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Introduction




phases of ISM

* self-gravitating: molecular clouds
* negligible gravity: diffuse ISM

* Neutral Media: Cold (~50K)/Warm (~5000K)
not enough electron for Faraday rotation

* Jonized Media: Warm (~8000K)/Hot (~10°K)
prominent in Faraday Rotation; Zeeman splitting only WIM; no
significant alignment due to high T and high ne.

* Warm Partially Ionized Medium: T<WIM, x.~1/2, small n. and N.
so no Ha, but enough N. for rotation.



phases of ISM
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o diffuse phases

Property CNM WNM WIM WPIM? HIM

’;(—th (cm 3 K) 4000 4000 4000 2000 10000

T (K) 50 6000 8000 7000 1.5 x 100
nyy (cm™3) 80 0.7 0.25 0.2 0.0034

n —4 -3 1

e 2 x 10 1 x 10 1 L 1
Ntyp.Hn,20 0.5 1 0.08 0.06 0.01
Niyp.e,20 1x 104 1x 1073 0.08 0.03 0.01
N Hn 20 1.5 1.5 1.0 ? 0.1

N1 ¢20 3x 1074 1.5 x 1073 1.0 ? 0.1




Ifaraday rotation




Ifaraday rotation

* A linearly-polarized wave polarized in the x-direction,
Acos (wt)z

can be decomposed into a sum of left- and right-circularly polarized
waves at the same frequency:

A A
Al — 5 cos (wt)T + 5 sin (wt)y

A

Al 5 cos (wt) T — & sin (wt)y



Ifaraday rotation

* These left and right circularly-polarized components travel at
different speeds through a plasma rendered anisotropic due to a
magnetic field.

c w3
= p

SIRIE = 1

¢R,L where W(W £ WB)  are the effective

dielectric constants for the two circular polarizations,

ORI —

Wp 1is the plasma frequency, and

eB

Me

wpRp —

B
— 1.76 x 10* radj
X radians/s (Tesla>

is the cyclotron frequency.



Ifaraday rotation

* Upon exiting the plasma, the left- and right-circular polarization
modes have picked up a net phase difference, say 2¢ , which we
can split evenly between the two modes,

A A
Alety = 5 cos (Wt + @)z + 5 sin (wt + @)y

A A
Apight = 5 €08 (wt — @) — = sin (wt — @)y
+ So that the net electric field, ez A Al —

A

g[cos (wt + @) + cos (wt — @)]T + g[sin =)= g sin (wt — )|y

= A cos (wt) cos ¢ + A cos (wt) sin ¢y = A cos (wt)|cos ¢Z + sin ¢7]
, which is linearly-polarized in the direction cos ¢ + sin ¢g

* Thus a magnetized plasma rotates the plane of polarization of a
linearly-polarized electromagnetic wave.



o diffuse phases

Property CNM WNM WIM WPIM? HIM

’;(—th (cm 3 K) 4000 4000 4000 2000 10000

T (K) 50 6000 8000 7000 1.5 x 10°
nyy (cm™3) 80 0.7 0.25 0.2 0.0034

n —4 -3 1

e 2 x 10 1 x 10 1 L 1
Ntyp.Hn,20 0.5 1 0.08 0.06 0.01
Niyp.e,20 1x 104 1x 1073 0.08 0.03 0.01
N Hn 20 1.5 1.5 1.0 ? 0.1
N1 ¢20 3x 1074 1.5 x 1073 1.0 ? 0.1

RM = 26neB||L20 = 26Ne,2oB||



Ifaraday rotation

B = RMM)?
e’ i
RM = e /0 ne(s)B)(s) ds

The integral is taken over the entire path from the source to the
observer.



Approximate Pressure Kquality
Between the Gas Phases

* with no turbulence, the mechanism of thermal instability produces
well-defined phases: thought as quasi-static morphologies

* PDF of volume density shows well-defined peaks
* turbulence is in fact induced by supernovae, spiral density waves...

* based on a phenomenological understanding of these processes, the
PDF of ionization fraction should be bimodal

# Can turbulence change the bimodal PDF of ionization fraction to a
smoother PDF, as it does with gas density?

Vazquez-Semadeni (2009)



Approximate Kquipartition
Between ISM Components
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l.et’s l.ook at Some Data




1ne

21em |

CNM/WNM

S/ury Sp 03 [y

S/UIY 6¢— 03 LYp—

-100

0
GLON

100

LVTD



Rotation Measure
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WIM: Ha (HIM traced in high energy superbubbles)
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Why these correspondence?

+ influence of individual interstellar structures on the observed RMs

* association of RMs and HI filaments is strange: HI is usually too
neutral to produce significant RMs

* Some of these associations are a distinct change in RM across an HI
filament

* HI may be a shock-produced edge of an HIM region

* presence of partially ionized HI or very weak Ha emission
associated with the HI structures: the WPIM



Why these correspondence?

+ influence of individual interstellar structures on the observed RMs

* association of RMs and HI filaments is strange: HI is usually too
neutral to produce significant RMs

RMs may be best way to probe WPIM!

* HI may be a shock-produced edge of an HIM region

* presence of partially ionized HI or very weak Hx emission
associated with the HI structures: the WPIM



