore, the concept of "events being simultaneous" is different for different observers

LETYS CHANGE FRAMES AGAIN!

- What would a $3^{\text {rd }}$ observer think who is moving faster than the spacecraft?

- He would see event B happens before event A
- Therefore, order of events can depend on the frame of reference

THE LASER GUN EXPRRIMENT

- Suppose there is a laser gun at one end of spacecraft, targeted at a victim at the other end
- Laser gun fires (event A) and then victim gets hit (event B)
- Can we change the order of these events by changing the frame of reference? That is, can the victim get hit before the gun fires?

Group discussion:

Please break into groups of 3-4 people. Discuss your answers and provide an argument/proof. Write down your names and answers on a piece of paper and submit it to the TA.

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)
\end{aligned}
$$

THE LASER GUN EXPERIMENT

- One can show that, because events A and B are causally connected, their orders cannot be changed by changing to any reference frames unless the observer is moving faster than c
- Since nothing could move faster than light, causality is preserved
- In contrast, the events A and B in the previous example (light hitting opposite walls) do NOT have any causal relationship, so it is possible to change their order

SPACETIME DIAGRAM

- Diagram used to show when and where events occur in the 4-D spacetime
- For Minkowski (flat) spacetime, a light ray would travel along a trajectory with slope of 1
- Light cone -- path of light rays traveling in all directions emanating from a single event
- World line - path of an object in the 4-D spacetime

SPACETIME DIAGRAM

- Consider the quantity "spacetime interval":

$$
S^{2}=(c t)^{2}-x^{2}-y^{2}-z^{2}
$$

- It is a Lorentz invariant - the value does not change by changing frames
- Spacetime can be divided into three regions:
- $\mathrm{S}^{2}=0$: lightlike; this defines the light cones
- $\mathrm{S}^{2}>0$: timelike; region inside the light cones
- $\mathrm{S}^{2}<0$: spacelike; region outside the light cones

SPACETIME DIACRAM

- Event B is within the light cone of event A and can communicate by sending a signal at, or less than, the speed of light -> causally connected. Cannot change order by changing frames of reference
- Events C and A are causally disconnected. Possible to change their order by changing reference frames
- For any event, the light cones clearly define past, future, and elsewhere

LORENTZ TRANSFORMATION ON SPACETIME DIAGRAMS

- Recall Lorentz transformation:

$$
\begin{aligned}
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{v x}{c^{2}}\right)
\end{aligned}
$$

- The primed axes could be found by setting $x^{\prime}=0$ or ct' $=0$
- The axes are oblique
- This is useful when thinking about
 events from different reference frames

VELOCITY TRANSFORMATION

- A train moves at 0.8 c . A person is firing a bullet with 0.6 c relative to the train. How fast does it move relative to the ground?
- Galilean transformation: 0.8c $+0.6 \mathrm{c}=1.4 \mathrm{c}->$ clearly wrong!

NEW VELOCTITY HDDITION LAW IN SR

- From the Lorentz transformation, one can derive:

$$
\begin{aligned}
u_{x}^{\prime} & =\frac{u_{x}-v}{1-v \cdot u_{x} / c^{2}} \\
u_{y}^{\prime} & =\frac{u_{y}}{\gamma\left(1-v \cdot u_{x} / c^{2}\right)} \\
u_{z}^{\prime} & =\frac{u_{z}}{\gamma\left(1-v \cdot u_{x} / c^{2}\right)} .
\end{aligned}
$$

- Note that the transverse velocities in y and z directions (if nonzero) are also altered!

BULLET ON THE TRAIN EXAMPLE

- Bullet speed seen from ground: $\quad u_{x}=\frac{u_{x}^{\prime}+v}{1+v \cdot u_{x}^{\prime} / c^{2}}=\frac{(0.6+0.8) c}{1+(0.6)(0.8)}=0.95 c$
- What about light itself, i.e., firing a laser gun? $\quad u_{x}=\frac{(1.0+0.8) c}{1+(1.0)(0.8)}=c$.

MASS AND ENERGY IN SR

- One can show that, in a collision of two particles, the following "mass" is conserved:

$$
m_{r}=\frac{m}{\sqrt{1-v^{2} / c^{2}}}=\gamma m
$$

$$
\text { mr }_{r} \text { " "relativistic mass" }
$$

m: "rest mass"

- Note that the relativistic mass goes to Infinity as v->c
- It takes infinite energy to pull an object as v->c => nothing can move past c!

MASS AND ENERGY IN SR
 $$
m_{r}=\frac{m}{\sqrt{1-v^{2} / c^{2}}}=\gamma m
$$

- Do a binomial expansion in v/c: $\quad \gamma m=m\left(1-v^{2} / c^{2}\right)^{-1 / 2}$

$$
=m+\frac{1}{2} m \cdot v^{2} \cdot \frac{1}{c^{2}}+\frac{3}{8} m \frac{v^{4}}{c^{4}} \cdots
$$

- We obtain the total energy:

"rest mass energy" "relativistic kinetic energy" $\boldsymbol{T}=\boldsymbol{E}-\mathrm{mc}^{2}$
- Consequences:
- Mass and energy are equivalent!!
- Conservation of mass is the same as conservation of energy

MASS AND ENERGY IN SR

- Define the relativistic momentum:

```
p=\gammamv
```

- Useful formula: $p c=\gamma m v c=E \beta$

For photons: $E=p c$

- Another useful formula: $E^{2}=p^{2} c^{2}+m^{2} c^{4}$ That is, $E^{2}-p^{2} c^{2}$ is Lorentz invariant

LORENTZ TRANSFORMATION OF P AND E

- Lorentz transformation of momentum and energy: $\quad p_{x}^{\prime}=\gamma\left(p_{x}-\beta \cdot \frac{E}{c}\right)$

$$
\begin{aligned}
p_{y}^{\prime} & =p_{y} \\
p_{z}^{\prime} & =p_{z} \\
\frac{E^{\prime}}{c} & =\gamma\left(\frac{E}{c}-\beta p_{x}\right) .
\end{aligned}
$$

- Transformation of the momentum-energy 4 vector using matrix form:

$$
\left(\begin{array}{l}
p_{x}^{\prime} \\
p_{y}^{\prime} \\
p_{z}^{\prime} \\
\frac{E^{\prime}}{c}
\end{array}\right)=\left(\begin{array}{llll}
\gamma & 0 & 0 & -\beta \gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\beta \gamma & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
\frac{E}{c}
\end{array}\right)
$$

RELATIVISTIC DOPPLER'S EFFECT

- Classical case:

$$
v^{\prime}=\frac{v}{(1-\beta)}
$$

RELATIVISTIC DOPPLER'S EFFECT

- With SR, since the source is moving with v, its clock runs more slowly by a factor of

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

$$
\begin{aligned}
& v^{\prime}=\frac{v}{\gamma(1-\beta)} \\
& =v \sqrt{\frac{1+\beta}{1-\beta}}
\end{aligned}
$$

$$
\begin{aligned}
& v^{\prime}=\frac{v}{\gamma(1+\beta)} \\
& =v \sqrt{\frac{1-\beta}{1+\beta}}
\end{aligned}
$$

ABERRATION OF LIGHT（光行差）

－Stellar aberration：apparent motion of stars about their true positions due to velocity of the observer
－This effect causes the stellar positions to vary periodically over the course of a year by ~ 20 arcseconds
－Galilean relativity：

$$
\tan (\phi)=\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{u_{y}}{u_{x}+v}=\frac{\sin (\theta)}{v / c+\cos (\theta)}
$$

ABERRATION OF LICHT（光行差）

－With the new velocity addition law in SR：

$$
\tan (\phi)=\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{u_{y}}{\gamma\left(u_{x}+v\right)}=\frac{\sin (\theta)}{\gamma \gamma v / c+\cos (\theta))}
$$

ABERRATION OF LICHT（光行差）

－Because of aberration，light rays emitted by a source moving close to c would be beamed toward the observer
－This effect would make the source appear much brighter！

BHACK HOLE JETS

Chandra X-ray image of SMBH jets in Centàurus A galaxy

RPTTHMTMTTRGPTMMTME

- Also called "Doppler beaming" or "Doppler boosting"
- Refers to how apparent luminosity of emitting matter moving close to c is modified by SR effects
- It includes the combined effects of relativistic Doppler's effect and relativistic aberration
- This is why the approaching jet of the BH is much brighter than the receding jet and is more easily observable
- This is one of the hints that BH jets are relativistic!

Plume

Jet

Plume

SUMMMRY

- Before 1905...
- The transformation between inertial (non-accelerating) frames is described by Galilean transformation
- Newton's three laws of motions come from symmetry of space and conservation of momentum
- Weak equivalence principle: $\mathrm{m}_{\mathrm{I}}=\mathrm{m}_{\mathrm{G}}$, or that gravitational acceleration is independent of mass
- Michelson-Morley experiment showed that speed of light is constant
- Two postulates of Einstein's theory of special relativity:

1) Laws of physics are invariant in all inertial frames of reference
2) The speed of light in a vacuum is the same for all observers

SUMMARY

- Consequences of SR:
- Time dilation
- Length contraction
- Relativity of simultaneity
- New velocity addition law
- Mass and energy equivalence
- Astrophysical effects of SR:
- Relativistic Doppler's effect = Classical Doppler's effect + time dilation
- Relativistic aberration = Classical aberration + new velocity addition law
- Relativistic beaming = relativistic Doppler's effect + relativistic aberration => could explain why we often see one-sided/brighter BH jets

[^0]: The same train is now moving relative to you.

