

Magnetic Fields in the Multiphase Interstellar Medium Carl Heiles · Marijke Haverkorn (SSRev., 166, 293, 2012)

Huang, Ting-Yu; Lin, Sheng-Jun; Yen, Tzu-Ching

Dec 25, 2013 @ Plasma Astrophysics

Outline

- Introduction: ISM Phases and Measuring Their Magnetic Fields
- Faraday Rotation of the Five Phases
- Zeeman Splitting and Linear Polarization
- Zeeman Splitting in the Neutral Components, Molecular Clouds, and Masers
- Linear Polarization in the Neutral Components and Molecular Clouds

Introduction

phases of ISM

- self-gravitating: molecular clouds
- negligible gravity: diffuse ISM
- Neutral Media: Cold (~50K)/Warm (~5000K) not enough electron for Faraday rotation
- Ionized Media: Warm (~8000K)/Hot (~10⁶K) prominent in Faraday Rotation; Zeeman splitting only WIM; no significant alignment due to high T and high n_{e-}
- * Warm Partially Ionized Medium: T<WIM, $\chi_e \sim 1/2$, small n_e and N_e so no H α , but enough N_e for rotation.

phases of ISM

Vazquez-Semadeni (2009)

5 diffuse phases

Property	CNM	WNM	WIM	WPIM ^a	HIM
$\frac{P_{\text{th}}}{k}$ (cm ⁻³ K)	4000	4000	4000	2000	10000
$\tilde{T}(\mathbf{K})$	50	6000	8000	7000	1.5×10^6
$n_{\rm Hn}~({\rm cm}^{-3})$	80	0.7	0.25	0.2	0.0034
$\frac{n_e}{n_{\rm Hn}}$	2×10^{-4}	1×10^{-3}	1	$\frac{1}{2}$	1
N _{typ,Hn,20}	0.5	1	0.08	0.06	0.01
$N_{\mathrm{typ},e,20}$	1×10^{-4}	1×10^{-3}	0.08	0.03	0.01
$N_{\perp,\mathrm{Hn},20}$	1.5	1.5	1.0	?	0.1
$N_{\perp,e,20}$	3×10^{-4}	1.5×10^{-3}	1.0	?	0.1

* A linearly-polarized wave polarized in the x-direction,

 $A\cos\left(\omega t\right)\hat{x}$

can be decomposed into a sum of left- and right-circularly polarized waves at the same frequency:

$$A_{\text{left}} = \frac{A}{2} \cos(\omega t)\hat{x} + \frac{A}{2} \sin(\omega t)\hat{y}$$
$$A_{\text{right}} = \frac{A}{2} \cos(\omega t)\hat{x} - \frac{A}{2} \sin(\omega t)\hat{y}$$

 These left and right circularly-polarized components travel at different speeds through a plasma rendered anisotropic due to a magnetic field.

 $v_{R,L} = \frac{c}{\epsilon_{R,L}}$ $\epsilon_{R,L} = 1 - \frac{\omega_p^2}{\omega(\omega \pm \omega_B)}$ are the effective dielectric constants for the two circular polarizations,

 ω_p is the plasma frequency, and

$$\omega_B = \frac{eB}{m_e} = 1.76 \times 10^{11} \text{radians/s} \left(\frac{B}{\text{Tesla}}\right)$$

is the cyclotron frequency.

* Upon exiting the plasma, the left- and right-circular polarization modes have picked up a net phase difference, say 2ϕ , which we can split evenly between the two modes,

$$A_{\text{left}} = \frac{A}{2} \cos(\omega t + \phi)\hat{x} + \frac{A}{2}\sin(\omega t + \phi)\hat{y}$$
$$A_{\text{right}} = \frac{A}{2}\cos(\omega t - \phi)\hat{x} - \frac{A}{2}\sin(\omega t - \phi)\hat{y}$$

* So that the net electric field,

 $A_{\text{left}} + A_{\text{right}} =$

- $\frac{A}{2} [\cos(\omega t + \phi) + \cos(\omega t \phi)]\hat{x} + \frac{A}{2} [\sin(\omega t + \phi) \frac{A}{2}\sin(\omega t \phi)]\hat{y}$ $= A\cos(\omega t)\cos\phi\hat{x} + A\cos(\omega t)\sin\phi\hat{y} = A\cos(\omega t)[\cos\phi\hat{x} + \sin\phi\hat{y}]$, which is linearly-polarized in the direction $\cos\phi\hat{x} + \sin\phi\hat{y}$
- * Thus a magnetized plasma rotates the plane of polarization of a linearly-polarized electromagnetic wave.

5 diffuse phases

Property	CNM	WNM	WIM	WPIM ^a	HIM
$\frac{P_{\text{th}}}{k}$ (cm ⁻³ K)	4000	4000	4000	2000	10000
$\tilde{T}(\mathbf{K})$	50	6000	8000	7000	1.5×10^6
$n_{\rm Hn}~({\rm cm}^{-3})$	80	0.7	0.25	0.2	0.0034
$\frac{n_e}{n_{\rm Hn}}$	2×10^{-4}	1×10^{-3}	1	$\frac{1}{2}$	1
N _{typ,Hn,20}	0.5	1	0.08	0.06	0.01
$N_{\mathrm{typ},e,20}$	1×10^{-4}	1×10^{-3}	0.08	0.03	0.01
$N_{\perp,\mathrm{Hn},20}$	1.5	1.5	1.0	?	0.1
$N_{\perp,e,20}$	3×10^{-4}	1.5×10^{-3}	1.0	?	0.1

 $RM = 26n_e B_{||} L_{20} = 26N_{e,20} B_{||}$

 $\beta = \mathrm{RM}\lambda^2$

$$RM = \frac{e^3}{2\pi m^2 c^4} \int_0^d n_e(s) B_{||}(s) \, \mathrm{d}s$$

* The integral is taken over the entire path from the source to the observer.

Approximate Pressure Equality Between the Gas Phases

- with no turbulence, the mechanism of thermal instability produces well-defined phases: thought as quasi-static morphologies
- PDF of volume density shows well-defined peaks
- * turbulence is in fact induced by supernovae, spiral density waves...
- based on a phenomenological understanding of these processes, the PDF of ionization fraction should be bimodal
- Can turbulence change the bimodal PDF of ionization fraction to a smoother PDF, as it does with gas density?

Vazquez-Semadeni (2009)

Approximate Equipartition Between ISM Components

Let's Look at Some Data

CNM/WNM: 21cm line

Rotation Measure

$WIM: H\alpha ~({\rm HIM}~{\rm traced~in~high~energy~superbubbles})$

Why these correspondence?

- * influence of individual interstellar structures on the observed RMs
- association of RMs and HI filaments is strange: HI is usually too neutral to produce significant RMs
- Some of these associations are a distinct change in RM across an HI filament
- * HI may be a shock-produced edge of an HIM region
- * presence of partially ionized HI or very weak H α emission associated with the HI structures: the WPIM

Why these correspondence?

- influence of individual interstellar structures on the observed RMs
- association of RMs and HI filaments is strange: HI is usually too neutral to produce significant RMs

RMs may be best way to probe WPIM!

* HI may be a shock-produced edge of an HIM region

* presence of partially ionized HI or very weak Hα emission associated with the HI structures: the WPIM