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Abstract

We studied wave function dissipation (WFD) in field emission resonance (FER) by performing
scanning tunneling microscopy on the highly oriented pyrolytic graphite (HOPG) and Ag(111)
surfaces under two conditions: (1) the same current and FER number; (2) the same tip structure but
different currents. Under the first condition, we observed that the decay rate corresponding to the
WED exhibited a larger variation on the HOPG surface than it did on the Ag(111) surface. Under the
second condition, the decay rate was nearly independent of the FER electric field for the Ag(111)
surface; by contrast, it was linearly proportional to the FER electric field for the HOPG surface. These
remarkable differences can be attributed to the factors that the tip-induced attractive deformation
caused by the electrostatic force was considerably more prominent on the HOPG surface than on the
Ag(111) surface and that the deformed HOPG top layer had a unique electronic structure similar to
that of single-layer graphene.

1. Introduction

An electric field of 0.1-0.3 V/A in the junction of scanning tunneling microscope (STM) is inherently intrusive
to the surface properties of materials. For example, this strong electric field can perturb electronic states such as
the surface state, quantum well state, and transmission resonance, causing shifts in the state energy [ 1-3].
Moreover, this electric field can induce alocal expansion deformation in Pb films through the STM tip [4],
engendering a tip-induced attractive deformation (TIAD) caused by the corresponding electrostatic force. This
TIAD is greater for the suspended graphene [5, 6]. Therefore, a TIAD can be expected on the graphite surface
beneath an STM tip because of the weak van der Waals force between atomic layers of graphite. Nevertheless,
this has never been detected, possibly because no tool is available for TIAD monitoring. A previous study
observed giant corrugation of carbon atoms on a graphite surface by using an STM, which is due to the
deformation induced by repulsive interatomic forces [7]. Moreover, through the deformation due to the contact
between the atomic force microscopy tip and graphene, atomic-scale frictional characteristics of graphene can
beresolved [8, 9].

Field emission resonance (FER) [10] is a quantum phenomenon occurring in an STM junction when a
negative and high bias voltage is applied to the STM tip [11, 12]. Although FER originates from electrons
tunneling into quantized states in a vacuum, its features such as energy, intensity, linewidth, and number, can
provide information about the properties of the surface and STM tip. Consequently, FER has been a versatile
technique to explore various phenomena [13-39]. For example, the FER number can reflect the sharpness of an
STM tip; a higher FER number indicates a sharper tip [17, 35, 36]. In addition, previous studies demonstrated
that the FER observed on the reconstructed surfaces revealed spatial variation in linewidth [32—34]. This
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linewidth variation can be attributed to the local change of electron transmissivity [34]. These studies have
motivated us to investigate whether electron transmissivity varies according to the TIAD on the graphite, and
therefore, the linewidth is sensitive to the TIAD. For this exploration, a material whose surface does not deform
easily was required. Ag(111) was selected because the metallic bond is considerably stronger than a van der Waals
force. Our exploration results revealed that at the same FER number, the linewidth of first-order FER exhibited a
significantly larger variation on the graphite surface than it did on the Ag(111) surface, indicating that FER can
be used to monitor the TIAD of graphite. To further verify this finding, we observed the variation in linewidth
with increasing current for the graphite and Ag(111) surfaces. Furthermore, our density functional theory (DFT)
calculations demonstrated that the TIAD of the graphite surface could transform the electronic properties of the
graphite top layer to be similar to those of the graphene, leading to variations in electron transmissivity with the
TIAD level.

2. Experiment and calculation details

A clean graphite surface was prepared by cleaving the highly oriented pyrolytic graphite (HOPG) in air by using
adhesive tape. A clean Ag(111) surface was prepared using ion sputtering followed by annealing at 600 °C for
several cycles. An ultra-high-vacuum STM operated at 78 K or 5 K was used to observe FER on HOPG and
Ag(111) surfaces. The FER detection was performed in Z-V (distance-voltage) spectroscopy by using Pt-Ir tips.
For aZ-V measurement, the variation of the distance between the tip and surface was recorded with an active
feedback, while the bias voltage was ramped from 3 to 10 V. The acquired Z—V spectra were differentiated using a
numerical method to reveal the FER peaks.

The electronic structures were calculated using the projector augmented wave approach, as implemented in
the Vienna Ab initio Simulation Package based on DFT. The Perdew—Burke—Ernzerhof form of the generalized
gradient approximation was used for the exchange—correlation functional. The energy convergence threshold
was setas 10~ * eV in self-consistent field calculations, and the energy convergence threshold was set as 10> eV
for the structure optimizations. The lattice constant for Ag was determined to be 4.16 A by minimizing the
energy of the cell volume. Regarding the calculations performed for Ag,a 12 X 12 X 12 k-point sampling grid was
used to achieve energy convergence to within 1 meV/atom. To achieve high accuracy, weuseda24 x 24 x 24
k-point grid to calculate the density of states (DOS) along the band symmetry points of I" and L. Because the
lattice constant for HOPG could not be obtained by minimizing the energy of cell volume, we set the
experimental lattice constant ag to 2.46 A for both HOPG and graphene and set ¢, to 6.78 A for HOPG, in
accordance with a previous study [40]. Regarding the calculations performed for HOPG, an 8 x 8 X 8 k-point
sampling grid was used to achieve energy convergence to within 1 meV/atom,anda 15X 15 x 15k-point grid
was used to achieve high accuracy in the DOS calculations. For the graphene calculations, an 11 x 11 x 1 k-point
sampling grid was used to achieve convergence. Moreover, a 15 X 15 X 1 k-point grid with a vacuum thickness of
40 A was used to achieve high accuracy in the DOS calculations.

3. Results and discussion

In the experiment, FER spectra were first acquired by repeatedly performing Z—V spectroscopy at 78 K and 30
pA on the HOPG and Ag(111) surfaces. Because a high voltage of up to 10 V was applied, the sharpness of the tip
may change, causing variations in FER number. Moreover, the repeated execution of Z-V spectroscopy could
lead to the destruction of the tip apex, resulting in the disappearance of FER peaks. When this situation occurred,
voltage pulses were applied to sharpen the tip or replacing it with a new one. Thus, spectra with different FER
numbers were obtained.

Because the work function of Ag(111) (4.74 eV) is close to that of HOPG (4.7 eV) [41], the same FER number
indicates that the sharpness levels of STM tips on HOPG and Ag(111) were close. Therefore, we collected spectra
of the same FER number on HOPG and Ag(111) surfaces. Figure 1 displays differential Z—V spectra with eight
and nine FER peaks for HOPG [figures 1(a) and (b), respectively] and Ag(111) [figures 1(c) and (d), respectively].
The numbers indicated above peaks denote the FER orders. We focused on the linewidth AE of first-order FER
(named FER 1 hereafter), which was extracted through Lorentzian fitting, as an example of FER 1 on the HOPG
shown in figure 1(e). The dashed peaks in figures 1(a)—(d) are Lorentzian fittings, showing a high level
consistency with all the FER 1 peaks. In our analysis, as illustrated in figure 2, the extracted linewidth values of
FER 1 in spectra with the same FER number were sorted in ascending order and then separated into 10 groups.
In each group, the spectrum with the highest AE value for FER 1 was selected to be displayed in figures 1(a)—(d).
The numbers on the right-hand sides of the spectra were assigned according to the highest AE valuesin 10
groups. A larger number N in figures 1(a)—(d) corresponds to a higher AE value.
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Figure 1. Differential Z—V spectra with eight and nine FER peaks for (a) and (b) HOPG surface and (c) and (d) Ag(111) surface. The
numbers atop the FER peaks denote the FER orders. The dashed peaks represent the Lorentzian fitting results, revealing a good
agreement with all FER 1 peaks. The spectrum numbers at the right-hand side were assigned according to the values of the FER 1
linewidth. (e) Example of the AE value for FER 1 extracted through Lorentzian fitting for the HOPG surface. (f) Plot of E,, versus (n-1/
4)2/ 3forn=1,2,3forthe eight FER peaks for the HOPG surface and nine peaks for the Ag(111) surface, demonstrating a linear
relation. Through the slope in the plot, Fggg could be derived. (g) Frpr for FER 1 in each spectrum in (a)—(d), indicating two groups

Sample bias (V)
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Figure 2. Steps for selecting spectra to display in figures 1(a)—(d).

selecting
the highest
AE in each

group

Although the overall potential in the STM junction along the surface normal is not linear [36], a previous

study demonstrated that the linear potential is a good approximation for the formation of FER quantized states
ofordern = 1,2, 3 so that the electric field Frgy is constant for these three states [38]. The corresponding FER
energies E,, can be expressed with the energies of quantized states in the triangular potential well [42] as follows:
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Figure 3. (a) Linewidth of FER 1 for the HOPG and Ag(111) surfaces versus spectrum number N for eight FER peaks and (b) nine FER
peaks. (¢) and (d) Line shapes of FER 1 for spectra 1 and 10 for the HOPG surface, respectively, and (e) and (f) those for the Ag(111)
surface, respectively.

2 1)\3
E, = Evac + aFpr3|n — Z > (1)

where E, . is the vacuum level and

h? 3 3re)s
e
2m 2

Thus, the plot of E,, versus (n—1/ 4)*/3islinear forn=1,2, 3, as displayed in figure 1(f) for 8 FER peaks on
HOPG and 9 FER peaks on Ag(111). Fggr can be obtained from calculating the slope in the plot divided by o to
the power of 3/2. Figure 1(g) presents the Fggg values for FER 1 in the spectra displayed in figures 1(a)—(d); as
indicated in this figure, two separate groups were observed in terms of FER number for both the HOPG and
Ag(111) cases. On average, Frgr value for the eight FER peaks was higher than that for the nine peaks and at the
same FER number, the Fggg value for the HOPG case was similar to that for the Ag(111) case. Figure 3(a) exhibits
that for the spectra with eight FER peaks, the FER 1 linewidths on both HOPG and Ag(111) increased with
spectrum number N; nevertheless, the AE variation between spectra 10 and 1 for HOPG was considerably larger
than that for Ag(111). This difference was also observed in the spectra with nine FER peaks [figure 3(b)].
Consequently, the line shapes of FER 1 in spectra 1 and 10 for HOPG were clearly different [figures 3(c) and (d)],
but those for Ag(111) only had slight changes [figures 3(e) and 3(f)].

Previous studies revealed that FER electrons can leave the quantized state through light emission [16, 17] or
surface transmission [34], which indicates that the wave function of FER electrons is not static but can be
dissipated. In spite of wave function dissipation (WFD), before leaving FER state, the electron moves to and fro
in round trips in the STM junction. Due to WED, the probability P(i) that electrons remain in the quantized state
may decay with the number i of round trips at a rate of D which is the sum of the electron transmissivity ', and
the decay rate per round trip due to light emission I'\. P(i) can be defined as follows

P@l) = (1 — D)L (3

Equation (3) indicates that the probability that a resonant electron stays in FER state for (i — 1) round trips
but exits FER state in the ith round trip is P(i — 1) — P(i). The average number of round trips (i) of all resonant
electrons is as follows:

1=1Imax

(iy = > i[PG— 1) — P@)I, (4)

i=1

where i,,,, is the maximum number of round trips for which a resonant electron can stay in FER state, depending
on the number of all resonant electrons. Using equations (3) and (4), (i) = 1/D is obtained (see supplementary
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Figure 4. (a) Decay rate of FER 1 for the HOPG and Ag(111) surfaces versus the spectrum number for eight and nine FER peaks. (b)
Schematic of two deformation levels induced by two STM tips with the same sharpness but different bases for the HOPG surface. The
deformation is shown to be dome shaped, with a greater dome height and wider dome diameter indicating a larger deformation level.

material (available online at stacks.iop.org/JPCO/6,/075010/mmedia)). Resonant electrons move back and
forth within a distance s = (E,,—E,,.)/eFrgr between the surface and the classical turning point. As a result, the
round-trip time ¢ for resonant electron can be calculated using 2s = eF g t*/m. By combining this equation with

n—1)3
equations (1)and (2),t = (3 # is obtained, where 3 = <3r2f 7T)3 . The mean lifetime of resonant electrons in

F3

FER state, proportional to 1/ AE? can be defined as (i) t. Consequently, AE is proportional to D. This relation
can explain that on reconstructed Au(111) surface, FER has a larger AE at the ridge area with a higher I'; (D),
leading to a spatial variation of FER peak intensity [34] (see supplementary material).

Forn =1, D can be represented by a quantity (0.75)Y3AE/F%. Thus, given AE and Fggg, we can calculate
D for each FER 1 peakin figure 1. Figure 4(a) displays the variation of the D values for FER 1 for HOPG and
Ag(111) versus N for the spectra with eight and nine FER peaks. Although the D value for Ag(111) (D)
remained nearly unchanged as N varied, the D value for HOPG (Dyopg) rapidly increased with N for N > 5. We
suggest that this difference could be attributed to the TIAD caused by the electrostatic force in STM junction and
D proportional to the TIAD level (discussed later). The TIAD was more prominent on the HOPG surface
because the metallic bond in Ag crystals is considerably stronger than the van der Waals force between atomic
layers in HOPG. Therefore, Dyopg value exhibited a larger variation. However, the sharpness levels of the STM
tip were close because FER number was the same. The sharpness level was unable to explain why the D 5, value
was nearly constant but the Dyopg value varied. It is well accepted that an STM tip is composed of a base with a
radius of tens of nanometers and a protrusion whose open angle determines the tip sharpness. Therefore, STM
tips may have the same sharpness but different base radii. According to a theoretical study [43], when the
distance d between the tip and surface is smaller than the base radius R, the electrostatic force F between them is
as follows:

F = 75 V;R/d, 5)

where V, is the applied bias voltage. Therefore, a tip with a larger base radius can engender a stronger
electrostatic force, causing a larger deformation level on the HOPG surface, and vice versa [figure 4(b)]. The
TIAD is similar to be dome shaped. A wider dome diameter and greater height are noted to be associated with a
higher TIAD level. Because Ag crystals do not deform easily, D g is insensitive to the base radius. Using
equation (5), the electrostatic force can be estimated by assuming R = 30 nm and d = 2 nm for FER 1 whose
energy is 6 eV, which is approximately 15 nN.

The TIAD probed by the FER linewidth demonstrated above was performed at the same current under
different tip bases. Actually the electrostatic force can be tuned by changing the current. Accordingly, we also
observed FER 1 AE values for HOPG and Ag(111) at 5 K under different currents. Figure 5(a) displays the FER
spectrafor HOPG at 0.01-1 nA, and figure 5(b) shows those for Ag(111) at 0.03—10 nA. As exhibited in both
figures, when the current increased, the energy of the FER 1 peak (denoted by 1) moved toward high energy [39],
indicating that the Fgggr of FER 1 increased with the applied current. Figure 5(c) depicts smooth plots of Frer
versus current, implies that the tip structures on both surfaces were unchanged as the current increased.

Figure 5(d) exhibits that FER 1 AE values enlarged with the current for both cases. On the basis of the results
illustrated in figures 5(c) and (d), we calculated Dyopg and D ag as a function of Fegg and figure 6(a) presents a
plot of the calculation results. Figure 6(a) reveals a considerable disparity that Dyopg was linearly proportional
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Figure 6. (a) Decay rate of FER 1 as a function of Fygg for the HOPG and Ag(111) surfaces based on the data in figures 5(c) and (d). (b)
Schematic of the HOPG surface deformation induced by an STM tip, which was larger when the distance between the tip and the
surface was smaller.

to Fpgg, whereas D o, was nearly independent of Fggr. Because the electrostatic force enhances with increasing
Frer, figure 5(a) reflects that the TIAD on the HOPG surface was considerably larger than that on Ag(111),
consistent with the results in figure 4(a). For increasing the current, the tip was controlled through the STM
feedback, moving it closer to the surface. Accordingly, the electrostatic force was enhanced, attracting and
displacing the HOPG surface upward. As a result, the TIAD level was higher (lower) at a shorter (longer) tip-
surface distance, as visualized in figure 6(b).

Because HOPG and Ag(111) have no energy gap above their vacuum levels, the I'; fluctuation caused by
quantum trapping effect [38] is weak. Consequently, D was determined to be dependent only on I'; in this study.
A previous study suggested that I', is proportional to the DOS [34], signifying that the difference between Dyopg
and D4, can be explained by the DOS. Figure 7 depicts DOS values derived through DFT calculations for the
HOPG, single-layer graphene, and Ag(111) surface. The DOS values derived at the FER 1 energy of
approximately 6 eV were comparable for HOPG and Ag(111), explaining that Dyjopg and D g values are close at
N < 5infigure 4(a). Therefore, the situation can occur on HOPG that the tip base is too small to induce the
deformation.

As mentioned, the Dyopg value exhibited larger variations [figure 4(a)] and were linearly proportional to
Frgr [figure 6(a)], indicating that the DOS increases with the TIAD level. As displayed in figure 7, at
approximately 6 eV, the DOS value of graphene was considerably greater than that of the HOPG surface. This
notable DOS difference suggests that the electronic structure of the top HOPG layer gradually approaches that of
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Figure 7. The DOS values for the HOPG, single-layer graphene, and the Ag(111) surface, derived using the DFT calculations.

the graphene as the TIAD level increased, thus increasing the corresponding DOS value. Moreover, because
HOPG is a semimetal, it might not be able to behave like a metal to wholly block the penetration of the electric
field in STM junction into deeper layers, but the top layer can effectively reduce the electric field. Consequently,
the electrostatic force on deeper layers would be weaker than that on the top layer. The TIAD levels of deeper
layers would be lower than that of top layer. The distances between the top layer and deeper layers are larger than
those in HOPG without electrostatic force. Therefore, the electrostatic force in the STM junction locally attracts
the top layer to be away from the second layer, which could effectively produce a quasi-graphene layer beneath
the tip on the HOPG surface.

We measured the distance change (AZ) in the Z-V spectrum corresponding to the differential spectrum of
N = linfigures 1(a)—(d) for a bias voltage ranging from 3 to 10 V. The results show that distance changes are
30.0 and 34.1 A for 8 and 9 FER peaks in the HOPG case, and 30.4 and 35.4 A for 8 and 9 FER peaks in the Ag
case, respectively. Therefore, for the same FER number, AZ on HOPG is nearly the same as that on Ag(111),
indicating that the TIAD level on HOPG was not increased while the bias voltage increased, i.e. the electrostatic
force could be constant when observing FER. Thus, FER peaks were measured on a stable dome-shaped surface.

Figure 8(a) is a topography image of HOPG taken at 3 V, 1 nA and 5 K, in which the surface consists of a high
terrace (bright area) and a low terrace (dark area) due to a step. Figure 8(b) shows a line profile alonga 200 A-long
line crossing a step in figure 8(a), revealing that the step height is close to one atomic layer. We took an FER
spectrum along the line every 2 A from left to right under 0.1, 0.5, and 1 nA (see supplementary material), and
measured Fpgg and FER 1 AE in each spectrum. Figure 8(c) presents Fpgg versus position on the line at three
currents. Although the STM feedback was on, Fggg still had a slight increase when the tip crossed the step, which
is approximately 1.4% of Frgg on the low terrace for all three cases in figure 8(c). According to this Fgg increase,
the position of the step edge can be determined from the maximum of Fggg, which is nearly identical for three
cases in figure 8(c), marked by a dashed line at the position of 154 A. Figure 8(d) displays FER 1 AE versus
position at three currents. With the values in figures 8(c) and (d), we depicted the plots of Dyyopg versus position,
as displayed in figure 8(e). For comparison, the line profile in figure 8(b) is also shown in figures 8(c), (d), and (e).

At 0.1 nA, the plot shows that Dyopg is nearly constant. The plot at 0.5 nA reveals that Dyopg is nearly
constant at most of positions, but presents a triangle shaped variation for some positions; it increases from the
position of 104 A and reaches maximum at 124 A then decreases. Because the step edge is at 154 A (dashed line),
the increase of Dyopg occurs at the low terrace. Moreover, except the triangle shaped variation, there is no
difference for Dyopg at the low and high terraces. Therefore, the step can elevate the height of TIAD on the low
terrace as the tip is close to a step, However, Frgg should exceed 0.26 V A to detect this step-induced height
elevation, according to figure 8(c). The triangle shaped variation reflects that the van der Waals force is weaker in
the vicinity of a step due to less symmetry. The plot at 1 nA demonstrates that the triangle shaped variation
becomes more pronounced and the positions at which Dyopg is nearly constant shrink to a range between 0 to
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Figure 8. (a) Topography image of HOPG taken at 3 V and 1 nA. (b) Line profile along a 200 A long line crossing a step in (a). (c) Frgr
versus position on theline at 0.1, 0.5, and 1 nA. (d) FER 1 AE versus position at 0.1, 0.5, and 1 nA. (e) The plots of D versus position at
0.1,0.5,and 1 nA. For comparison, the line profile in (b) is also shown in (¢), (d), and (e).

74 A, displaying that a stronger electrostatic force can extend the area of step-induced height elevation.
Moreover, the average Dyyopg on the high terrace (154-200 A) is greater than that on the low terrace (0-74 A),
indicating that due to less symmetry, at the high terrace, the van der Waals force near the step is weaker than that
away from the step, but is stronger than that near the step at the low terrace because Frgr should be as high as
0.295 V A to observe this difference, according to figure 8(c). In addition, because the triangle shaped variation
results from the step, the lateral position of the highest value in Dyopg is the same as that in the plot at 0.5 nA, as
marked by a solid line.

4. Conclusions

We demonstrated that FER can be used as a tool to probe the TIAD of an HOPG surface. By measuring FER
energies to derive Frpr and by extracting FER linewidth, we derived Dyopg to monitor the TIAD of the surface.
Ahigher Dyopg value represents a higher TIAD level. For comparison, we also observed FER on the Ag(111)
surface. The derived D, was insensitive to the electrostatic force in STM junction, implying that the TIAD on Ag
surface is negligible. DFT calculations demonstrated that the DOS of the graphene was considerably higher than
that of graphite at the FER 1 energy, signifying that the TIAD rendered the top layer analogous to graphene
because the decay rate is proportional to the DOS. It is well known that the electronic structures of two-
dimensional (2D) materials are sensitive to the strain [44, 45]. Strain-induced change of the DOS above the
vacuum level in 2D materials is expected, implying that FER may be a tool to probe the strain distribution on 2D
materials through measuring the decay rate of its wave function.
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