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B-splines is employed to solve the Kohn-Sham equations of the local density func-
tional theory for atoms from H to Ca in a variational self-consistent field procedure.
The local-density-approximation (LDA), 1ocal-spin-density-approximation (LSD), and
self-interaction-correction local-spin-density-approximation (SIC-LSD) schemes have all
been considered and comparisons of the results are presented. Both the Gunnarsson-
Lundqvist (GL) and Ceperley-Alder (CA) exchange-correlation energies are used. We
have tried to achieve high accuracy in the numerical procedure. Comparisons of the
energies show that the results of SIC-LSD are more accurate while LDA and LSD are
more efficient. The results are in agreement with published results. The expectation
values of different powers of r for each orbital which depends on the detailed behavior of
the wave functions of the atoms are given. Additional corrections including relativistic
effects, the reduced mass effects and the finite nuclear size corrections are also consid-
ered. The calculated results including these corrections are presented and compared
with experimental data and other theoretical calculations. The comparison illustrates
the ability of the B-spline applications to the density functional theory to be an efficient
method and yet is capable of arriving at accurate results which can compete with results
of sophisticated methods. As an additional test of the method, we have calculated the
oscillator strengths of the 3s-3p  and 4s-4p  transition of the alkali iso-electron atoms:
Na, Mgf and K, Ca+. Compared with available experimental results, our results are
among the best published theoretical values so far.

PACS. 71.15.Mb - Density functional theory, local density approximation.
PACS. 31.15.-  p - Calculations and mathematical techniques in atomic and molecular

physics.
PACS. 32.10.-  f - Properties of atoms and atomic ions.

I. Introduction

The density functional (DF) formalism [1,2] has been employed extensively and suc-
cessfully for the study of the ground state electronic structures in recent years. In view of
its simplicity and versatility as compared with other many-body techniques, the method
has established itself as one of the leading tools for calculating the ground state properties
of complicated many-electron systems such as atoms, molecules, and solids. Based on the
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theorem of Hohenberg and Kohn [I] that the ground state energy attains its minimum with
respect to the variation of the electron density, Kohn and Sham [2] proposed local density
approximation (LDA). In this approximation, the exchange and correlation potential is ap-
proximated by a local function depending only on the total electron density. Von Barth and
Hedin (31 extended the spinless Kohn-Sham theory to the spin polarized case. By studying
the spin dependent exchange-correlation potential with the spin-polarized electron liquid
model in the local approximation, Gunnarsson, Lundqvist, and Wilkins [4] introduced the
local-spin-density approximation (LSD) as a spin-polarized generation of LDA. Perdew and
Zunger  [5-71  p ointed out that most of the errors in the LSD energy come from the un-
physical electrostatic self-interaction of the electrons especially in the localized 1s orbital.
They presented the self-interaction-correction local-spin-density approximation (SIC-LSD)
in which the self-interaction Coulomb and the spin-polarized exchange-correlation energy
was subtracted out for each orbital. The SIC-LSD approach leads to a more tightly bound
atom as a consequence of having correct asymptotic potential, and results for the total
ground state energy calculated have been shown to improve systematically. To save time,
a simplified SIC-LSD version by taking spherical averaging was suggested [8] and has been
found to be adequate for most of the applications. In recent years, approaches based on
improved description of exchange-correlation energies in reciprocal space leading to the-
so-called generalized-gradient approximation (GGA) are still subjects of active research
[9,10]:  with promising results in quite a few cases. Many review articles introducing vari-
ous approaches of DF theory [11,12] with diverse applications [13,14]  have appeared in the
literature.

In practical calculation, the most commonly used numerical method to solve the
Kohn-Sham equation is by a direct integration over dense grid points. This method is time
consuming and may cause problem in an accurate calculation of complicated situations be-
cause it handle the gradient term by difference between these dense grid points which tends
to cause numerical instabilities by truncation errors. The problem is even more severe for
higher order gradients. In this respect, B-spline method has recently been introduced in
atomic structure calculations. Many basic properties of B-splines have been discussed by
Carl de Boor [15] in detail. Johnson Blundell, and Sapirstein [16]  used B-splines to relativis-
tic many-body perturbation calculations. Fischer and Guo [17]  performed self-consistent
Hartree-Fock calculations on the ground state energy of the He atom with B-splines as
basis sets. Applications of B-spline to one-electron diatomic molecules [18,19], hydrogen
atoms in strong magnetic field [20,21],  the configuration-interaction (CI) calculations for
atoms [22,23],  and many other studies [24,25] in recent years have shown that this method
is convenient and successful for accurate calculation on various atomic systems. Applica-
tions of B-splines to CI and calculations based on many-body perturbation theory has been
reviewed by Hansen et al. [26].

In this paper we report the application of B-splines to the study of the ground
state structures of atoms form H to Ca by using variational method in spherically aver-
aged density functional formalism. The electron density and the wave functions of the
atoms are represented by the B-spline basis. The B-splines are briefly mentioned in section
II. In section III, we briefly summarize the three approaches of the density functional
theory: local-density-approximation (LDA), 1 ocal-spin-density-approximation (LSD), and
self-interaction-correction local-spin-density approximation (SIC-LSD). The Kohn-Sham
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eigen equations are solved in a Self-consistent-field iteration procedure until the electron
density becomes stationary. The ground state structure of the many-electron system is
then obtained. The results of the LDA, LSD and SIC-LSD schemes are all obtained for
comparison. Detailed discussions of the calculated results are presented in section IV. In
this work, the range 15 < R < 20 (ue) is used to make sure that the electron density van-
ishes to at least 10-i’  for all the atoms considered. The exponential type knot sequences of
order 7 are used to generate about 110 B-spline basis for an accurate representation of the
electron wave functions. The self-consistent density functional iteration is terminated as
the B-spline fitted electron density converges to within lo- ì. In fact, since the accuracy of
exchange-correlation energy has only four digits, the basis set of B-splines may be reduced
and the converge criterion may be related for time saving purpose. Based on the ground
state wave functions of the atomic system, we calculated the expection values of different
powers of T and compared them with other calculations for testing the reality of the resul-
tant wave functions. In section V, we discuss various corrections including the relativistic
effects, the nuclear size effects and the reduced mass effects. The corresponding detailed
numerical results are presented in section VI. In section VII, we discuss the application
of this method to the calculation of the oscillator strengths of alkali iso-electron atoms.
Conclusions and discussions are given in section VIII.

II. B-splines

The ith B-spline basis Bi,k  of order k defined on a nondecreasing knot sequence
{t*}, i = 1,2;.. is a positive piecewise polynomial of degree k- 1 which vanishes everywhere
outside the interval ti 5 x < ti+k. The
is generated by the following recursion

Bi,k(X)  = t. ë1 y t, Bi,k-l(X) +
z+k  1 I

with

Bi,l(x)  = i’ ti 5 5 < ti+l

7 otherwise.

B-spline basis set of order k and knot sequence {tz}
relation [15]:

fi+k - x

ti+k - ti+l
Bi+l,k-l(x), (1)

(2)

An important advantage of the B-spline basis is that the knot sequence can be readily
adjusted to suit the properties of the wave function in consideration. By suitably increasing
the density of the knot sequence in regions where the wave function varies repidly,  the B-
spline basis set can represent the function accurately. We use knot sequences of order k = 7
defined in the atomic region with k-fold multiplicity at the endpoints T = 0 and T = R.
Exponential type knot sequences have been used in this work. The electron density n(r)
and the radial wave function R(r) of the Kohn-Sham eigen equation are represented as
linear combinations of these B-splines:

(3)
i i

where B;(r) is the abbreviation of Bi,k(T) and ai,c; are basis coefficients. An advantage of
the B-spline basis is the fact that the matrix elements forms from this basis is sparse resulat-
ing in a dramatic saving on the computer storage and computation time. The nonorthogonal
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B-spline basis are solved iteratively for the single-particle eigen equation by the Galerkin
method and the boundary condition is automatically satisfied in our algorithm written in
C language, taking into account the sparseness of the matrix elements in this basis.

III. Density functional theory

We briefly summarize here the three basic approaches : LDA, LSD, and SIC-LSD,
used in this paper to obtain the ground state wave functions. Detailed description can be
found, for example, in Refs. [2,4,7].

Consider an N-electron system with the nonrelativistic Hamiltonian in atomic units
(h, = e = m, = 1 )

(4)

where the indexes ;,j run from 1 to N and U(?;) is the external potential interacts on
the electrons. The last term in the Hamiltonian is the Coulomb interactions between the
electrons. In general, this rigorous N-particle Hamiltonian is too complicated to be solved
exactly. In the local density approximation (LDA) [1,2], the total ground state energy EG
is represented as functional of the electron density n(F):

with

where w, is the occupation number of each orbital indicated by Q. The total ground state
kinetic energy Tn[n]  of noninteracting particles in the system may be written as

The second term of the ground state energy EG is the total interaction energies between
the electrons and the external field U(ë)T such as the nuclear potential in atoms. The third
term is the Coulomb interactions among the electrons. And the last term E,,[n] is the total
exchange-correlation energy

Ezc[n] = / d34fíbzc(n(r3), (8)

where cZc denotes the exchange-correlation energy per electron. With the particle con-
serving constraint, the single particle eigen equation is obtained by taking the functional
derivative to minimize the total ground state energy EG with respect to the wave function
$L(FíJ  through the electron density n(q:
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where the eigen values X, come from the Lagrange multipliers for the constraint and the
effective single particle potential v,~(r?  is written as

Iteration procedure is then used to solve the eigen functions in a self-consistent-field
manner. After the electron density becomes stationary, the resultant wave functions and
the electron density are substituted into the total energy

(11)

yielding the following expression

EG = C waXa - i J d3Tld3Tz  IFl _ F2,n(ë)n(ë2)  + Jd3rn(?&(n(?))  - V,&(F))], (12)
Q

where in practice, the ground state exchange-correlation energy &Zc and the potential v,,
per electron are parameterized in terms of the unit charge radius T,.

In the spin-polarized LSD approach [4], the ground state energy EG is a functional
dependining on the spin density n,(7)

with the spin quantum number o =I, I. The spin-dependent orbitals are the solutions of
the following equation

where

V&(F)  = u(F) t Jd'T-$$ + v:,([nT,  nil; 3.

After self-consistency is achieved in the iteration, the spin-polarized total ground
state energy EG is calculated by

(14)
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and the exchange-correlation potential is approximated [4] as

VOL. 35

(17)

where &,h(Tí>,  @)) is obtained from calculations for the uniform electron gas.
The self-interaction free treatment (SIC-LSD) proposed by Perdew and Zunger  [7]

has been shown to perform better for the ground state structure of many-electron systems.
In this approach, the basic variable for the total ground state energy functional is the spin
and orbital dependent electron density n,,(q with

001 era

The spin and orbital dependent single particle eigen equation becomes

where

The total ground state energy functional EG is now expressed as

(18)

(19)

Spherical averaging approximation is taken for all the three calculations in this work. We
use the exchange-correlation potential proposed by Gunnarsson and Lundqvist (GL) [4]
which are modeled on the spin-polarized electron liquid for all three approaches and the
Monte Carlo results by Ceperley and Alder (CA) [27] for 1ow and metallic densities which
has been parameterized smoothly to the high density limit by Perdew-Zunger [7] for SIC-
LSD also.

IV. Results of local density approximation to atoms from H to Ca

In this paper the eigen value equations with the B-spline basis for LDA, LSD, and
SIC-LSD schemes are solved in a self-consistent manner. A relative accuracy of 10-r’  in the
self-consistency of the electron density has been maintained in this work. The resultant wave
functions of the orbitals are them used to calculate the total energy and other properties
of the ground state. For comparison, both the Gunnarsson-Lundqvist (GL) [4] and the
Ceperley-Alder (CA) [27]  p arameterized electron-gas correlation energies tc( t, 1) are used
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to calculate the effective potentials. For the LSD and SIC-LSD calculations, the spin
configurations with the largest total spins for the porbitals are used in accordance with
the Hundís rule. The ground state properties for atoms from H to Ca are calculated and
presented in this paper.

To check our program, we list in Table I the Kohn-Sham eigenvalues for each indi-
vidual orbitals as well as the total energy, and the total correlation energy for the Kr atom
calculaated  in both LSD and SICLSD formalisms using both GL and CA correlations. The
CA results from Perdew-Zunger [7] are also included in the table for comparison. Notice
that in Ref. [7] a relative accuracy of 10-j in the energy is maintained. There is a good
agreement between our results and those of Perdew-Zungerís  [7] results for both the total
exchange and the correlation energies of the ground state. There is some small difference
between the total LSD correlation energy calculated with the GL and the CA result. This
difference is greatly reduced in the self-interaction free SICLSD calculation. The situa-
tion is similar for the eigen energies of each individual orbitals. Note that even in such a
large atom Kr, 44% of the self-interaction correction to the total energy comes from the Is
orbitals.

In Table II the total ground state energies of various atoms obtained from LSD and
SICLSD are listed together for comparison. Also included in the table are the results from
Perdew-Zunger [7],  the Hartree-Fock(HF)  [28], and the nonrelativistic experiment energies
[29].  In the LSD(CA) and the SICLSD scheme, our total energies agree well with Perdew-
Zungerís results up to 1 x 10-j which is the accuracy maintained by Perdew-Zunger. It

TABLE I. Eigenvalues for each individual orbit&  E,[, total energy E, and the total corre-
lation EC energies for Kr atom. Negative energies in a.u.

energy LSD(CA)” LSD(CA)b LSD(GL)” SIC(CA)” SIC(CA)b SIC(GL)b

61s 509.9555 509.9841 509.9994 519.1722 519.2006 519.2841
c2s 66.2810 66.2864 66.3003 68.0560 68.0597 68.0797
E2P 60.0153 60.0179 60.0319 62.2901 62.2935 62.3167
f3s 9.3145 9.3153 9.3285 9.9025 9.9033 9.9061
E3P 7.0856 7.0867 7.0999 7.6813 7.6821 7.6849
63d 3.0733 3.0742 3.0873 3.7216 3.7222 3.7248
64s 0.8195 0.8205 0.8314 1.0202 1.0208 1.0200
E4P 0.3454 0.3464 0.3565 0.5127 0.5134 0.5126

E 2749.9717 2750.1315 2750.8731 2756.7667 2756.9197 2756.9050
EC 3.2486 3.2664 4.0088 1.9573 1.9687 1.9540

a : Ref. 7.
b : This work in B-spline basis.

L..-.__
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TABLE II. Calculated negative ground-state total energies in a.u. of atoms compared with
nonrelativistic experimental results.

Atom HF” LSD(CA)*  LSD(CA)” LSD(GL)=  SIC(CA)* SIC(CA)’  SIC(GL)’ Expt.d

H 0.5000 0.4777 0.4789 0.4920 0.4998 0.5000 0.5000 0.5000

He 2.8628 2.8334 2.8343 2.8601 2.9179 2.9193 2.9123 2.9037

Li 7.4307 7.3425 7.3427 7.3830 7.5042 7.5046 7.4976 7.4785

Be 14.5711 14.4425 14.4462 14.4966 14.6924 14.6938 14.6804 14.6667

B 24.5265 24.3464 24.3518 24.4198 24.6955 24.7003 24.6868 24.6514

N 54.3963 54.1207 54.1288 54.2431 54.7161 54.7223 54.7156 54.5838

F 99.4032 99.0982 99.1086 99.2612 99.9838 99.9953 99.9838 99.7193

Ne 128.5417 128.2147 128.2273 128.4034 129.2694 129.2825 129.2715 128.9203

Na 161.8513 161.4250 161.4406 161.6348 162.6561 162.6678 162.6562 162.2372

W? 199.6039 199.1188 199.1327 199.3402 200.5189 200.5319 200.5140 200.0338
Al 241.8656 241.2960 241.3140 241.5397 242.8688 242.8864 242.8679 242.3249
P 340.7028 339.9715 339.9953 340.2661 341.9045 341.9231 341.9092 341.2210
AI 520.7903 525.9010 525.9378 526.2672 528.3926 528.3921 528.4078 527.5216

a : Ref. 45.
b : Ref. 7.
c : This work
d : Ref. 4 6 .

is interesting to mention that although for a uniform electron gas the Monte Carlo results
of CA are believed to be more accurate for the exchange and the correlation energy, the
performance of GL is slightly better for atoms in general. This is one of the reason why GL
has been more widely used in practical application of LDA to atoms, molecules and solids
where the gradient of the electron densities probably also plays an important role. There is
a marked reduction of this difference between CA and GL in the SICLSD scheme, and the
total ground state energies of both results lie slightly lower than the experimental values
but differ very little from them. In general, the spin-polarized LSD slightly improves the
results of the spin-independent LDA except for the lightest atoms such as H and Li. Both
the energies of HF and of LSD lie higher than the experiment data with the results of HF
lie closer to the experimental values. The errors of SICLSD is comparable with the results
of HF for the larger atoms, but the performance of SICLSD is much better than HF for the
smaller atoms.

In the Hartree-Fock approximation, the correlation energy is conventionally defined
as the difference between the experimental total energy and the HF value. In Table III,
we compare calculated correlation energies from the density-functional with the con-
ventional correlation energies. For the CA correlation energies, there is a good agreement
between the Perdew-Zungerís and our results in both the LSD and SICLSD calculations for
all the listed atoms. The SICLSD correlation energies are much closer to the conventional
correlation energie but overjumps by about 10%. For the GL scheme, the LSD correlation
energies are worse than the CA results by 20 N 30%, while the SICLSD versions perform
slightly batter than the CA ones.

--.
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TABLE III. Calculated correlation energies of atoms compared with ìconventionalî exper-
imental values (negative energies in a.u.).

A t o m  LSD(CA)” LSD(CA)b LSD(GL)b SIC(CA)” SIC(CA)b SIC(GL)b convC

H 0.022 0.022 0.035 0.000 0.000 0.000 0.000
He 0.110 0.111 0.137 0.055 0.058 0.051 0.040
Be 0.221 0.223 0.274 0.114 0.116 0.103 0.096
Ne 0.731 0.737 0.914 0.419 0.424 0.413 0.382
Mg 0.878 0.885 1.093 0.500 0.504 0.487 0.426
Ar 1.411 1.421 1.751 0.820 0.828 0.809 0.731

a : Ref. 7.
b : This work.
C : Ref. 46. (The relativistic effect were not included in the experimental values.)

TABLE IV. Binding energies of negative ions in a.u.

ion HF” SIC( CA)b SIC( CA)” SIC(GL)” Expt.d

H - -0.0121 0.0257 0.0265 0.0196 0.0276
O - -0.0198 0.0588 0.0666 0.0655 0.0537
F- 0.0500 0.1323 0.1380 0.1388 0.1250
Cl- 0.0948 0.1396 0.1472 0.1477 0.1330

a : Ref. 47,48.
b : Ref. 7.
c : This work.
d : Ref. 49.

As a severe test of the density-functional theory, calculations on the binding energies
of four negative ions are listed in Table IV. The calculated binding energies of the listed
four negative ions from SICLSD are in good agreement with the experiment [29] results.
This is in contrast to the fact that the HF calculation does not obtain bound state for the
ions H- and 0- because it does not take into consideration of correlation at all.

Listed in Table V are the maximum orbital energies for various atoms. The calculated
LSD results from the CA and GL are close to each other but both eigenvalues are about
40% away from the experiment [30]. For the SICLSD scheme, both the CA and the GL
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,TABLE V. Outer-orgital eigenvalues E,,, with measured first ionization potentials 11 in
a.u.

A t o m  -HF” -LSD(CA)*  -LSD(CA)” -LSD(GL)’  -SIC(CA)*  -SIC(CA)=  -SIC(GL)’ Ild

H 0.500 0.268
Li 0.195 0.118
Na 0.184 0.114
K 0.147 0.096
N 0.566 0.305
P 0.393 0.232
CI 0.239 0.147
Mn 0.246 0.169
He 0.919 0.570
Ne 0.849 0.496
Ar 0.592 0.382
Kr 0.526 0.345

0.269 0.283 0.500 0.500 0.500 0.500
0.116 0.124 0.198 0.196 0.196 0.198
0.113 0.121 0.187 0.189 0.189 0.187
0.096 0.102 0.158 0.158 0.158 0.158
0.307 0.322 0.548 0.548 0.551 0.533
0.230 0.244 0.367 0.369 0.372 0.386
0.146 0.158 0.246 0.247 0.251 0.250
0.170 0.173 0.261 0.263 0.257 0.272
0.570 0.582 0.948 0.948 0.944 0.904
0.498 0.510 0.842 0.842 0.841 0.794
0.382 0.393 0.581 0.579 0.578 0.581
0.346 0.357 0.514 0.513 0.513 0.514

a : Ref. 45.
b : Ref. 7.
c : This work.
d : Ref. 50.

results are very close to the experimental data. In average, the SICLSD results are better
than the HF eigenvalues.

In Table VI, we list the calculated negative total ground state energies and various
ground state properties for a series of atoms from H to Ga with LDA, LSD and SICLSD
formalisms in both CA and GL correlation energies. The CA and GL results for each of the
three schemes are very close in general. The differences between the CA and GL results for
small atoms such as H are about N 2% and is reduced to 2 * lob4 for larger atoms such as
Ca. The total ground state energies calculated with GL [4] correlation energy are slightly
better than the CA ones for most atoms in all the three schemes.

For reference, the expectation values of (T) for each orbital of atoms from H to Ca
are listed in Table VII. The LSD and SIC expectation values of T for the spin up and the
spin down electron in both CA and GL ëare very close to each other.

In this chapter, the performance of different approaches of the local density approx-
imation are compared with each other. In general, except for atoms in the first row, the
total ground state energies of LDA are very close to the LSD results. The self-interaction-
correction(SIC-LSD) approach for the GL and CA exchange-correlation energies are close
to each other and the results from both schemes exhibit a systematic improvement for the
nonrelativistic ground state energies and lie very close to the experiments.
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TABLE VI. Comparisons of the negative total ground state energies to LDA, LSD, SICLSD
calculations in both GL and CA exchange-correlation potentials.

Atom LDA( GL) LSD( GL) SIC( GL) LDA( CA) LSD( CA) SIC( CA)

H 0.4537 0.4920 0.5000 0.4459 0.4789 0.5000
He 2.8601 2.8601 2.9123 2.8343 2.8343 2.9193
Li 7.3704 7.3830 7.4976 7.3341 7.3427 7.5046
Be 14.4966 14.4966 14.6803 14.4462 14.4462 14.6938
B 24.4097 24.4198 24.6868 24.3432 24.3518 24.7003
C 37.5095 37.5555 37.9187 37.4243 37.4657 37.9296
N 54.1287 54.2431 54.7156 54.0225 54.1288 54.7223
0 74.5979 74.6526 75.2432 74.4693 74.5211 75.2538
F 99.2466 99.2612 99.9838 99.0946 99.1086 99.9953
Ne 128.4034 128.4034 129.2715 128.2273 128.2273 129.2825
Na 161.6240 161.6348 162.6562 161.4334 161.4406 162.6678

Mg 199.3402 199.3402 200.5140 199.1327 199.1327 200.5319
Al 241.5332 241.5397 242.8679 241.3090 241.3140 242.8864
Si 288.4346 288.4617 289.9460 288.1920 288.2144 289.9629
P 340.2024 340.2661 341.9092 339.9398 339.9953 341.9231
S 396.9931 397.0219 398.8275 396.7093 396.7353 398.8462
Cl 458.9629 458.9703 460.9416 458.6567 458.6635 460.9616
Ar 526.2672 526.2672 528.4078 525.9378 525.9378 528.3921
K 598.5363 598.5445 600.8502 598.1915 598.1966 600.8692
Ca 676.0950 676.0950 678.5656 675.7329 675.7329 678.5894

V. Corrections from the relativistic effects, nuclear size effects, and the reduced
mass effects

Refinement of the results including relativistic effects, the nuclear size effects and the
reduced mass effects are considered in this section. Since all the corrections including the
relativistic effects are small in comparison with the total ground state energies of the atoms,
a first order perturbation treatment is adequate for atoms with 2 5 20. We first consider
the reduced mass and the finite nuclear size effects. The deviation of the Hamiltonian
caused by the finite mass of the nuclear is

with the momentum operator

(2ë4
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TABLE VII. The LDA(GL)  expection value of T in a.u. for every state (n,l) from H to Ca.

atom IS 2s 3s 4s 2P 3P

H 1.65924
He 0.95581
Li 0.58809
Be 0.42490
B 0.33225
C 0.27279
N 0.23137
0 0.20086
F 0.17746
Ne 0.15893
Na 0.14389

Mg 0.13144
Al 0.12095
Si 0.11201
P 0.10430
S 0.09757
Cl 0.09166
Ar 0.08642
K 0.08174
Ca 0.07754

3.88518
2.60216
1.95945
1.58048
1.32835
1.14742
1.01079
0.90374
0.79109
0.70236
0.63081
0.57244
0.52396
0.48307
0.44812
0.41790
0.39139
0.36799

4.03374
3.11296
2.52978
2.15851
1.89617
1.69782
1.54108
1.41330
1.27622
1.16421

2.26314
1.78098
1.47362
1.25956
1.10134
0.97933
0.80684
0.69068
0.60484
0.53906
0.48675
0.44401
0.40836
0.37813

4.85567 0.35198
3.95550 0.32920

3.39278
2.76952
2.35849
2.06322
1.83883
1.66148
1.43665
1.27385

and the reduced mass p = Mm,/(M + m,). The nuclear mass may be express in terms of
the atomic weight A as M = 1822.8885A.  The reduced mass correction of the total ground
state energy is

where 20~1 denotes the occupation number of each orbital denoted by (n,l).
We have used the point nuclear potential V(T) = -Z/T for the whole atomic range.

Due to the finite size of the nuclear, the potential inside the uclear radius R is approximated
as

v&T) = & - 2 ( (25)

-__._..
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where W,J denotes the occupation number of the orbital (n,l). Here an advantage of using
B-splines comes out clearly. Since the B-splines are locally polynomials, high order deriva-
tives may be easily and accurately evaluated. This is in contrast to the current numerical
procedure using dense grid points where careful handling is needed to avoid numerical
instabilities,

The fourth Darwin term in Eq. (28) .mvolving  with the divergence of the electric field
from the charge density is calculated for each orbital 7~, 1 as

where the Laplacian operator is given by

V2Veff(T) = $ iT2F )

with the effective potential

(34)

The Laplacian of the nuclear part of the effective potential resulting in a delta function
yields the Darwin correction for sorbital as

Substituting the charge interaction term of the effective potential into the Darwin correction
and employing integration by parts twice, we have

-& / r2drR,I(T)1Z(T)R,I(T), (37)

which is just the expectation value of the charge distribution. The last term of the effective
potential may be calculated via the following formula:

dRn12rRnr7  + T2 (38)

And the total Darwin correction is simply given by

A:, = c ~4: .
nl

(39)

The last term in Eq. (28) is the spin-orbit interaction, and is expressed explicitly as

WI

0. (E x P) 1  1dV

4c2
--S.L.

=  ?i? T  dr (40)
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The spin-orbit splitting energy for the orbital n,l,j is

1, j=lt$,
--I - 1, j = 1 - +,

with the Landeís interval rule

229

(41)

(42)

and the effective potential V&T) given in Eq. (35). Substituting the first nuclear term of
the effective potential into the Landeís interval rule, we have the well-known expectation
value (2~~~)~~ for hydrogen like atoms. In the spherical approximation

1 1-=-
IF- T'I T> ’

T> = IIlaX .(T,  T')  ,

The second electronic potential term of I&(T)  yields

(43)

which is actually caused by the screening potential of the inner shell electrons. Contribution
from the last exchange-correlation term is written as

/dTu,,(T) [R$ t SrR,rF] . (45)

VI. Numerical results for the corrections from reduced mass effects, finite
nuclear size effects and relativistic effects

The corrections from the reduced mass effect and the finite nuclear size effects to
each individual orbital and the total ground state energies are listed in Tables VIII and
IX respectively. Since the reduced mass corrections are proportional to the electron kinetic
energies (pí)  (Eq. (22)) of the relevant orbitals the corrections are larger for the inner shell
orbitals as was shown in Table VIII. For the atom N, the magnitude of the total reduced
mass correction is 200 times larger than the finite nuclear size correction. This ratio is
reduced to 11 for the larger atom Ca. As the nuclear becomes larger, the attraction force
between the nuclear and the electron becomes stronger, and the electronic densities near
the nuclear increases rapidly, Of course, the larger nuclear size of the larger atoms has some
additional contribution to this result. For the p orbitals the wave functions vanish in the
nuclear region, and there is no finite size corrections as can be seen in Table IX. Notice that
the magnitude of both these two corrections are negligibles in comparison with the various
relativistic effects to be discussed below.
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TABLE VIII. Calculated LDA(GL)  reduced mass corrections in a.u.

atom IS 2s 3s 4s 2P 3P tot

H 0.00023
He 0.00019
Li 0.00028
Be 0.00040
B 0.00054
C 0.00072
N 0.00085
0 0.00099
F 0.00106
Ne 0.00124
Na 0.00133

Mg 0.00150
Al 0.00160
Si 0.00179
P 0.00187
S 0.00206
Cl 0.00211
Ar 0.00210
K 0.00240
Ca 0.00260

0.00002
0.00003
0.00005
0.00007
0.00009
0.00011
0.00012
0.00014
0.00016
0.00019
0.00022
0.00025
0.00027
0.00031
0.00033
0.00034
0.00039
0.00043

0.00001
0.00002
0.00002
0.00003
0.00004
0.00005
0.00005
0.00006
0.00007
0.00009

0.00004
0.00006
0.00007
0.00009
0.00010
0.00012
0.00014
0.00018
0.00020
0.00024
0.00026
0.00030
0.00032
0.00033

0.00001 0.00038
0.00001 0.00042

0.00001
0.00002
0.00003
0.00003
0.00004
0.00004
0.00006
0.00007

0.00023
0.00038
0.00057
0.00087
0.00123
0.00170
0.00211
0.00254
0.00285
0.00347
0.00384
0.00448
0.00489
0.00562
0.00601
0.00677
0.00708
0.00721
0.00838
0.00923

In Table X, we compare the calculated relativistic corrected total ground state energies
of the second row atoms in the SIC-LSD approach by using the CA exchange-correlation
potential with the experimental data [29] and also with the calculated results of the Dirac-
Hartree-Fock (DHF) [33]. The value of the first order perturbation calculation of relativistic
corrections based on the Hartree-Fock (HF) [29] and the SIC(CA) results (this work) are
also listed in the table. For atoms from h:a to Ar the magnitude of the difference of our
total energies of SIC (CA) from the experimental data are 0.28% N 0.19% a.u. lower and is
comparable with the more complicated DHF results which are 0.22% N 0.12% a.u. higher.
The relativistic corrections here include both the relativistic kinetic energy corrections (P4)
and the Darwin effects (Dw), and are 12.4% N 7.4% larger than the corresponding HF [29]
results. The correlation-neglected Hartree-Fock algorithm leads to inflated atoms while the
orbitals in the SIC tend to be tighter leading to a larger relativistic correction.

We list in the last column of Table XI the total negative relativistic kinetic energy
corrections for the atoms from H to Ca (Z=20) with SICLSD formalism using CA exchange-
correlation potential. Included in the table are also the individual negative relativistic
kinetic energy corrections to each orbitals. Since the deviations of the corrections between

I- _
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TABLE IX. Calculated LDA(GL)  fini te nuclear size corrections in a.u.

atom IS 2s 3s 4s 2P 3P tot

H 0.00000
He 0.00000
Li 0.00000
Be 0.00000
B 0.00000
C 0.00000
N 0.00000
0 0.00001
F 0.00001
Ne 0.00001
Na 0.00002

Mg 0.00003
Al 0.00005
Si 0.00007
P 0.00010
S 0.00013
Cl 0.00017
Ar 0.00024
K 0.00029
Ca 0.00037

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00001
0.00001
0.00001
0.00002
0.00002
0.00003

0.00000
0.00000
0.0b000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000 0.00000
0.00000 0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00001
0.00002
0.00003
0.00005
0.00007
0.00011
0.00015
0.00021
0.00028
0.00038
0.00052
0.00064
0.00080

orbitals of different spin orientations are quite small, e.g., < 10e3 in the largest atom Ca
(2=20), we list only the spin up states for reference. As can be seen in the last column the
total kinetic energy corrections increases from 0.0000.3 a.u. for the smallest atom H to a
value of 11.7398 a.u. for the atom Ca. Compared with the total ground state energies of 0.5
a.u. for H and 681.5841 for Ca, they correspond to 6 x lo-’  and 17.2% respectively. Note
that even for the small atom Si (Z=14), the relativistic kinetic energy correction is about
1% of the total ground state energy, and may not be neglected in an accurate calculation.
The contribution to each orbital is also listed in the table. Similar to the trend in the total
energy correction, the relativistic effect in each individual orbital increases as the atom
becomes larger. The major effects of the relativistic kinematic correction causes the wave
function to shrink in the region near the nuclear where the wave function has large gradient.
Most of the corrections come from the contributions of the inner 1s orbital which are listed
in the second column. Take CA (Z=20) for example, 85.6% of the correction comes from
the two Is orbitals and 8.9% from the 2s orbitals while all the other electrons account for
only 5.5%. The contributions of the porbitals are relatively small in conparison with the s
orbitals because most of their wave functions stay away from the nuclear regions.

L__ __-.
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TABLE X. Comparison of the negative relativistic corrected total ground state energies of
the second row atoms in SIC(CA)  calculations with Dirac-Hartree-Fock (DHF)*
results and the experimental dataa. The relativistic corrections based on the
SIC(CA) and the Hartree-Fockî are also compared.

atom state -SIC(CA) - Exp” -DHFb -E.Rel(SIC). -E.Rel(HF).”

Na

Mg
Al
Si
P
S
Cl
Ar

162.896 162.441 162.078 0.2285 0.20021
200.865 200.333 199.935 0.3327 0.29505
243.356 242.752 242.331 0.4696 0.42062
290.609 289.927 289.450 0.6460 0.58351
342.792 342.025 341.489 0.8691 0.79111
399.993 399.144 398.609 1.1469 1.05076
462.450 461.514 460.940 1.4881 1.37168
530.294 529.303 528.684 1.9022 1.76094

a : Ref. 11.
b : Ref. 9.

The corrections of the Darwin term calculated in SICLSD scheme using CA exchange-
corrections potential are listed in Table XII. Again, since the difference of the magnitudes
for different spins in the same orbital is rather small, we list only the spin up ones. As
shown in the table, as the atom becomes larger, the energy correction increases for both
individual orbital and the total atom. The total Darwin correction listed in the last column
increases from 0.00002 a.u. for H to 8.745 a.u. for Ca, which amount to 4 x 10T5 and 1.3%
of the corresponding total ground state energies respectively. For the atom Si(Z=14), the
magnitude of the Darwin term is about 0.7% of the total ground state energy. The Darwin
term deals with the Laplacian of the effective potentials. For the positive nuclear charge
since only the s orbitals are non-vanishing in the nuclear regions, it does not contribute to
the p orbitals. The contribution of the negative electron charges is of opposite sign and
affects all the states including the p orbitals. Since the electron chalges are spread over
the atomic range, this effect is much smaller. This can be seen clearly in the table e.g.,
all the combined influences from the p orbitals of Ca(Z=20) contribute only about 0.2%
of the total Darwin corrections. But the contribution from the two Is electrons account
for 91.6%. The 2s electrons contribute 7.6% and the rest 0.8% comes from all the other
electrons combined together.

In Table XIII we compare the total relativistic kinetic energy (P4) and the Darwin
(Dw) corrections calculated in LDA, LSD, and SICLSD schemes for atoms from He to Ca.
The P4 and Dw corrections calculated in LDA by using GL exchange-correlation potential
are listed in the first two columns. Listed in the second two columns are those of LSD(GL)
and the corresponding values from SIC-LSD(GL) are listed in the next two columns. The
two corrections calculated in SIC-LSD scheme with CA exchange-correlation potential are
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TABLE XI. Negative relativistic kinetic energy correction in a.u. for spin up states in
SICLSD scheme using CA exchange-correlation potentials for the atoms from
H to Ca.

atom IS 2s 3s 4s 2P 3P tot

H 0.00003
He 0.00035
Li 0.00204
Be 0.00685
B 0.01736
C 0.03692
N 0.00965
0 0.12064
F 0.19557
Ne 0.30096
Na 0.44383

Mg 0.63244
Al 0.87574
Si 1.18340
P 1.56590
S 2.03467
Cl 2.60175
Ar 3.27998
K 4.08290
Ca 5.02506

0.00008
0.00034
0.00102
0.00235
0.00464
0.00821
0.01342
0.02069
0.03272
0.04964
0.07258
0.10277
0.14156
0.19049
0.25115
0.32523
0.41490
0.52211

0.00120
0.00268
0.00521
0.00879
0.01362
0.01996
0.02794
0.03781
0.05242
0.07088

0.00006
0.00017
0.00038
0.00071
0.00122
0.00194
0.00338
0.00550
0.00848
0.01250
0.01779
0.02460
0.03317
0.04379

0.00310 0.05683
0.00568 0.07260

0.00039
0.00076
0.00130
0.00204
0.00302
0.00427
0.00651
0.00946

0.00003
0 00071
0.00415
0.01438
0.03683
0.07888
0.14968
0.26047
0.42395
0.65494
0.97462
1.40253
1.95839
2.66657
3.55299
4.64596
5.97566
7.57443
9.48369
11.7398

listed in the final two columns. In general, the results from these four calculations LDA(GL),
LSD(GL),  SIC(GL),  and SIC(CA) are very close to each other. For the P4 corrections, the
differences between the results of LDA(GL)  and LSD(GL)  are about 10m3 N 10e4 smaller
than those of SIC(GL) and SIC(CA).  But for Dw, the LDA(GL)  results are 10e3 larger
than the other three calculations in average. The SIC-LSD contains better wave functions
and leads to relatively more accurate results as compared with the LDA and LSD ones. As
for P4 effects, the difference between SIC and Others varies from 10m3 to 10e4, while for
Dw, they differ typically 10m4  only as compared with the total corrections. In the SIC-LSD
calculations the difference due to the two different exchange-correlation potential GL and
CA used are typically 10m4  for both, P4 and Dw corrections. The negative P4 effects caused
by the shrinkage of the wave functions lower the ground state energies while the positive
Dw ones tend to compensate it. It can be seen clearly from this table that the order of the
magnitude of the Darwin effects and the kinetic energy corrections are about the same but
with opposite sign. Take the SIC-LSD(CA) results of atom Ca(Z=20)  for example, the
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TABLE XII. Darwin term correction in a.u. spin up states in SIC-LSD scheme using CA
exchange-correlation potentials for the atoms from H to Ca.

atom IS 2s 3s 4s 2P 3P tot

H 0.00002
He 0.00027
Li 0.00158
Be 0.00535
B 0.01363
C 0.02909
N 0.05501
0 0.09544
F 0.15492
Ne 0.23865
Na 0.35226

Mg 0.50232
Al 0.69599
Si 0.94100
P 1.24573
S 1.61928
Cl 2.07128
Ar 2.61200
K 3.25228
Ca 4.00372

0.00005
0.00023
0.00068
0.00155
0.00304
0.00535
0.00871
0.01340
0.02112
0.03195
0.04661
0.06585
0.09054
0.12163
0.16010
0.20703
0.26375
0.33150

0.00076
0.00169
0.00327
0.00549
0.00846
0.01236
0.01724
0.02326
0.03215
0.04336

-0.00001
-0.00002
-0.00003
-0.00006
-0.00009
-0.00014
-0.00023
-0.00035
-0.00050
-0.00069
-0.00092
-0.00120
-0.00153
-0.00191
-0.00236
-0.00288

-0.00002
-0.00003
-0.00005
-0.00008
-0.00011
-0.00014
-0.00021
-0.00028

0.00002
0.00054
0.00321
0.01115
0.02861
0.06123
0.11599
0.20136
0.32681
0.50323
0.74612
1.06982
1.48877
2.02059
2.68392
3.49910
4.48756
5.67224
7.08285
8.74511

separate P4 and Dw effects are about 1.7% (-11.73398 a.u.) and 1.28% (8.745 a.u.) as
compared with the total ground state energy of 681.584 a.u.. But due to this cancellation,
the net influence is only 2.995 a.u. which amounts to 0.44% of the total ground state energy.
This cancellation results in relatively small net relativistic correction to the total ground
state energies of small atoms.

In Table XIV the nonrelativistic total ground state energies calculated in LDA(GL),
LSD(GL),  SIC(GL),  a n d  SIC(CA) hSC emes for atoms from He to Ca are listed in the
first four column and the corresponding relativistic corrected values are listed in the next
four columns for comparison. The Dirac-Hartree-Fock [33] results are also listed in the last
column. The relativistic corrections including the relativistic kinetic energy and the Darwin
effects varies from 7.0 x 10e5 for He to 0.44% for Ca of the corresponding non-relativistic
energies. For a typical second-row atom Si(Z=14), the relativistic effects account for 0.22%
of the total energy. For atoms from Ne(Z=lO) to Ca(Z=20)  the relativistic energies from
LDA( GL) and LSD( GL) are 0.1% higher in average than the Dirac-Hartree-Fock(DHF)
results while the ones from SIC(GL,CA)  are 0.1 N 0.26% lower. It is interesting to note



VOL. 35 HORNG-TAYJENGANDCHEN-SHIUNGHSUE 235

TABLE XIII. Calculated relativistic kinetic energy corrections (P4) and Darwin correc-
tions (Dw) from He to Ca in LDA, LSD, and SICLSD schemes. The CL and
CA correlation energies are used. Energies in a.u..

LDA LDA LSD LSD SIC SIC SIC SIC
atom GL GL GL GL GL GL CA CA

P4 Dw P4 Dw P4 Dw P4 Dw

He -0.0007 0.0006 -0.0007 0.0006 -0.0007 0.0005 -0.0007 0.0005
Li -0.0041 0.0033 -0.0041 0.0032 -0.0042 0.0032 -0.0042 0.0032
Be -0.0142 0.0113 -0.0142 0.0112 -0.0144 0.0112 -0.0144 0.0112
B -0.0364 0.0290 -0.0364 0.0287 -0.0369 0.0286 -0.0368 0.0286
C -0.0781 0.0619 -0.0780 0.0614 -0.0790 0.0613 -0.0789 0.0612
N -0.1484 0.1170 -0.1483 0.1162 -0.1499 0.1161 -0.1497 0.1160
0 -0.2584 0.2028 -0.2583 0.2017 -0.2607 0.2015 -0.2605 0.2014
F -0.4208 0.3287 -0.4208 0.3272 -0.4243 0.3270 -0.4240 0.3268
Ne -0.6505 0.5058 -0.6505 0.5038 -0.6554 0.5035 -0.6549 0.5032
Na -0.9684 0.7495 -0.9684 0.7468 -0.9753 0.7465 -0.9746 0.7461

Mg -1.3942 1.0742 -1.3942 1.0705 - 1.4033 1.0703 - 1.4025 1.0698
AI -1.9175 1.4943 - 1.9475 1.4895 - 1.9594 1.4894 -1.9584 1.4888
Si -2.6526 2.0275 -2.6526 2.0214 -2.6679 2.0214 -2.6666 2.0206
P -3.5356 2.6925 -3.5355 2.6848 -3.5546 2.6849 -3.5530 2.6839
S -4.6244 3.5094 -4.6243 3.5011 -4.6479 3.5002 -4.6460 3.4991
Cl -5.9494 4.4998 -5.9494 4.4889 -5.9779 4.4889 -5.9757 4.4876
Ar -7.5428 5.6867 -7.5428 5.6757 -7.5770 5.6738 -7.5744 5.6722
K -9.4460 7.0999 -9.4461 7.0836 -9.4867 7.0847 -9.4837 7.0829
Ca -11.6954 8.7650 -11.6954 8.7457 -11.7433 8.7472 -11.7398 8.7451

that the difference of the relativistic energies for LDA and LSD with the DHF energies
remains about a constant while for SIC the difference with the DHF energies decreases
graduallly.

Presented in Table XV are the spin-orbit energy splitting for the p states according
to equation (41), and the coupling coefficients calculated with

in LDA(GL)  for atoms from B to Ca. As can be seen in the table, the magnitude of the
spin-orbit interaction grows rapidly as the atomic number increases. Take the dominate 2p
splitting for example, it increases from 0.00012 a.u. for B to 0.13362 a.u. for Ca. Since the
Landeís interval rule in equation (42) contains the expectation value of T-I, the inner
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TABLE XIV. Comparison of the negative nonrelativistic total ground state energy and the
relativistic corrected total energy in LDA(GL),  LSD(GL),  SIC-LSD(GL),
and SIC-LSD(CA) hSC emes and the Dirac-Hartree-Fock results from He to
Ca.

LDA LDA SID SIC rel-LDA xl-LDA r&SIC r&SIC DHFO
atom GL GL GL CA GL GL GL CA

He 2.8601 2.8601 2.9123 2.9193 2.8603 2.8603 2.9124 2.9195 2.8618
Li 7.3704 7.3830 7.4976 7.5046 7.3712 7.3838 7.4985 7.5055 7.4335
Be 14.4966 14.4966 14.6803 14.6938 14.4994 14.4995 14.6836 14.6971 14.5759
B 24.4097 24.4198 24.6868 24.7003 24.4171 24.4274 24.6951 24.7086 24.5366
C 37.5095 37.5555 37.9187 37.9296 37.5257 37.5721 37.9364 37.9472 37.6574
N 54.1287 54.2431 54.7156 54.7223 54.1601 54.2752 54.7493 54.7560 54.3170
0 74.5979 74.6526 75.2432 75.2538 74.6535 74.7092 75.3024 75.3129 74.8393
F 99.2466 99.2612 99.9838 99.9953 99.3387 99.3547 100.0810 100.0924 99.5023
Ne 128.4034 128.4034 129.2715 129.2825 128.5481 128.5501 129.4234 129.4342 128.6919
Na 161.6240 161.6348 162.6562 162.6678 161.8429 161.8565 162.8850 162.8963 162.0781

Mg 199.3402 199.3402 200.5140 200.5319 199.6602 199.6639 200.8471 200.8646 199.9351
Al 241.5332 211.5397 242.8679 242.8864 241.9863 241.9976 243.3379 243.3560 242.3311
Si 288.4346 288.4617 289.9460 289.9629 289.0598 289.0929 290.592s 290.6089 289.4499
P 340.2024 340.2661 341.9092 341.9231 341.0455 341.1167 342.7789 342.7922 341.4889
S 396.9931 397.0219 398.8275 398.8462 398.1081 398.1452 399.9751 399.9931 398.6087
Cl 458.9629 458.9703 460.9416 460.9616 460.4125 460.4307 462.4306 462.4497 460.9398
Ar 526.2672 526.2672 528.4078 528.3921 528.1233 528.1343 530.3111 530.2943 528.6838
K 598.5363 598.5445 600.8502 600.8692 600.8825 600.9070 603.2522 603.2700 610.5260
Ca 676.0950 676.0950 678.5656 678.5894 679.0254 679.0447 681.5617 681.5841 679.7102

a : Ref. 9.

1 # 0 orbitals whose wave functions lie nearer to the origin have larger energy splittings.
For the atom Ca, the energy splitting of 0.01417 a.u. in the 3p orbitals are only 15.3%
of the 2p splitting of 0.13362 a.u.. As compared with the nonrelativistic total energy of
678.589 a.u. of Ca, the energy splitting of the 2p orbit&  corresponds to 0.08% only.
Consider for example the spin-orbit splitting of the 2p orbitals for atom Si. This splitting
has been measured and calculated in various studies. Herman and Skillman [34]  calculated
the 2p splitting to be 0.7 eV with perturbation treatments on the Hartree-Fock-Slater wave
functions. The experiments on the absorption of molecules by Hayes and Brownís [35]
obtained a value of 0.65 & 0.05 eV. The results of Various experiments [36, 371 various
over the range of 0.6 N 0.7 eV. In this work the calculated 2p spin-orbit splitting for Si in
LDA(GL),  LSD(GL),  SIC(GL), and SIC(CA) are 0.02365, 0.02364, 0.02400, and 0.02398
a.u. which correspond to 0.64, 0.64, 0.65, and 0.65 eV respectively. The results in this
work are in good agreement with each other and with the experimental value 0.65 eV
experimental value 0.65 eV for 2p splitting of Si reported by Hayers and Brown [35].
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TABLE XV. The LDA(GL)  spin-orbit splittings and the coefficients in a.u. for the p
orbitals of atoms from B to Ca.

atom
(split)

2P

(coef.)

2P

(split)

3P

(coef.)

3P

B 0.00012 0.00004
C 0.00033 0.00011
N 0.00071 0.00024
0 0.00136 0.00045
F 0.00235 0.00078
Ne 0.00381 0.00127
Na 0.00657 0.00219

Mg 0.01057 0.00352
Al 0.01615 0.00538
Si 0.02365 0.00788
P 0.03345 0.01115
S 0.04600 0.01533
Cl 0.06174 0.02058
Ar 0.08118 0.02706
K 0.10495 0.03498
Ca 0.13362 0.04454

0.00064 0.00021
0.00121 0.00040
0.00204 0.00068
0.00316 0.00105
0.00465 0.00155
0.00656 0.00219
0.00989 0.00330
0.01417 0.00472

VII. Oscillator strengths

The oscillator strength for the absorption transition from an initial state i to a final
state f may be given in atomic unit (e.g. Ref. [38])  either by the ìlengthî form:

or the ìvelocityî form:

(47)

(48)

where Qí,  E, and L are the total wave function the energy and the orbital angular momen-
tum respectively and the sum on cr is over all the electrons. With exact wave functions
and energies the two different forms should yield the same result. The oscillator strengths
depend very sensitive on the energy difference and the detail behavior of the wave functions
of both the initial and the final state of the transition. Hence it provides a stringent test for
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various theories which can then be tested experimentally. Various factors such as electron
correlations relativistic effects, core polarizations etc. have to be carefully handled in order
to obtain correct oscillator strengths. For example, Theodosiou and Curtis [39, 403 con-
cluded in their Dirac-Fock computations that the core-polarization effects are significant
and must be included to obtain results in agreement with experiments. In practice, the
energy difference for the two states can be obtained either from the experimental energy
levels or by theoretical calculations. In general, most of the theoretical efforts are focused
on an accurate determination of the transition integral or equivalently the reduced matrix
elements. Table XVI depicts the calculated oscillator strengths in the ìlengthî form by
using the single configuration density functional orbital wave functions in the 3s3p and
4s-4p  transition of the Alkali iso-electron atoms: Na, MgS and K, Ca+. The results of
other theoretical and experimental results are also included in the table. The speciific tran-
sition involved are listed in the first column. The next two columns are the recent Coulomb
approximation (Cap) and model potential (MP) calculations by Laughlin et al. [41].  The
items with * symbol in the same columns take into consideration the core polarization ef-
fects. The following three columns are the ab initio calculations of the single configuration
Hartree-Fock (HF) [42], multiconfiguration Hartree-Fock (MCHF) [383,  Dirac-Hartree-Fock
[43],  and the SIC(CA) results in this work. The experimental data, from various works are
listed in the last column. For Na(Z=ll), the experimental results [44-471  differ by about
1% and the most accurate one is 0.9489 of Refs, 146, 471. The Hartree-Fock outcome over-
estimates by about 10%. The Coulomb approximation and the model potential (without
core polarization consideration) results are about 2% higher. The core polarization cor-
rected ones are very close to the best experimental value. Our SIC(CA) oscillator strength
turns out to be 0.959 and is also very close to this value. The Dirac-Hartree-Fock and the
much more complicated multiconfiguration Hartree-Fock calculation yields a value of 0.965
which is not too far away but is still a little bit higher. For Mg+(Z=12),  the experiments
[48-501  differ by about 5í?’o and the best value is 0.884. Again, the Hartree-Fock approach
gives result that is 10% higher than the experimental data. Both the Coulomb approxima-
tions (with and without core polarization considerations) overestimate more than 3%. Our
SIC(CA)  result of 0.9145 is vary close to the MCHF approach of 0.913 and both values
are about 1.5% higher than the experimental value. The model potential with core polar-
ization considerations provides by far the best value of 0.9036 which lies within 0.5% of
the experiment results of Mg +. A more accurate experimental result is definitely needed
here. For K(Z=19), the experimental value is 1.0017 [51, 521.  Our result of 1.03 agrees
with the this results to within 3%. Only the MP calculation including the core polarization
effects and the Dirac Hartree-Fock yield better results than our work. As for Ca+(Z=20),
discrepancy between differents experiments [49, 531 is about 8% and the average value is
0.98. The Coulomb approximation and the model potential calculations give worse results
(1.1199, 1.0890) if the core polarization considerations are not included. Our SIC(CA)
value of 1.035 (- 5% larger), are in comparable with the results (0.9709, 0.9838) of model
potentials with the core polarization considerations included. From the above comparisons,
the performances of density functional approach SIC(CA)  are surprisingly good. Our re-
sults are much better than the Hartree-Fock and also both the Coulomb approximations
(Cap) and the model potential (MP) calculations without considering core polalizations.
Only the Cap and MP calculations including core polarization effects and also the much
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more involved MCHF which take the electron correlations into account gives slightly better
results than the density functional calculations.

TABLE XVI. The oscillator strengths of 3s-3p  and 4s-4p  transitions in Alkali iso-electron
atoms.

Atom Tran. Coulomb M o d e l  HFb MCHF” DHFd SIC(CA)” E x p t .
approx.a potentiala

Na 3%3p 0.9870 0.9810 1.05 0.965 0.966 0.959229 0.98f
ë0 .9597 -0.9584 0.9645’

0.948gh
Mgf 3%3p 0.9769 0.9380 0.988 0.913 0.914539 0.88’

ë0 .9320 ë0 .9036 0.933
0.884k

K 4s4p 1.0627 1.0634 1.005 1.030083 1.0017í~”
0.9696 0.9916 1.02”

Ca+ 4s-4p 1.1199 1.0890 1.034950 1.02O
*0.9709 ë0 .9838 0.94p

* : including core polarization.

a : Ref. [41].
b : Ref. [42].
c : Ref. [38].
d : Ref. [43].
e : This work.
f : Ref. [44].
g : Ref. [45].
h : Ref. [46,47].
i : Ref. [48].
j : Ref. [49].
k : Ref. [50].
1 : Ref. [51].

m : Ref. [52].
n : Ref. [54].
o : Ref. [49].
p : Ref. [53].
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VIII. Conclusion

A successful application of the B-splines to the local density functional (LDF) cal-
culations for atoms from H(Z=l) to Ca(Z=20)  is presented in this paper. As was already
demonstrated in many recent papers [15-261,  the B-splines basis has been shown to be an
efficient tools on obtaining accurate results on various physical problems. We have applied
the B-splines to the density functional formalism LDA, its spin-polarized version LSD and
the self-interaction free approach SIC-LSD which can provide reasonable energies for ions
O-, H-, F-, Cl-, where Hartree-Fock either fails to obtain stable ground state or with en-
ergy far from the experimental results. The applications of B-spline method on the density
functional formalisms provides a simple, efficient procedure which yields realistic results as
compared with the experiment. We have checked the results of our program with existing
literatures and experiments. We have maintained a numerical accuracy of 10-r’  which is
probably an over kill for LDA.

The introduction of B-spline basis provide a fast and accurate numerical tools in
the complicated case such as SICLSD calculations. Using first order perturbations, it also
provide an efficient handling of the additional corrections such as reduced mass effect nuclear
size effect and the relativistic corrections including relativistic kinetic energy, the Darwin
term corrections and also the spin-orbit interactions. The accuracy of the energies obtained
for atoms from H to Ca is comparable with the results of the much more involved Dirac-
Hartree-Fock method. The spin-orbit splittings of the p orbitals are in good agreement
with the experimental values.

As a severe test of the wave functions we have calculated the oscillator strengths of
the atoms Na Mg+, K and Ca+. The results of the oscillator strengths are among the best
published theoretic values and are in good agreement with the experimental measurements.
For larger atoms the relativistic effects grow rapidly and the first order perturbation is
not an adequate approximation any more. The Dirac equation has to be employed for
a serious calculation on these heavy atoms. The generalization of our algorithm to the
Dirac relativistic scheme as well as the generalized gradient method will be presented in
a future publication. This B-spline based DF algorithm call also be extended to diatoms,
moleculars, solid, and surface systems.
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