Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals

1Laboratory for Topological Quantum Matter and Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
3Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
4International Center for Quantum Materials, Peking University, Beijing 100871, China
5Condensed Matter and Magnet Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
6Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
7Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
8Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
9Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

(Received 11 November 2015; revised manuscript received 18 December 2015; published 10 February 2016)

The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature and demonstrates a novel type of anomalous surface state, the Fermi arc. Like topological insulators, the bulk topological invariants of a Weyl semimetal are uniquely fixed by the surface states of a bulk sample. Here we present a set of distinct conditions, accessible by angle-resolved photoemission spectroscopy (ARPES), each of which demonstrates topological Fermi arcs in a surface state band structure, with minimal reliance on calculation. We apply these results to TaAs and NbP. For the first time, we rigorously demonstrate a nonzero Chern number in TaAs by counting chiral edge modes on a closed loop. We further show that it is unreasonable to directly observe Fermi arcs in NbP by ARPES within available experimental resolution and spectral linewidth. Our results are general and apply to any new material to demonstrate a Weyl semimetal.

DOI: 10.1103/PhysRevLett.116.066802

A Weyl semimetal is a crystal which hosts Weyl fermions as emergent quasiparticles [1–10]. Although Weyl fermions are well-studied in quantum field theory, they have not been observed as a fundamental particle in nature. The recent experimental observation of Weyl fermions as electron quasiparticles in TaAs offers a beautiful example of emergence in science [11–21]. Weyl semimetals also give rise to a topological classification closely related to the Chern number of the integer quantum Hall effect [8–10,22]. In the bulk band structure of a three-dimensional sample, Weyl fermions correspond to points of accidental degeneracy, Weyl points, between two bands [6,7]. The Chern number on a two-dimensional slice of the Brillouin zone passing in between Weyl points can be nonzero, as illustrated in Fig. 1(a) [8–10]. Exactly as in the quantum Hall effect, the Chern number in a Weyl semimetal protects topological boundary modes. However, the Chern number changes when the slice is swept through a Weyl point, so the chiral edge modes associated with each slice terminate in momentum space at the locations of Weyl points, giving rise to Fermi arc surface states. This bulk-boundary correspondence makes it possible to demonstrate that a material is a Weyl semimetal by measuring Fermi arc surface states alone. As a result, to show novel Weyl semimetals, it is crucial to understand the signatures of Fermi arcs in a surface state band structure.

Here we present four distinct signatures of Fermi arcs, all in principle experimentally accessible in an ARPES measurement of a surface state band structure. Each signature alone, observed in any set of surface state bands, is sufficient to show that a material is a Weyl semimetal. Then we apply these criteria to TaAs and NbP. We find that we can rigorously demonstrate a Weyl semimetal in TaAs by directly measuring a nonzero Chern number in ARPES. For NbP, we find that it is unreasonable to directly observe Fermi arcs within experimental resolution because the spin-orbit coupling is too weak.

Any surface state band structure that satisfies any one of the following four conditions contains topological Fermi arcs and is necessarily a Weyl semimetal:

1. Disjoint arc.—Any surface state constant-energy contour with an open curve is a Fermi arc and demonstrates a Weyl semimetal.
2. Kink off a rotation axis.—A Weyl point is characterized by chiral charge n, equal to the Chern number on a
small spherical manifold enclosing the Weyl point in the bulk Brillouin zone, illustrated by the small sphere in Fig. 1(a) [8–10]. For a Weyl point of chiral charge $|n| > 1$, or if multiple Weyl points project onto the same point of the surface Brillouin zone, there may not be a disjoint constant-energy contour because multiple arcs will emanate from the same Weyl point projection. However, the arcs will generically attach to the Weyl point at different slopes, giving rise to a kink in the constant-energy contour. Moreover, such a kink can only arise from the attachment of two Fermi arcs. A kink on the projection of a rotation axis may arise in a topological Dirac semimetal [23]. Off a rotation axis, such a kink guarantees a Weyl semimetal.

3. Odd number of curves.—For projected chiral charge $|n| > 1$, the constant-energy contours may consist entirely of closed curves and the kink may be below experimental resolution, so the constant-energy contour appears everywhere smooth. However, if $|n|$ is odd, the constant-energy contour will consist of an odd number of curves, so at least one curve must be a Fermi arc.

4. Nonzero Chern number.—Consider any closed loop in the surface Brillouin zone where the bulk band structure is everywhere gapped and, at some energy, add up the signs of the Fermi velocities of all surface states along this curve, with +1 for right movers and −1 for left movers. The sum is the projected chiral charge enclosed in the curve, corresponding to a Chern number on a bulk [8–10]. A nonzero sum on at least one loop demonstrates a Weyl semimetal, provided the loop is chosen to be contractible on the torus formed by the surface Brillouin zone.

Note that while (1), (2), and (3) describe properties of a constant-energy slice of the Fermi surface, the counting argument (4) requires a measurement of the dispersion. We note also that criterion (4) allows us to determine all bulk topological invariants and Weyl points of a material by studying only its surface states.

In the rest of this Letter we apply these criteria to TaAs and NbP. We find that criterion (4) shows a Weyl semimetal in TaAs, but that all criteria fail for NbP because the spin-orbit coupling is too weak and the Fermi level is too low. We also present a calculation of NbP and show that it may be possible to demonstrate a Fermi arc in NbP by ARPES by observing a kink, criterion (2), but only if the Fermi level can be raised > 20 meV. Last, we point out that the counting argument (4) as recently applied to TaAs [15,20] and NbP [24] is invalid because certain Weyl points are too close together.

Single crystal TaAs and NbP samples were grown by chemical vapor transport methods. Angle-resolved photoemission spectroscopy (ARPES) measurements were performed using a Scienta R4000 at beam line 5-4 of the Stanford Synchrotron Radiation Lightsource, SLAC in Menlo Park, CA, USA and the HRPES end station of the SIS beam line at the Swiss Light Source in Villigen, Switzerland. The angular resolution was better than 0.2° and the energy resolution better than 20 meV. Samples were cleaved in situ and measured under vacuum better than 10^{-10} Torr at temperatures <30 K. First-principles electronic structure calculations of NbP were carried out with the OpenMX code [25], based on the generalized gradient approximation (GGA) [26]. Spin-orbit coupling was incorporated through j-dependent pseudopotentials. For each Nb atom three, three, three, and one optimized radial functions were allocated for the s, p, d, and f orbitals ($s3p3d3f1$), respectively. For each P atom, $s3p3d2f1$ were adopted. A k-point mesh of $17 \times 17 \times 5$ for the conventional unit cell was used and experimental lattice parameters were adopted in the calculations [27–29]. We use Nb s and d orbitals and P p orbitals to construct Wannier functions without performing the procedure for maximizing localization [30,31]. We calculated the surface spectral weight of a semi-infinite (001) slab using an iterative Green’s function method based on the Wannier function basis set.

We show that the surface state band structure of NbP as measured by ARPES does not satisfy any of the Fermi arc criteria. We note that vacuum ultraviolet ARPES is sensitive to the surface states of NbP; see the Supplemental Material [32]. The surface states consist of lollipop and peanut-shaped pockets and we find that both are holelike; see Figs. 2(a)–2(d). Criterion (1). Both the lollipop and peanut pockets are closed, so we observe no single disconnected arc. Criterion (2). We see no evidence of a kink in the constant-energy contours, so we do not observe a pair of arcs connecting to the same W_2 in a discontinuous way. Criterion (3). We observe an even number of contours everywhere, so no arc. Criterion (4). We can study the Fermi velocity using a difference map of two ARPES spectra, at $E_B = 0.05$ and $E_B = 0.1$ eV, shown in Fig. 2(f). We see that the Fermi velocities have the same sign all the
way around both the lollipop and the peanut pockets. If the lollipop consisted of Fermi arcs, one arc should evolve in a holelike way, while the other arc should evolve in an electronlike way, so the different regions of the lollipop pocket should have opposite Fermi velocities in this sense. Because all points on both pockets have the same Fermi velocity, within the resolution of our ARPES measurements these pockets are trivial, holelike surface states, and we observe no topological Fermi arcs. We can also consider a closed path through the surface Brillouin zone and count chiralities of edge modes along the path, illustrated in Figs. 2(e) and 2(g). We associate one arrow to each spinful crossing, even where we cannot observe spin splitting due to the weak spin-orbit coupling of NbP. There are the same number of arrows going up as down, so the Chern number is zero.

FIG. 2. Surface states of NbP by ARPES. (a)–(d) Constant energy cut by vacuum ultraviolet APRES, at incident photon energy $\hbar \nu = 30$ eV, on the (001) surface of NbP. (e) Same as (a)–(d), at $E_B = 0.05$ eV, with Weyl points marked and the two paths \mathcal{C} and \mathcal{P} on which we measure Chern numbers. (f) The difference of ARPES spectra at $E_B = 0.05$ and $E_B = 0.1$ eV, illustrating the direction of the Fermi velocity all around the lollipop and peanut pockets. The blue contour is always inside the red contour, indicating that the sign of the Fermi velocity is the same going around each contour. This result excludes the possibility that the lollipop actually consists of Fermi arcs attached to the W_2. (g) Cartoon summarizing the band structure. (h) Band structure along \mathcal{C}, with chiralities of edge modes marked by the arrows. We associate one arrow to each spinful crossing, even where we cannot observe spin splitting due to the weak spin-orbit coupling of NbP. Again, the Chern number is zero.

Next, we compare our experimental results to numerical calculations on NbP and show that it is challenging to observe Fermi arcs in our spectra because of the low spin-orbit coupling. We present a calculation of the (001) surface states in NbP for the P termination, at the binding energy of W_2, $\epsilon_{W_2} = -0.026$ eV, at the Fermi level, and at the binding energy of W_1, $\epsilon_{W_1} = 0.053$ eV; see Figs. 3(a)–3(c). We also plot the Weyl point projections, obtained from a bulk band structure calculation [33]. We observe surface states (i) near the midpoint of the $\Gamma - \bar{X}$ and $\Gamma - \bar{Y}$ lines and (ii) near \bar{Y} and \bar{X}. The surface states (i) form two Fermi arcs and two closed contours at ϵ_{W_2}; see Figs. 3(d) and 3(e). These states undergo a Lifshitz transition near ϵ_F with the surface states (ii), forming a large holelike pocket below the Fermi level. The surface states (ii) also form a large holelike pocket. They contain within them, near the \bar{X} and \bar{Y} points, a short Fermi arc connecting each pair of W_1; see Figs. 3(f) and 3(g). We note the excellent agreement with our ARPES spectra, where we also see lollipop and peanut contours which evolve into trivial, closed, holelike pockets below ϵ_F. At the same time, we find in our calculation that the separation of Weyl points and the spin splitting in the surface states is small. This result is consistent with our ARPES spectra, which do not show spin splitting in the surface states near the Fermi level.

The small spin splitting observed in our numerical calculations underlines the difficulty in observing
topological Fermi arc surface states in NbP. The separation of the Weyl points is \(< 0.01 \; \text{Å}^{-1} \) for the \(W_1 \) and \(< 0.02 \; \text{Å}^{-1} \) for the \(W_2 \), both well below the typical line-width of our ARPES spectra, \(\sim 0.05 \; \text{Å}^{-1} \). For this reason, we cannot resolve the momentum space region between the \(W_1 \) or the \(W_2 \) to determine if there is an arc. We emphasize that we cannot surmount this difficulty by considering Fermi level crossings on \(P \) or \(C \), as shown in Fig. 2(e). It is obvious that if we cannot resolve the two Weyl points in a Fermi surface mapping, then we also cannot resolve a Fermi arc connecting them in a cut passing through the Weyl points. In this way, on \(P \) we cannot verify the arc connecting the \(W_1 \) and on \(P \) and \(C \) we cannot verify the empty region between the \(W_2 \). As an additional complication, it is difficult to use \(P \) or \(C \) because the Fermi level is below the Lifshitz transition for the \(W_2 \) in NbP; see Fig. 4(a). This invalidates use of criterion (4) because for \(\epsilon_{F} < \epsilon_L \), there is no accessible binding energy where the bulk band structure is gapped along an entire loop passing in between a pair of \(W_2 \), illustrated in Fig. 4(b) by the broken dotted red line for \(\epsilon = \epsilon_{F} \). However, if we could access \(\epsilon > \epsilon_L \), then it may be possible to use criterion (2) to demonstrate a Fermi arc in NbP without resolving the \(W_2 \) and counting chiralities. In particular, while the Fermi arc may appear to form a closed contour due to the small separation of \(W_2 \), it could have a kink at the location of the \(W_2 \). Unlike criterion (4), applying criterion (2) to (001) NbP would not depend on resolving the \(W_2 \) or the spin splitting of the surface states. Improvements in the quality of NbP crystals or the cleaved surface could also allow the Fermi arcs to be resolved by reducing the spectral line-width. Last, we point out that our results invalidate recent claims that \(C \) [24] or any direct measurement of Fermi arcs [34,35] can be used to demonstrate a Weyl semimetal in NbP, due to the large linewidth of available ARPES spectra.

We apply criterion (4) to demonstrate Fermi arcs in TaAs. The larger spin splitting in TaAs increases the separation of Weyl points as compared to NbP; see Fig. 4(c). However, we emphasize that only the \(W_2 \) are well within experimental resolution. The separation of the \(W_1 \) in TaAs is comparable to the separation of the \(W_2 \) in NbP, which as noted above, cannot be resolved. In contrast to NbP, the (001) surface states of TaAs near \(\bar{\Gamma} \) consist of crescent pockets with clear spin splitting; see Fig. 4(d). We also observe bowtie surface states near \(\bar{X} \) and \(\bar{Y} \). We apply criterion (4) to search for Fermi arcs in TaAs on paths \(C \) and \(P \), shown in Fig. 4(e). Again, we mark the Fermi velocity of each crossing with an arrow. Along \(C \), see Fig. 4(f), we see two well-resolved crossings not far from \(\bar{\Gamma} \). However, the spinful crossings in NbP

The larger spin splitting in TaAs increases the separation of Weyl points as compared to NbP; see Fig. 4(c). However, we emphasize that only the \(W_2 \) are well within experimental resolution. The separation of the \(W_1 \) in TaAs is comparable to the separation of the \(W_2 \) in NbP, which as noted above, cannot be resolved. In contrast to NbP, the (001) surface states of TaAs near \(\bar{\Gamma} \) consist of crescent pockets with clear spin splitting; see Fig. 4(d). We also observe bowtie surface states near \(\bar{X} \) and \(\bar{Y} \). We apply criterion (4) to search for Fermi arcs in TaAs on paths \(C \) and \(P \), shown in Fig. 4(e). Again, we mark the Fermi velocity of each crossing with an arrow. Along \(C \), see Fig. 4(f), we see two well-resolved crossings not far from \(\bar{\Gamma} \). However, the spinful crossings in NbP...
from the bowtie pocket are difficult to resolve. Based on the constant-energy contour, Fig. 4(d), we may interpret the bowtie pocket as consisting of two slightly-separated spinful contours, so we associate two arrows with each of the remaining two crossings along C. We find that the enclosed Chern number is +2, while it is +3 according to a numerical calculation of the band structure [33]. Again, this inconsistency results from the small separation of the W_1. We cannot resolve the additional crossing from the Fermi arc connecting the W_1 near \bar{X}, which would give a Chern number of +3. We can avoid the bowtie pocket by using P; see Fig. 4(g). Here, we consider only the two well-separated states near $\bar{\Gamma}$. We find two edge modes of the same chirality, unambiguously showing a Chern number +2 on the associated bulk manifold, satisfying criterion (4) for a Weyl semimetal. In this way, we demonstrate that TaAs is a Weyl semimetal by studying only the surface states as measured by ARPES.

Work at Princeton University and Princeton-led synchrotron-based ARPES measurements are supported by the Emergent Phenomena in Quantum Systems Initiative of the Gordon and Betty Moore Foundation under Grant No. GBMF4547 (M. Z. H.) and by the National Science Foundation, Division of Materials Research, under Grants No. NSF-DMR-1507585 and No. NSF-DMR-1006492. Single-crystal growth is supported by the Department of Energy, Office of Science, Basic Energy Sciences under Grant No. DE-FG02-07ER46352, and benefited from theory support at the Advanced Light Source and the allocation of supercomputer time at the National Energy Research Scientific Computing Center under U.S. DOE.
Grant No. DE-AC02-05CH11231. I.B. acknowledges the support of the U.S. National Science Foundation GRFP. M.N. is supported by the Los Alamos National Laboratory LDRD program and start-up funds from the University of Central Florida. We thank Makoto Hashimoto and Donghui Lu for technical assistance with the ARPES measurements at SSRL beam line 5-4, SLAC, Menlo Park, CA, USA. We also thank Nicholas Plumb and Ming Shi for technical assistance with the ARPES measurements at the HRPES end station of the SIS beam line, Swiss Light Source, Villigen, Switzerland. Lu for technical assistance with the ARPES measurements at Central Florida. We thank Makoto Hashimoto and Donghui LDRD program and start-up funds from the University of

