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• HW1 is due TODAY! Late submissions within a week still count with half credits.

• Homework solutions will be posted on iLMS and course website 1 week after due.

• For students who asked questions during or after class, please don’t forget to tell 
the TA to receive the class participation points!

• You could start finding your teammates for the final report. Once you form a group 
of 3 people, choose a team leader and enter your names in iLMS.



§ Before 1905…
§ The transformation between inertial (non-accelerating) frames is described by 

Galilean transformation
§ Newton’s three laws of motions come from symmetry of space and conservation 

of momentum
§ Weak equivalence principle: mI = mG, or that gravitational acceleration is 

independent of mass
§ Michelson-Morley experiment showed that speed of light is constant

§ Two postulates of Einstein’s theory of special relativity:
1) Laws of physics are invariant in all inertial frames of reference
2) The speed of light in a vacuum is the same for all observers



§ Consequences of SR:
§ Time dilation
§ Length contraction
§ Relativity of simultaneity
§ New velocity addition law
§ Mass and energy equivalence

§ Astrophysical effects of SR:
§ Relativistic Doppler’s effect = Classical Doppler’s effect + time dilation
§ Relativistic aberration = Classical aberration + new velocity addition law
§ Relativistic beaming = relativistic Doppler’s effect + relativistic aberration 

=> could explain why we often see one-sided/brighter BH jets



§ Classical Doppler’s effect + time dilation effect
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§ Stellar aberration: apparent motion of stars about their 
true positions due to velocity of the observer

§ Galilean relativity:

§ With the new velocity addition law in SR:



§ Because of aberration, light rays emitted by a source moving close to c 
would be beamed toward the observer

§ This effect would make the source appear much brighter! 

Observer

Radio galaxy 3C31



§ “Special” means that this theory only applies to inertial (non-accelerating) frames 
of reference

§ “Relativity” means that space and time are “relative”, depending on which frames 
of reference the measurement is based on
§ Time is not an absolute entity
§ Only the speed of light is universal
§ Clocks would appear to tick slower for faster moving objects
§ All inertial reference frames are equivalent, so there is no way to tell if you are 

moving or other things are moving relative to you. However, everyone should 
agree with some basic facts (e.g., Newton’s laws, who is older or younger)

§ Many paradoxes can be resolved by realizing the fact that “simultaneity is 
relative.”



§ A and B are twins. B leaves Earth at high speeds in a spaceship. A stays on Earth 
and watches B’s clock slowing down. B ages more slowly than A, and therefore 
when B returns, he would be younger than A.

§ But, from B’s perspective, it is A who has moved away and come back again. So 
shouldn’t A be the younger one?

B A



§ Solution 1: In order for B to come back to Earth, his spaceship must change 
directions, i.e., accelerate, and therefore breaking the symmetry of the problem.

§ B would notice the acceleration and agree that he is the younger one when they 
meet. 

B A



§ Solution 2: To avoid acceleration, let’s introduce a third 
“twin” C who has velocity –v relative to A and who 
coordinates his clock with B as they cross.

§ From A’s perspective, both B and C move with high 
speeds to their clocks would appear to tick slower. 
Therefore, C should be younger than A when they 
meet.

§ For the duration of both B’s outbound trip and C’s 
returning trip, they think A’s clock tick slower and A 
ages slower during their trips.

§ The paradox can be resolved by realizing that, when B 
and C pass by each other, their readings of A’s clock 
are different, due to the relative simultaneity! 

§ If they record the difference between their readings 
and adjust their clocks, they would agree that A should 
be the older one when A and C meet. 

B A



§ Finally talking about gravity

§ Putting together SR and gravity
§ Effect of gravity on light
§ Effect of gravity on time
§ Strong equivalence principle

§ Einstein’s theory of general relativity
§ What it says
§ Predictions and verifications
§ How to express curved spacetime using math
§ How objects move in curved spacetime





§ SR says speed of light is a universal constant and nothing could travel faster than c
§ Consistent with Maxwell’s EM equations -> but no gravity in it!
§ Newtonian gravity is a long-range force which exists between any two masses in 

the universe! -> but how to make it consistent with finite light speed? 

𝐹 =
𝐺𝑚"𝑚#
𝑟#



§ Suppose light is NOT affected by gravity

§ Consider a tower on Earth
§ Shine a light ray from bottom to top

§ Convert light energy into mass

§ Drop mass from top to bottom

§ Convert mass back into energy

3 

I: Einstein’s Tower 

n  Another thought 
experiment… suppose 
that light is not 
affected by gravity. 

n  Consider a tower on 
Earth 
l  Shine a light ray from 

bottom to top 
l  When light gets to top, 

turn its energy into 
mass. 

l  Then drop mass to 
bottom of tower. 

l  Then turn it back into 
energy 

n  So… 
l  Suppose original photon energy E 
l  By assumption, it is not affected by gravity so it has 

energy E once it reaches top 
l  Thus, mass created at top is m=E/c2 
l  Then drop mass… at bottom of tower, it has picked 

up speed due to the conversion of gravitational 
potential energy (Egrav=mgh) 

l  When we convert it back into energy, we have 

l  We have made energy!   We’re rich!!!! 

E

m=E/c2

Eg = mgh
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l  Suppose original photon energy E 
l  By assumption, it is not affected by gravity so it has 

energy E once it reaches top 
l  Thus, mass created at top is m=E/c2 
l  Then drop mass… at bottom of tower, it has picked 

up speed due to the conversion of gravitational 
potential energy (Egrav=mgh) 

l  When we convert it back into energy, we have 

l  We have made energy!   We’re rich!!!! We gained 
energy!!



§ To conserve energy light MUST be affected 
by gravity

§ The photon needs to lose energy as it climbs 
upwards:

§ This is known as gravitational redshift –
gravity affects frequency of light!
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n  Clearly something is wrong with our assumptions… 
l  Only way we can conserve energy is to suppose that light 

is affected by gravity… 
l  We need the photon to lose energy as it climbs upwards… 

at top of tower, we must have 

l  This is known as gravitational redshift 

n  The profound nature of gravitational redshift… 
l  Imagine a clock based on the frequency of light 
l  Place the clock at the base of the tower… observe it from 

the top. 
l  Photons lose energy… so they decrease frequency 
l  Thus, we see the clock running slowly! 
l  Time passes at a slower rate in a gravitational field! 



§ Imagine a clock based on frequency of light

§ Place the clock at the base of tower and 
observe it from the top

§ Photons lose energy and frequency 
decreases

§ Thus, we see the clock running slowly

§ Time would appear to run slower in a 
gravitational field!

§ This is called gravitational time dilation –
gravity affects time!
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§ In 1959, Robert Pound and Glen Rebka
conducted the “Einstein’s Tower” experiment 
at the Jefferson laboratory at Harvard

§ They measured the frequency shift of light 
shining from top to bottom

§ Height of tower h = 22.5m, gh/c2 ~ 2.5x10-15

§ They shine 14keV gamma rays in order to 
measure the effect! 

§ Confirmed the blueshift of light rays at 
bottom



§ In 1971, Hafele & Keating flew around the 
world with atomic clocks and compare with 
clocks on the ground

§ They flew both eastbound and westbound to 
test SR effects due to relative velocities

§ Clocks on the ground run slower compared to 
clocks on the plane due to gravitational time 
dilation

§ Results fully consistent with SR+GR 
predictions 

5 

Hafele–Keating experiment 

n  Hafele & Keating 
(1971) flew around 
world with atomic 
clocks… 

n  Clock on plane gained 
time relative to one 
on ground by… 
l  273±7ns (Westbound) 
l  -59±10 (Eastbound) 

5 

Hafele–Keating experiment 

n  Hafele & Keating 
(1971) flew around 
world with atomic 
clocks… 

n  Clock on plane gained 
time relative to one 
on ground by… 
l  273±7ns (Westbound) 
l  -59±10 (Eastbound) 



§ On Earth we see light affected by gravity, 
but gravity is not in Maxwell’s equations, 
which works in inertial frames described 
by SR

§ So Earth’s surface is not an inertial frame of 
reference

§ Could we change reference frames to 
remove this effect? That is, a reference 
frame where light frequency does not 
change and the laws of physics can be 
simply described by SR?
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§ From Earth’s frame:
§ Free-falling observer travels faster and faster, 

corresponding to an increasing blueshift
§ Since frequency of light is redshifted as it 

climbs up, the free-falling observer would 
see light ray at a constant frequency, i.e., 
unaffected by gravity

§ When gravity is present, the free-falling 
(accelerating) frame of reference would 
observe laws of physics described by SR 
same as any inertial reference frame

§ In other words, the free-falling observers 
are (locally) free of effects of gravity 
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n  So, light is affected by gravity… 
l  But gravity does not appear in Maxwell’s 

equations 
l  Thus, Maxwell’s equations are not valid in 

the reference frame of Earth’s surface. 
l  The Earth’s surface must not be an inertial 

frame of reference. 

n  Free-falling (FF) observer 
sees light ray travel 
unaffected by gravity. 

n  From “Earth’s” frame… 
l  Free-falling (FF) observer 

traveling faster and faster 
l  FF observer would an 

increasing blueshift 
l  Since FF observer sees an 

unaffected (I.e. constant 
frequency) light beam, light 
must get progressively 
redshifted as it climbs up. 

l  Redshifting removes just 
the right amount of energy 
to solve tower paradox. 



§ Einstein: “A free-falling (accelerating) frame of reference in a gravitational field is 
equivalent to the inertial frames of special relativity.”

§ There is no way to tell the difference between a free-falling frame in a gravitational 
field and an inertial frame without gravitational field

7 

II: Strong Equivalence Principle 

n  Recap of the weak equivalence principle 
l  All objects accelerate at the same rate in a 

given gravitational field. 
l  In other words, inertial and gravitational 

masses are the same for any object. 
n  Einstein introduced the strong equivalence 

principle – when gravity is present, the 
inertial frames of Special Relativity should be 
identified with free-falling frames of reference. 

n  What does this mean??? 

n  There is no way of telling the difference 
between a free-falling frame in a gravitational 
field and an inertial frame in no gravitational 
field… the two are equivalent. 



§ Newton’s 2nd law:

§ Newton’s law of gravitation:

§ Weak equivalence principle: mI= mG

§ So, gravitational acceleration is independent of the object’s mass

𝐹 =
𝐺𝑀𝑚$

𝑟#

𝐹 = 𝑚%𝑎

𝑎 =
𝑚$

𝑚%

𝐺𝑀
𝑟#

=
𝐺𝑀
𝑟#

mI = inertial mass

mG = gravitational mass



§ They feel weightless because the astronauts 
“fall” toward Earth at the same rate as the 
space station – this is due to the weak 
equivalence principle

§ They are in a free-falling frame in Earth’s 
gravitational field

§ The strong equivalence principle says that 
this free-falling frame is equivalent to an 
inertial frame without gravity 

§ This is exactly true! They feel weightless 
just like what they would feel floating in 
deep space away from the Earth! 



§ We measure “weight” standing on a scale due to Earth’s gravity

§ We would in fact measure the same weight if we were standing on scale inside an 
accelerating rocket

§ There is also no way to tell the difference between gravity and an accelerating 
frame of reference

§ Gravity is an illusion caused by the fact that we are in an accelerating frame!!!



§ Hint 1: 
§ Taking Earth for example, there is no single accelerating reference frame that 

works
§ Somehow we need to stick together reference frames accelerating in different 

directions

§ Hint 2 -- inspecting the weak equivalence principle:
§ (inertial mass)*(acceleration) = (gravitational mass)*(gravitational field)
§ a = GM/r2

§ It suggests that “acceleration” seems to be a geometrical property of M!



§ Matter and energy causes the 4-D 
spacetime to curve

§ Free-falling objects move on “geodesics” 
(straight lines) through the 4-D spacetime

§ Geodesics is the shortest path between 
two points on a surface



§ Path flown by aircraft – great circles on the surface of a sphere

3 



§ Geodesics that start parallel can converge or diverge (or even cross)

4 

n  Another example – a “saddle” 

n  Geodesics diverge 







§ Within a free-falling frame, the SR applies

§ Spacetime is curved around objects with mass and energy

§ Objects move on geodesics (測地線) through curved spacetime

§ “Matter/energy tells spacetime how to curve; spacetime curvature tells 
matter/energy how to move”



§ G = Einstein curvature tensor, which describes curvature of 4-D spacetime

§ T = Stress-energy tensor, which describes distribution of mass/energy 

§ 10 coupled non-linear partial differential equations!

§ Reduce to Newtonian gravity for weak gravitational fields

6 

n  Notes: 
l  The Einstein curvature tensor “G” is mathematical 

object describing curvature of 4-D space-time. 
l  The Stress-Energy tensor “T” is mathematical object 

describing distribution of mass/energy. 
l  Newton’s constant of gravitation “G” and the speed 

of light “c” appear as fundamental constants in this 
equation.  

l  This is actually a horrendous set of 10 coupled non-
linear partial differential equations!! 

n  For weak gravitational fields, this reduces to 
Newton’s law of gravitation. 

G =
8πG
c4
T

III: GR EFFECTS IN THE 
SOLAR SYSTEM 

n  Have already heard about bending of star light 
by the Sun (detected by Eddington). 

n  Orbit of Mercury: 

Einstein field equation:





§ For an astronaut in an inertial frame with flash light, light goes in straight lines

§ If we look at the same light path from an accelerating reference frame, light beam 
would bend and appear to ”fall”

§ According to the strong equivalence principle, light would also fall due to gravity!

10 

Elevator at rest on Earth equivalent to elevator 
being pulled by accelerating rocket in deep space 

a=9.8 m/
s2 

Light falls! 

n  Astronaut in inertial frame with flash light 
l  Inertial frame, so light goes in straight lines 

n  What if we now look at the same light path 
from an accelerating reference frame? 
l  Light beam will bend – it appears to fall 
l  Important conclusion – light “falls” due to gravity! 



§ Light follows geodesics in curved spacetime => 
light bends when traveling by a massive object 
(“gravitational lensing” effect)



1.75 角秒



üGravitational lensing (this lecture)

üOrbital precession of Mercury (this lecture)

üGravitational redshift (discussed)

üGravitational time dilation (discussed, more in this lecture)

üExpansion of the universe (not covered)

üGravitational waves (Week 15)

üExistence of black hole event horizon (Week 14)



§ Light from distant sources bends when 
passing through a massive object to an 
observer

§ Deflection angle can be computed 
using GR:

§ R = impact parameter = projected 
distance between source and lens axis

§ The effect is typically small
§ ~arcseconds by a galaxy with 1011

Msun

§ ~arcminutes by a galaxy cluster with 
1014-15 Msun
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Figure 19. Gravitational deflection of light

and adding this into the original solution yields

u =
sin�
R

+
3GM

2c2R2

✓
1 +

1
3

cos 2�
◆
. (9.8)

Now consider the limit r ! 1, i.e. u ! 0. Clearly we can take sin� ⇡ �,
cos 2� ⇡ 1 there, and we obtain � = �2GM/(c2R) so that the total deflection (see
figure) is

D� =
4GM

c2R
. (9.9)

This is the famous gravitational deflection formula. For the Sun it yields 1.77 seconds
of arc, and was first verified in the 1919 eclipse expedition. More recent high precision
tests use radio sources, since these can be observed near the Sun, even when there is
no eclipse, and there is now no doubt that the GR prediction (which incidentally is



Einstein ring – LRG3-757 (HST) 

Einstein cross – QSO2237+0305

Arcs – RCS2 032727-132623 (HST)

DIFFERENT MORPHOLOGIES 
BY STRONG LENSING



§ Deflection is so weak that it is impossible to detect using a single background source

§ The foreground mass can still be detected by systematic alignment of background 
sources around the lensing mass

§ By statistically measuring shear in galaxy shapes, mass distribution of the lens can be 
determined



§ Measurable when the lens is massive, e.g., by 
galaxy clusters (M ~ 1014-15 Msun)

§ Important way to measure mass in clusters for 
constraining cosmological parameters of cosmic 
expansion

§ Famous example – the “Bullet cluster”
§ Merger of two galaxy clusters
§ Mass distribution inferred from weak lensing 

strongly suggest the existence of dark matter!

X-ray: gas
Lensing: dark matter



§ No distortion in shape can be seen but 
brightness of background objects 
changes in time

§ Often seen as the lens move across 
background star/quasar

§ Extreme example: MACS J1149 or 
“Icarus” – the most distant star 
observed (*14 billion light years away 
or z=1.49) 

Typical light curve of a microlensing event

*This refers to “comoving distance” in cosmology



§ One of the examples of gravitational time dilation

§ Refers to the delay of photon arrival time when light passes by a massive object

§ Proposed by Irwin Shapiro in 1964

§ First detected using radars bouncing off Mercury and Venus when Sun passes in between

VOr.UME 20, NUMBER 22 PHYSICAL RKVIKW LKTTKRS 27 Mar 1968

Superior Conjunctions
24 AUG t967 it MAY i967 ~t6 JAN t967

100—
I

(a)

II I , I„ .
iP&ff 'fj.' (I

,JHIj. L,J.. JII I,I, I IJ at IW'j'I'r"o I I I I 1 II'7'Il

10'. On the other hand, systematic errors in the
orbits of Mars and the outer planets affect the in-
terpretation of the measurements by as much as
several parts in 10', we are therefore reducing
all observations (old and new) of these planets to
improve their orbits as well, but the reduction
will not be completed for some months.
The residuals (observed minus computed val-

ues) obtained when using the maximum likeli-
hood estimates of the parameters are illustrated
in Fig. 2, where the time-delay measurements
are compared with theoretical values for Earth-
Mercury and Earth-Venus observations made be-
tween late 1966 and mid 1967. In Fig. 3 we show
a comparison, for the last two observed superi-
or conjunctions of Mercury, between the mea-
surements in the second data set and the corre-
sponding predictions based on the first set. Be-
cause of the inability to separate completely the
orbit determinations from the test of the predict-
ed gravitational increase in time delays, the re-
sults shown in Fig. 3 can be somewhat mislead-
ing. Nonetheless, it seems safe to conclude that
the sun's gravity does slow the speed of propaga-
tion of light by about the amount predicted by
Einstein's theory. ' A more quantitative mea-
sure of the agreement is provided, for example,
by estimating 24 parameters: the 23 described
above plus one defined as the coefficient of the
"extra" delay in the formula expressing the co-

ordinate time delay as a function of the orbital
positions of the planets. A value of zero for this
parameter xE would imply that light travels rec-
tilinearly at a constant speed, whereas a value
of unity implies that general relativity is cor-
rect. We obtained r~ = 0.9, with the post-fit re-
siduals being very similar to the values shown
in Fig. 2. The purely formal standard error, re-
sulting from the statistical analysis in which all
estimated measurement errors are assumed to
be independent and Gaussianly distributed with
zero means, is 10'Fz. The actual uncertainty is
probably higher, but is very difficult to estimate
reliably. We feel that x~= 0.9+ 0.2 represents a
realistic estimate of the uncertainty. Our pres-
ent result is therefore incapable of distinguish-
ing between the predictions of general relativity
and, for example, those of the Brans-Dicke the-
ory' with the free parameter s having the val-
ue 0.06"which corresponds to xE=0.94. In
terms of the usual notation for the generalized
metric, our result implies that y=0.8+0.4,
since rf = —,(1+y). ' (The equivalence is not pre-
cise because, in our treatment, y was set equal
to unity in computing the orbital motions of the
planets. )
In addition to the possible sources of systemat-

ic errors already mentioned, two others require
separate discussion. First, a subtle manufac-
turer's design error in the digital computer
used at the Haystack site to process the incom-
ing radar signals was not discovered and fixed
until after the May 1967 superior conjunction of
Mercury. (Only the weak signals were affected
significantly and since few observations were

27 OCT 1966 - 13 SEPT 1967 HAYSTACK

I I I I I I I I I I I I I I

9740 9700 9660 9620 9580 9540 9500 9460 9420

I

SUPERIOR CON JUNCTIONS
I

I

100—
CL'
OIJjXI-
I
Cl
ILI

K
IAJ
COat -100—
O

Inferior Conjunction
30 AUG 1967

r 7 Q j 96 rrttjITL

23 MAR - 19 OCT 1967

35 JL xhrkxHx
&&' 'II*

I MILLSTONE

f HAYSTACK

(b) LJ
tJJ

140—

ILIO 120—
(0(0
ILI
OX 100—

—MEASURE—- PREDICTE

-200 I

9780
I I

9740
I I I I I I I I I

9700 9660 9620 9580 9540
TIME (Julian Day Number-2430000)

I

9500

FIG. 2. Post-fit residuals of (a) Earth-Mercury and
(b) Earth-Venus time-delay data obtained at Haystacl.
and Millstone. Measurements made near superior con-
junction (see Fig 3) were not inculed in the solution for
the unknown parameters. (Note that time increases
from right to left).
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FIG. 3. Comparison of measured and predicted ef-
fects of general relativity on Earth-Mercury time de-
lays. Predictions are based on orbits determined
from other data.
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§ Pulsars are rotating neutron stars whose 
pulses are natural clocks

§ In pulsar binary systems, light arrival 
time would be delayed when one pulsar 
orbits behind its companion due to the 
curved spacetime





§ In 4-D spacetime, any event can be specified by 4 
real numbers, (x0, x1, x2, x3) = (ct, x, y, z)

§ For Minkowski (flat) spacetime, the interval 
(distance) between two events is

§ It is a Lorentz invariant – the value does not change 
by changing frames

§ t is the proper time
§ Spacetime can be divided into three regions:

§ Δ S2 = 0: lightlike; this defines the light cones
§ Δ S2 > 0: timelike; region inside the light cones
§ Δ S2 < 0: spacelike; region outside the light cones

§ In Minkowski spacetime, light cones always point 
upward with slope 1

A (ct1, x1, y1, z1)

B (ct2, x2, y2, z2)

Δ𝑆# = (𝑐Δ𝑡)#−(Δ𝑥)# − (Δ𝑦)# − (Δ𝑧)# ≡ (𝑐Δ𝜏)#



§ Position-time 4 vector: (x0, x1, x2, x3) = (ct, x, y, z)

§ For Minkowski (flat) spacetime, the interval 
between two events with close separation is

where the Minkowski metric tensor is:

𝑑𝑠# = (𝑐𝑑𝑡)#−(𝑑𝑥)# − (𝑑𝑦)# − (𝑑𝑧)#

=;
&

;
'

𝜂&'𝑑𝑥&𝑑𝑥' =𝜂&'𝑑𝑥&𝑑𝑥' . (𝜇, 𝜈 = 0,1,2,3)



§ When the spacetime is curved, we could use 
a mathematical object called “4-D manifold 
(流形)” to describe its geometry

§ We could generalize the differential interval 
on the manifold into:

§ Locally, the manifold is flat, i.e., 

1.2 Tetrads: Orthogonal Unit Vector Fields 5

Fig. 1.2 Tangent flat space at
a point P of a curved manifold

A manifold with such a property is called pseudo-Riemannian. If gµν(P ) = δµν the
manifold is called strictly Riemannian.

The basis is called orthonormal when êµ • êν = η
µ
ν at any given point P . Notice

that since the tetrads are 4-dimensional we can write

eµa(x)ea
ν (x) = gµν(x),

and

eµa(P )ea
ν (P ) = ηµν .

The tetrads can vary along a given world-line, but always satisfying

eµa(τ )ea
ν (τ ) = ηµν .

We can also express the scalar product v • w in the following ways:

v • w =
(
vµêµ

)
•

(
wν ê

ν
)
=

(
êµ • êν

)
vµwν = gµνvµwν,

v • w =
(
vµêµ

)
•

(
wν ê

ν
)
=

(
êµ • êν

)
vµwν = vµwνδ

ν
µ = vµwµ

and

v • w =
(
vµêµ

)
•

(
wν êν

)
=

(
êµ • êν

)
vµwν = δµ

ν vµwν = vµwµ.

By comparing these expressions for the scalar product of two vectors we see that

gµνw
ν = wµ,

so the quantities gµν can be used to lower and raise indices. Similarly,

gµνwν = wµ.

We also have that

gµνw
νgµνwν = gµνg

µνwνwν = wµwµ.

From here it follows

gµνgµσ = δν
σ .

𝑑𝑠# = 𝑔&'𝑑𝑥&𝑑𝑥'

𝑔&' 𝑃 = 𝜂&'



§ Einstein Field equation describes how matter/energy curves spacetime:

§ G = Einstein curvature tensor, which is related to gµn

§ T = Stress-energy tensor, which describes distribution of mass/energy:

where                                            is the 4-velocity 

§ The equation entails
§ Energy-momentum conservation
§ Equation of motion of free particles

𝐺&' =
8𝜋𝐺
𝑐(

𝑇&'

𝑇&' = (𝜌 + 𝑃/𝑐#)𝑢&𝑢' −𝑃𝑔&'

𝑢& = 𝑑𝑥&/𝑑𝜏



§ The set of Einstein’s equations is not unique – we can add any constant multiple of gµn
to the L.H.S. and still have a consistent set of equations:

§ L = cosmological constant

§ Einstein added it to have a static universe, which he called his “biggest blunder” 
after cosmic expansion was discovered

𝐺&' + Λ𝑔&' =
8𝜋𝐺
𝑐(

𝑇&'



§ In fact, the cosmological constant can even explain why expansion 
of our universe is accelerating!

§ The accelerated expansion was discovered using observations of 
Type Ia supernovae (2011 Physics Nobel Prize)

§ This can be seen from the Friedmann’s equation (which can also 
be derived from Einstein field equation), which describes 
expansion of the universe:

§ a(t) = d(t)/d0 is called the “scale factor”, which characterizes the 
expansion of the universe





SPACETIME CURVATURE TELLS 
MATTER/ENERGY HOW TO MOVE
§ Particles move on geodesics of the metric

§ For a particle with mass, geodesic is the path with an extremal lapse of interval or 
proper time

§ Recall the differential interval in curved spacetime:

§ The total interval between two points A and B is

where 

𝑑𝑠# = 𝑐#𝑑𝜏# = 𝑔&'𝑑𝑥&𝑑𝑥'
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released. More generally the angular momentum will be much larger and the radiative
efficiency of accretion smaller. A specific model involving an accretion disc was pro-
posed by Donald Lynden-Bell [36] in 1969. Due to the small size of a black hole, it
is most unlikely that gas falling into a black hole does so radially, but will have some
angular momentum which will cause it to orbit the hole. Viscosity in the swirling
gas will cause matter at smaller radii, which is moving faster, to transfer its angular
momentum outward to material at larger radii, which is moving slower. The gas then
spreads in radius forming an accretion disc in which angular momentum is transferred
outward as matter flows inward. The accretion disc model of Lynden-Bell was then
studied in a detail in the early 1970s by Pringle & Rees [58], Shakura & Sunyaev [65]
and, for the Kerr metric, by Novikov & Thorne [49]. The gravitational energy lib-
erated by the inflow heats the disc which radiates locally as a quasi-blackbody. The
disc is thin but may extend outward for a considerable distance. This basic picture
probably accounts for much of the energy liberated by accreting black holes. There
are important modifications due to the magnetic nature of the ionized infalling plasma
which will be discussed later. Accretion onto a black hole is the most mass-to-energy
efficient process known, apart from direct matter-antimatter annihilation which, due
to the rarity of antimatter in our universe, is highly uncommon. Such accretion may
account for 20-30% of the energy released in the Universe since the recombination era.
To understand the details of how this can happen, we now examine particle motion in
GR, first generally, and then applied specifically to the question of efficiency of grav-
itational energy release around a Schwarzschild black hole. (The more complicated
issue of energy release around a Kerr black hole is treated in Section 7.1.)

3.3 Motion in the Schwarzschild metric
The key to most astrophysical applications of the Schwarzschild metric is how point
particles and photons move in it. In General Relativity, particles move on geodesics of
the metric, i.e. the paths with an extremal lapse of proper time (for a massive particle)
or ‘affine parameter’ (for a massless particle), along the worldline. If we let ds be the
differential interval along a path, and sAB the total interval between two points A and
B on a given path, then with ẋµ ⌘ dxµ/ds we have

sAB =

Z
B

A

ds =

Z
B

A

[gµ⌫dx
µdx⌫ ]

1
2 =

Z
B

A


gµ⌫

dxµ

ds

dx⌫

ds

� 1
2

ds

=

Z
B

A

G(xµ, ẋµ) ds where G(xµ, ẋµ) = [gµ⌫ ẋ
µẋ⌫ ]

1
2

(3.2)

and finding the path which extremises sAB then leads to the Euler-Lagrange equations
(one for each µ)

d

ds

✓
@G

@ẋµ

◆
� @G

@xµ
= 0 (3.3)
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sAB =

Z
B

A

ds =

Z
B

A

[gµ⌫dx
µdx⌫ ]

1
2 =

Z
B

A


gµ⌫

dxµ

ds

dx⌫

ds

� 1
2

ds

=

Z
B

A
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SPACETIME CURVATURE TELLS 
MATTER/ENERGY HOW TO MOVE
§ Finding the path which extremizes sAB then leads to the Euler-Lagrange equations:

§ There are 4 equations (one for each µ = 0, 1, 2, 3)

§ This set of equations are analogous to the Euler-Lagrange equations in classical 
mechanics, which allows us to write down the equations of motion of particles

§ From the definition of G (last page), we could also see that
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§ In 1915, Karl Schwarzschild found a solution to Einstein’s equations for a static, 
spherically symmetric point mass

§ The Schwarzschild metric:

§ Let’s use a simpler, more general form (where A and B are only functions of r and 
independent of t):

§ Now we could use the Euler-Lagrange equations to derive particle motions in the 
Schwarzschild metric (see derivation on blackboard)

§ These equations will be crucial for later discussions on what happens to materials 
around the black holes!

𝑑𝑠! = 1 −
2𝐺𝑀
𝑐!𝑟

𝑐!𝑑𝑡! − 1 −
2𝐺𝑀
𝑐!𝑟

"#

𝑑𝑟! − 𝑟!𝑑𝜃! − 𝑟!𝑠𝑖𝑛!𝜃𝑑𝜙!

𝑑𝑠! = 𝐴𝑐!𝑑𝑡! − 𝐵𝑑𝑟! − 𝑟!𝑑𝜃! − 𝑟!𝑠𝑖𝑛!𝜃𝑑𝜙! 𝐴 = 𝐵"# = (1 −
2𝐺𝑀
𝑐!𝑟 )



***Please note the correction for the definition of A in the Schwarzschild metric

From G = 1, assume q = pi/2  => 

From the 0 and 3 components of the Euler-Lagrange equations:

One could get the equation for the radial motion:

Plug in A and B for Schwarzschild metric:

or

𝐴𝑐!�̇�! − 𝐵�̇�! − 𝑟!�̇�! = 1

𝐴�̇� ≡
𝑘
𝑐 , 𝑟

!�̇� ≡
ℎ
𝑐

�̇�! =
1
𝐵
(
𝑘!

𝐴
−

ℎ!

𝑐!𝑟!
− 1)

�̇�! = (𝑘!−1) −
ℎ!

𝑐!𝑟! (1 −
2𝐺𝑀
𝑐!𝑟 ) +

2𝐺𝑀
𝑐!𝑟 (

𝑑𝑟
𝑑𝜏)

!= 𝑐!(𝑘! − 1) −
ℎ!

𝑟! 1 −
2𝐺𝑀
𝑐!𝑟 +

2𝐺𝑀
𝑟



§ Given the Schwarzschild metric, we have derived from the Euler-Lagrange equations the 
orbital equations for particles:

where k=E/mc2 measures the particle energy, and h=l/m represents the angular 
momentum

§ Let u = 1/r, the above equation can be written as

(
𝑑𝑟
𝑑𝜏
)!= 𝑐!(𝑘! − 1) −

ℎ!

𝑟!
1 −

2𝐺𝑀
𝑐!𝑟

+
2𝐺𝑀
𝑟

𝑑!𝑢
𝑑𝜙!

+ 𝑢 =
𝐺𝑀
ℎ!

+
3𝐺𝑀
𝑐!

𝑢!



§ In the Newtonian limit, u = 1/r is small so the last term -> 0, 
and the solution is closed ellipses:

§ With the correction term due to GR, the ellipses would not 
be closed when the particle comes back to perihelion

§ The ellipses would precess with an angle:

𝑑!𝑢
𝑑𝜙! + 𝑢 =

𝐺𝑀
ℎ! +

3𝐺𝑀
𝑐! 𝑢!

𝑢 =
𝐺𝑀
ℎ! (1 + 𝑒 cos𝜙)

∆𝜙 =
6𝜋𝐺𝑀

𝑎 1 − 𝑒! 𝑐!



§ Take Mercury as an example, a = 5.8 x 1012 cm, eccentricity e = 0.2, Msun = 2x1033 g, so

§ The total precession of Mercury is ~5600” per century

§ Precession from other planets calculated from Newtonian physics gives ~5557” per 
century

§ The discrepancy can be resolved by including the additional precession caused by GR

§ This solved a long-standing problem in Newtonian physics and is one of the first 
confirmations of GR!

∆𝜙 =
6𝜋𝐺𝑀

𝑎 1 − 𝑒! 𝑐!

∆𝜙 = 0”. 1 𝑝𝑒𝑟 𝑜𝑟𝑏𝑖𝑡
= 43” 𝑝𝑒𝑟 𝑐𝑒𝑛𝑡𝑢𝑟𝑦 (1 𝑜𝑟𝑏𝑖𝑡 = 88 𝑑𝑎𝑦𝑠)



§ Where GR came from:
§ Strong equivalence principle: “a free-falling (accelerating) frame of reference in a 

gravitational field is equivalent to an inertial reference frame without gravity”
§ Gravity is an illusion due to that we are living in accelerating frames

§ Theory of general relativity: “Matter/energy tells spacetime how to curve; 
spacetime curvature tells matter/energy how to move”

§ Verified predictions of GR
§ Light bending (Eddington test, gravitational lensing)
§ Gravitational redshift (Pound-Rebka experiment)
§ Gravitational time dilation (Hafele-Keating experiment, Shapiro time delay for planets & 

pulsar binaries)
§ Orbital precession (Mercury)



§ How to describe GR using math
§ The interval between events can be described by the metric tensor gµn

§ The metric tensor can be obtained given the distribution of mass/energy Tµn by 
solving the Einstein Field equation 

§ Particles follow geodesics on curved spacetime. Their motions can then be 
solved using the Euler-Lagrange equations:

§ Example: Schwarzschild metric for a static, spherically symmetric point mass
§ Orbital equations derived
§ Orbital precession of Mercury

𝐺$% =
8𝜋𝐺
𝑐& 𝑇$%
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