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• HW2 will be posted on iLMS and course website today. Due next class!

• HW1 solutions will also be posted on iLMS and course website. Please check it out!

• Please start searching for black hole news for the oral presentation. Once you 
decide on the topic, please paste the news link here:

https://docs.google.com/spreadsheets/d/1_aYyMj1wf_uGheZ7zp_hvthmy4mdmPwI
xFDdZOMG-nc/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1_aYyMj1wf_uGheZ7zp_hvthmy4mdmPwIxFDdZOMG-nc/edit?usp=sharing


§ I will point to some recent news related to today’s class; check them out!

§ You could also search by typing keyword “black hole” on the news page of major 
astronomy media

§ Both English or Mandarin news are okay, but English websites typically contain 
more detailed information

§ Some examples (not a complete list)
§ Science: https://search.sciencemag.org/?searchTerm=black 

hole&order=newest&limit=title&pageSize=10&articleTypes=News&
§ Sky & Telescope: https://skyandtelescope.org/astronomy-news/black-holes/
§ Science News: https://www.sciencenews.org/page/1?s=black+hole
§ Space: https://www.space.com/search?searchTerm=black+hole
§ 科技新報: https://technews.tw/google-search/?googlekeyword=黑洞

§ Please post the news link in the spreadsheet: 

https://docs.google.com/spreadsheets/d/1_aYyMj1wf_uGheZ7zp_hvthmy4mdmPwI
xFDdZOMG-nc/edit#gid=0

https://search.sciencemag.org/%3FsearchTerm=black%20hole&order=newest&limit=title&pageSize=10&articleTypes=News&
https://skyandtelescope.org/astronomy-news/black-holes/
https://www.sciencenews.org/page/1?s=black+hole
https://www.space.com/search?searchTerm=black+hole
https://technews.tw/google-search/%3Fgooglekeyword=%E9%BB%91%E6%B4%9E
https://docs.google.com/spreadsheets/d/1_aYyMj1wf_uGheZ7zp_hvthmy4mdmPwIxFDdZOMG-nc/edit


§ Hadronic collisions:
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§ Where GR came from:
§ Strong equivalence principle: “a free-falling (accelerating) frame of reference in a 

gravitational field is equivalent to an inertial reference frame without gravity”
§ Gravity is an illusion due to that we are living in accelerating frames

§ Theory of general relativity: “Matter/energy tells spacetime how to curve; 
spacetime curvature tells matter/energy how to move”

§ Verified predictions of GR
§ Light bending (Eddington test, gravitational lensing)
§ Gravitational redshift (Pound-Rebka experiment)
§ Gravitational time dilation (Hafele-Keating experiment, Shapiro time delay for planets & 

pulsar binaries)
§ Orbital precession (Mercury)



§ How to describe GR using math
§ The interval between events can be described by the metric tensor gµn

§ The metric tensor can be obtained given the distribution of mass/energy Tµn by 
solving the Einstein Field equation 

§ Particles follow geodesics on curved spacetime. Their motions can then be 
solved using the Euler-Lagrange equations:

§ Example: Schwarzschild metric for a static, spherically symmetric point mass
§ Orbital equations derived (note some changes of variable definitions; see 

Lecture 3 slides)
§ Orbital precession of Mercury
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released. More generally the angular momentum will be much larger and the radiative
efficiency of accretion smaller. A specific model involving an accretion disc was pro-
posed by Donald Lynden-Bell [36] in 1969. Due to the small size of a black hole, it
is most unlikely that gas falling into a black hole does so radially, but will have some
angular momentum which will cause it to orbit the hole. Viscosity in the swirling
gas will cause matter at smaller radii, which is moving faster, to transfer its angular
momentum outward to material at larger radii, which is moving slower. The gas then
spreads in radius forming an accretion disc in which angular momentum is transferred
outward as matter flows inward. The accretion disc model of Lynden-Bell was then
studied in a detail in the early 1970s by Pringle & Rees [58], Shakura & Sunyaev [65]
and, for the Kerr metric, by Novikov & Thorne [49]. The gravitational energy lib-
erated by the inflow heats the disc which radiates locally as a quasi-blackbody. The
disc is thin but may extend outward for a considerable distance. This basic picture
probably accounts for much of the energy liberated by accreting black holes. There
are important modifications due to the magnetic nature of the ionized infalling plasma
which will be discussed later. Accretion onto a black hole is the most mass-to-energy
efficient process known, apart from direct matter-antimatter annihilation which, due
to the rarity of antimatter in our universe, is highly uncommon. Such accretion may
account for 20-30% of the energy released in the Universe since the recombination era.
To understand the details of how this can happen, we now examine particle motion in
GR, first generally, and then applied specifically to the question of efficiency of grav-
itational energy release around a Schwarzschild black hole. (The more complicated
issue of energy release around a Kerr black hole is treated in Section 7.1.)

3.3 Motion in the Schwarzschild metric
The key to most astrophysical applications of the Schwarzschild metric is how point
particles and photons move in it. In General Relativity, particles move on geodesics of
the metric, i.e. the paths with an extremal lapse of proper time (for a massive particle)
or ‘affine parameter’ (for a massless particle), along the worldline. If we let ds be the
differential interval along a path, and sAB the total interval between two points A and
B on a given path, then with ẋµ ⌘ dxµ/ds we have
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and finding the path which extremises sAB then leads to the Euler-Lagrange equations
(one for each µ)
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§ We will discuss properties of black holes predicted by GR given a given metric / 
spacetime geometry

§ The no-hair theorem

§ Schwarzschild (non-spinning) black holes
§ Properties of the event horizon and singularity

§ Gravitational time dilation and gravitational redshift
§ Perspectives from infalling observer vs. external observer

§ Orbits of massive particles
§ Innermost stable circular orbit (ISCO) 
§ Maximum radiative efficiency of accretion disks

§ Orbits of photons

§ Kerr (spinning) black holes
§ Structures: singularity, event horizon, and the ergosphere
§ ISCO & maximum efficiency of accretion disks



§ It is a solution to Einstein field equations for a static, spherically symmetric point 
mass M

§ The Schwarzschild metric:

§ Is this solution unique? That is, given M, is it possible to find another solution of 
spacetime geometry that also satisfies Einstein field equations?

§ In 1967, Werner Israel showed that the answer is NO -- the Schwarzschild metric is 
a unique solution

§ Similarly, it was shown that the solutions are also unique for charged or spinning 
black holes
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Maximum set of parameters:

J

• It says that “Stationary BHs after formation can be 
uniquely described given mass (M), angular momentum 
(J), and charge (Q).”

• Once (M, J, Q) are given, the spacetime is determined

• It means that BHs are in fact very simple objects!



§ They need to satisfy this relation: Q2 + (J/M)2 <= M2 (in Planck unit, G=c=1)

§ Otherwise, there would be no event horizon to hide the singularity! This is called 
“naked singularity” (裸奇點)
§ Singularity is where laws of physics and predictions break down
§ It would be bad if it happens

§ Therefore, some physicists (including Penrose and Hawking) proposed that the 
“cosmic censorship hypothesis” (宇宙監督假說) should hold: ”Singularities should be 
hidden by the event horizon” and “GR is a deterministic theory.”
§ Note that this is a hypothesis

§ Some studies have shown that solutions of naked singularities exist in some special 
cases, but they are not proven to be physically realistic



§ Mathematically, BHs can have nonzero charge and have a valid solution to the 
Einstein field equation

§ However, astrophysical BHs, which are formed from gravitational collapse of 
massive stars, are not isolated from their surroundings

§ If the collapsing material started with nonzero charge initially, they would easily 
attract opposite charges and neutralize themselves during formation

§ Note that the electric force between two charges is typically >> gravity 

§ Therefore, generally speaking, Q = 0 for astrophysical BHs

§ Astrophysical BHs can be uniquely characterized by two parameters: mass M 
and spin J



§ For Q = 0, the previous inequality becomes |J| <= M2

§ Define a = J/M2 as the BH spin parameter, then 0 <= |a| <=1

§ Two types of BHs: 
§ Schwarzschild BHs (non-spinning, a=0)
§ Kerr BHs (spinning, a/=0)

Q: Can BHs have a > 1 such that the above inequality is violated?

§ Imagine a case where you would like to violate the cosmic censorship hypothesis 
by creating a BH with |J|>M2

§ You would need to throw a material with a very large angular momentum

§ However, such a material would not be able to accrete onto the BH due to the 
centrifugal force, which becomes larger for materials with higher angular 
momentum



§ The lower limit on BH masses come from the upper limit of masses of neutron stars 
(~2-3 Msun), but there are no theoretical limits for how massive a BH can get!

§ Current record holder:
§ Smallest stellar-mass black hole: ~3.3 Msun (check out this news)
§ Largest SMBH: quasar TON 618 -- 66 billion Msun (check out this news)

https://www.technologyreview.com/2019/11/01/65095/scientists-have-spotted-a-tiny-black-hole-that-may-be-just-12-miles-across/
https://www.sciencealert.com/an-absolutely-gargantuan-black-hole-has-been-found-as-massive-as-40-billion-suns


§ The no-hair theorem of course is still a “theorem”; many physicists are trying to 
come up with tests to see if it is true

§ It’s still debated whether BHs have hairs or not



I bet the cosmic censorship 
hypothesis is correct and black 
holes are bald

No no, BHs might have 
hair and naked 
singularities could exist!

Kip Thorne
Stephen Hawking John Preskill



§ Some people are trying to test if BHs have hairs or not

§ Examples of recent news – yes, BHs are bald!
§ Black hole reverberations suggest the cosmic beasts are as ‘bald’ as cue balls
§ Spitzer Telescope Reveals the Precise Timing of a Black Hole Dance

§ News – no, BHs could have some fine hair! 
§ Extreme black holes have hair that can be combed

https://www.sciencemag.org/news/2019/09/black-hole-reverberations-suggest-cosmic-beasts-are-bald-cue-balls
https://www.jpl.nasa.gov/news/spitzer-telescope-reveals-the-precise-timing-of-a-black-hole-dance
https://phys.org/news/2021-01-extreme-black-holes-hair.html




§ In 1915, Schwarzschild solved the Einstein’s field equations for a 
spherically-symmetric point mass

§ First exact solution of Einstein’s equations

§ Describes a non-spinning, non-charged black hole

§ Schwarzschild metric:

§ Two singularities: 
§ r = 0: where mass concentrates and spacetime curvature -> Infinity
§ r = rS = 2GM/c2: coordinate singularity (can be removed by changing 

coordinates)

Karl Schwarzschild (1873-1916)
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Object Mass Schwarzschild radius

TON 618 (largest known BH) 6.6 x 1010 Msun ~1300 AU (~1016 cm)

SMBH in M87 6.5 x 109 Msun ~130 AU

SMBH in Milky Way 4 x 106 Msun ~0.1 AU

Stellar-mass BHs ~3 - 100 Msun ~10-300 km

Neutron stars ~1.4 - 3 Msun ~5-10 km (real size ~ 20km)

Sun Msun = 2 x 1033 g 3 km

Earth 3 x 10-6 Msun ~ 1 cm

§ r = rS = 2GM/c2 = 3 km (M/Msun)

§ For objects other than BHs and NSs, their sizes are much larger than rS

§ Even for SMBHs, their event horizon is still much smaller than sizes of their 
host galaxies (~10 kpc ~ 1022 cm)



§ Refers to the region inside which even light cannot escape because the spacetime 
is very curved

§ For light rays, ds2 = 0, assuming a light ray is moving outward in the radial 
direction, then its speed is

§ When r -> rS, A -> 0 and B -> Infinity, so dr/dt ->0, meaning that even light cannot 
move outward! 
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§ From the Schwarzschild metric:

§ When r -> infinity, dt = dt, meaning dt is the proper 
time measured from an infinite distance

§ When r gets closer to the massive object, dt gets 
longer, i.e., clocks appear to tick slower in deeper 
gravitational well – “gravitational time dilation”

§ When r -> rS, dt -> infinity (the clock seems to stop 
ticking!)

r
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𝑑𝜏

1 − 𝑟$
𝑟



§ Because of the gravitational time dilation effect, 
frequency of light would decrease and appear 
redder as it gets closer to the central object 

§ This is the “gravitational redshift” effect

§ We could define this redshift as follows:

r
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1
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§ Due to gravitational time dilation, from point of view of distant observer, infalling
objects will appear to freeze at the event horizon

§ Gravitational redshift: light would appear to shift to lower frequencies (longer 
wavelengths, or “redshifted”) and appear dimmer when close to a massive object
§ Event horizon is the surface of infinite gravitational redshift
§ Infalling object will appear to fade away as it freezes
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Remember space-time diagrams? 

“Future of 
A” (causally-
connected) 

“Past of 
A” (causally-
connected) 

“Elsewhere” 
(causally- 
disconnected) 

Spacetime diagram… path of ingoing/outgoing 
light rays as seen by distant observer 

§ For photons, dr/dt -> 0 as r -> rS

§ Light emitted near rS takes an infinite 
amount of time to reach a distant observer

§ For a distant observer, there is no way to 
peek inside the event horizon

Spacetime diagram suited to a distant observer

(in units of GM/c2)



§ Imagining that you are falling radially into the event horizon

§ When r < rS, A and B become negative

§ It means that inside the event horizon, the roles of time and space are reversed!
§ The r coordinate becomes uni-directional just like time can only move forward
§ To move outward in r would be as difficult as traveling back in time
§ Everything inside the event horizon would have no choice but to fall toward the 

singularity at the center!

𝑑𝑠! = 𝐴𝑐!𝑑𝑡! − 𝐵𝑑𝑟! 𝐴 = 𝐵"# = (1 −
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§ For an infalling observer, his light cone 
would be gradually tilted as he gets 
closer to the BH 

§ He would pass through the event horizon 
without fuss

§ Once entering the event horizon, his 
light cone is so tilted that even the 
outgoing light ray cannot leave the event 
horizon

§ He (and everything else) will eventually 
reach the singularity at the center (r=0)

Spacetime diagram suited to an infalling observer 
(ingoing Eddington-Finkelstein coordinate)
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Spacetime diagram using a measure of time better 
suited to the infalling observer (“ingoing 
Eddington-Finkelstein coordinates”) 

Spacetime diagram using a measure of time better 
suited to the infalling observer (ingoing Eddington-
Finkelstein coordinates) 

(in units of GM/c2)



§ We would never make it to the center intact because the tidal force (Ftidal~M/r3) 
would tear us apart

9 

Spaghettification  

n  In fact, you would never make it to the center intact… 
the gradient of gravity would tear up an infalling 
observer.  

r 

r+Δr 

€ 

GM
r2

€ 

GM
(r + Δr)2

Upshot : there is a “stretching force” 
known as a tidal force that is 
proportional to M/r3.  This will 
eventually rip the spaceship apart 
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§ A star, if getting too close to a 
BH, could be spaghettified due 
to the strong tidal forces

§ This is called “tidal disruption 
events” (TDE)

§ Recent news of such an event

Conception of a TDE (credit: ESO)

https://earthsky.org/space/star-spaghettified-by-black-hole-at2019qiz




SPACETIME CURVATURE TELLS 
MATTER/ENERGY HOW TO MOVE
§ Particles move on geodesics of the metric

§ For a particle with mass, geodesic is the path with an extremal lapse of interval or 
proper time

§ Recall the differential interval in curved spacetime:

§ The total interval between two points A and B is

where 

𝑑𝑠! = 𝑐!𝑑𝜏! = 𝑔&'𝑑𝑥&𝑑𝑥'
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released. More generally the angular momentum will be much larger and the radiative
efficiency of accretion smaller. A specific model involving an accretion disc was pro-
posed by Donald Lynden-Bell [36] in 1969. Due to the small size of a black hole, it
is most unlikely that gas falling into a black hole does so radially, but will have some
angular momentum which will cause it to orbit the hole. Viscosity in the swirling
gas will cause matter at smaller radii, which is moving faster, to transfer its angular
momentum outward to material at larger radii, which is moving slower. The gas then
spreads in radius forming an accretion disc in which angular momentum is transferred
outward as matter flows inward. The accretion disc model of Lynden-Bell was then
studied in a detail in the early 1970s by Pringle & Rees [58], Shakura & Sunyaev [65]
and, for the Kerr metric, by Novikov & Thorne [49]. The gravitational energy lib-
erated by the inflow heats the disc which radiates locally as a quasi-blackbody. The
disc is thin but may extend outward for a considerable distance. This basic picture
probably accounts for much of the energy liberated by accreting black holes. There
are important modifications due to the magnetic nature of the ionized infalling plasma
which will be discussed later. Accretion onto a black hole is the most mass-to-energy
efficient process known, apart from direct matter-antimatter annihilation which, due
to the rarity of antimatter in our universe, is highly uncommon. Such accretion may
account for 20-30% of the energy released in the Universe since the recombination era.
To understand the details of how this can happen, we now examine particle motion in
GR, first generally, and then applied specifically to the question of efficiency of grav-
itational energy release around a Schwarzschild black hole. (The more complicated
issue of energy release around a Kerr black hole is treated in Section 7.1.)

3.3 Motion in the Schwarzschild metric
The key to most astrophysical applications of the Schwarzschild metric is how point
particles and photons move in it. In General Relativity, particles move on geodesics of
the metric, i.e. the paths with an extremal lapse of proper time (for a massive particle)
or ‘affine parameter’ (for a massless particle), along the worldline. If we let ds be the
differential interval along a path, and sAB the total interval between two points A and
B on a given path, then with ẋµ ⌘ dxµ/ds we have
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and finding the path which extremises sAB then leads to the Euler-Lagrange equations
(one for each µ)
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SPACETIME CURVATURE TELLS 
MATTER/ENERGY HOW TO MOVE
§ Finding the path which extremizes sAB then leads to the Euler-Lagrange equations:

§ There are 4 equations (one for each µ = 0, 1, 2, 3)

§ This set of equations are analogous to the Euler-Lagrange equations in classical 
mechanics, which allows us to write down the equations of motion of particles

§ From the definition of G (last page), we could also see that
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released. More generally the angular momentum will be much larger and the radiative
efficiency of accretion smaller. A specific model involving an accretion disc was pro-
posed by Donald Lynden-Bell [36] in 1969. Due to the small size of a black hole, it
is most unlikely that gas falling into a black hole does so radially, but will have some
angular momentum which will cause it to orbit the hole. Viscosity in the swirling
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To understand the details of how this can happen, we now examine particle motion in
GR, first generally, and then applied specifically to the question of efficiency of grav-
itational energy release around a Schwarzschild black hole. (The more complicated
issue of energy release around a Kerr black hole is treated in Section 7.1.)
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The key to most astrophysical applications of the Schwarzschild metric is how point
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µẋ⌫ ]

1
2

(3.2)

and finding the path which extremises sAB then leads to the Euler-Lagrange equations
(one for each µ)

d

ds

✓
@G

@ẋµ
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§ In 1915, Karl Schwarzschild found a solution to Einstein’s equations for a static, 
spherically symmetric point mass

§ The Schwarzschild metric:

§ Let’s use a simpler, more general form (where A and B are only functions of r and 
independent of t):

§ Now we could use the Euler-Lagrange equations to derive particle motions in the 
Schwarzschild metric (see derivation on blackboard)

§ These equations will be crucial for later discussions on what happens to materials 
around the black holes!
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***Please note the correction for the definition of A in the Schwarzschild metric

From G = 1, assume q = pi/2  => 

From the 0 and 3 components of the Euler-Lagrange equations:

One could get the equation for the radial motion:

Plug in A and B for Schwarzschild metric:

or
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§ Given the Schwarzschild metric, we have derived from the Euler-Lagrange equations the 
orbital equations for particles:

where k=E/mc2 measures the particle energy, and h=l/m represents the angular momentum

§ Let u = 1/r, the above equation can be written as

(
𝑑𝑟
𝑑𝜏
)!= 𝑐!(𝑘! − 1) −

ℎ!

𝑟!
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2𝐺𝑀
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+
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𝑟
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𝑑𝜙!
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+
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§ For a particle orbiting a central mass M, the total energy per unit mass is:

§ Therefore,

§ Define an effective potential

§ Then 

𝑟̇! = 2 𝐸 − 𝑈 −
ℎ!

𝑟!

𝐸 =
1
2 𝑟̇

! +
1
2 (𝑟𝜙̇)

!+𝑈 𝑟 =
1
2 𝑟̇

! +
1
2
ℎ!

𝑟! + 𝑈(𝑟)

𝑉 𝑟 = 𝑈 𝑟 +
ℎ!

2𝑟!

𝑟̇! = 2 𝐸 − 𝑉

(ℎ = $
%
= 𝑟!𝜙̇)



§ Given the particle energy E and angular 
momentum h, we could use the above equation 
to find solutions of vr = dr/dt and analyze the 
particle’s motion

§ If h = 0 (no orbital velocity, only radial velocity)
§ If E<0, the particle would accelerate toward the 

center
§ If E>0, the particle can escape the pull of the 

massive object

12 A. C. Fabian and A. N. Lasenby

Relativistic Astrophysics and Cosmology 2012 — Handout 9 2

9.1 Unstable orbits around a Schwarzchild black hole

In Newtonian dynamics the equation of motion of a particle in a central potential is

1

2

✓
dr

dt

◆2

+ V (r) = E,

where V (r) is an “e↵ective potential”. For an orbit around a point mass, the e↵ective potential is

V (r) =
h2

2r2
� GM

r
,

where h is the specific angular momentum of the particle. In the e↵ective potential, bound orbits
have two turning points and a circular orbit corresponds to the special case where the particle sits
at the minimum of the e↵ective potential.

effective potential

r

unbound orbit

elliptical orbit

circular orbit

V(r)

-GM 
r 

Figure 1: The Newtonian e↵ective potential showing how an angular momentum barrier prevents
particles reaching r = 0.

In Newtonian dynamics, a finite angular momentum provides an angular momentum barrier pre-
venting a particle reaching r = 0. This is not true in General Relativity.

Starting with equation (5) in Handout 8 (the equation for ṙ) we can rewrite this as

1

2
ṙ2 +

h2

2r2
(1� 2GM

c2r
)� GM

r
=

1

2
c2(k2 � 1)

where we recall k = Epart/mc2 and r2�̇ = h.

Thus, although the r.h.s. is not the particle energy here, the fact that it is constant tells us that

U(r) =
h2

2r2
(1� 2GM

c2r
)� GM

r

is an “e↵ective potential” for the problem, which we can use to study stability in the same way as
in the Newtonian case. Note that the relativistic term (1�2GM/c2r) weakens the centrifugal e↵ect
of angular momentum at small r.

Figure 2. The Newtonian effective potential showing how an angular momentum barrier
prevents particles reaching r = 0.

sits at the minimum of the effective potential. However, as we have already partially
seen in equation (5.1), the same is not true in General Relativity.

Starting with equation (3.8) we can rewrite this as

1
2
ṙ2 +

h2

2r2

✓
1 � 2GM

c2r

◆
� GM

r
=

1
2
c2(k2 � 1) (3.20)

where we recall k = Epart/mc2 and r2�̇ = h.
Thus, although the r.h.s. is not the particle energy here, the fact that it is constant

tells us that

U(r) =
h2

2r2

✓
1 � 2GM

c2r

◆
� GM

r
(3.21)

is an “effective potential” for the problem, which we can use to study stability in the
same way as in the Newtonian case. Note that the relativistic term (1 � 2GM/c2r)
weakens the centrifugal effect of angular momentum at small r.

Differentiating this expression,

dU

dr
= �h2

r3 +
3h2GM

c2r4 +
GM

r2 , (3.22)

and so the extrema of the effective potential are located at the solutions of the quadratic
equation

GMr2 � h2r +
3h2GM

c2 = 0, (3.23)

𝑟̇! = 2 𝐸 − 𝑉 𝑉 𝑟 =
ℎ!

2𝑟!
−
𝐺𝑀
𝑟



§ When h>0, the angular momentum barrier 
(the 1/r2 term) prevents a particle from 
reaching r=0

§ If E > 0, solution exists between A and Infinity 
-> particle is unbound

§ If E < 0, particle is bound
§ If E > Vmin, solution exists between B and C 

-> elliptical orbit
§ If E = Vmin, only one solution exists 

§ circular orbit at r = rD(h,E,M)
§ This orbit is a stable circular orbit, i.e., 

the particle would return to Vmin given 
small perturbations
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is an “effective potential” for the problem, which we can use to study stability in the
same way as in the Newtonian case. Note that the relativistic term (1 � 2GM/c2r)
weakens the centrifugal effect of angular momentum at small r.

Differentiating this expression,

dU
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= �h2

r3 +
3h2GM

c2r4 +
GM

r2 , (3.22)

and so the extrema of the effective potential are located at the solutions of the quadratic
equation

GMr2 � h2r +
3h2GM

c2 = 0, (3.23)
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𝑟̇! = 2 𝐸 − 𝑉
𝑉 𝑟 =

ℎ!
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−
𝐺𝑀
𝑟



§ Similarly, we could analyze the stability of orbits in Schwarzschild metric using the 
effective potential

§ Recall the orbital equation:

§ We could define the effective potential as

§ By setting V’(r)=0, one can find the extrema of the effective potential at radius:

𝑉 𝑟 =
ℎ!

2𝑟! (1 −
2𝐺𝑀
𝑐!𝑟 ) −

𝐺𝑀
𝑟
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i.e. at

r =
h2

2GM
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✓
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hc

◆2
9
=

; . (3.24)

If h =
p

12GM

c
there is only one extremum, and there are no turning points in the orbit

for lower values of h. At this point r = 6GM/c2 = 3Rs. Fig. 3 shows the effective
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Figure 3. The effective potential U(r) plotted for several values of the angular momen-
tum parameter h (units here have GM/c2 = 1).

potential for several values of h. The dots show the locations of stable circular orbits.
The maxima in the potential are the locations of unstable circular orbits.

What is the physical significance of this result? The smallest stable circular orbit
has

rmin =
6GM

c2 . (3.25)

Gas in an accretion disc settles into circular orbits around the compact object. How-
ever, the gas slowly loses angular momentum because of turbulent viscosity (the tur-
bulence is thought to be generated by magnetohydrodynamic instabilities). As the gas
loses angular momentum it moves slowly towards the black hole, gaining gravitational
potential energy and heating up. Eventually it loses enough angular momentum that
it can no longer follow a stable circular orbit and so it falls into the black hole. On
this basis, we can estimate the efficiency of energy radiation in an accretion disc via
looking at a plot of the ‘fractional binding energy’ E/(mc2)�1 = k�1 versus r (see
Fig. 4).
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What is the physical significance of this result? The smallest stable circular orbit
has
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c2 . (3.25)

Gas in an accretion disc settles into circular orbits around the compact object. How-
ever, the gas slowly loses angular momentum because of turbulent viscosity (the tur-
bulence is thought to be generated by magnetohydrodynamic instabilities). As the gas
loses angular momentum it moves slowly towards the black hole, gaining gravitational
potential energy and heating up. Eventually it loses enough angular momentum that
it can no longer follow a stable circular orbit and so it falls into the black hole. On
this basis, we can estimate the efficiency of energy radiation in an accretion disc via
looking at a plot of the ‘fractional binding energy’ E/(mc2)�1 = k�1 versus r (see
Fig. 4).

§ For a given h, one can find the shape of V(r) 

§ The relativistic (-1/r3) term weakens the 
angular momentum barrier at small r

§ Dots show the locations of stable circular 
orbits

§ For h < 2√3, no stable circular orbits

§ Innermost stable circular orbit (ISCO) for 
Schwarzschild black holes (h= 2√3):

𝑅!"#$ =
%&'
(! = 3𝑟)

𝑉 𝑟 =
ℎ!

2𝑟! (1 −
2𝐺𝑀
𝑐!𝑟 ) −

𝐺𝑀
𝑟



§ RISCO = the smallest distance from a BH for a particle to stably maintain a circular orbit

§ Inside RISCO, any small perturbation would lead to inspiral into the BH

§ RISCO = 6GM/c2 = 3Rs for Schwarzschild (non-spinning) black holes
§ RISCO is different for spinning BHs 

§ Importance of ISCO for accretion disks:
§ Often approximated as the inner radius of BH accretion disks (where disks are hottest 

and most luminous)
§ The “radiative efficiency” of accretion disks can be estimated by calculating how much 

gravitational energy could be converted into radiation at ISCO



§ As gas falls in, gravitational energy is 
turned into heat

§ Disk is heated and emits thermal radiation

§ (Amount of energy lost to radiation) ~ 
(energy of particles at Infinity) – (energy 
of particles at ISCO) = mc2 – E = mc2 (1-k)

§ Radiative efficiency = (radiative energy 
loss) / mc2 = 1 – k 

Conception of an AGN



§ Max radiative efficiency e ~ 5.7% at ISCO 
for Schwarzschild BHs

§ Efficiency e ~ 0.7% for nuclear fusion

§ Accretion disks are powerful energy sources 
in the universe!! 
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Figure 4. A plot of E/(mc2) � 1 in percent versus r (the latter measured in units of
µ = GM/c2) where E is the energy of a particle of mass m in a circular orbit at radius
r about a Schwarzschild black hole.

The maximum efficiency is of order the gravitational binding energy at the smallest
stable circular orbit divided by the rest mass energy of the gas. From the plot we can
see that this will be about 6%. More accurately, from equation (3.14) we see that at
r = 6GM/c2 k = E/(mc2) is 2

p
2/3, hence we obtain for this efficiency

✏acc ⇡ 1 � 2
p

2/3 ⇡ 5.7% (3.26)

The equivalent Newtonian value, is not far away at

✏acc ⇡
1
2
GMm

rmin

1
mc2 ' 1

12
⇠ 8%. (3.27)

As we will see, this value can be even larger for a black hole with spin, and an accre-
tion disc can convert 5-20 percent of the rest mass energy of the gas into radiation,
depending on spin. This can be compared with the efficiency of nuclear burning of
hydrogen to helium (26 MeV per He nucleus),

✏nuclear ⇠ 0.7% (3.28)

Accretion discs are capable of converting rest mass energy into radiation with an effi-
ciency that is about 10 times greater than the efficiency of nuclear burning of hydrogen.
The ‘accretion power’ of black holes causes the most energetic phenomena known in
the Universe.

Radiative efficiency e

(r in units of GM/c2)

unbound

bound

𝑅($)*



§ From the orbital equations, one could derive the orbital velocity of particles:

§ Therefore, at RISCO = 6 GM/c2 => v = 0.5c!!

§ In terms of orbital frequency, one finds that

§ Therefore, at RISCO, orbital frequency is proportional to 1/M
§ ~ 218 Hz for a 10 Msun stellar-mass BH
§ ~2.18 mHz for a 106 Msun SMBH

𝑣! =
𝐺𝑀

𝑟 − 2𝐺𝑀
𝑐!

𝜈+,- =
1
2𝜋

𝐺𝑀
𝑟.



§ GW150914: 35-250 Hz 

§ This event is produced by merger of 
stellar-mass BHs with ~30 Msun

§ The frequency of GWs emitted by BH 
binary mergers is directly 
proportional to the orbital frequency

§ LIGO observatory is sensitive to the 
frequency range 30Hz-7kHz => range 
relevant for stellar-mass BHs

GW150914



§ It might be related to “quasi-periodic oscillations” 
(QPO’s/似週期振盪) seen in X-ray binaries and AGNs

§ Recall that X-ray binaries are accreting stellar-mass BHs 
or NSs, where the X-ray comes from hot accretion disks

§ Their X-ray emission is often variable, oscillating with 
certain characteristic frequencies

§ From their power density spectrum (FFT of the light 
curve), some X-ray binaries show QPO’s at high 
frequencies, close to the orbital frequency at ISCO

§ It allows us to probe properties of accretion disks close 
to the BHs! 

Light curve of an X-ray binary

Power density spectrum





SPACETIME CURVATURE TELLS PHOTONS 
HOW TO MOVE
§ Photons move on null geodesics of the metric: 

§ Recall that the total interval between A and B is:

§ To find the orbital equations for photons, we could use the same Euler-Lagrange 
equations and the fact that 

𝑑𝑠! = 𝑐!𝑑𝜏! = 𝑔&'𝑑𝑥&𝑑𝑥' = 0
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released. More generally the angular momentum will be much larger and the radiative
efficiency of accretion smaller. A specific model involving an accretion disc was pro-
posed by Donald Lynden-Bell [36] in 1969. Due to the small size of a black hole, it
is most unlikely that gas falling into a black hole does so radially, but will have some
angular momentum which will cause it to orbit the hole. Viscosity in the swirling
gas will cause matter at smaller radii, which is moving faster, to transfer its angular
momentum outward to material at larger radii, which is moving slower. The gas then
spreads in radius forming an accretion disc in which angular momentum is transferred
outward as matter flows inward. The accretion disc model of Lynden-Bell was then
studied in a detail in the early 1970s by Pringle & Rees [58], Shakura & Sunyaev [65]
and, for the Kerr metric, by Novikov & Thorne [49]. The gravitational energy lib-
erated by the inflow heats the disc which radiates locally as a quasi-blackbody. The
disc is thin but may extend outward for a considerable distance. This basic picture
probably accounts for much of the energy liberated by accreting black holes. There
are important modifications due to the magnetic nature of the ionized infalling plasma
which will be discussed later. Accretion onto a black hole is the most mass-to-energy
efficient process known, apart from direct matter-antimatter annihilation which, due
to the rarity of antimatter in our universe, is highly uncommon. Such accretion may
account for 20-30% of the energy released in the Universe since the recombination era.
To understand the details of how this can happen, we now examine particle motion in
GR, first generally, and then applied specifically to the question of efficiency of grav-
itational energy release around a Schwarzschild black hole. (The more complicated
issue of energy release around a Kerr black hole is treated in Section 7.1.)

3.3 Motion in the Schwarzschild metric
The key to most astrophysical applications of the Schwarzschild metric is how point
particles and photons move in it. In General Relativity, particles move on geodesics of
the metric, i.e. the paths with an extremal lapse of proper time (for a massive particle)
or ‘affine parameter’ (for a massless particle), along the worldline. If we let ds be the
differential interval along a path, and sAB the total interval between two points A and
B on a given path, then with ẋµ ⌘ dxµ/ds we have

sAB =

Z
B

A

ds =

Z
B

A

[gµ⌫dx
µdx⌫ ]

1
2 =

Z
B

A


gµ⌫

dxµ

ds

dx⌫

ds

� 1
2

ds

=

Z
B

A

G(xµ, ẋµ) ds where G(xµ, ẋµ) = [gµ⌫ ẋ
µẋ⌫ ]

1
2

(3.2)

and finding the path which extremises sAB then leads to the Euler-Lagrange equations
(one for each µ)

d

ds

✓
@G

@ẋµ

◆
� @G

@xµ
= 0 (3.3)𝐺 𝑥& , 𝑥̇& = 0



§ Similar to the orbital equations for particles, the equations for photon orbits in the 
Schwarzschild metric are:

where again k=E/mc2 measures the particle energy, and h=l/m represents the 
angular momentum

§ Let u = 1/r, the above equation can be written as

(
𝑑𝑟
𝑑𝜏)

!= 𝑐!𝑘! −
ℎ!

𝑟! 1 −
2𝐺𝑀
𝑐!𝑟

𝑑!𝑢
𝑑𝜙!

+ 𝑢 =
3𝐺𝑀
𝑐!

𝑢!



§ For circular orbits, du = dr = 0 =>

§ The spacetime around BHs is so curved that even photons could travel in circular 
orbits!  

§ This is called the “photon sphere”

§ Imagine a person shining flash light backward along the photon sphere, the photon 
would orbit around the BH and return to his front, such that this person could see 
the back of his head!  

𝑑!𝑢
𝑑𝜙! + 𝑢 =

3𝐺𝑀
𝑐! 𝑢!

𝑟 =
3𝐺𝑀
𝑐! = 1.5 𝑟&



§ We could again analyze the stability of 
photon orbits using the effective potential:

§ There is no stable orbit for photons

§ For photons in the photon sphere, given a 
perturbation, they would either fall into the 
BH or escape to infinity

§ The escaped photons from the photon 
sphere would be seen as a ring from a 
distant observer – this is the “photon ring”
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Figure 18. Plot of the effective potential for photon motion in the Schwarzschild geome-
try. (Units of Veff are 1/(27µ2) where µ = GM/c2.)
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Figure 19. Gravitational deflection of light

and adding this into the original solution yields

u =
sin�
R

+
3GM

2c2R2

✓
1 +

1
3

cos 2�
◆
. (9.8)

Now consider the limit r ! 1, i.e. u ! 0. Clearly we can take sin� ⇡ �,
cos 2� ⇡ 1 there, and we obtain � = �2GM/(c2R) so that the total deflection (see
figure) is

D� =
4GM

c2R
. (9.9)

This is the famous gravitational deflection formula. For the Sun it yields 1.77 seconds
of arc, and was first verified in the 1919 eclipse expedition. More recent high precision
tests use radio sources, since these can be observed near the Sun, even when there is
no eclipse, and there is now no doubt that the GR prediction (which incidentally is

(µ = GM/c2)
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For the equations of motion, we can use the above analysis, but with the interval
function G(xµ, ẋµ) set equal to 0 rather than 1, once its functional variation has been
taken.

Tracking through the changes this causes, we find equation (3.8) is replaced by

ṙ2 = k2c2 � h2

r2

✓
1 � 2GM

rc2

◆
(9.1)

and for the ‘shape’ equation, (3.9), one finds that it is now the ‘Newtonian’ term that
disappears on the r.h.s., and we just get

d2u

d�2 + u =
3GM

c2 u2. (9.2)

One can immediately confirm from this equation that there is a circular photon orbit
at r = 3GM/c2, as mentioned above, but is it stable?

To do the stability analysis, we rewrite the energy equation as

ṙ2

h2 + Veff(r) =
1
b2 , (9.3)

where b = h/ck, µ = GM/c2 and the effective potential

Veff(r) =
1
r2

✓
1 � 2µ

r

◆
. (9.4)

Let us look at a plot of this function, Fig. 18. We can see Veff(r) has a single maximum
at r = 3µ where the value of the potential is 1/(27µ2). This shows that the circular
orbit at r = 3µ is unstable and in fact no stable circular photon orbit is possible in
the Schwarzschild geometry.

Another immediate use of equation (9.2) is in connection with light bending. Refer-
ring to Fig. 19, we can see that a suitable first solution in which the term 3GMu2/c2

is completely ignored, is

u =
sin�
R

, (9.5)

where R is the radius of the body the gravitational deflection due to which we wish to
work out. We iterate this equation by putting sin2 �/R2 for u2 on the r.h.s. of (9.2), i.e.

d2u

d�2 + u =
3GM

c2R2 sin2 �. (9.6)

This is satisfied by the particular integral

u1 =
3GM

2c2R2

✓
1 +

1
3

cos 2�
◆
, (9.7)







Video link: https://www.youtube.com/watch?v=o-Psuz7u5OI



§ There Are Infinite Rings of Light Around Black Holes. 
Here's How We Could See Them

§ All black holes should sport light rings

https://www.sciencealert.com/sending-telescopes-to-space-could-reveal-the-infinite-rings-around-a-black-hole
https://astronomy.com/news/2020/06/all-black-holes-should-sport-light-rings




Roy Kerr (1934- )

§ In 1963, Roy Kerr found the exact solution of a 
charge-less, spinning black hole 

§ This is the solution for all astrophysical BHs!

§ BH spin parameter a = J/M2 , where 0 <= |a| <=1
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Fig. 2.6 Penrose diagram of
a Minkowskian space-time

Fig. 2.7 Penrose diagram of
a Schwarzschild black hole

in our universe into the black hole, ending in the singularity. Notice that there is
a mirror extension, also present in the Kruskal-Szekeres diagram, representing a
white hole and a parallel, but inaccessible universe. A white hole presents a naked
singularity. These type of extensions of solutions of Einstein’s field equations will
be discussed later.

Now, we turn to axially symmetric (rotating) solutions of the field equations.

2.4 Kerr Black Holes

A Schwarzschild black hole does not rotate. The solution of the field equations
(1.36) for a rotating body of mass M and angular momentum per unit mass a was
found by Roy Kerr (1963):

ds2 = gttdt2 + 2gtφdtdφ − gφφdφ2 − Σ∆−1dr2 − Σdθ2 (2.50)
50 2 Black Holes

gtt =
(
c2 − 2GMrΣ−1) (2.51)

gtφ = 2GMac−2Σ−1r sin2 θ (2.52)

gφφ =
[(

r2 + a2c−2)2 − a2c−2∆ sin2 θ
]
Σ−1 sin2 θ (2.53)

Σ ≡ r2 + a2c−2 cos2 θ (2.54)

∆ ≡ r2 − 2GMc−2r + a2c−2. (2.55)

This is the Kerr metric in Boyer-Lindquist coordinates (t, r, θ,φ), which reduces
to Schwarzschild metric for a = 0. In Boyer-Lindquist coordinates the metric is
approximately Lorentzian at infinity (i.e. we have a Minkowski space-time in the
usual coordinates of Special Relativity).

The element gtφ no longer vanishes. Even at infinity this element remains (hence
we wrote approximately Lorentzian above). The Kerr parameter ac−1 has dimen-
sions of length. The larger the ratio of this scale to GMc−2 (the spin parameter
a∗ ≡ ac/GM), the more aspherical the metric. Schwarzschild’s black hole is the
special case of Kerr’s for a = 0. Notice that, with the adopted conventions, the an-
gular momentum J is related to the parameter a by:

J = Ma. (2.56)

Just as the Schwarzschild solution is the unique static vacuum solution of
Eqs. (1.36) (a result called Israel’s theorem), the Kerr metric is the unique stationary
axisymmetric vacuum solution (Carter-Robinson theorem).

The horizon, the surface which cannot be crossed outward, is determined by the
condition grr → ∞ (∆ = 0). It lies at r = rout

h where

rout
h ≡ GMc−2 +

[(
GMc−2)2 − a2c−2]1/2

. (2.57)

Indeed, the track r = rout
h , θ = constant with dφ/dτ = a(r2

h + a2)−1dt/dτ has
ds = 0 (it represents a photon circling azimuthally on the horizon, as opposed
to hovering at it). Hence the surface r = rout

h is tangent to the local light cone.
Because of the square root in Eq. (2.57), the horizon is well defined only for
a∗ = ac/GM ≤ 1. An extreme (i.e. maximally rotating) Kerr black hole has a spin
parameter a∗ = 1. Notice that for (GMc−2)2 − a2c−2 > 0 we have actually two
horizons. The second, the inner horizon, is located at:

r inn
h ≡ GMc−2 −

[(
GMc−2)2 − a2c−2]1/2

. (2.58)

This horizon is not seen by an external observer, but it hides the singularity to any
observer that has already crossed rh and is separated from the rest of the universe.
For a = 0, r inn

h = 0 and rout
h = rSchw. The case (GMc−2)2 − a2c−2 < 0 corresponds

to no horizons and it is thought to be unphysical.
A study of the orbits around a Kerr black hole is beyond the limits of the present

text (the reader is referred to Frolov and Novikov 1998; Pérez et al. 2013), but

*In Boyer-Lindquist coordinate
**a = J/M in this particular expression



§ Frame-dragging (Lense-Thirring) effect: rotation of a massive object would distort 
spacetime, causing a change in the rotational axis of a nearby test particle

3 

II : No hair theorem 

n  Any (isolated) black hole is described by 
just three quantities… 
l  Mass 
l  Spin 
l  Electrical Charge 

n  Once these quantities are specified, the 
properties of the black hole exterior to 
the horizon (e.g. spacetime curvature) 
are uniquely determined. 
l  There can be no lumps or bumps on a BH! 

III : Frame dragging and the 
ergosphere 

Graphics: University of Winnipeg, Physics Dept. 



§ Ring singularity 
§ Singularity is a ring on the 

equatorial plane, not a point
§ Radius of the ring = a * (GM/c2)

§ Unlike the unavoidable Schwarzschild 
singularity, geodesics exist that could 
avoid the ring singularity!  
§ There exists possibilities to exit the 

BH to another universe via a 
wormhole, though the solution is 
highly unstable

§ It also appears possible to follow 
closed timelike curves around the 
ring singularity, such that one 
could return to his past! 

§ Note that all the above is purely 
hypothetical 



§ Event horizon
§ A sphere with radius depending on 

the spin parameter a

§ For a = 0, r = 2GM/c2 = rS

§ For a = 1, r = GM/c2 = 0.5 rS

𝑟 =
𝐺𝑀
𝑐!

1 + 1 − 𝑎!



§ Stationary limit surface 
§ The surface within which it is 

impossible to stand still due to the 
frame-dragging effect

§ This surface is an oblate ellipsoid 
with radius: 

§ For a = 1, r = 2GM/c2 at equatorial 
plane and r = GM/c2 at the pole

𝑟 =
𝐺𝑀
𝑐!

1 + 1 − 𝑎!𝑐𝑜𝑠!𝜃



§ Ergosphere
§ The region between the event horizon 

and the stationary limit surface
§ It is impossible to stand still, but still 

possible to escape
§ In principle, one could extract energy 

of the BH from this region
§ This is why it is called ergosphere, 

where “ergo” means “work” in Greek



PENROSE PROCESS
§ In 1971, Roger Penrose proposed a 

mechanism to extract BH rotational 
energy from the ergosphere

§ An incoming particle decays into two 
within the ergosphere; one goes into the 
event horizon while the other escapes

§ With proper arrangement, it is possible to 
make the trapped particle to have 
negative energy

§ By energy conservation, the ongoing 
particle would gain energy compared to 
the incoming particle

§ This is one of the proposed mechanisms 
to launch BH jets!



§ No hair theorem: BHs can be uniquely described by M, a, and Q
§ Astrophysical BHs can be described by M and a (Q=0)
§ Properties of Schwarzschild BHs (a=0) and Kerr BHs (a/=0) predicted by GR

§ Meaning of event horizon from different perspectives
§ For a distant observer, objects approaching the event horizon would appear 

frozen and dimmer due to gravitational time dilation and gravitational redshift
§ An infalling observer would pass the event horizon, being spaghettified by 

strong tidal forces, and eventually fall into the singularity



§ Orbits for particles around BHs:
§ ISCO = innermost stable circular orbit, RISCO = (1~9) GM/c2

§ Maximum radiative efficiency of accretion disks, e ~ 5-40% 

§ Orbits for photons around BHs:
§ For Schwarzschild BHs, photons could have circular orbits at r=3GM/c2 -> 

“photon sphere”
§ There is no stable orbits for photons (for both spinning and non-spinning BHs)


